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CHANNELS AND JOKERS: 

NEURAL VIEW ОЕ COMPLEX DYNAMICS 

G.G. Malinetskii, A.B. Potapov 

Опе оЁ the тат aspects of brain activity is е ability to predict. Large efforts has 
been made in nonlinear dynamics Ю creaie predicting systems for dynamics оЁ complex 
objects. Опе of the main tools for making such predictors 15 the application of multilayer 
neural networks. The methods based оп the chaos theory prove 10 be less efficient. and in lact 
work only for low-dimensional model systems. From our peint оё view, the problems here are 
not technical, but related with the applicability оё the approach of low-dimension nonlinear 
dynamics (o real systems. Since the brain апа some оё its very simple models are able to niake 
predictions in real situations, we propose to unify the ideas оЁ nonlinear dynamics апа neural 
networks. From our point оё view, in complex real situations it may be possible 10 find Tow- 
dimensional projections, for which the approaches оЁ noulinear dynamics can be applied, but 
with sertous restrictions. Most concepts, like attractor, its dimension, Lyapunov exponents elc. 
become inapplicable, ала the observed phase space splits into predictable parts {«channels») 
апа non-predictable ones («jokers»), where probabilistic description may be more 
appropriate. We propose some mathematical basis for this idea and its possible application for 
time series anaiysis. 

1. Introduction 

One оЁ the key preblems т neuroscience 15 the processing of big information 
flows. Animal апа human brain learned to find good solution for it. It 18 this fast 
processing оЁ information about permanently changing situations around us (аг enabled 
us to survive 1 а struggle for life. 

This information processing should be able: 
е To change behavioural strategies very quickly, taking different features to make 

proper decision 1 various situations. That is, 10 find «the order parameters» оЁ the 
complex situations. 

е To learn not only by trial and error method (there is a 101 оЁ situations where 
there 15 no second trial), but by training of conumon sense, intuition, that 18 е «internal 
predicting system». Psychologists call this «а forestalling reflection». 

® To react quickly. To do it, one must be able 10 «forget» quickly inessentials, от to 
send them into long-term storage, leaving т а quick memory only е most important 
information. 

Therefore, the brain possesses very efficient methods of self-organization ip 
information processing, апа it is reasonable to Jook а! the problems of current nonlinear 
dynamics from the viewpoint оЁ neuroscience. 

Predicting е future behaviour of а dynamical system апа control оё chaos is опс 
оЁ the key problems оЁ nonlinear dynamics. Now several techniques оЁ ftime series 
processing have been proposed. which enable 10 measure the main characteristics оЁ 

18



dynamical systems such ав fractal dimensions, entropies, Lyapunov exponents, to make 
predictions оё the future behaviour [1-4]. Several estimates оЁ the expected performance 
of the methods have been proposed, and for rather simple model systems they were well 
confirmed. In particular, the effect оЁ finite prediction time due 10 the sensitivity in 
respect to initial conditions has been analyzed. 

But nonlinear dynamics techniques оЁ data processing encountered very serious 
problems: all methods are efficient only for low-dimensional systems. It is hard to give 
the precise meaning оЁ the term «low-dimensional», but different estimates [5-9] show, 
that usually algorithms cease 10 work for the systems with the attractor of dimension d>5. 
But this inequality leaves almost аП practically important situations beyond the 
capabilities оё nonlinear dynamics. 

But applications оЁ neural networks sometimes enabled to make predictions in 
situations which should be hopeless from the point of view of nonlinear dynamics, e.g. 
for financial time series. This implies two consequences: 1) there should be a reasonable 
explanation for such facts and probably the ways to overcome the limitations pointed out 
above; 2) neural networks possess some important feature which enable such data 
processing. The purpose оЁ this paper 15 10 present such ап cxplanation. 

The idea 15 that the phase space оЁ the dynamical system is nonuniform. And there 
may be some places where е dynamics requires less variables for its description ап т 
other ones. If a trajectory passes through such region, еп at these moments it can be 
approximately described using the low-dimensional model. That is, the system can be 
characterized by its low-dimensional projection. We called such projections Channels. 1Ё 
the trajectory has visited the regions around this channel often enough, than this 
projection in principle can be found from a time series, and therefore the ability to make 
prediction appears. But feed-forward layered neural networks involve operations which 
resemble projecting: е weighted sum оЁ inputs. Therefore, 1Ё а low-dimensional 
projection exists, а neural network may be capable to find it. Moreover, we shall show 
below, that projection 18 ап important element оЁ the most predictors, апа maybe the 
ability to work with different projections explains the success of neural networks (and 
perbaps а real brain). 

