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CHANNELS AND JOKERS:
NEURAL VIEW OF COMPLEX DYNAMICS

G.G. Malinetskii, A.B. Potapov

One of the main aspects of brain activity is the ability to predict. Large efforts has
been made in nonlinear dynamics to creaie predicting systems for dynamics of complex
objects. One of the main tools for making such predictors is the application of multilayer
neural networks. The methods based on the chaos theory prove to be less efficient, and in lact
work only for low-dimensional model systems. From our peint of view, the problems here are
not technical, but related with the applicability of the approach of low-dimension nonlinear
dynamics (o real systems. Since the brain and some of its very simplc models are able to nake
predictions in real situations, we propose to unify the ideas of nonlinear dynamics and neural
networks. From our point of view, in complex real situations it may be possible to find Tow-
dimensional projections, for which the approaches of noulinear dynamics can be applied, but
with serious restrictions. Most concepts, like attractor, its dimension, Lyapunov exponents etc.
become inapplicable, and the observed phase space splits into predictable parts {«channels»)
snd non-predictable ones («jokers»), where probabilistic description may be more
appropriate. We propose some mathematical basis for this idea and its possible application for
time series analysis.

1. Introduction

One of the key preblems in neuroscience is the processing of big information
flows. Animal and human brain learned to find good solution for it. It 1s this fast
processing of information about permanently changing situations around us that enabled
us to survive in a struggle for life.

This information processing should be able:

e To change behavioural strategies very quickly, taking different features to make
proper decision in various situations. That is, to find «the order parameters» of the
complex situations.

e To learn not only by trial and error method (there is a lot of situations where
there is no second trial), but by training of conumon sense, intuition, that is the «internal
predicting system». Psychologists call this «a forestalling reflection».

« To react quickly. To do it, one must be able to «forget» quickly inessentials, or to
send them into long-term storage, leaving in a quick memory only the most important
information.

Therefore, the brain possesses very efficient methods of self-organization ip
information processing, and it is reasonable to Jook at the problems of current nonlinear
dynamics from the viewpoint of neuroscience.

Predicting the future behaviour of a dynamical system and control of ¢haos is cnc
of the key problems of nonlinear dynamics. Now several techniques of ftime series
processing have been proposed. which enable to measure the main characteristics of
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dynamical systems such as fractal dimensions, entropies, Lyapunov exponents, to make
predictions of the future behaviour [1-4]. Several estimates of the expected performance
of the methods have been proposed, and for rather simple model systems they were well
confirmed. In particular, the effect of finite prediction time due to the sensitivity in
respect to initial conditions has been analyzed.

But nonlinear dynamics techniques of data processing encountered very serious
problems: all methods are efficient only for low-dimensional systems. It is hard to give
the precise meaning of the term «low-dimensional», but different estimates [5-9] show,
that usually algorithms cease to work for the systems with the attractor of dimension d>5.
But this inequality leaves almost all practically important situations beyond the
capabilities of nonlinear dynamics.

But applications of neural networks sometimes enabled to make predictions in
situations which should be hopeless from the point of view of nonlinear dynamics, e.g.
for financial time series. This implies two consequences: 1) there should be a reasonable
explanation for such facts and probably the ways to overcome the limitations pointed out
above; 2) neural networks possess some important feature which enable such data
processing. The purpose of this paper is to present such an cxplanation.

The idea is that the phase space of the dynamical system is nonuniform. And there
may be some places where the dynamics requires less variables for its description than in
other ones. If a trajectory passes through such region, then at these moments it can be
approximately described using the low-dimensional model. That is, the system can be
characterized by its low-dimensional projection. We called such projections Channels. If
the trajectory has visited the regions around this channel often enough, than this
projection in principle can be found from a time series, and therefore the ability to make
prediction appears. But feed-forward layered neural networks involve operations which
resemble projecting: the weighted sum of inputs. Therefore, if a low-dimensional
projection exists, a neural network may be capable to find it. Moreover, we shall show
below, that projection is an important element of the most predictors, and maybe the
ability to work with different projections explains the success of neural networks (and
perbaps a real brain).

