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Abstract. Purpose of this work is to use analytical and numerical methods to consider the problem of the structure
and dynamics of the kinks in the sine-Gordon model with “impurities” (or spatial inhomogeneity of the periodic
potential). Methods. Using the method of collective variables for the case of three identical point impurities located
at the same distance from each other, a system of differential equations is obtained. Resulting system of equations
makes it possible to describe the dynamics of the kink taking into account the excitation of localized waves on
impurities. To analyze the dynamics of the kink in the case of extended impurities, a numerical finite difference
method with an explicit integration scheme was applied. Frequency analysis of kink oscillations and localized waves
calculated numerically was performed using a discrete Fourier transform. Results. For the kink dynamics, taking
into account the excitation of oscillations in modes, a system of equations for the coordinate of the kink center and
the amplitudes of waves localized on impurities is obtained and investigated. Significant differences are observed
in the dynamics of the kink when interacting with a repulsive and attractive impurity. The dynamics of the kink
in a model with three identical extended impurities, taking into account possible resonant effects, was solved
numerically. It is established that the found scenarios of kink dynamics for an extended rectangular impurity are
qualitatively similar to the scenarios obtained for a point impurity described using a delta function. All possible
scenarios of kink dynamics were determined and described taking into account resonant effects. Conclusion. The
analysis of the influence of system parameters and initial conditions on possible scenarios of kink dynamics is
carried out. Critical and resonant kink velocities are found as functions of the impurity parameters.
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Introduction

One of the most studied nonlinear differential equations currently belonging to the class of
Klein-Gordon equations is the sine-Gordon equation [1–3]. It is used to describe wave processes
in geology, molecular biology, physics, cosmology [2–4].

For example, in condensed matter physics, the sine-Gordon equation is used to describe
the dynamics of magnetization waves in ferromagnetic crystals, the movement of dislocations
in crystals, processes in Josephson superconducting contacts, the propagation of charge density
waves in one-dimensional organic conductors, the propagation of electromagnetic waves in a
graphene-based superlattice, the dynamics of an ensemble of interacting dislocations in a linear
defect of the electroconvective structure of a liquid crystal [5–9].

The sine-Gordon equation is a nonlinear partial differential equation and at the same
time fully integrable. Many of his exact solutions such as kink, soliton, breather and complex
multisoliton type [1, 2, 10, 11] are known. Finding new solutions to the sine-Gordon equation
and investigating the effects of various perturbations and modifications is an urgent task of the
modern theory of nonlinear waves.

For use in real physical models, additional terms [1, 2, 12, 13] are often added to the sine-
Gordon equations. These terms are needed to account for the presence of external forces and
dissipation in the system, heterogeneity of environmental parameters, and so on. The sine-Gordon
equation obtained as a result of this modification no longer has precise analytical solutions. In
such cases, the perturbation theory for solitons or the method of collective coordinates [1,2,13–15]
is often used, with the help of which it was possible to obtain solutions for a large number of
similar problems. For example, the dynamics of kinks, solitons and breathers under the action of
various types of external force, which is a function of time and spatial variables [16,17] is studied.

Another popular area of research is the study of the influence of spatial modulation of
the periodic potential (impurity) on the dynamics of solitons of the equation синус-Гордона
[13, 14, 18–30]. The sine-Gordon model with impurities (both point and extended modeled as a
delta function) is applicable to describe the case of a multilayer ferromagnet [31–33]. The kink-
impurity interaction can lead to the generation of waves localized on attracting impurities (or an
impurity mode) [2, 23–30] and as a result— to a significant change in the dynamics of the kink.
The attracting admixture can also lead to the excitation of the multisolitons of the sine-Gordon
equation.

The case of two impurities [29, 33] provides a wide variety of new multisoliton solutions
and dynamic effects compared to the case of a single impurity. We can expect an even greater
variety of solutions and effects in the presence of three or more impurities in the system. In this
paper, we study the dynamics of kink in a model with three identical impurities, taking into
account the excitation of nonlinear waves localized on impurities.

1. Point impurity

Consider a system defined by a Lagrangian

𝐿 =

∞∫︁
−∞

[︂
1

2
𝑢2𝑡 −

1

2
𝑢2𝑥 + (1− 𝜀δ(𝑥)− 𝜀δ(𝑥− 𝑑)− 𝜀δ(𝑥− 2𝑑))(1− cos𝑢)

]︂
𝑑𝑥, (1)

where 𝜀δ(𝑥) are models a point impurity, δ(𝑥) is the Dirac delta function, 𝜀 is a constant, 𝑑 is
the distance between neighboring impurities. If the parameter 𝜀 is greater than zero, then we are
dealing with an attractive impurity, which is a potential pit for kink. If the parameter 𝜀 is less
than zero, then we are dealing with a repulsive impurity, which is a potential barrier to kink.
The Lagrangian (1) corresponds to the equation of motion for a scalar field 𝑢(𝑥, 𝑡) of the form
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𝑢𝑡𝑡 − 𝑢𝑥𝑥 + sin𝑢 = [𝜀δ(𝑥)− 𝜀δ(𝑥− 𝑑)− 𝜀δ(𝑥− 2𝑑)] sin𝑢. (2)