Therefore, it follows from the ideas of neuroscience that the possible approach for 
analysis of complex dynamical systems is to search for such local low-dimensional 
charinels. But if we look аг е whole dynamics from е viewpoint оЁ such 1юса! channel, 
ме shall see, that at some place this channel looses #5 predictive power. It may lock а5 1Ё 
from pure (ог mainly) deterministic behaviour we quickly change for probabilistic one. 
Such domains of probabilistic description муе shall call Jokers. In terms оЁ low- 
dimensional projections, joker can throw the trajectory of dynamical system into another 
channel, ог even to some раг оё е previous channel. Therefore, another possible idea 18 
to study е behaviour оЁ low-dimensional systems with jokers. 

10 these terms we can say that the brain has exceptional abilities in searching оЁ 
channels, while jokers correspond 10 very complex situations which are hard (0 analyze. 
1а such situations brain may activate е mechanisms оё emotions which in some aspects 
may look probabilistic. 

Probably, the treatment оЁ complex systems from the channels and jokers 
viewpoint may give new useful practical ideas. In this paper we would like to show, how 
this approach emerges from the problem of time series prediction and that it enables to 
explain some known facts and to propose new ideas for developing numerical algorithms, 

2. The problem of time-series prediction 

Iet us consider the general problem of time series prediction. Let x,x,,....x, be the 
values оЁ some cbservable measured аг the moments £,=kt. It is necessary 10 predict the 
future values x,,,,X,,,,... There are several approaches (0 this problen. In statistical ap- 
proach it is assumed that the distribation density for x, depends оп уг previous entries, and 
therefore it is possible (0 use for predictions the conditional average £(x|x_, X, X, ). 
Nonlinear dynamics enabled to explain е appearing оЁ this dependence апа 10 ргорове 
the estimates оЁ the value m.



The basic assumption of the nonlinear dynamics approach is а! the measuared 
values are the functions of the state of some dynamical system, which is responsible for 
the effects observed. That is, there exists а dynamical system 

x{(r+1) = f1(x(1)), x = R (1) 

(This form enables to consider both mappings x,  =F(x ) ала ODEs оЁ the form 

x=F(x) ш а similar manner.} The second assumption is that the measured observable is а 
function оЁ the state оЁ this system, i.e. x=h(x(r))). Then the Takens theorem [1.3] srd;c‘ 
that for almost all t, /1, / and m=Zn+1 there should be а functional relation betwee 
XV ety ВО Х, 

The ‘main idea оЁ this theorem can be put ав follows. АП m successive values оё 
observabie can be related го а single system state 

X — () k=01,.,m 

If муе consider the sequence x, .1, ,....,x, а8 а point in m-dimensional Euclidean space 

. — {1 - - Т р т N 
Zi~m - (_\і-і”хі—і""'”хі—іп) N зЕ R Ы (/“’ 

then there 15 the vector function, such that z=A(x,). This function maps the phase space 
M of the original dynamical system (1) (hele M=R". but in general case it may be ап »- 
dimensional manifold) into ап n-dimensional surface M, eR’” A:M—M, ог M =A(M}. 
According ю the theorems оЁ differential geometry, for m=2n+1 апа almost ай Шпсцопк 
this swrface is ап the embedding оЁ original phase space into R”‘, and there exists the 
inverse mapping A':M,—M. Then it is possible ю write x, =A"(z, ), from which it 
follows that 

l!] 

х = 0, )) = ПОРЧА(#, ))) = DLy X ) (3} 

The Takens theorem also enables to make several conclusions about the form of the 
function. В must consist оЁ two parts: projecting апа mapping. The theorem states that ® 
15 а component оЁ the mapping оЁ Шь n-dimensional surfacc M, into itself. 1пдееа, let us 
consider two vectors z.=(x,x, ...,x, ) and 

Z/+1 = ("\.i+,l "\-i+2"" "\ji+171) = ('\-i+] 7’YHZ’”'""7\-1'+m—l ’(’D(’Y["\'Hl" *° ’хі+т›1 )) = Чі(иі)' (4) 

Вой of them belong 10 M, and the function maps M, —M,. № fact, (4) may be 
considered аз another representation оЁ the system (1). Then Ф must be а function оЁ л 
rather than m arguments. The best choice wili be the local coordinates оп М & but they аге 
usuahy unknown. So the optinsal choice is the projection onto the tangent hype1plam to 
M, т the neighbourhoed оЁ 1, ог Ю0 any other plane which is not orth Offcma] 10 it. As a 
mle such pm]ccUon (and the needed coordinate system) is only local, for this reasoin 
sometimes it is necessary to specify explicitly, which point z it relates to. Therefore, the 
general form of the predicting function or predictor must be 

