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The purpose of this work is to study the collective dynamics of a neural network consisting of excitatory
and inhibitory populations. The method of reducing the network dynamics to new generation neural mass models
is used, and a bifurcation analysis of the model is carried out. As a result the conditions and mechanisms for
the emergence of various modes of network collective activity are described, including collective oscillations,
multistability of various types, and chaotic collective dynamics. Conclusion. The low-dimensional reduced model
is an effective tool for studying the essential patterns of collective dynamics in large-scale neural networks. At the
same time, the analysis also allows us to elicit more subtle effects, such as the emergence of synchrony clusters in
the network and the shifting effect for the boundaries of the existence of dynamical modes.
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Introduction

The study of the collective dynamics of large-scale neural networks is one of the important
areas necessary for understanding the principles of functioning of the central nervous system
and its processing of information. However, the use of realistic detailed network models for
these purposes, taking into account the behavior of individual neurons, causes both technical
difficulties associated with numerical modeling of large networks, and difficulties with theoretical
generalization and interpretation of large volumes of the results obtained. To avoid these difficulties,
medium-field models are often used, the so-called neural mass models, which describe the dynamics
of a population of neurons in terms of averaged, physically relevant variables, such as the average
frequency of generation of action potentials or the average membrane potential. Using such
models as “building blocks”, it is possible to create meso- and macroscopic models of large-scale
neural networks containing many interacting populations from them [1,2].
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Recently, the so-called “new generation” of neural mass models [3], which traces its history
from the Montbrio-Paso-Roxine model [4], has become increasingly popular in the theoretical
modeling of neural systems. The distinctive features of these reduced models are, firstly, the
possibility of their strict derivation from equations for microscopic dynamics of neurons, and
secondly, their ability not only to describe the average activity of a population, but also to
take into account the degree of its synchronization. The latter circumstance is of particular
importance for the study of brain rhythms, which are a manifestation of the collective oscillatory
activity of neural networks. Thus, new generation neural mass models were used to model gamma
rhythms [5], interactions between theta and gamma rhythms [6], the effect of movements on
changes in beta rhythms [7]. Models of this type were used to study fluctuations in networks
consisting of several populations [8], as well as to model distributed systems—neural fields [9]
and the brain as a whole [10,11].

A neural network consisting of two interacting populations - excitatory and suppressive
- is one of the basic fundamental structures (motives) in large-scale brain networks [12–16].
New generation neural mass models have been actively used to study the collective dynamics
of such two-population neural networks. Thus, in the work [8], the occurrence of synchronous
oscillatory activity in such a network was demonstrated, associated with the transition through
the Andronov-Hopf bifurcation in the corresponding reduced model. In the work [17], neural mass
models were used to study the occurrence of collective oscillations in balanced neural networks
(it should be noted that the medium-field model in this case showed only damped oscillations,
whereas self-sustaining oscillations in a microscopic system arose due to finite-size effects). In
the work [18], the influence of the populations’ own time scales on the fluctuations occurring in
the system was investigated. It is shown that, depending on the ratio of the membrane times
of the suppressive and excitatory populations, both strongly synchronized (so-called PING) and
weakly modulated gamma rhythms can occur. In the work [19] it is shown that the occurrence
of collective oscillations in a two-population network can be associated with both the transition
through the supercritical and the transition through the subcritical Andronov-Hopf bifurcation
in the reduced model. In the work [20], the occurrence of quasi-periodic and chaotic collective
oscillations is studied. In [21], cross-frequency synchronization between two populations was
investigated. In the work [22], the effect of suppressing vibrations by external influence was
studied. In the work [23], the synchronization of periodic collective oscillations by an external
periodic signal is studied.

The abundance of work on the dynamics of the neural mass model of a two-population
excitatory-suppressive network encourages the systematization and understanding of the results
obtained, which served as the initial motivation for this work. However, upon careful study of the
system, new, previously undescribed dynamic modes and mechanisms of their occurrence were
also discovered in it. Thus, this work represents the first detailed, though not exhaustive, study
of the dynamics and bifurcations of the neural mass model of a network consisting of excitatory
and suppressive populations.

The work is structured as follows. In the section 1, we formulate a network model and
its corresponding neural mass model. In the section 2, the basic case of weak connections is
considered, when the dynamics of a two-population model does not qualitatively differ from the
dynamics of a single exciting population. In the section 3, the occurrence of collective periodic
oscillations is investigated. The section 4 is devoted to the formation of tristability in the system
- the coexistence of three stable asynchronous states. The section 5 examines chaotic collective
dynamics. In conclusion, the results of the study are summarized briefly.
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1. Model

Consider a system consisting of two populations of neurons (populations we will also further
call modules when it refers to a reduced system)— excitatory E and suppressive I (hereinafter, the
indices 𝑒, 𝑖 determine whether the parameter belongs to the excitatory or suppressive population).
Each neuron is described by a quadratic accumulation and reset model