The equation (2) is a modified sine-Gordon equation. The perturbation terms on the right side of
the equation (2) describe seven-layer ferromagnetic structures with different values of magnetic
anisotropy 𝜀 in different layers [21,23]. If the right side of the equation (2) is zero, then it has a
solution in the form of a kink

𝑢0 = 4arctg 𝑒𝑥−𝑋(𝑡) (3)

(where 𝑋(𝑡) is the coordinate of the kink center) or a spatially localized solution of the form
“resting breather” [1, 2]

𝑢(𝑥, 𝑡) = 4 arctg

(︃√
1−Ω2

Ω
sinΩ𝑡

ch((𝑥− 𝑥0)
√
1−Ω2)

)︃
, (4)

where Ω is the frequency of the breather and 𝑥0 is the coordinate of its center.
Let’s consider the dynamics of the kink, taking into account the possible excitation of

localized waves on impurities. For the theoretical analysis of the structure and dynamics of
solutions to the equation (2), an approximate method of collective coordinates can be used,
which was previously applied to the description of kink dynamics in a model with a single point
impurity [1,2]. The presence of localized waves on three impurities (or impurity modes) is taken
into account by introducing three collective variables, 𝑎1 = 𝑎1(𝑡), 𝑎2 = 𝑎2(𝑡) and 𝑎3 = 𝑎3(𝑡),
which are the amplitudes of these waves. The form of impurity mode expressions is similar to
that used earlier for the case of a single impurity [2, 29]:⎧⎪⎪⎨⎪⎪⎩

𝑢1 = 𝑎1(𝑡) exp (−𝜀|𝑥|/2),

𝑢2 = 𝑎2(𝑡) exp (−𝜀|𝑥− 𝑑|/2),

𝑢3 = 𝑎3(𝑡) exp (−𝜀|𝑥− 2𝑑|/2).

(5)

In the approximation of oscillations of small amplitudes, we assume that 𝑎𝑛(𝑡) = 𝑎𝑛0 cos (Ω𝑡+ θ0),
where θ0 is the initial phase. Solving the equation (2) in the absence of a kink for the case
of a single impurity, we can obtain an expression for the frequency of the impurity mode
Ω =

√︀
(1− 𝜀2/4). We will look for a general solution to the problem 𝑢 in the following form:

𝑢 = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3. (6)

Suppose that �̇�(𝑡), 𝑎𝑛(𝑡), �̇�𝑛(𝑡) are sufficiently small (on the order of 𝜀), that is, impurity modes
with small amplitudes are excited by a slowly moving kink. Within this approximation, we
consider 𝑢𝑛 ≪ 𝑢0. Then the nonlinear terms in the Lagrangian (1) can be decomposed into a
Taylor series up to second-order terms by 𝜀 [2]:

cos (𝑢0 + 𝑢1 + 𝑢2 + 𝑢3) ≈ cos𝑢0 −
(𝑢1 + 𝑢2 + 𝑢3)

2

2
cos𝑢0. (7)

Substituting (6) into (1) based on the approximation (7) leads, after integration, to a new effective
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Lagrangian depending on the new variables 𝑋(𝑡), 𝑎1(𝑡) , 𝑎2(𝑡) and 𝑎3(𝑡):

𝐿 ≈ −8 + 4�̇�2(𝑡) +
�̇�21(𝑡)

𝜀
+

�̇�22(𝑡)

𝜀
+

�̇�23(𝑡)

𝜀
+ 2 (�̇�1(𝑡)�̇�2(𝑡) + �̇�2(𝑡)�̇�3(𝑡))𝐸1+

+2�̇�1(𝑡)�̇�3(𝑡)𝐸2 + 2𝜀𝑎1(𝑡)
[︁
𝐹1(𝑋(𝑡)) + 𝐹2(𝑋(𝑡))𝑒−

𝜀𝑑
2 + 𝐹3(𝑋(𝑡))𝑒−𝜀𝑑

]︁
+

+2𝜀𝑎2(𝑡)
[︁
𝐹1(𝑋(𝑡)) + 𝐹3(𝑋(𝑡))𝑒−

𝜀𝑑
2 + 𝐹2(𝑋(𝑡))

]︁
+

+2𝜀𝑎3(𝑡)
[︁
𝐹1(𝑋(𝑡))𝑒−𝜀𝑑 + 𝐹2(𝑋(𝑡))𝑒−

𝜀𝑑
2 + 𝐹3(𝑋(𝑡))