X = @(P 2, )= Ф(Р (X ek, ) (5) n іт 

where P denotes the projector onto л local coordinates. 
There is another reason, why the projection operator is necessary. In the presence 

оё noise the points #, will deviate from the surface М - But according 10 the theorem, the 
mapping is defined only оп M. Then, to make the problem оё time series prediction well- 
posed, instead of а point LER'" it is necessary 10 take П5 «reasonable» projection о010 
M, п о zeM,. The specific form оЁ the operator 15 not very important. Therefore, from 
the viewpoint of nonlinear dynamics, the problem of predicting consists т the 
approximating е unknown functional dependence by the set оЁ known pairs {z,®(z)}. 
Several methods were reported in е literature [4}: 

1) local linear апа nonlinear approximations, Le. 
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Ф(х) = Ф(2,) + A (Az) + A, (Az,Az) + ..., AZ=%-7 

here A, means а polynoriial оё the order & оЁ its arguments; 
’)) global polynomial approximations 

O(z) =P, + A (2) + A (2,2) + . 

Note, it is interesting that the Takens thcorem does not guarantee the existence of such 
approximations, but sometimes they prove to be efficient; 

3) the method of radial basis functions 

®(z) = Lao(llz-z}l). 

Formally the previous note 18 valid in this case ав well, but if the radial basis function 
¢(r) decrcases rapidly enough, then the domain where CI)(Z) significantly changes is 
localized т the vicinity оЁ the surface M. Perhaps, this is т some sense equwalent о) 
projecting onto @е surface; 

4) neural networks with feed-forward architecture, 
The Ёошрш*ізоп оЁ different techniques for а number оЁ model examples 15 presented in 
10.4]. 

L According to the results presented in the literature, for simple model systems 
(Lcrenz, Henon attractors and other low-dimensional models) all methods of prediction 
work well, prediction error and predictability time are in good correspondence with 
theoretical estimates. But for real data, as experiments show, only local linear predictors, 
radial basis functions and nunal networks аге of practical importance (Ше example о 
such predictions can be found e.g. in [11], see also references therein). 

3. Limitations of predicting techniques 

The progress оЁ the nonlinear techniques оЁ data processing, such ав estimating 
attractor dimension ог Lyapunov cxponents, enabled to understand their limitations. In 
particular, several relations have been obtained for the length of time series N and the 

greatest dimension оЁ attractor @, which can be estimated from this series in the best 
sitvation: N 2104 [5-9]. Several estimates use d/2 instead оЁ 4, but even under such 
conditions for available time series with N=103+10* it is hardly possible to obtain reliable 
results for the systems with d>5. 

In the problems оё time series prediction е obtaining оЁ similar estimates 15 
slightly harder. It is clear, that it is always possible to make some prediction with the help 
of the «zeroth order» method Ф(2)=Ф(2)), where z, 15 the nearest point with known value 
of ®(z,) ог as а weighted sum ®(z)=2,w ®(z,,), where z, are several nearest neighbours 
(the method of Ladnl basis functions can Ье considered а5 а generalization оЁ this 
approach). It is the prediction error which 15 оЁ special interest. The «typical» error сап be 
estimated ав [8xl=IID®(z)Il-llz-zl. To approximately evaluate liz-z,l, it 18 possible to use 
the hypothesis of homogeneous filling with data points of a d-dimensional cube with the 
edge / (the magnitude оЁ х oscillations). If we denote by а the mean distance between 
points, then N=(//a)?, апа llz-zll=a/2=IN""/2. Therefore, the expecied relative prediction 
error can be approximately estimated а5 e=IDR(z )l N4 № 1 vather hard 10 estimate 
ID®(z,)ll, but it can be shown that it is proportional to exp(At), where X is the largest 
Lyapunov exponent. 

In а similar manner it is possible to estimate the prediction error for local linear 
predictor («first order» method), &,=ID*®(z,)II-N* [4]. The success of the nonlinear 
techniques, described in [4], can be explained by the use оё small 4 (1...3), апа by the 
fact that for зтай т usually ID®(z)ll=1 апа IlD‘(D(ZO)H а150 18 O(1), от even close 10 0. ТЁ 
we take |1D®(z)lI=lID*®(z )lI=1, М=103, d=2, then it 15 easy to obtain that в)=0.03, 
g,~0.001. Close values were obtained т numerical experiments for model sybtem see 
[4] and references therein. 

For experimental data, such as physiological, economical time series, d is usually 
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unknown, but scarcely it 18 less than 5, the estimate of derivatives also hardly can be 
obtained. But even assuming ПОФ(х, )II~xiD2(D (z =1, N=10%, d=5 we get ¢ ~0.3, ¢ g=0.1. 
It is hard о say about phyqlolo y, but in есопошша рюо!дтч ьщЬ accuracy 15 
absolutely unsatisfactory. 