Therefore, it follows from the ideas of neuroscience that the possible approach for
analysis of complex dynamical systems is to search for such local low-dimensional
charinels. But if we look at the whole dynamics from the viewpoint of such iocal channel,
we shall see, that at some place this channel looses its predictive power. It may lock as if
from pure (or mainly) deterministic behaviour we quickly change for probabilistic one.
Such domains of probabilistic description we shall call Jokers. In terms of low-
dimensional projections, joker can throw the trajectory of dynamical system into another
channel, or even to some part of the previous channel. Therefore, another possible idea is
to study the behaviour of low-dimensional systems with jokers.

In these terms we can say that the brain has exceptional abilities in searching of
channels, while jokers correspond to very complex situations which are hard to analyze.
In such situations brain may activate the mechanisms of emotions which in some aspects
may look probabilistic.

Probably, the treatment of complex systems from the channels and jokers
viewpoint may give new useful practical ideas. In this paper we would like to show, how
this approach emerges from the problem of time series prediction and that it enables to
explain some known facts and to propose new ideas for developing numerical algorithms,

2. The problem of time-series prediction

ILet us consider the general problem of time series prediction. Let x,x,,....x, be the
values of some cbservable measured at the moments £,=kt. It is necessary to predict the
future values x,,,,X,,,.... There are several approaches to this probleni. In statistical ap-
proach it is assumed that the distribation density for x, depends on m2 previous entries, and
therefore it is possible to use for predictions the conditional average £(x/x X, 55X, ).

Nonlinear dynamics enabled to explain the appearing of this dependence and to propose
the estimates of the value m.



The basic assumption of the nonlinear dynamics approach is that the measuared
values are the functions of the state of some dynamical system, which is responsible for
the effects observed. That is, there exists a dynamical system

x{(r+1) = f1(x(1), x = R (1)
(This form enables to consider both mappings x  =F(x ) and ODEs of the form

x=F(x) in a similar manner.} The second assumption is that the measured observable is a
function of the state of this system, i.e. x=h(x(r))). Then the Takens theorem [1.3] srd;c‘
that for almost all t, /1, f and m=Zn+1 there should be a functional relation betwee
XV ey, and v

The ‘main idea of this theorem can be put as follows. All m successive values of
observabie can be related ro a single system state

X = (x)), k=01,.,m

If we consider the sequence x, .1, ,....,x,  as a point in m-dimensional Euclidean space

. . { - - T - ni N
Zi~m - ('Ki—i”xi—l""‘”\iﬂn) N ze R ? (/“’

then there is the vector function, such that z=A(x). This function maps the phase space
M of the original dynamical system () (hele M=R", but in general case it may be an »-
dimensional manifold) into an n-dimensional surface M, eR’” A:M—M, or M =A(M}.
According to the theorems of differential geometry, for m=2n+1 and almost all hmcuom
this swrface is an the embedding of original phase space into R”‘, and there exists the
inverse mapping A':M,—M. Then it is possible to write x, =A"(z, ), from which it
follows that

l!]

xo= 0 (x,, ) = R AT (7, ))) = Dy X, ) (3)

The Takens theorem also enables to make several conclusions about the form of the
function. it must consist of two parts: projecting and mapping. The theorem states that @
is a component of the mapping of lhc n-dimensional surfacc M, into itself. Indesd, let us
consider two vectors z.=(x,x, ...,x, ) and

Z/+1 = ("\.i+,l "\-i+2"" "\ji+171) = ('\-i+] 7’YHZ’”'""7\-1'+m—l ’(’D(’Y["\'Hl" o ”Yi+/7i»1 )) = ql(zi)' (4)

Both of them belong te M, and the function maps M, —M,. In fact, (4) may be
considered as another representation of the system (1). Then ® must be a function of n
rather than m arguments. The best choice wili be the local coordinates on M e but they arc
usuahy unknown. So the optinsal choice is the projection onto the tangent hype1plam to
M, in the neighbourhoed of z, or to any other plane which is not orth Offcma] to it. As a
mle such pm]ccUon (and the needed coordinate system) is only local, for this reasoin
sometimes it is necessary to specify explicitly, which point z it relates to. Therefore, the
general form of the predicting function or predictor must be

x=@(P s, )= OP (X k) (5)

n im
where P denotes the projector onto 2 local coordinates.