]︁
−

− 2𝜀a21(𝑡)
[︂
Ω2

0

2𝜀2
+

1

2
𝑈1(𝑋(𝑡)) +

1

2
𝑈2(𝑋(𝑡))𝑒−𝜀𝑑 +

1

2
𝑈3(𝑋(𝑡))𝑒−2𝜀𝑑

]︂
−

− 2𝜀a22(𝑡)
[︂
Ω2

1

2𝜀2
+

1

2
𝑈1(𝑋(𝑡))𝑒−𝜀𝑑 +

1

2
𝑈2(𝑋(𝑡)) +

1

2
𝑈3(𝑋(𝑡))𝑒−𝜀𝑑

]︂
−

− 2𝜀a23(𝑡)
[︂
Ω2

0

2𝜀2
+

1

2
𝑈1(𝑋(𝑡))𝑒−2𝜀𝑑 +

1

2
𝑈2(𝑋(𝑡))𝑒−𝜀𝑑 +

1

2
𝑈3(𝑋(𝑡))

]︂
−

− 2𝜀a1(𝑡)𝑎2(𝑡)
[︁
−𝑌1/2𝜀+ 𝑈1(𝑋(𝑡))𝑒

−𝜀𝑑
2 + 𝑈2(𝑋(𝑡))𝑒

−𝜀𝑑
2 + (−1/2 + 𝑈3(𝑋(𝑡)))𝑒

−3𝜀𝑑
2

]︁
−

−2𝜀a1(𝑡)𝑎3(𝑡)
[︁
− 𝑌2/2𝜀+ 𝑈1(𝑋(𝑡))𝑒−𝜀𝑑 + 𝑈2(𝑋(𝑡))𝑒−𝜀𝑑 + 𝑈3(𝑋(𝑡))𝑒−𝜀𝑑

]︁
−

− 2𝜀a2(𝑡)𝑎3(𝑡)
[︁
−𝑌1/2𝜀+ (−1/2 + 𝑈1(𝑋(𝑡)))𝑒

−3𝜀𝑑
2 + 𝑈2(𝑋(𝑡))𝑒

−𝜀𝑑
2 + 𝑈3(𝑋(𝑡))𝑒−

𝜀𝑑
2

]︁
+

+2𝜀(𝑈1(𝑋(𝑡)) + 𝑈2(𝑋(𝑡)) + 𝑈3(𝑋(𝑡))).

(8)

Here 𝑈1(𝑋(𝑡)) =
1

ch2(𝑋(𝑡))
, 𝑈2(𝑋(𝑡)) =

1

ch2(𝑋(𝑡)− 𝑑)
, 𝑈3(𝑋(𝑡)) =

1

ch2(𝑋(𝑡)− 2𝑑)
,

𝐹1(𝑋(𝑡)) =
sh(𝑋(𝑡))

ch2(𝑋(𝑡))
, 𝐹2(𝑋(𝑡)) =

sh(𝑋(𝑡)− 𝑑)

ch2(𝑋(𝑡)− 𝑑)
, 𝐹3(𝑋(𝑡)) =

sh(𝑋(𝑡)− 2𝑑)

ch2(𝑋(𝑡)− 2𝑑)
,

𝐸1 =
(2 + 𝜀𝑑)

2𝜀
𝑒−

𝜀𝑑
2 =

(︂
1

𝜀
+

𝑑

2

)︂
𝑒−

𝜀𝑑
2 , 𝐸2 =

(1 + 𝜀𝑑)

𝜀
𝑒−𝜀𝑑 =

(︂
1

𝜀
+ 𝑑

)︂
𝑒−𝜀𝑑,

Ω2
0 = 1− 𝜀2

4
− 𝜀2

2
𝑒−𝜀𝑑 − 𝜀2

2
𝑒−2𝜀𝑑, Ω2

1 = 1− 𝜀2

4
− 𝜀2𝑒−𝜀𝑑,

𝑌1 = 𝜀𝑒−
𝜀𝑑
2 + 2

(︂
𝜀2

4
− 1

)︂
𝐸1, 𝑌2 = 𝜀𝑒−𝜀𝑑 +

(︂
𝜀2

4
− 1

)︂
𝐸2.

The equations of motion for 𝑋(𝑡), 𝑎1(𝑡), 𝑎2(𝑡) and 𝑎3(𝑡) can be obtained by converting the
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effective Lagrangian (8) into a system of second-order Lagrangian equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4�̈�(𝑡)− 𝜀(𝑈 ′
1 + 𝑈 ′