Nonetheless, there are situations, when for real complex systems good predictions 
were made, usually with the help оЁ neural networks \Lhue is по reliable information 
about suvch facts in publications, since all successes in financial predictions are 
commercial secrets, but briel notes in newspapers and numerous private communications 
insist that such events do occur). Below we shall try to explain this phl nomenor, but first 
we shall consider the general structure оЁ 3-layer neural network апа its relation with the 
prediction problems and Takens theorem. 

4.Predictors and 3-layer neural network 

Let us consider the principal elements of a 3-layer feed-forward neural network: 

Linear Sigmoid Linear Sigmoid 
Inputs--» T —› о ‚ -Э Quiputs 

combinations  function (o) combinations  Tunction (o) 

Since we are interested п predicting the next entry оЁ the time series from m previous 
ones, let us suppose the following network architecture: /2 input neurons, а number оЁ hid- 
den neurons апа а single output. m previous values x, ., ,,....t. ОР б form the input. 

The linear combinations of the ]‘orm 

E A/C‘:/\ ' ‚ 

сап be considered as simultaneous calculation of the components оё а number 
projections, i.e, the components оЁ P z Then the sigmoid function cs(y/.) is calculated. As 
а rule, for this purpose а function with saturation 18 used, which approximately can be 
considered а5 piecewise linear: оп the «working» interval о(х)=сх, while outside of ii 
o(x)=tl. With the help оЁ 9, the working interval can be shifted. such that for a given set 
оё input paramcters the value оЁ у, fall into й («active component»} ог cutside 1 
(«passive component»). This in principle enables to make active only n necessary 
components у, and therefore 10 obtain оп the neurons оЁ the hidden layer the necessary 
projection Р, 7 

The next two steps arc е calcalation of the function ¥=c(Z.5, ") This is nothing 
but а local linear approximation оЁ the unknown function. Ап@ а! these Tinear 
approximations prove to be continuously matched, like splines. 

Therefore, а 3-layer network implements the main requirement оё the Takens 
theorem: projection + approximation. This also explains е known fact, Фаг increase о 
the number оЁЁ layers usually do not improve approximation (see e.g. [10,12]). 
Combination оЁ two projectors is equivalent 10 а single projector, and combination of 
linear approximations 18 again а linear approximation. Therefore, one can expect that 
basic fearures оё multilayer network can be obtained оп а 3-laver опе with the proper 
number of hidden units апа properly chosen sigmoid function. 

5. When complex dynamics can be predicted? Channels апа Jokers 

Now 128 us consider the problem оЁ predictability оё complex dynamics. Above we 
pointed out the limitations оЁ predictability. But they were related only Ю «global 
predictability» ог Ю the ability to recenstruct the whole dynamical system in - 
representation (4). For а complex system it is indeed impossible. But mavhbe this can be 
done locally? 

The mentioned information about successes оЁ neural neiworks т making such



predictions is in favour of this idea, but as it has been said in previous section, neural 
neiworks possess very high «projecting capabilities». So, it seems reasonable 10 look for 
«predictability in projections». 

Suppose that locally, ш some domain G of n-dimensional phase space, the 
behaviour оё а complex system can be approximately but with good enough accuracy 
described by а low-dimensional model with е dimension оё phase space n,<n. Then, if 
the observed trajectory during the observation time has passed through G several times, it 
may be insufficient to reconstruct general n-dimensional mapping, but enough (0 
reconstruct  n,-dimensional function and ю make good prediction. Under such 
circumstances we have по contradiction with the limitations of predicting techniques. 

Moreover, this hypothesis enables to explain, why neural networks may 
occasionally form such local predictors. As it has been said, they form many projections 
оё original phase space, and if it is enough for predictions n,<n parameters, then the 
network in principle can detect the presence of such domain G and to form the 
corresponding low-dimeinsional predictor. 

We shall call such domains С а8 well аз the corresponding low-dimensional 
models channels. When the trajectory enters such a channel, for some time its behaviour 
becomes predictable апа «quasi-low-dimensional». When it leaves the channel, е 
behaviour becomes more complex ават. The low-dimensional deterministic description 
fails, е situation looks like partially probabilistic. For qualitative description оЁ such 
sitnations by low-dimensional models we propose the new class ОЁ models - the systems 
with jokers. Joker 1$ а domain in phase space, where the behaviour of е deterministic 
system becomes probabilistic. For example, joker can throw the trajectory to almost any 
point оЁ phase space, and after it for some time the dynamics become low-dimensional 
deterministic again. In other words, е approach оЁ charnnels and jokers is ап attempt 10 
apply the low-dimensional ideas 10 the analysis оЁ high-dimensional systems. 