There is another reason, why the projection operator is necessary. In the presence
of noise the points z, will deviate from the surface M - But according io the theorem, the
mapping is defined only on M. Then, to make the problem of time series prediction well-
posed, instead of a point LER'" it is necessary to take its «reasonable» projection onto
M, n o zeM,. The specific form of the operator is not very important. Therefore, from
the viewpoint of nonlinear dynamics, the problem of predicting consists in the
approximating the unknown functional dependence by the set of known pairs {z,®(z)}.
Several methods were reported in the literature [4]:

1) local linear and nonlinear approximations, Le.
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D(z) = D(z,) + A (Az) + A, (Az,AZ) + ..., Az o
here A, means a polynoriial of the order & of its arguments;
’)) global polynomial approximations

O(z) =P, + A, (2) + A (z,2) + ... .

Note, it is interesting that the Takens thcorem does not guarantee the existence of such
approximations, but sometimes they prove to be efficient;
3) the method of radial basis functions

®(z) = Lao(llz-zl).

Formally the previous note 1s valid in this case as well, but if the radial basis function
¢(r) decrcases rapidly enough, then the domain where CI)(Z) significantly changes is
localized in the vicinity of the surface M. Perhaps, this is in some sense equwalent fo
projecting onto the surface;

4) neural networks with feed-forward architecture,
The (iomparison of different techniques for a number of model examples is presented in
10.4].
L According to the results presented in the literature, for simple model systems
(Lcrenz, Henon attractors and other low-dimensional models) all methods of prediction
work well, prediction error and predictability time are in good correspondence with
theoretical estimates. But for real data, as experiments show, only local linear predictors,
radial basis functions and nunal networks are of practical importance (the example of
such predictions can be found e.g. in [11], see also references therein).

3. Limitations of predicting techniques

The progress of the nonlinear techniques of data processing, such as estimating
attractor dimension or Lyapunov cxponents, enabled to understand their limitations. In
particular, several relations have been obtained for the length of time series N and the
greatest dimension of attractor d. which can be estimated from this series in the best
sitvation: N =10 [5-9]. Several estimates use d/2 instead of 4, but even under such
conditions for available time series with N=103+10* it is hardly possible to obtain reliable
results for the systems with d>5.

In the problems of time series prediction the obtaining of similar estimates is
slightly havder. It is clear, that it is always possible to make some prediction with the help
of the «zeroth order» method ®(z)=®(z,), where z, is the nearest point with known value
of ®(z,) or as a weighted sum ®(z)=2,w ®(z,,), where z, are several nearest neighbours
(the method of Ladnl basis functions can be considered as a generalization of this
approach). It is the prediction error which is of special interest. The «typical» error can be
estimated as [8xl=IID®(z)Il-llz-#yl. To approximately evaluate liz-zI, it is possible to use
the hypothesis of homogeneous filling with data points of a d-dimensional cube with the
edge [ (the magnitude of x oscillations). If we denote by a the mean distance between
points, then N=(//a)?, and llz-zll=a/2=IN""/2. Therefore, the expecied relative prediction
error can be approximately estimated as e=IDR(z )l N4 T js vather hard to estimate
ID®(z,)Ml, but it can be shown that it is proportional to exp(At), where X is the largest
Lyapunov exponent.

In a similar manner it is possible to estimate the prediction error for local linear
predictor («first order» method), &,=lD*®(z,)II-N*# [4]. The success of the nonlinear
techniques, described in [4], can be explained by the use of small 4 (1...3), and by the
fact that for smali T usually ID®(z)ll=1 and IlD‘(D(ZO)H also is O(1), or even close to 0. If
we take |[D®(z )lI=lID*®(z )lI=1, N=10°, d=2, then it is easy to obtain that e=~0.03,
g,~0.001. Close values were obtained in numerical experiments for model sybtem see
[4] and references therein.

For experimental data, such as physiological, economical time series, d is usually
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unknown, but scarcely it is less than 5, the estimate of derivatives also hardly can be
obtained. But even assuming [I1Dd(z,, )II~xiD2(D (z =1, N=10%, d=5 we get ¢ ~0.3, ¢ g=0.1.
It is hard to say about phyqlolo y, but in €C0ﬂ01ﬂj(,(1 ploolr‘mq bUL}l accuracy 18
absolutely unsatisfactory.