2 + 𝑈 ′
3)− 𝜀[𝑎1(𝐹

′
1 + 𝐹 ′

2𝑒𝑑 + 𝐹 ′
3𝑒

2
𝑑) + 𝑎2([𝐹

′
1 + 𝐹 ′

3]𝑒𝑑 + 𝐹 ′
2)+

+𝑎3(𝐹
′
1𝑒

2
𝑑 + 𝐹 ′

2𝑒𝑑 + 𝐹 ′
3)] +

1
2𝜀[𝑎

2
1(𝑈

′
1 + 𝑈 ′

2𝑒
2
𝑑 + 𝑈 ′

3𝑒
4
𝑑) + 𝑎22([𝑈

′
1 + 𝑈 ′

3]𝑒
2
𝑑 + 𝑈 ′

2)+

+𝑎23
(︀
𝑈 ′
1𝑒

4
𝑑 + 𝑈 ′

2𝑒
2
𝑑 + 𝑈 ′

3

)︀
+ 2𝑎1𝑎2(𝑈

′
1𝑒𝑑 + 𝑈 ′

2𝑒𝑑 + 𝑈 ′
3𝑒

3
𝑑) + 2𝑎1𝑎3(𝑈

′
1 + 𝑈 ′

2 + 𝑈 ′
3)𝑒

2
𝑑+

+2𝑎2𝑎3(𝑈
′
1𝑒

3
𝑑 + 𝑈 ′

2𝑒𝑑 + 𝑈 ′
3𝑒𝑑)] = 0,

([�̈�1 + 𝑎1(1− 𝜀2/4)][(1/𝜀)[1− 𝜀2𝐸2
1 ]− 𝜀[𝐸2

1 + 𝐸2
2 − 2𝜀𝐸2

1𝐸2]]+

+𝑎1[[𝜀[𝑈1 + (𝑈2 − 1/2)𝑒2𝑑 + (𝑈3 − 1/2)𝑒4𝑑]][1− 𝜀2𝐸2
1 ]−

−[𝜀[(𝑈1 + 𝑈2 − 1/2)𝑒𝑑 + (𝑈3 − 1/2)𝑒3𝑑]]𝜀𝐸1[1− 𝜀𝐸2]−
−[𝜀[(𝑈1 + 𝑈2 + 𝑈3 − 1)𝑒2𝑑]]𝜀[𝐸2 − 𝜀𝐸2

1 ]] + 𝑎2[[𝜀[(𝑈1 + 𝑈2 − 1/2)𝑒𝑑 + (𝑈3 − 1/2)𝑒3𝑑]]×
× [1− 𝜀2𝐸2

1 ]− [𝜀[(𝑈1 + 𝑈3 − 1)𝑒2𝑑 + 𝑈2]]𝜀𝐸1[1− 𝜀𝐸2]−
−[𝜀[(𝑈1−1/2)𝑒3𝑑 + (𝑈2+𝑈3−1/2)𝑒𝑑]]𝜀[𝐸2−𝜀𝐸2

1 ]]+𝑎3[[𝜀[(𝑈1+𝑈2+𝑈3−1)𝑒2𝑑]][1−𝜀2𝐸2
1 ]−

−[𝜀[(𝑈1 − 1/2)𝑒3𝑑 + (𝑈2 + 𝑈3 − 1/2)𝑒𝑑]]𝜀𝐸1[1− 𝜀𝐸2]− [𝜀[(𝑈1 − 1/2)𝑒4𝑑+

+(𝑈2 − 1/2)𝑒2𝑑 + 𝑈3]]𝜀[𝐸2 − 𝜀𝐸2
1 ]]− [𝜀[(𝐹1 + 𝐹2𝑒𝑑 + 𝐹3𝑒

2
𝑑)(1− 𝜀2𝐸2

1)−
−[(𝐹1 + 𝐹3)𝑒𝑑 + 𝐹2]𝜀𝐸1[1− 𝜀𝐸2]− [𝐹1𝑒

2
𝑑 + 𝐹2𝑒𝑑 + 𝐹3]𝜀[𝐸2 − 𝜀𝐸2

1 ]]]) = 0,

([�̈�2 + 𝑎2(1− 𝜀2/4)][(1/𝜀)[1− 𝜀2𝐸2
2 ]− 2𝜀𝐸2

1 [1− 𝜀𝐸2]] + 𝑎1[[𝜀[(𝑈1 + 𝑈2 − 1/2)𝑒𝑑+

+(𝑈3 − 1/2)𝑒3𝑑]][1− 𝜀2𝐸2
2 ]− [𝜀[𝑈1 + (𝑈1 + 2𝑈2 + 𝑈3 − 3/2)𝑒2𝑑 + (𝑈3 − 1/2)𝑒4𝑑]]×

× 𝜀𝐸1[1− 𝜀𝐸2]] + 𝑎2[[𝜀[𝑈2 + (𝑈1 + 𝑈3 − 1)𝑒2𝑑]][1− 𝜀2𝐸2
2 ]− [𝜀[(𝑈1 + 2𝑈2 + 𝑈3 − 1)𝑒𝑑+

+(𝑈1 + 𝑈3 − 1)𝑒3𝑑]]𝜀𝐸1[1− 𝜀𝐸2]] + 𝑎3[[𝜀[(𝑈3 + 𝑈2 − 1/2)𝑒𝑑 + (𝑈1 − 1/2)𝑒3𝑑]][1− 𝜀2𝐸2
2 ]−

−[𝜀[𝑈3 + (𝑈1 + 2𝑈2 + 𝑈3 − 3/2)𝑒2𝑑 + (𝑈1 − 1/2)𝑒4𝑑]]𝜀𝐸1[1− 𝜀𝐸2]])−
−(𝜀([(𝐹1 + 𝐹3)𝑒𝑑 + 𝐹2][1− 𝜀2𝐸2