5.1. How channels can arise. Let us consider this idea in more details. Suppose, 
that for the dynamical system (1) there exist а domain G, where the function f{x) has the 
forra 

Кю =[P, +7A(x),  xe GeRY, 
where у<<1 and Р, № the projector onto the subspace оЁ the dimension л) <n. This 
projection can be considered as a plane (or, in general, a surface) P through some point 
х G, апа е operator РЩ - а$ projector onto it. Let us а150 denote ш coordinates оп Р by 
u=F, x, and the rest л-н - by v=(i—Pnl)x. Then f(x)=f,(u)+yf,(u,v), апа оп the surface P 
we obtain the mapping 

за =P, fi{w) + P, fr{u,v), и е P (6) 

ТЁ the accuracy of е desired prediction enables 10 drop ош the second term, for example, 
if у is very small, then the dynamics can be approximately reduced to 1,-dimensional 

i Pnlfl (Ці)' (7) Ц. 
i 

Therefore, if one needs to predict а component оЁ u, it can be done with the help of (7). 
The predictions for the components оЁ v are also possible, but they will depend оп u. 

Note, that (7) is in fact the equation for the channel associated with the domain G. 

5.2. Channels and time series prediction. Now let us consider, how the idea of 
channels can be applied т the problem of time series prediction. In this case we have (0 
deal with the dynamical system (4) and its component (3). We assume that the complete 
system is high-dimensional, but perhaps somewhere 1 the reconstructed space К” there 
are domains G, where it is possible 10 apply the approach оё low-dimensional channels. 
The dimension of the channel we can approximately estimate by means of the methods, 
applied in the Sect. 2. Let us take as desired accuracy 1%, ie. ~0.01, and assume 
IDD(z )=IID%D(2,)I=1 апа N=10°. Then for the 1-st order method g,~N"2" ог 
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d=-2lgN/llge, = 3. {8) 

Therefore, it 15 necessary 10 search for а domain, where the dynamics can be predicted by 
3...6 most important components of the vector z, in other words, to determine the 
projector P, (note, that vector z may ог even must be high-dimensional). How 10 do it is 
а separate problem, and ме shall not discuss it here, though practically it 18 very 
important. We suppose, that such domain G and the projector Р ате found. Let the 
projection be ап у) -dimensiona hyperplane P. In the case оё scalar time series prediction 
the component to be predicted is known - it is the last component of z. For this reason we 
shall suppose that the vector e=(0,...,0,1) 15 not orthogonal to P. For practical applications 
more strong condition must hold: angle between e апй P should be less than some 
limiting value, say В<В№\—6О° For Ше components т projection u=F & there will be ап 
analog от (7): the approximate reduced system 

= #(ч () 
Now let us explicitly express x,,,. By definition, x_,=(e, z,,). Let us denote 

а…Р„ e/liP, еН—РТе/сочБ - the direction on P which contains maxunal information about 
v ! fall=1" Since' B 15 the angle between e and а, a=ecosp+q’, where @’ is orthiogonal to a 
Then e=(a-q’)/cosP, апа 

= (e,z,) = ((az,,) - (d'z,,,))/cosp = ((au,,) - (q',z,, )cosp. 

But because q’_Le it will have nonzero projections only оп those components of z,,, 
which are present in z,, that is, there exist such @, аг (¢',z,,)=(q.z). Se, 

v, = ((a.g(u)) - (q.z))cosp = g(u,) + (q.z,). (10) 

This relation gives the general form of the predictor which uses the channels approach - it 
is the sum of а nonlinear function оЁ channel coordinates п and а linear function of the 
previous state z. 

Therefore, the use оЁ channels may enable to simplify the structure оЁ the 
predictors, and to make predictions for high-dimensional systems, which, according to 
general estimates, are beyond the applicability of low-dimensional nonlinear techniques. 

But note, аг the accuracy оЁ prediction is limited not only by 1) the errors in data 
апа 2) chaoticity оё the dynamical system. The serious source of errors is З) the discarded 
term in (6), which imposes the lirnits of prediction error and can not be diminished within 
the low-dimensional approach. Рог this геазоп, more appropriate model for the channel 
may be а dynamical system with noise added, but perhaps this «noise» should possess 
some dynamical features 10 represent а projection of a high-dimensional trajectory. 

5.3. How 10 search for channels? Searching for channels seems to be а complex 
problem. At present ме would like only to make several brief notes about it. 