𝑉𝑗 = 𝑉 2
𝑗 + η𝑗 + 𝐼𝑗(𝑡), (1)

where 𝑉𝑗 is the membrane potential of the 𝑗th neuron, η𝑗 is an inhomogeneous bias current, and
𝐼𝑗(𝑡) is the cumulative current received by the 𝑗th neuron from other neurons in the network.
For each neuron from the population 𝑋 = {𝑒, 𝑖}, this current is defined as

𝐼𝑋 = 𝐽𝑒𝑋𝑟𝑒 + 𝐽𝑖𝑋𝑟𝑖, (2)

where 𝐽𝑌 𝑋 is the strength of synaptic connections acting on the part of the population 𝑌 on the
population 𝑋, and 𝑟𝑋 is the total output signal of the population 𝑋, normalized by the number
of its elements, and having the meaning of the average frequency of spike generation:

𝑟𝑋(𝑡) =
1

𝑁𝑋

∑︁
𝑗∈𝑋

∑︁
𝑘|𝑡𝑘𝑗⩽𝑡

δ(𝑡− 𝑡𝑘𝑗 ). (3)

Here 𝑁𝑋 is the number of neurons in the population 𝑋. Each 𝑗th neuron generates individual
spikes at time points 𝑡𝑘𝑗 , which are determined from an additional condition: when the membrane
potential of the neuron 𝑉𝑗 reaches some predetermined threshold value 𝑉𝑝. After the spike is
generated, the potential is reset to the value 𝑉𝑟. Further, we believe that 𝑉𝑝 = −𝑉𝑟 = ∞.

With a large number of neurons in both populations (in the thermodynamic limit at
𝑁𝑋 → ∞), the dynamics of each such population can be approximated using a neural mass
model. Let us further assume, for certainty, that the individual displacement currents η𝑗 in each
population 𝑋 are distributed along the Lorentz with the center ζ𝑋 and the half-width ∆𝑋 :

𝑔(η) =
1

π
∆𝑋

∆2𝑋 + (η− ζ𝑋)2
. (4)

Then, in the absence of connections between populations, the collective dynamics of each of them
can be reduced to the Montbrio-Paso-Roxine system [4]:

𝑟̇𝑋 =
∆𝑋
π

+ 2𝑟𝑋𝑣𝑋 ,

𝑣̇𝑋 = 𝑣2𝑋 + ζ𝑋 − π2𝑟2𝑋 + 𝐽𝑋𝑋𝑟𝑋 ,
(5)

where the variable 𝑟𝑋 models the average frequency of the population 𝑋, 𝑣𝑋 is its average
membrane potential, and 𝐽𝑋𝑋 is the strength of synaptic connections within the population.
When adding connections between populations, the behavior of the complete network will be
described by two connected systems of the form (5), that is, the following system of ordinary
differential equations:

𝑟̇𝑒 =
∆
π
+ 2𝑟𝑒𝑣𝑒,

𝑣̇𝑒 = 𝑣2𝑒 + ζ𝑒 − π2𝑟2𝑒 + 𝐽𝑒𝑒𝑟𝑒 + 𝐽𝑖𝑒𝑟𝑖,

𝑟̇𝑖 =
∆
π
+ 2𝑟𝑖𝑣𝑖,

𝑣̇𝑖 = 𝑣2𝑖 + ζ𝑖 − π2𝑟2𝑖 + 𝐽𝑖𝑖𝑟𝑖 + 𝐽𝑒𝑖𝑟𝑒.

(6)

Further analysis of the collective dynamics of the network is carried out on the basis of a two-
module model of neural masses (6).
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2. The case of weak intermodule connections

As shown in [4], the intrinsic dynamics of one independent module (5) can be either mono-
or bistable. According to the bifurcation diagram shown in Fig. 1, a, in this case there may be one
or two stable equilibrium states in the system. In a complete (microscopic) system, the bistable
mode is characterized by the coexistence of two stable asynchronous modes- with “high” and with
“low” the level of average activity. We believe that the connections within the exciting population
are positive (𝐽𝑒𝑒 > 0), and within the overwhelming population are negative (𝐽𝑖𝑖 < 0). With this
choice of parameters, the intrinsic dynamics of the exciting population can be both mono- and
bistable, while the overwhelming population always demonstrates a single stable asynchronous
state with a low level of activity.