2 ]− [𝐹1(1 + 𝑒2𝑑) + 2𝐹2𝑒𝑑 + 𝐹3(1 + 𝑒2𝑑)]𝜀𝐸1[1− 𝜀𝐸2])) = 0,

([�̈�3 + 𝑎3(1− 𝜀2/4)][(1/𝜀)[1− 𝜀2𝐸2
1 ]− 𝜀[𝐸2

1 + 𝐸2
2 − 2𝜀𝐸2

1𝐸2]] + 𝑎1[[𝜀[(𝑈1 + 𝑈2 + 𝑈3 − 1)𝑒2𝑑]]×
× [1− 𝜀2𝐸2

1 ]− [𝜀[(𝑈1+ 𝑈2− 1/2)𝑒𝑑 + (𝑈3 − 1/2)𝑒3𝑑]]𝜀𝐸1[1− 𝜀𝐸2]− [𝜀[𝑈1 + (𝑈2− 1/2)𝑒2𝑑+

+(𝑈3 − 1/2)𝑒4𝑑]]𝜀[𝐸2 − 𝜀𝐸2
1 ]] + 𝑎2[[𝜀[(𝑈1 − 1/2)𝑒3𝑑 + (𝑈2 + 𝑈3 − 1/2)𝑒𝑑]][1− 𝜀2𝐸2

1 ]−
−[𝜀[(𝑈1+𝑈3−1)𝑒2𝑑 + 𝑈2]]𝜀𝐸1[1−𝜀𝐸2]− [𝜀[(𝑈1+𝑈2−1/2)𝑒𝑑 + (𝑈3−1/2)𝑒3𝑑]]𝜀[𝐸2 − 𝜀𝐸2

1 ]]+

+𝑎3[[𝜀[(𝑈1−1/2)𝑒4𝑑 + (𝑈2−1/2)𝑒2𝑑+𝑈3]][1−𝜀2𝐸2
1 ]− [𝜀[(𝑈1−1/2)𝑒3𝑑+(𝑈2+𝑈3−1/2)𝑒𝑑]]×

× 𝜀𝐸1[1− 𝜀𝐸2]− [𝜀[(𝑈1 + 𝑈2 + 𝑈3 − 1)𝑒2𝑑]]𝜀[𝐸2 − 𝜀𝐸2
1 ]])− (𝜀[[𝐹1𝑒

2
𝑑+𝐹2𝑒𝑑+𝐹3][1−𝜀2𝐸2

1 ]−
−[(𝐹1 + 𝐹3)𝑒𝑑 + 𝐹2]𝜀𝐸1[1− 𝜀𝐸2]− [𝐹1 + 𝐹2𝑒𝑑 + 𝐹3𝑒

2
𝑑]𝜀[𝐸2 − 𝜀𝐸2

1 ]]) = 0,

(9)

where 𝑒𝑑 = 𝑒
−𝜀𝑑
2 . From the resulting set of equations in the limiting case of 𝑑 → ∞, one can obtain

the already known equation for the case of kink motion in a model with a single impurity [2].
At 𝑋(𝑡) → ∞ equations (9) describe the associated fluctuations of impurity modes, discussed
earlier in [34].

First, let’s consider the effect of three impurities on the kink dynamics for the case of a
repulsive impurity in the absence of impurity modes 𝑎𝑛(𝑡) = 0:

�̈�(𝑡) +
3∑︁

𝑘=1

(︂
𝜀

2

th(𝑋(𝑡)− 𝑥𝑘)

ch2(𝑋(𝑡)− 𝑥𝑘)

)︂
= 0, (10)

where 𝑥𝑘 is the coordinate of the 𝑘-th impurity. The equation (10) for the case of one and two
impurities reduces to the already known equation of motion of the kink [29]. Multiplying it by
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�̇�(𝑡) and integrating it in time, we get

�̇�2(𝑡)− �̇�2(0)−
3∑︁

𝑘=1

(︂
𝜀

2

(︂
1

ch2(𝑋(𝑡)− 𝑥𝑘)
− 1

ch2(𝑋(0)− 𝑥𝑘)

)︂)︂
= 0. (11)

If the kink moves from a long distance 𝑋(0) −→ −∞, then we can simplify the form of the
equation somewhat (11):

�̇�2(𝑡)− �̇�2(0)−
3∑︁

𝑘=1

(︂
𝜀

2

1

ch2(𝑋(𝑡)− 𝑥𝑘)

)︂
= 0. (12)

Using the equation (12), it is possible to find the critical rates of kink dynamics for the
case of an impurity in the form of a barrier (Fig. 2). Using the system of equations (9), it is
possible to find all possible scenarios of kink dynamics for the case of repulsive and attractive
impurities. Suppose that at the initial moment of time 𝑡 = 0 the kink is at a relatively large
distance from the impurities, 𝑋(0) = −10, and then moves with an initial velocity of �̇�(0), and
there are no impurity modes 𝑎1(0) = �̇�1(0) = 𝑎2(0) = �̇�2(0) = 𝑎3(0) = �̇�3(0) = 0. In Fig. 1, a,
depending on the initial velocity, the following scenarios of kink dynamics were found for the
case of repulsive impurities: reflection from the first barrier at a speed less than some critical
one (line 3, velocity 0.502), passage through the first barrier and reflection from the second (line
2, velocity 0.5035), passing through all three impurities at a speed greater than the critical one
(line 1, velocity 0.505).