This preblem 15 related with other techniques, proposed 1 nonlinear dynamics апа 
statistics earlier. It is possible to mention the techniques of False Nearest Neighbours 
(FNN) [4], search for dependent variables [13,14], от the attempts Ю apply @е ideas оЁ 
Principal Components Analysis [15]. But аП these techniques were global, while channels 
require local approach. Therefore, it is necessary to find new technique. 

It seems, that the most promising will be the standard approach of searching for a 
functional dependence between successive reconstructed vectors, which are usually 
applied for determining ргорег embedding dimension [16,17,4] (in [4] it is called FNN). 
The idea is rather simple: if there exist a functional relation between й, and %а then if 
llz-z |l 18 small, the same should be true for their iterates by (4, i.e. llz, -z ! also should 
be sinall. (Another way of using this idea is to compare distances in re(domlructmnC with 
embedding dimensions т апа т+1) To find channels, it is possible to apply similar 
technique, but only ш projection, which in turn 10 be found.
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Fig. 1. Scheme оЁ channels-jokers view of а complex dynamics. There are 2 channels (G.1 and G,) апа 3 
jokers (T, J,, J5). Solid arrows show deferministic description of dynamics (а trajectory оЁ е Teduced 
system), emply arrows show the action of jokers: when trajectory enters the joker area (shaded), it may 
jump with some probability 10 some point of a channel ог 10 another joker 

That is, we come to the following problem: for a high-dimensional embedding (m 
may be large) find а low-dimensional projection, i.e. 7,=3...6 orthonormal vectors а,, 
which define the projector P, x=% (x.a,)a,, and the domain С. where it 1 natural to 
expect a functional dependence between Pz, апа P z. А possible approach is 10 study 
the relation between Р, (#-2)Il апа P, (z,,,-z;,,)l, look аг the distribution оё potentially 
dependent pairs т ргодеспоп апа adjust the véctors a,. This problem requires very large 
amouint оЁ computations, and probably, it 18 necessary to find efficient numerical 
algorithms Гот this purpose to achieve good performance, comparable with Таг оЁ neural 
networks. 

5.4. What is at the епа о] а channel? Within а channel it may be possible to 
obtain а simple description for а complex system. What will happen when the channel 
ends (trajectory leaves the domain G), while we would like to remain т the frame of 
low-dimensional description оЁ reality? Simple models can not any more make 
deterministic prediction, and the ouly way 10 remain within low-dimensional paradigm is 
to admit probabilistic behaviour оЁ the system’s model. That is, we suppose аг there are 
domains J, (jokers), where the behaviour of the trajectory becomes probabilistic. For 
example, joker can throw е trajectory back шю some (or any) point оё the same 
channel G ог another channel, ог the trajectory may jump between several jokers etc. This 
scheme is shown in Fig. 1. 

Properiies оЁ 1-I maps with jokers of different types were studied in [18,19]. It 
was shown that the presence of joker can drastically change the bifurcation diagram and 
even suppress arising of dynamical chaos. 

6. A simple example 

Now we shall present a simple model example, where the concepts of channel and 
joker can be shown. Let us consider a chaotic system consisting of two coupled parts, 
each оЁ them being again а chaotic system:



Xn»a»l :fl (Х”) + H'(\Xn)gl(-yn)’ хе R™, 

уп+1 :fi(yn) + ЦО gZ(xn)’ УЕ R™, 

Hcre х & supposed to be low-dimensional. The variable coupling we shall choose such 
that u(x )=0 when x € G, G is а domain оё R™, and p(x,}#0 when x_ is outside it. Then, 
while x falls within G we have two almost separate subsysfem% and 1а рагпспшг X obeys 
е equation x_,=f,(x, ). This gives а channel. Then we can obtain а tirne series for some 
observable ,\‘”:h(x”). and see, whether this channel can be detected. It is this choice о 
observable that makes the example simple and enables ц5 10 avoid the very complex stage 
of searching the necessary projection. 

‚ 10 the example below ог the mapping f| {(x,) we have chosen the modified Hénon 
mapping 

х!_п+1 = 1 ш CI[ZSin('\’l,n/z)]2 - bxz’.n = (p(xl,)l’xl/?)’ {3 1\ . vid) 

ХЗ ,)ЬіП( ы /2) \V(\l 1 X = Г й\ъп _1 . L Х’_’.‚п В 

The modification 18 necessary 10 avoid the escape of the trajectory 10 infinity, which 
occurs in original Hénon mapping. For the mapping f,(y ) ме used threc ideniical 
coupled maps (11) with constant coupling. The resulting system has the form 

Хн = ФС 0 )+ ()Y, Xy ey = W) 

Vit ° Ф(М „'»2„) + u()(‘] „+)"% „)/2 У — W(yl./z) 

Узлн = (Р(Уалд"щ„) + “(;(‘-"1,114'3’5.;;)/ 2, Yips = w(y,) (12) 
(12 

Yo = OWgm¥an) + HoYa, Yome = W05} 

W) = вП - (D)2, x, = () =3, 
a=14, b =073, в = 0.3. 