Nonetheless, there are situations, when for real complex systems good predictions
were made, usually with the help of neural networks \Lhue is no reliable information
about suvch facts in publications, since all successes in financial predictions are
commercial secrets, but briel notes in newspapers and numerous private communications
insist that such events do occur). Below we shall try to explain this phl nomenon, but first
we shall consider the general structure of 3-layer neural network and its relation with the
prediction problems and Takens theorem.

4.Predictors and 3-layer neural network

Let us consider the principal elements of a 3-layer feed-forward neural network:

Linear Sigmoid Linear Sigmoid
Inputs--» e T — R _ == Quiputs
combinations  function (o) combinations  Tunction (o)

Since we are interested in predicting the next entry of the time series from m previous

ones, let us suppose the following network architecture: /2 input neurons, a number of hid-

den neurons and a single output. m previous values x, ., ,,....t, or z_ form the input.
The linear combinations of the ]‘orm

E A/C‘:/\ ' ,

can be considered as simultaneous calculation of the components of a number
projections, i.e, the components of P z. Then the sigmoid function cs(y/.) is calculated. As
a rule, for this purpose a function with saturation is used, which approximately can be
considered as piecewise linear: on the «working» interval o(x)=cx, while outside of ii
o(x)=tl. With the help of 9, the working interval can be shifted. such that for a given set
of input paramcters the value of y, fall into it («active component»} or cutside i
(«passive component»). This in principle enables to make active only n necessary
components y, and therefore to obtain on the neurons of the hidden layer the necessary
projection P, 7

The next two steps arc the calcalation of the function ¥=c(Z5, ") This is nothing
but a local linear approximation of the unknown function. And” all these linear
approximations prove to be continuously matched, like splines.

Therefore, a 3-layer network implements the main requirement of the Takens
theorem: projection + approximation. This also explains the known fact, that increase of
the number of layers usually do not improve approximation (see e.g. [10,12]).
Combination of two projectors is equivalent to a single projector, and combination of
linear approximations is again a linear approximation. Therefore, one can expect that
basic fearures of multilayer network can be obtained on a 3-layer one with the proper
number of hidden units and properly chosen sigmoid function.

5. When complex dynamics c¢an be predicted? Channels and Jokers

Now [et us consider the problem of predictability of complex dynamics. Above we
pointed out the limitations of predictability. But they were related only to «global
predictability» or to the ability to recenstruct the whole dynamical system in -
representation (4). For a complex system it is indeed impossible. But mavbe this can be
done locally?

The mentioned information about successes of neural neiworks in making such



predictions is in favour of this idea, but as it has been said in previous section, neural
neiworks possess very high «projecting capabilities». So, it seems reasonable to look for
«predictability in projections».

Suppose that locally, in some domain G of n-dimensional phase space, the
behaviour of a complex system can be approximately but with good enough accuracy
described by a low-dimensional model with the dimension of phase space n,<n. Then, if
the observed trajectory during the observation time has passed through G several times, it
may be insufficient to reconstruct general n-dimensional mapping, but enough to
reconstruct n,-dimensional function and to make good prediction. Under such
circumstances we have no contradiction with the limitations of predicting techniques.

Moreover, this hypothesis enables to explain, why neural networks may
occasionally form such local predictors. As it has been said, they form many projections
of original phase space, and if it is enough for predictions n,<n parameters, then the
network in principle can detect the presence of such domain G and to form the
corresponding low-dimensional predictor.

We shall call such domains G as well as the corresponding low-dimensional
models channels. When the trajectory enters such a channel, for some time its behaviour
becomes predictable and «quasi-low-dimensional». When it leaves the channel, the
behaviour becomes more complex again. The low-dimensional deterministic description
tails, the situation looks like partially probabilistic. For qualitative description of such
sitnations by low-dimensional models we propose the new class of models - the systems
with jokers. Joker is a domain in phase space, where the behaviour of the deterministic
system becomes probabilistic. For example, joker can throw the trajectory to almost any
point of phase space, and after it for some time the dynamics become low-dimensional
deterministic again. In other words, the approach of charnnels and jokers is an attempt to
apply the low-dimensional ideas to the analysis of high-dimensional systems.