In Fig. 1, b–d possible cases of kink dynamics at different values of initial velocity and
distance between attracting impurities are presented. During the passage of the kink, high-
amplitude localized breather-type vibrations are excited on the impurities, which significantly
affect the dynamics of the kink. Firstly, a significant part of the kink’s energy can be spent on
arousing them. Secondly, the subsequent interaction of the kink with waves localized on attracting
impurities can lead to resonant effects (for example, in the case of a single impurity, reflection
from a potential well [1, 2] may be observed under certain parameters).

When the impurities are located close enough to each other, depending on the initial
velocity, the following cases are found: kink passage at 𝑣0 = 0.27 (curve 1, Fig. 1, b), the case
of quasi-tunneling at 𝑣0 = 0.08 (curve 2, Fig. 1, b), oscillation on three impurities followed by
reflection at 𝑣0 = 0.09 (curve 3, Fig. 1, b), the case of resonant reflection at 𝑣0 = 0.24 (curve 5,
fig. 1, b). A case can be distinguished for 𝑣0 = 0.06: the kink can fluctuate on three impurities
acting as one collective impurity for a long time (curve 4, Fig. 1, b). As the distance between
impurities increases, it is possible to observe kink pinning on each impurity separately and a
more complex kink pinning scenario with its jump between impurities (Fig. 1, c). By changing
the distance between the impurities, the same scenarios of kink dynamics can be obtained as for
the case of a change in the initial velocity (Fig 1, d).

2. The case of extended impurities

For practical applications, it is necessary to consider the case of extended impurities, which
is more realistic from a physical point of view. The sine-Gordon equation for the case of extended
impurities has the form

𝑢𝑡𝑡 − 𝑢𝑥𝑥 +𝐾(𝑥) sin𝑢 = 0, (13)

where 𝐾(𝑥) is the spatial inhomogeneity of the periodic potential. It is possible to compare the
results obtained for an extended impurity with the case of point impurities. The sine-Gordon
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a b

c d

Fig 1. Dependence of the kink center coordinate 𝑋 on the time 𝑡. a — The case of a barrier at 𝜀 = −0.5 and
𝑑 = 3: 𝑣0 = 0.505 (line 1 ), 𝑣0 = 0.5035 (2 ), 𝑣0 = 0.502 (3 ). b — The case of a well at 𝑑 = 1, 𝜀 = 0.5: 𝑣0 = 0.27
(line 1 ), 𝑣0 = 0.08 (2 ), 𝑣0 = 0.09 (3 ), 𝑣0 = 0.06 (4 ), 𝑣0 = 0.24 (5 ). c — The case of a well at 𝜀 = 0.5, 𝑑 = 6:
𝑣0 = 0.188 (line 1 ), 𝑣0 = 0.138 (2 ), 𝑣0 = 0.1165 (3 ), 𝑣0 = 0.078 (4 ). d — The case of a well at 𝜀 = 0.5, 𝑣0 = 0.22:
𝑑 = 3.5 (line 1 ), 𝑑 = 2.5 (2 ), 𝑑 = 2.698 (3 ); 𝑑 = 3 (4 ); 𝑑 = 1.2 (5 )
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Fig 2. Dependence of the minimum speed of the kink passage over three impurities on the parameter
1− 𝜀

equation in a model with extended impurities can only be solved using numerical methods. To
date, a fairly large number of methods for the numerical solution of such equations have been
developed [2, 14,25,26].

Let’s use the finite difference method. Let’s choose a three-layer explicit solution scheme,
with approximation of derivatives on a five-point pattern of the “cross” type, which was previously
used for simpler modifications of the sine-Gordon equation [24]. This is a second-order numerical
scheme of approximation by ∆𝑥 and τ, where ∆𝑥 is a coordinate step, τ is a time step. It has
conditional stability (τ/∆𝑥) ⩽ 1/2. In our case, the scheme is “one-step”, uses a relatively small
number of memory accesses and has the potential to optimize the computational algorithm.

Frequency analysis of localized wave oscillations, which are calculated numerically, is
performed using a discrete Fourier transform. The fast Fourier transform algorithm is used to
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calculate it. This algorithm has good performance, but the most optimized implementations of
the fast Fourier transform impose certain restrictions on the original series. To prepare the data,
the initial discrete dependence is interpolated by a cubic spline with natural boundary conditions,
from which a new discrete dependence is constructed on a uniform grid with an increased number
of approximation points. The frequency spectrum is calculated from the new discrete dependence
using the fast Fourier transform. To increase the accuracy of frequency determination, the points
of the maxima of the frequency spectrum are refined using interpolation by the Akim spline.