Let’s move on to analyzing the dynamics of a two-population network, and for simplicity,
let’s start with the case of unidirectional communication — only from an exciting population to
an overwhelming one (𝐽𝑒𝑖 > 0, 𝐽𝑖𝑒 = 0). Obviously, in this case, the scenario “master – slave”
is implemented, and the dynamics of the system does not differ qualitatively from the case of
non-interacting populations. The bifurcation diagram of the corresponding reduced model (6) in
this case is identical to the bifurcation diagram for a single exciting module (shown in Fig. 1, b
with a thin blue line). Let’s further assume that the relationship between populations becomes
mutual (𝐽𝑒𝑖 > 0, 𝐽𝑖𝑒 < 0, |𝐽𝑖𝑒| ≪ |𝐽𝑒𝑖|). Then, at moderate (finite) values of the bond forces
𝐽𝑒𝑒, when the “high” state of the exciting population has not too much activity, the result of the
interaction of populations is manifested in the bifurcation diagram of the reduced model by only
a small shift in the boundaries of the bistability region. For example, let’s fix the values of the
parameters of the overwhelming population ζ𝑖 = −10, 𝐽𝑖𝑖 = −5 and the values of intermodule
connections 𝐽𝑒𝑖 = 5 и 𝐽𝑖𝑒 = −1. The bifurcation diagram on the plane of the parameters ζ𝑒
and 𝐽𝑒𝑒 for this case is shown in Fig. 1, b and shows that even with relatively large values of
intermodule bond forces comparable in magnitude to the strength of intramodule bonds, the
shape of the bistability region changes slightly compared to the case of unidirectional coupling.
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Fig 1. a — Two-parameter bifurcation diagram of the Montbrió–Pazó–Roxin system (5) with ∆𝑋 = 1. Bistability
region is bounded by two lines of saddle-node bifurcations (blue lines) and has a wedge shape. Dotted line
separates the parameter regions for which the stable equilibrium state is either a node or a focus. b — Two-
parameter bifurcation diagram for the two-module system (6) with unidirectional coupling (𝐽𝑒𝑖 = 5, 𝐽𝑖𝑒 = 0,
ζ𝑖 = −10, 𝐽𝑖𝑖 = −5, thin blue lines) and mutual coupling (𝐽𝑒𝑖 = 5, 𝐽𝑖𝑒 = −1, ζ𝑖 = −10, 𝐽𝑖𝑖 = −5, red dots).
Boundaries of the bistability region are determined by the saddle-node bifurcations. The dotted line separates the
parameter regions for which the stable equilibrium state has one or two pairs of complex conjugate characteristic
exponents (color online)
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Fig 2. a — Spatio-temporal diagram for the excitatory population. The individual phases of each hundredth
element are displayed, sorted by the parameter η𝑗 (ζ𝑒 = −4, 𝐽𝑒𝑒 = 15, 𝐽𝑒𝑖 = 5, 𝐽𝑖𝑒 = −1, ζ𝑖 = −10, 𝐽𝑖𝑖 = −5).
b — Dependence of the average frequency of the excitatory population of the microscopic system (blue line,
averaged over a sliding time window ∆𝑡 = 0.025) and the macroscopic reduced system (red line). c — Sequence of
two rectangular current pulses with amplitude 𝐴 = 10, acting on the excitatory population. Duration of the first
pulse is 𝑇1 = 0.4, and the second one is 𝑇2 = 0.3 (color online)

This is due to the fact that at the selected parameter values, the activity of the overwhelming
population is very low and it actually plays the role of a passive inertial load. At the same time,
despite the fact that the effect of such a load on the asymptotic (stationary) dynamics may
not be so noticeable, it can nevertheless significantly affect transient and resonant processes in
the system. Indeed, since the only equilibrium state of the free suppressing module is a stable
focus, the connection of such a load to the exciting module leads to the appearance of new
characteristic frequencies in the system. Thus, damped oscillations in the vicinity of the “low”
state of the system are characterized by one frequency, while oscillations in the vicinity of the
“high” equilibrium state may contain two incommensurable frequencies.

Let us consider in more detail the behavior of a complete microscopic network, each
individual population of which contains 𝑁𝑒,𝑖 = 10000 elements. To do this, we fix the system
parameters in the bistability region (ζ𝑒 = −4, 𝐽𝑒𝑒 = 15). The corresponding point on the
bifurcation diagram is Fig. 1, b is marked with a marker. Then, under the influence of external
stimuli, the network can switch between two collective stable states. This process is illustrated
in Fig. 2, a–c.

For the sake of certainty, we assume that at the initial moment of time the system is in a
stable “high” asynchronous state. Next, two rectangular current pulses with the same amplitude
𝐴 = 10 and with a duration 𝑇1 = 0.4 and 𝑇2 = 0.3 (see Fig. 2, c). The time interval between
pulses is chosen sufficiently large so that macroscopic transients in the system end by the arrival
of the second pulse. The collective behavior in this case is well illustrated in Fig. 2, b, which
shows the dependence of the average frequency of the exciting population on time. As you can
see, the action of the first pulse causes the network to switch from a “high” asynchronous state to
a “low”, while the second pulse restores a high level of network activity. It is interesting to note
that a pulse with a duration of 𝑇2 cannot switch the system from a “high” state to a “low”, while
a pulse with a duration of 𝑇1 does not allow the network to be transferred from a “low” state to
“high”. Nevertheless, the parameters of the pulse action (amplitude and duration) they can also
be selected in such a way that switching between different states will be carried out by the same
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pulses. This behavior becomes possible due to the fact that in the case under consideration, the
durations of external signals are comparable to the characteristic times of their own macroscopic
collective oscillations. All this highlights the importance of a deeper study of transients in a
two-population system.