5.1. How channels can arise. Let us consider this idea in more details. Suppose,
that for the dynamical system (1) there exist a domain G, where the function f{x) has the
forra

) =[P, +7A(X),  xe GeRY,

where y<<1 and P is the projector onto the subspace of the dimension n <n. This
projection can be considered as a plane (or, in general, a surface) P through some point
x,c G, and the operator Pnl - as projector onto it. Let us also denote iz coordinates on P by
u=F, x, and the rest 7-n, - by v=(i—Pnl)x. Then f(x)=f,(u)+y f,(u,v), and on the surface P
we obtain the mapping

u,, =P, fi{w) + P, fi{u,v), wu, € P (6)

If the accuracy of the desired prediction enables to drop out the second term, for example,
if v is very small, then the dynamics can be approximately reduced to 1,-dimensional
i1 Pnlfl (ui)' (7)

u.
i

Therefore, if one needs to predict a component of u, it can be done with the help of (7).
The predictions for the components of v are also possible, but they will depend on u.
Note, that (7) is in fact the equation for the channel associated with the domain G.

5.2. Channels and time series prediction. Now let us consider, how the idea of
channels can be applied in the problem of time series prediction. In this case we have to
deal with the dynamical system (4) and its component (3). We assume that the complete
system is high-dimensional, but perhaps somewhere in the reconstructed space R™ there
are domains G, where it is possible to apply the approach of low-dimensional channels.
The dimension of the channel we can approximately estimate by means of the methods,
applied in the Sect. 2. Let us take as desired accuracy 1%, ie. ~0.01, and assume
IDD(z )=IID%D (2, )I=1 and N=10°. Then for the 1-st order method g,~N"2" or
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d=-2lgN/lge, = 3. (8)

Therefore, it is necessary to search for a domain, where the dynamics can be predicted by
3...6 most important components of the vector z, in other words, to determine the
projector P (note, that vector z may or even must be high-dimensional). How to do it is
a separate problem, and we shall not discuss it here, though practically it is very
important. We suppose, that such domain G and the projector P, oare found. Let the
projection be an n -dimensiona hyperplane P. In the case of scalar time series prediction
the component to be predicted is known - it is the last component of z. For this reason we
shall suppose that the vector e=(0,...,0,1) is not orthogonal to P. For practical applications
more strong condition must hold: angle between e and P should be less than some
limiting value, say B<Bma\—60° For the components in projection u=F z there will be an
analog ot (7): the approximate reduced system

= g(a). ©

Now let us explicitly express x,,,. By definition, x_,=(e, z,,). Let us denote
a*P” e/liP, ell—Ple/cmB - the direction on P which contains maxunal information about

v fall=1" Since' B is the angle between e and a, a=ecosp+q’, where g’ is orthicgonal to a
Then e=(a-q’)/cosP, and

= (e,z,) = ((az,,) - (d'z,,,))/cosp = ((au,,) - (q',z, ) Vcosp.

But because q’_Le it will have nonzero projections only on those components of z, .,
which are present in z,, that is, there exist such g, that (¢',z,,)=(q.z). Se,

v, = ((a.g(u)) - (q.z))cosp = g(u,) + (q.z,). (10)

This relation gives the general form of the predictor which uses the channels approach - it
is the sum of a nonlinear function of channel coordinates u and a linear function of the
previous state z.

Therefore, the use of channels may enable to simplify the structure of the
predictors, and to make predictions for high-dimensional systems, which, according to
general estimates, are beyond the applicability of low-dimensional nonlinear techniques.

But note, that the accuracy of prediction is limited not only by 1) the errors in data
and 2) chaoticity of the dynamical system. The serious source of errors is 3) the discarded
term in (6), which imposes the lirnits of prediction error and can not be diminished within
the low-dimensional approach. For this reasonr, more appropriate model for the channel
may be a dynamical system with noise added, but perhaps this «noise» should possess
some dynamical features to represent a projection of a high-dimensional trajectory.