It follows from the form оЁ u(x), that the domain G corresponds 10 x, >0. This choice has 
been made on purpose, because in this half—plane the mapping / (х,) has the fixed pomt 
апа the trajectory sometimes spend severai iterations near it. In other words, this has been 
made to cnsure, that е trajectory will spend several successive iterations within G, 
which may be important for channel detection in delay reconstruction, 

At first glance, the time series for (12) slightly differs from that of unperturbed 
(11}, but the effect оЁ varying coupling is clearly noticeable оп the plot оЁ cormrelation 
integral, апа particularly - its slope (see Fig. 2). From the plots one can conclude, that 
most probably the processed series is generated by а Jow-dimensional system, but steady 
growth of slope with the increase of embedding dimension makes it 10 look а little 
«random». Therefore, in the projection onto x-plane ме obtain е situation described 
above: low-dimensional dynamics within С апа more complex behaviour ontside it, Неге 
the «joker» appears ю be rather weak and just adds moderate «noise» 10 е low- 
dimension «signal». 

To apply our approach to the analysis of this time series, we must find the dornain 
оё channel G (again note, that here we 40 not have 10 search for the necessary low- 
dimensional projection, we get it almost auromatjcafly because оЁ the choice оЁ 
observable; 1 real problems the situation will be worse ). To Нпа the channel, we applied 
rather simple technique, which can be called е linear predicting test (LPT). 

The idea of LPT can be explained а$ follows. As it has been mentioned above, the 

prediction оЁ time series means interpolation оЁ е function @(z) (3) а! the necessary 
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Fig. 2. Plot оЁ correlation integral log,C(g) vs log,e (а) апа its slope (h) for the time series of the 
Ob\Cl\dbll” x, . for (№ model system (%2) The encrth of the series N=10% the embedding dimensions 
=4, 6, 8, 110 12, 14, 16. It shows that the set of z-vectors does not Iook random, rathcr they form 
«sr\muhmg low-dimensional», but the structure оЁ this set changes with the increase оЁ т and slope 
gradually grows. Usuoally this is interpreted ав presence оЁ noise. In our case, from the point of view оЁ 
low-dimensional channel it is the influence of joker, from the point of view of the whole system (12), this 
18 с consequence оЁ the problems with applicability оё the Takens theorem: due to varying coupling и(х) 
the observable x| ‚ does not enable proper reconstruction of the whole system 

point z from the known values оЁ ®(z,,) а! neighbouring pomts z,,,- For the simplicity, let 
us consider one-dimensional case: some function f(x) is known а! discrete points .x,, 
J=f(x), ап one has to interpolate И5 value at some point xe{x,x, ], Also for the 
simplicity let x,,-v=h for all i, еп the linear approximaticn, WhlCh uses the 
neighbouring points /, | апа / 15 

fxy=Lin(f, лао Xy ах + b= (f, )2 + (f, ) 2h)(x-x),  x = (x,,+x)2. 

The error о this approximation can be roughly estimated ав e~f ”(x)h?, h=x,,-x,. The 
second derivative can be approximated by the difference 

PR = o 2 IR (o 204002 = Gt )2 - = Loy o) -; 
Therefore, the approximation error is ОЁ the same order ав е difference between the 
value оЁ / а{ some point ап its linear approximation from с nearest neighbours. This 
form enables easy generalization for higher dimensions. Then we come to the LPT. Let us 
estimate the «quality» оЁ the point z, а5 follows 

1. Take k=k >m+2 nearest ncwhboms оЁ #, 7, 5= 1,....k, w(z ‚) are known, апа 
make а linear appmxnn ation L,(z) by these & nejgabourq (but not u mg <I>(z )). This gives 
the values g,=IL(z,)-®(z)l, and g,=max L, (z,)-@(z,)!. 

Let us decrease A we shall dlscmd one of the neighbours, z,, Рг which this 
орешпоп will give the smallest value оЁ е=, |(2))-Ф(2,)!. We shall repeat this operation 
until (1) &2т+2 апа (п) the decrease оЁЕ 15 at least 2%. 

3. Finally муе obtain the new k= <k, and the values 

e,=IL,.(2,)-®(2)l, e,=max |L.(z,)-®(z,)\. 

In most cases it is possible 10 classify the points #, with the help of ¢ ,....¢,. Fig. 3 
shows the results. Dots show «good» points, crosses - «bad» ones. It is obvious, that the 

domain of channel can be extracted from these data rather easily. That is, we get the 
domain of good predictability for our time series and a simple rule for testing, whether x 
belongs 10 it. We can conclude, that at least in some cases е approach оЁ channels and 
jokers сап be useful. 