The properties of the natural oscillations of the elements of a microscopic network are
illustrated by the space-time diagram shown in Fig. 2, a. To build it, it is convenient to go to
(1) to new phase variables, using the replacement 𝑉𝑗 = tan(3𝑗/2), which translates a network of
neurons of the accumulation type – reset into an equivalent network of theta neurons. Next, the
neurons of the network are ordered in ascending order of the values of their own bias currents
η𝑗 , after which every hundredth of them is selected for display on the diagram. As you can see,
at the initial stage, most of the elements generate spike vibrations. The analysis shows that
the average frequencies of spike generation by individual elements are incommensurable with
each other and monotonously increase with an increase in the value of the intrinsic bias current
η𝑗 . Accordingly, the phases between any two elements are constantly changing. This leads to
mixing of phases throughout the population, which can be observed on the space-time diagram.
Next, an external influence switches the system to a new state. The fundamental difference here
is that now only a small proportion of the network elements generate spike oscillations, while
most of them are in excitable mode. Repeated external influence on the system switches it back
to a state with high spike activity. In this case, some of the elements are excited with close
phases, which leads to pronounced attenuating macroscopic oscillations reflecting a decrease in
the proportion of network elements generating spikes at the same time. Note that according to
Fig. 2, b macroscopic activity reaches a stationary level relatively quickly, while in the space-time
diagram Fig. 2, a traveling wave fronts continue to be observed within the population. This is
due to the fact that elements with values of η𝑗 in the vicinity of the average value of ζ𝑒 have,
although different, but still very close frequencies. As a result, it takes much longer to mix the
phases of individual elements (as can be observed at the initial stage).

3. The emergence of self-sustaining collective fluctuations

Let’s now consider how the dynamics of the reduced system (6) will change with an increase
in the strength of the intermodule coupling 𝐽𝑒𝑖. At moderate values, for example 𝐽𝑒𝑖 = 12, the
shape of the bistability wedge still does not change significantly. However, additional qualitatively
new modes arise in the system, namely periodic fluctuations. The mechanism of occurrence of
these oscillations is associated with an amplification of the feedback loop arising from the exciting
module through the suppressor, as a result of which the “high” equilibrium state is destabilized.
As shown in the two-parameter diagram (Fig. 3), the limit cycle corresponding to fluctuations
can occur through the Andronov-Hopf bifurcation (AH), and then undergo other bifurcations,
including disappearing through the bifurcation of the saddle separatrix loop (H) or the bifurcation
of the double limit cycle (LPC).

Let’s consider several scenarios for the occurrence of fluctuations, and to do this, we will
build a series of one-parameter diagrams for various fixed values of the binding force 𝐽𝑒𝑒. With
a sufficiently strong coupling, for example 𝐽𝑒𝑒 = 16.4, oscillations are generated through the
supercritical Andronov-Hopf bifurcation, which undergoes a high equilibrium state when the
average current increases to the value ζ𝑒 = −6.578 ± 10−3. The resulting stable limit cycle
undergoes a bifurcation of the saddle separatrix loop at ζ𝑒 = −6.258 ± 10−3 with a further
increase in the average current. A further increase in the average current leads to a repeated
bifurcation of the separatrix loop at ζ𝑒 = −5.891 ± 10−3, in which a stable limit cycle is born

762
Kirillov S.Y., Zlobin A.A., Klinshov V.V.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2023;31(6)



CP

GAH

BT1
BT2

� �

SN1

SN2

AH2
AH1

H1
H2

�

LPC

�

LPC1

LPC2

SN1

SN2

AH1 AH2

SN1

SN2

35

30

25

20

15

10

5
-15        -10          -5           0            5           10

5

4

3

2

1

0
-9       -6       -3         0        3         6        9 

3.0

2.5

2.0

1.5

1.0

0.5

0
-8        -7         -6        -5         -4        -3        -2

-8   -6     -4      -2       0       2       4       6       8 

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

e e

ee

J e
e

r e r e
r e

a b

c d

Fig 3. a — Two-parameter bifurcation diagram of the two-module system (6) with 𝐽𝑒𝑖 = 12, ζ𝑖 = −10, 𝐽𝑖𝑖 = −5,
𝐽𝑖𝑒 = −1. Gray color indicates the area in which system (6) contains three equilibrium states. The curves
corresponding to Andronov–Hopf bifurcations are marked in red. The bifurcation lines of the separatrix loop
of the saddle are marked in green. The cyan line corresponding to the double limit cycle. The asterisks mark
bifurcations of codimension 2: two Bogdanov–Takens bifurcations and the Bautin (generalized Andronov–Hopf,
GAH) bifurcation. b–d — One-parameter bifurcation diagrams of the two-population network (6) with 𝐽𝑒𝑒 =
16.4 (b), 16.0 (c), 13.1 (d). Asterisks mark the points of saddle-node bifurcations of equilibrium states (SN),
Andronov–Hopf bifurcations (AH), bifurcations of the saddle separatrix loop (H) and double limit cycle (LPC).
Blue lines correspond to equilibrium states, while red lines correspond to limit cycles (color online)

again. Thus, in the range of bias currents −6.258 < ζ𝑒 < −5.891, the disappearance of oscillations
is observed, and there are no stable high states in the system - both stationary and oscillatory.