5.3. How to search for channels? Searching for channels seems to be a complex
problem. At present we would like only to make several brief notes about it.

This preblem is related with other techniques, proposed in nonlinear dynamics and
statistics earlier. It is possible to mention the techniques of False Nearest Neighbours
(FNN) [4], search for dependent variables [13,14], or the attempts to apply the ideas of
Principal Components Analysis [15]. But all these techniques were global, while channels
require local approach. Therefore, it is necessary to find new technique.

It seems, that the most promising will be the standard approach of searching for a
functional dependence between successive reconstructed vectors, which are usually
applied for determining preper embedding dimension [16,17,4] (in [4] it is called FNN).
The idea is rather simple: if there exist a functional relation between z and z,, then if
llz-z |l is small, the same should be true for their iterates by (4), i.e. llz, -z ! also should
be sinall. (Another way of using this idea is to compare distances in re(domlructmnC with
embedding dimensions m and m+1) To find channels, it is possible to apply similar
technique, but only in projection, which in turn to be found.
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Fig. 1. Scheme of channels-jokers view of a complex dynamics. There are 2 channels (G.1 and G,) and 3
jokers (T, J,, J5). Solid arrows show deferministic description of dynamics (a trajectory of the Teduced
system), empty arrows show the action of jokers: when trajectory enters the joker area (shaded), it may
jump with some probability to some point of a channel or to another joker

That is, we come to the following problem: for a high-dimensional embedding (m
may be large) find a low-dimensional projection, i.e. 7,=3...6 orthonormal vectors a,,
which define the projector P, x=% (x.a,)a,, and the domain G, where it is natural to
expect a functional dependence between Pz, and P z. .. A possible approach is to study
the relation between IIP, (#-2)Il and P, (z,,,-z;,,)ll, look at the distribution of potentially
dependent pairs in projection” and adjust the véctors a,. This problem requires very large
amount of computations, and probably, it is necessary to find efficient numerical
algorithms for this purpose to achieve good performance, comparable with that of neural
networks.

5.4, What is at the end of a channel? Within a channel it may be possible to
obtain a simple description for a complex system. What will happen when the channel
ends (trajectory leaves the domain G), while we would like to remain in the frame of
low-dimensional description of reality? Simple models can not any more make
deterministic prediction, and the ouly way to remain within low-dimensional paradigm is
to admit probabilistic behaviour of the system’s model. That is, we suppose that there are
domains J, (jokers), where the behaviour of the trajectory becomes probabilistic. For
example, joker can throw the trajectory back into some (or any) point of the same
channel G or another channel, or the trajectory may jump between several jokers etc. This
scheme is shown in Fig. 1.

Properiies of 1-I) maps with jokers of different types were studied in [18,19]. It
was shown that the presence of joker can drastically change the bifurcation diagram and
even suppress arising of dynamical chaos.

6. A simple example
Now we shall present a simple model example, where the concepts of channel and

joker can be shown. Let us consider a chaotic system consisting of two coupled parts,
each of them being again a chaotic system:



Xn»a»l :fl (Xn) + H'(\Xn)gl(-yn)’ Xxe R",
yn+l :fi(yn) + “() gZ(xn)’ ye R™.

Hcre X is supposed to be low-dimensional. The variable coupling we shall choose such
that u(x )=0 when x e G, G is a domain of R™, and pu(x,}#0 when x_ is outside it. Then,
while x falls within G we have two almost separate subsysfem% and in pamculdr X obeys
the equation x_,=f,(x, ). This gives a channel. Then we can obtain a tirne series for some
observable ,\‘”:h(x”). and see, whether this channel can be detected. Tt is this choice of
observable that makes the example simple and enables us to avoid the very complex stage

of searching the necessary projection.
In the example below for the mapping f| (x,) we have chosen the modified Hénon
mapping

'\.J.n+1 =1- CI[Q’Sin('\’l,n/z)]2 - b'\-’l.n = (9("1,»"\'2,11)’ (1 1\
. vid)
'Yz ’)bﬂl( v /2) \V(\l n Xn = ‘( a\]’” -l .
L X’_’,n .