Consider the function 𝐾(𝑥) of a rectangular form:

𝐾(𝑥) =

{︃
1, если |𝑥| > 𝑊/2, |𝑥+ 𝑑| > 𝑊/2, |𝑥− 𝑑| > 𝑊/2,

𝐾, если |𝑥| ⩽ 𝑊/2, |𝑥+ 𝑑| ⩽ 𝑊/2, |𝑥− 𝑑| ⩽ 𝑊/2.
(14)

Let’s assume that at the initial moment of time, at some distance from the impurities, there
is a kink moving at a constant speed. When the kink passes through the impurity region, we
investigate possible scenarios of its dynamics. Let us first consider, as in the previous paragraph,
the case of the barrier. For certainty, we put the origin in the center of the second barrier. The
centers of other barriers will be on both sides of it with dimensionless coordinates 𝑥1 = −3 and
𝑥3 = 3, 𝑊 = 1, 𝐾 = 2. Let the kink move from infinity towards potential barriers. We exclude
the interaction of the kink with barriers at the initial moment of time. We set the initial position
of the kick far enough away from the barriers.

Numerical analysis shows (Fig. 3, a) that the following scenarios of kink dynamics are
possible: curve 1 — reflection of a kink moving at a speed of 0.59 from the first potential barrier;
curve 2— passage of a kink moving at a speed of 0.595, through the first barrier, reflection from
the second and its further closed movement between the first and the second (pinning); curve 3
— passage of a kink moving at a speed of 0.59855 through the first barrier and reflection from
the second; curve 4— passage of a kink moving at a speed of 0.5986 through the first and second
barriers, reflection from the third and its further closed movement between the second and third
(pinning); curve 5— passage of a kink moving at a speed of 0.602 through three barriers. The
fluctuations of the kink between the first and second, between the second and third barriers are
inharmonious.

For the case of an extended impurity, kink dynamics modes were found, which were
obtained for point impurities in Fig. 1, as well as new modes (pinning). If we compare the
values of the kink velocities before and after interaction with barriers, it turns out that these
velocities are almost the same, that is, the kink-impurity interaction is almost elastic. In Fig. 4
the dependence of the minimum velocity of passage on 𝐾 for the case of an extended impurity
with 𝑊 = 0.5 and 1. A comparison with the results obtained for the case of point impurities
shows a qualitative coincidence of the dependencies.

Consider the case of a potential pit. In Fig. 5 shows possible scenarios of kink dynamics
for the case of 𝐾 = 0.5, 𝑊 = 1, 𝑑 = 2. In Fig. 5, a shows the pinning case on the first pit at
𝑣0 = 0.28, in Fig. 5, b — the case of kink resonance reflection at 𝑣0 = 0.33, in Fig. 5, c — the
case of passing all three impurities at 𝑣0 = 0.343, in Fig. 5, d — the case of resonant passage or
“quasi-tunneling” kink at 𝑣0 = 0.3426. The interaction of kink and impurity is inelastic and is
accompanied by the emission of free waves and the excitation of localized breather-type waves
on impurities.

When the initial velocity of the kink 𝑣0 is less than some critical velocity of passage through
three impurities 𝑣cr, its pinning is observed on the first, second and third impurities (curves 1, 2,
3 in Fig. 3, b). From Fig. 3, b it can be seen that at the initial moment of time these fluctuations
are not harmonic in nature. However, after a long period of time, the oscillations of the oscillators
synchronize and become more harmonic.

Pinning scenarios with kink jumping from one “potential pit” to another were also observed
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(Fig. 3, c). This behavior of the kink is due to the loss of energy for radiation, the excitation of
internal degrees of freedom of the kink (pulsation mode), the excitation of localized breather-type
oscillations on impurities and their interaction with each other. The oscillation frequencies of the
kink on the central and lateral impurities are not equal, although the impurities are the same
(ω𝑎 = 0.301, ω𝑏 = 0.318, ω𝑐 = 0.301). As in the case of one and two impurities [27, 28, 31], at
certain values of velocities less than 𝑣cr, an interesting dynamic effect of resonant reflection of
the kink from attracting impurities that are potential wells is observed (curve 4 fig. 3, b).

In this case, the kink, after passing through the areas of impurities, stops, then begins to
move back and goes in the opposite direction from the initial one at a speed of 0.19. This effect,
as in the case of one and two impurities, is resonant in nature, associated with the interaction
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of kink with localized breather-type waves originating on impurities. The loss of kinetic energy
of the kink to generate breathers and wave radiation is associated with a decrease in its final
velocity compared to the initial one.

As in the case of two attracting impurities [29], another resonant effect was observed “quasi-
tunneling”. In this case, the kink, having a speed less than the minimum required to overcome the
areas of the three impurities, passes through them (curve 6 Fig. 3, b). With a further increase in
the kink speed to a certain value 𝑣cr (curve 5 Fig. 3, b) it goes on indefinitely. A similar dynamic
behavior of the kink was obtained earlier for the case of two impurities [29].