With a lower coupling strength, for example 𝐽𝑒𝑒 = 16.0, fluctuations also occur through the
supercritical Andronov-Hopf bifurcation at ζ𝑒 = −6.173 ± 10−3, however, the disappearance of
the limit cycle through the saddle separatrix loop does not occur. And further, when the current
increases to ζ𝑒 = −2.270 ± 10−3, a subcritical Andronov-Hopf bifurcation occurs, as a result of
which the high equilibrium state is stabilized, and an unstable limit cycle is separated from it.
With a further increase in current to ζ𝑒 = 8.065± 10−3, the unstable limit cycle merges with the
stable one as a result of bifurcation of the two-fold limit cycle. Thus, in the range of currents
−2.270 < ζ𝑒 < 8.065, two high states coexist in the system - stationary and oscillatory.

With an even lower bond strength, for example 𝐽𝑒𝑒 = 13.1, the Andronov-Hopf bifurcation
is not observed, and a high equilibrium state is always stable. In this case, the birth of oscillatory
states occurs through the bifurcation of a two-fold limit cycle at ζ𝑒 = −1.058± 10−3, and when
the current increases to ζ𝑒 = 4.195 ± 10−3, the oscillatory states disappear through the same
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Fig 4. a — Collective oscillations of the microscopic system (1) (light blue line) and the macroscopic reduced system
(6) (red line). b — The average frequency of the elements of the excitatory population, sorted by increasing η𝑗 . c
— Spatio-temporal diagram of the excitatory population in the regime of collective oscillations. d — Voltage time
traces of two elements of the excitatory population: periodic oscillations of an element from the first synchronous
cluster (blue line, 𝑗 = 200) and non-periodic oscillations of an element not included in synchronous clusters (red
line, 𝑗 = 8000). Parameters: ζ𝑒 = −3, 𝐽𝑒𝑒 = 16.0, 𝐽𝑒𝑖 = 12, ζ𝑖 = −10, 𝐽𝑖𝑖 = −5, 𝐽𝑖𝑒 = −1 (color online)

bifurcation.
Let’s move on to the analysis of collective oscillations occurring in a microscopic network.

For certainty, we choose the values of the parameters ζ𝑒 = −3, 𝐽𝑒𝑒 = 16.0, 𝐽𝑒𝑖 = 12, ζ𝑖 =
−10, 𝐽𝑖𝑖 = −5, 𝐽𝑖𝑒 = −1 (Fig. 3, c). In this case, the complete system implements a mode of
generating stable periodic collective oscillations. This process is illustrated in Fig. 4, a. As can
be seen from the figure, the results of modeling micro- and macroscopic systems demonstrate
good qualitative and quantitative correspondence.

Let us consider in more detail the properties of vibrations of individual elements of the
exciting population of a microscopic network. The average frequencies of these oscillations are
⟨𝑟𝑒(𝑗)⟩ are shown in Fig. 4, b. In this case, all elements of the population are ordered in ascending
order of the magnitude of the individual displacement currents η𝑗 . It can be seen that almost
all elements of the network, with the exception of only a small number of them, generate spikes
with some non-zero natural frequencies. Note that there is a cluster of elements in the system
that oscillate at a single frequency ω𝑗 = ωm = 0.67 ± 0.01, which coincides with the frequency
of macroscopic oscillations of the mean field. In addition, it is also possible to detect two more
synchronous clusters, the elements of which oscillate at a doubled ω𝑗 = 2ωm and a tripled
ω𝑗 = 3ωm frequency of collective oscillations.

Let us now proceed to the analysis of the space-time diagram shown in Fig. 4, c. It shows
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the first synchronous cluster in the low frequency region, as well as the second synchronous cluster
in the high frequency region. The third synchronous cluster is not visible on the scale shown in
the figure due to the small number of elements included in it (7 elements). As shown in Fig. 4, c,
despite the fact that the elements inside synchronous clusters oscillate with the same average
frequency, the properties of such oscillations are different. These differences are manifested both
in the moments of occurrence of their own spikes (which can be in different phase ratios with
fluctuations in the mean field), and in the times that individual elements spend in one or another
phase of oscillations.