27



-
 

e : Ё
 К 

—
 

1
1
t
 

l
?
)
L
 

< ол
 

—-
 

H
 

[
 

E
N
L
 

L
R
 
<
 

а 

Fig. 3. The results оё Ппеаг prediction test (LPT) for the short (М= 10%) time series оГ the observable 
for е model system (12). Crosses show «bad» points, where predictability is bad, and dots show ‹/\700‹%» 
points. For application of LPT for the low- dimensional projection (m=2, panel а) the domain of channel is 
clearly visible, it corresponds ю half-plane х;>0. For higher-dimensional projection (m=6, рапе! b, the 
coordinates of the plot are the last two components оЁ 6-dimensional z-vector) LPT almost fails to detect 
channel. Therefore the technique of channels search requires searching for proper projection. 1 our case 
this search is not necessary because of the good choice of observable 

7. Conclusions and hypotheses 

Our hypothesis is that for complex high-dimensional systems such channels-jokers 
description may prove useful. In some aspects it can be considered as a genemhzatlon of 
symbolic dynamics, т other aspects - ав а system оЁ matched simple models. In natural 
sciences such description is not popular, but it may be appropriate for social апа life 
sciences, where usually many simple models are used to describe different aspects of the 
same complex object. Probably, those models can be considered ав different channels. 
Then, for example, е dynarmics оЁ society can be represented а5 а series оЁ channels 
(regular development) and jokers (abrupt changes, revolutions etc.). Such view can also 
help in discussions оп the correctness оЁ different models: several descriptions may 
coexist ав different possible channels. The problem is which one corresponds to the 
present sitnation ‚ how close 18 the nearest jokes, can it be avoided and 50 on. 

This approach also can give some hints on the problems of description of complex 
objects, In principle, channels need not always be mathematical medels, they may be 
вогде typical situation, combination of indicaticns, most important details. Therefore, ап 
object can be characterized by ап «album» оЁ such typical situations with most probable 
consequences. 

It is interesting that brain possesses great capabilities оЁ finding such important 
details, creating «channels» and making predictions. if the set of important parameters is 
incomplete, mistakes will occur, therefore, the previous experience may correspond to the 
ability of creating proper projections of reality. It seems that this capability is partially 
inherited by artificial neural networks, and this may be one of the reasons Юг ец 
successes. 

Besides such «philosophical» outcome, we expect that the approach оё channels 
апа jokers may be useful in more common problemu. such ав time series predictions. One 
оЁ such possible applications is proposed т this paper. Note, that when one uses such 
local low-dimensional models, е global invariant characteristics like attractor, fractal 
dimension, Lyapunov exponents, entropy and so on, can not characterize the model any 
more. Only local ones, such а5 local divergence rate оЁ trajectories can be used. 

This work ма5 partiallv supporited by КЕВВ by grants Ne 96-01-01161, 96-02- 
18689, 97-01-00396. 
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УДК 517.9 

РУСЛА И ДЖОКЕРЫ 

НЕЙРОСЕТЕВОЙ ВЗГЛЯД НА СЛОЖНУЮ ДИНАМИКУ 

Г.Г. Малинецкий, А.Б. Потапов 

Способность к предсказаниям - один из важнейших аспектов деятельности 
мозга. В нелинейной динамике были вложены большие усилия в разработку 
методов прогноза поведения сложных систем. Одним из основных средств при 
этом служат многослойные нейронные сети. Методы, основанные на идеях 
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нелинейной динамики оказываются не столь эффективными и paboTaroT, 

фактически, только для модельных систем небольшой размерности. С нашей 

точки зрения, проблемы здесь не технические, а связанные с применимостью 

подходов маломодовой нелинейной динамики к реальным системам. Поскольку 

мозг и некоторые простейшие модели — нейронных сетей - способны K 

прогнозированию в реальных ситуациях, мы предлагаем объединить иден 

нелинейной динамики и нейронных сетей. С нашей точки зрения, в сложных 
жизненных ситуациях может существовать возможность обнаружить проекции 

малой размерности, для которых подходы нелинейной динамики могут быть 

использованы, HO с серьезными ограничениями. Большинство понятий, таких как 

аттрактор, его размерность, ляпуновские показатели н т.п. становятся 

неприменимыми, а фазовое пространство распадается на области предсказуемости 

(«русла») и области непредсказуемости («джокеры»), где более адекватным 

является вероятностное описание. Мы предлагаем некоторое математическое 

обоснование этой идейн и возможное €€ использование в задачах анализа 

временных рядов. 
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