Different scenarios of kink dynamics can be obtained by changing the distance between
impurities without changing the initial velocity and parameters of the impurities themselves. For
example, for a system with parameters 𝑊 = 1, 𝐾 = 0.5 and an initial velocity of 𝑣0 = 0.1, up
to 𝑑1 ≈ 1.505, the kink will fluctuate in the region of all three impurities, that is, the impurities
act as one effective (Fig. 1, b, curve 4 ).

With further increase in d, the dynamics scenarios change (Fig. 3, d, curves 1 and 2 ).
For 𝑑 = 1.52, fluctuations are unstable. The kink jumps between single impurities and effective
impurities. Already at 𝑑 = 1.55, king makes only one incomplete oscillation in the area of the
effective impurity and is captured by the first impurity. This scenario is similar to the case shown
in Fig. 3, b, curve 1.

With a further increase of 𝑑 to a certain value of 𝑑2 ≈ 2.3, the nature of the kink fluctuations
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Fig 5. Dependence of 𝑢(𝑋, 𝑡) at 𝐾 = 0.5, 𝑊 = 1, 𝑑 = 2: a — 𝑣0 = 0.28, b — 𝑣0 = 0.33, c — 𝑣0 = 0.343, d —
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changes again. If in the area of 1.505 < 𝑑 < 2.3 the kink experiences fluctuations in the area of
the effective impurity, followed by capture on one of the single ones, then at 2.3 < 𝑑 < 2.485 the
kink passes through all the impurities and goes to infinity. In the region of 2.485 < 𝑑 < 3.64,
the collective influence of impurities continues to decrease, transients decrease and the kink is
captured by single impurities. In this area, scenarios of kink capture by an impurity without
transients appear, however, such scenarios are unstable and disappear with the slightest changes
in the distance between the impurities.

In the region of 3.64 < 𝑑 < 3.8, the kink does not experience transients and is immediately
captured by the third impurity. At 3.8 < 𝑑 < 5.7, kink spinning is observed on the second
impurity. Starting from 𝑑 = 5.8, the kink is captured by the first impurity. The minimum speed
required for a kink to pass through one impurity, in our case, is 0.12. Similar scenarios of kink
dynamics can be obtained without changing its velocity and the distance between impurities,
but by changing their parameters 𝐾 and 𝑊 .

Numerical calculation has shown that the dependence of the final kink velocity on the
magnitude of the initial velocity contains many resonant velocities (Fig. 6). These velocities, as
in the case of one and two impurities, appear with a certain periodicity. As they approach the
critical velocity of passage over the three impurities, their number increases. The vertical line in
Fig. 6 corresponds to the “quasi-tunneling” scenario described above.

When the value of 𝑣cr is exceeded, the final kink velocity increases non-linearly. The same
dependence is typical for the case of one and two impurities [23, 29]. For the case we have
considered, 𝑊 = 1, 𝐾 = 0.5, 𝑑 = 2, the formula obtained in [3] for the case of a single impurity

𝑣2𝑘 = 𝑐(𝑣20 − 𝑣2min), (15)

and linking the final kink velocity with the initial one, which has a value greater than 𝑣cr, with a
coefficient value of 𝑐 = 1.47, well describes the value of the final velocity. Analysis of the results
of the numerical experiment shows that this coefficient in our case is a function of the parameters
𝑊 , 𝐾, 𝑑 and 𝑛 — the amount of impurities. This dependence can be roughly represented as

𝑐 theor = 𝑊𝐾𝑑𝑛/2. (16)

For example, for the case discussed above, 𝑐 theory = 1. 5 coincides with a fairly high accuracy
with the value of 𝑐 = 1.47 obtained numerically.

Conclusion

The article considers the nonlinear dynamics of the kink of the sine-Gordon equation in a
model with three identical impurities located at the same distance from each other. All possible
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scenarios of kink dynamics were determined and described taking into account resonant effects.
For the case of a point impurity described using the delta function, a system of differential
equations describing the dynamics of kink and oscillations of waves localized on impurities is
obtained using the method of collective variables. It is shown that significant differences are
observed in the interaction of kink with a repulsive and attractive admixture. The resonant effects
of reflection and passage over impurities are observed only in the case of attracting impurities. The
dynamics of the kink in the case of extended impurities was investigated using the numerical finite
difference method with an explicit integration scheme. It is established that the found scenarios
of kink dynamics for an extended rectangular impurity are qualitatively similar to the scenarios
obtained for a point impurity described using the delta function. The analysis of the influence
of system parameters and initial velocities on possible scenarios of kink dynamics is carried out.
The critical and resonant kink velocities are found as a function of the impurity parameters. It is
shown that by changing the distance between impurities, it is possible to effectively control the
magnitude of the kink-impurity interaction. Critical values of the distance between impurities
are found when three impurities act on the kink as one effective and when impurities act on the
kink almost independently of each other.
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