Note that according to Fig. 4, b the average frequencies of elements outside synchronous
clusters vary from element to element and are incommensurable. At the same time, in Fig. 4, c
it can be seen that there is an obviously visible regular component in these fluctuations. This
behavior is made possible by the fact that fluctuations outside synchronous clusters can be non-
periodic. This is illustrated in Fig. 4, d, which shows spike vibrations of two elements: vibrations
of an element from the first synchronous cluster (𝑛𝑗 = 200) and an element outside synchronous
clusters (𝑛𝑗 = 8000).

4. Tristability of collective asynchronous states

So far, we have considered situations where the action of intermodule connections does
not change the number of equilibrium states in a reduced system (6) and has little effect on
the shape of the regions of their existence in the parameter space. However, other situations are
possible. To study them, we select new fixed values of the parameters of the suppressive module
ζ𝑖 = −2.5247, 𝐽𝑖𝑖 = −0.2313, 𝐽𝑖𝑒 = −5.0777 and investigate how the two-parameter bifurcation
diagram changes on the plane 𝑂(ζ𝑒, 𝐽𝑒𝑒) depending on the strength connections 𝐽𝑒𝑖.

With a relatively small bond strength, 𝐽𝑒𝑖 = 1 the system (6) can only undergo saddle-
node bifurcations leading to bistability, as described in section 2. In this case, the two-parameter
bifurcation diagram qualitatively corresponds to Fig. 1, b. With an increase in the bond strength
to 𝐽𝑒𝑖 = 7, stable fluctuations may occur in the system, described in the section 3. The two-
parameter bifurcation diagram looks similar to Fig. 3, a. With a further increase in the binding
force to 𝐽𝑒𝑖 = 10, the two Bogdanov-Takens points merge and disappear, after which the
bifurcation curves of limit cycles do not contain more common points with the bifurcation curves
of equilibrium states (Fig. 5, а).

With a subsequent increase in 𝐽𝑒𝑖, one can observe how a fracture and self-intersection
occur on the left line of the saddle-node bifurcation (Fig. 5, b). At the same time, a triangular
tristability region arises inside the wedge-shaped bistability region with three stable equilibrium
states of the focus type (with one or two pairs of complex conjugate Lyapunov characteristic
indicators) and two equilibrium states of the saddle focus type (with one pair of real Lyapunov
characteristic indicators of different signs and one pair of complex conjugate indicators with a
negative real part). A further increase in 𝐽𝑒𝑖 causes the triangular region of tristability to shift
to the top of the wedge, where its shape transforms into a quadrangular one (Fig. 5, c). With a
subsequent increase in 𝐽𝑒𝑖, the tristability region rises up along the right edge of the wedge and
then disappears.

In the field of tristability, there are three stable equilibrium states in the system — in
addition to the “low” and “high” states, a third, “medium” state is formed. Stable equilibrium
states are separated by saddle-focus equilibrium states and merge with them in saddle-node
bifurcations at the boundaries of the tristability region. A typical scenario of the occurrence
of tristability is illustrated on a one-parameter bifurcation diagram (Fig. 6, a). When the
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Fig 5. a — Two-parameter bifurcation diagram of the two-module system (6). The saddle-node bifurcation of
equilibrium states is marked in dark blue, Andronov–Hopf bifurcation is marked in red, and the double limit cycle
bifurcation is marked in light blue. The dots denote bifurcations of codimension two: the cusp point and the Bautin
(generalized Andronov–Hopf) point. Parameter: ζ𝑖 = −2.5247, 𝐽𝑖𝑖 = −0.2313, 𝐽𝑖𝑒 = −5.0777; 𝐽𝑒𝑖 = 10.2 (a),
10.67 (b), 10.8089 (c), 10.9478 (d) (color online)

displacement current increases to the value ζ𝑒 = −2.22061± 10−5, an average stable equilibrium
state occurs through the saddle-node (SN) bifurcation, and the system becomes bistable. At
ζ𝑒 = −2.21986 ± 10−5, a second saddle-node bifurcation occurs, a high state is born, and the
system becomes tristable. Next, the average state disappears at ζ𝑒 = −2.21886± 10−5, and the
system is bistable again. At ζ𝑒 = −2.21146 ± 10−5, the low state disappears and the system
becomes monostable.

In the above case, the tristability region turned out to be quite narrow (on the order of
3 · 10−3 according to the parameter ζ𝑒), while all the modes predicted by the reduced model
are observed in a microscopic system. However, it should be noted that there are differences
between the bifurcation boundaries of the dynamic regimes of the reduced system (fair in the
thermodynamic limit 𝑁 → ∞) and the regions of existence of the corresponding dynamic regimes
of the complete network. These differences are less noticeable the larger the network size, but
they remain noticeable even for fairly large networks, as shown in Fig. 6, a for 𝑁𝑋 = 200, 000. A
similar effect of shifting the boundaries of the existence of dynamic modes in finite-size networks
was observed earlier in a network consisting of a single population of neurons [24].

By changing the parameters of the suppressive module, the width of the tristability region
can be significantly increased. At the same time, the presence of additional bifurcations associated
with the emergence of periodic solutions is characteristic for cases of a wider tristability domain.
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online)

For example, in Fig. 6, b shows a one-parameter bifurcation diagram in which the tristability
region has a width of about 0.02 according to the parameter ζ𝑒, but at the same time, within
the interval of existence of the average equilibrium state, it destabilizes and generates a stable
oscillatory state. To build two-parameter diagrams in Fig. 5 deliberately selected parameters
for which the tristability region is narrow, because in this way it is possible to avoid imposing
bifurcations of limit cycles on this region. Otherwise, bifurcation diagrams become extremely
difficult to perceive, since many bifurcation curves can be localized in narrow parameter regions.

An analysis of the collective dynamics of the complete system in the field of tristability
has shown that a microscopic system can be in one of three stable asynchronous modes. In this
case, in addition to the collective macroscopic states, when most of the network elements are
in excitable mode or in spike generation mode, a state is added when the number of active and
inactive elements is comparable in magnitude. Qualitatively, the behavior of individual elements
in this case does not differ from what was discussed earlier, so here we do not dwell on this issue
in more detail.

5. The emergence of collective chaotic fluctuations

In addition to stationary and periodic modes, more complex dynamic modes, including
chaotic oscillations, can occur in a two-module network. To study them, we fix the values of the
parameters of the suppressive module ζ𝑖 = 3.4, 𝐽𝑖𝑖 = −5.9, 𝐽𝑖𝑒 = −13.9. With a sufficiently
weak effect of the exciting population on the suppressive one (𝐽𝑒𝑖 ≪ 1), only saddle-node
bifurcations are possible in the system and the two-parameter bifurcation diagram has a form
that qualitatively coincides with Fig. 1, b. With an increase in the strength of the intermodule
communication in the system, it becomes possible to create stable periodic solutions, similar to
how it is described in the section 3. For sufficiently large values, for example 𝐽𝑒𝑖 = 1.0, these
periodic solutions can exhibit period doubling bifurcations, as shown in Fig. 7, a. Note that this
figure shows only the line of the first doubling, whereas inside the area bounded by it there is a
whole family of nested bifurcation curves of doubling the period. The presence of such a family
suggests the possibility of the birth of a strange chaotic attractor according to the Feigenbaum
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scenario [25].
This scenario is indeed observed in the system, as illustrated in Fig. 7, b, where a one-

parameter diagram is shown for a fixed 𝐽𝑒𝑒 = 16.8. In this case, the high equilibrium state is
destabilized through the Andronov-Hopf bifurcation at ζ𝑒 = −0.94± 10−2. The resulting stable
limit cycle undergoes the first period doubling bifurcation (PD) at ζ𝑒 = −0.3± 10−2, the second
at ζ𝑒 = 0.12 ± 10−2. Subsequent bifurcations accumulate at ζ𝑒 = 0.63 ± 10−2, and a chaotic
attractor appears in the system. It continues to exist up to ζ𝑒 = 1.06± 10−2 (except for narrow
windows of periodicity), after which it disappears through a reverse cascade of doubling.

To confirm the chaotic nature of the attractor, two senior Lyapunov exponents were
calculated, shown in Fig. 7, c. It can be seen that in the chaotic region of 0.63 < ζ𝑒 < 1.06,
the senior indicator is really positive. A characteristic phase portrait of the chaotic attractor is
shown in Fig. 7, d.

Note that with higher values of 𝐽𝑒𝑒, additional bifurcations are possible in the system,
not shown in Fig. 7, a to facilitate its perception. At the same time, more complex scenarios of
the emergence and disappearance of chaos are realized, including those associated with touching
invariant manifolds of saddle limit cycles, as well as multistable chaos. A full understanding of
such scenarios requires additional research.

Next, we will show how the chaotic oscillations of the reduced system (6) we have considered
manifest themselves in a complete microscopic system (1). As shown in Fig. 8, in this case,
collective chaotic fluctuations occur in the system (1). In Fig. 8, a these oscillations are represented
on the plane of the average frequencies of the exciting and suppressing populations (𝑟𝑒, 𝑟𝑖). It
can be seen that, on average, a macroscopic reduced system reproduces the collective oscillations
of a microscopic network quite well. At the same time, the trajectory corresponding to collective
microscopic fluctuations contains clearly visible fluctuations. The existence of such fluctuations
is associated with finite-size effects. With an increase in the number of elements, the intensity
of fluctuations decreases inversely proportional to the size of the network and the trajectories of
the reduced and microscopic systems asymptotically converge.

An analysis of the behavior of individual network elements shows that despite the fact that
their collective dynamics is irregular, they can nevertheless form clusters with the same average
spike generation frequencies. This is illustrated in Fig. 8, b, which shows the distribution of the
average frequencies of spike oscillation generation across the elements of the exciting population,
ordered in ascending order of individual bias currents η𝑗 . As you can see, only a small number of
network elements are in excitable mode, while most of them perform spike oscillations at various
frequencies. Note that two large clusters arise in the system, the elements of which have the
same average frequencies. Fluctuations in them occur at a frequency of ω1 = 0.459± 0.001 and
at a doubled frequency of ω2 = 2ω1. In addition, numerical modeling also shows a small cluster
of elements at some intermediate frequency ω3 ≈ 1.5ω1, in the vicinity of which elements with
relatively close but different frequencies from ω3 are also grouped.

The properties of oscillations of a microscopic system depending on time are illustrated
by the space-time diagram shown in Fig. 8, c. The area corresponding to the first cluster at
the frequency ω1 is clearly visible. In this case, spikes occur in pairs: a shorter spike interval is
followed by a longer one and vice versa. Next, you can highlight the area in which spikes occur
in threes. It corresponds to fluctuations of elements near the cluster with a frequency of ω3.
Activity in a cluster with a frequency of ω2 is characterized by two pairs of spikes following each
other, after which the pattern repeats. The vibrations of the elements outside the clusters have
incommensurable frequencies, which is reflected in the blurriness of the corresponding regions on
the space-time diagram.
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Fig 7. a — Two-parameter bifurcation diagram of the two-module system (6). The curves corresponding to
saddle-node bifurcations of equilibrium states are marked in blue. The curves corresponding to Andronov–Hopf
bifurcations are marked in red. The curves corresponding to the bifurcations of the double limit cycle are marked
in light blue. The lilac color indicates the curve corresponding to the period doubling (PD) bifurcation. The area
covered by this curve is highlighted in green. The asterisks mark the bifurcations of codimension 2: the cusp
point (CP) and the Bautin (generalized Andronov–Hopf, GAH) bifurcations. Parameters: 𝐽𝑒𝑖 = 1.0, ζ𝑖 = 3.4,
𝐽𝑖𝑖 = −5.9, 𝐽𝑖𝑒 = −13.9. b — One-parameter bifurcation diagram of the two-module system (6) with 𝐽𝑒𝑒 = 16.8.
Blue lines indicate equilibrium states, red lines indicate periodic and chaotic oscillations. c — Dependence of the
first two Lyapunov exponents on the bias current ζ𝑒. d — A chaotic attractor of the system with ζ𝑒 = 0.8 (color
online)
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Conclusion

In this article, the collective dynamics of a two-population neural network consisting of
excitatory and suppressive populations of quadratic neurons of the accumulation–reset type is
investigated. Assuming Lorentzian heterogeneity of the parameters of both populations, their
dynamics can be reduced to a system of two related models of neural masses. The resulting
dynamic system has a relatively low dimension (equal to four), which made it possible to apply
bifurcation analysis methods to it.

It is shown that, depending on the parameters, the system can exhibit various collective
modes, namely: bistability with the coexistence of high and low equilibrium states; periodic
oscillations that can coexist with one or two equilibrium states; tristability of three equilibrium
states; chaotic oscillations. The dynamic mechanisms of the emergence of the described collective
regimes are studied in detail. To describe these mechanisms, the method of bifurcation diagrams
was used, while the parameters of the overwhelming population ζ𝑖, 𝐽𝑖𝑖, 𝐽𝑖𝑒 were fixed and two-
parameter bifurcation diagrams were constructed on the plane of the parameters of the exciting
population ζ𝑒, 𝐽𝑒𝑒 with a sequential increase in the intermodule coupling 𝐽𝑒𝑖. Thus, with zero
intermodule coupling, the bifurcation diagram has a simple shape and contains only a wedge of
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bistability bounded by two saddle-node bifurcations. A consistent increase in the intermodule
connection made it possible to trace the occurrence of additional bifurcation curves and describe
their patterns.

The dynamics of the reduced model and the collective dynamics of the complete system
were also compared. It is shown that the reduced model approximates the dynamics of large
networks well, in which each population includes 𝑁 = 10, 000 neurons. Collective fluctuations,
both regular and chaotic, lead to the emergence of clusters of synchronous activity of neurons
in the network. The effect of shifting the boundaries of the existence of regimes in reduced and
complete systems is also found, especially clearly noticeable in the case of tristability for the
“average” equilibrium state existing in a rather narrow range of parameters.

Note that in the study of various effects (fluctuations, tristability, chaos), the fixed values
of the parameters of the overwhelming population (ζ𝑖, 𝐽𝑖𝑖, 𝐽𝑖𝑒) were chosen differently. This
inconvenience is due to the desire to separate these effects, since the possibility of observing all
three effects at the same parameter values of the overwhelming population exists, but they will
all be observed simultaneously, which makes it extremely difficult to perceive the corresponding
bifurcation diagrams.
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