The modification is necessary to avoid the escape of the trajectory to infinity, which
occurs in original Hénon mapping. For the mapping f,(y ) we used threc ideniical
coupled maps (11) with constant coupling. The resulting system has the form

- = yfy

1 i+l (p("i“ ) + 51(\1 nt ln’ '\ln+i - \U\"Ln-)

Vi = Q0,0+ (e, 45, )2, Yot = W)

y3./1+1 = (p(\yln’y{n) + M(i(—\'?l.n—*_yﬁ.n)/z’ y4,n+'l = "V(ylu)
' (12)

yS,n»\-T = (p(yﬁ.n’yﬁ.n) + I’Lﬂ—y},n’ )‘ﬁ,n—:—i = \U(yﬁ.n)

W) = L~ (50N, x, = A(x,) =3,
a=14, b =073, Hy = 0.3.

It follows from the form of u(x), that the domain G corresponds to x, >0. This choice has
been made on purpose, because in this half—plane the mapping 1,(x ) has the fixed pomt
and the trajectory sometimes spend several iterations near it. In other words, this has been
made to cnsure, that the trajectory will spend several successive iterations within &G,
which may be important for channel detection in delay reconstruction,

At first glance, the time series for (12) slightly differs from that of unperturbed
(11}, but the effect of varying coupling is clearly noticeable on the plot of comrelation
integral, and particularly - its slope (see Fig. 2). From the plots one can conclude, that
most probably the processed series is generated by a Jow-dimensional system, but steady
growth of slope with the increase of embedding dimension makes it to look a little
«random». Therefore, in the projection onto x-plane we obtain the situation described
above: low-dimensional dynamics within (¢ and more complex behaviour ontside it, Here
the «joker» appears i0 be rather weak and just adds moderate «noise» to the low-
dimension «signal».

To apply our approach to the analysis of this time series, we must find the dornain
of channel G (again note, that here we do not have to search for the necessary low-
dimensional projection, we get it almost auromatjcaﬂy because of the choice of
observable; in real problems the situation will be worse ). To find the channel, we applied
rather simple technique, which can be called the linear predicting test (LPT).

The idea of LPT can be explained as follows. As it has been mentioned above, the
prediction of time series means interpolation of the function @(z) (3) at the necessary
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Fig. 2. Plot of correlation integral log,C(g) vs log,e (@) and its slope (h) for the time series of the
Ob\Cl\dbll” x, . for (he model system (%2) The encrth of the series N=10% the embedding dimensions
=4, 6, 8, 110 12, 14, 16. It shows that the set of z-vectors does not Iook random, rathcr they form
«sr\muhmg low-dimensional», but the structure of this set changes with the increase of m and slope
gradually grows. Usuoally this is interpreted as presence of noise. In our case, from the point of view of
low-dimensional channel it is the influence of joker, from the point of view of the whole system (12), this
is the consequence of the problems with applicability of the Takens theorem: due to varying coupling p(x)
the observable x| ; does not enable proper reconstruction of the whole system

point z from the known values of ®(z,,) at neighbouring pomts z,,,- For the simplicity, let
us consider one-dimensional case: some function f(x) is known at discrete points .x,,
J=f(x), and one has to interpolate its value at some point xe{x,x, ], Also for the
simplicity let x,,-v=h for all i, then the linear approximaticn, Wthh uses the
neighbouring points /,_ and f,, is

fxy=Lin(f, £, Xy =ax + b= (f, )2 + (f, ) 2h)(x-x),  x = (x,,+x)/2.

The error of this approximation can be roughiy estimated as e~f ”(x)h?, h=x,-x,. The
second derivative can be approximated by the difference

Jrht= (/;'+1’2ff+f;-1)h'z/( h?)= (204 )/2 ()2 - F=Linlf,_ .. fiov %) -1

Therefore, the approximation error is of the same order as the difference between the
value of f at some point and its linear approximation from the nearest neighbours. This
form enables easy generalization for higher dimensions. Then we come to the LPT. Let us
estimate the «quality» of the point z, as follows
1. Take k=k >m+2 nearest ncwhboms of z, 7, 8= 1,...k, w(z .) are known, and
make a linear appmxnn ation L,(z) by these & nejgabourq (but not u mg <I>(z }). This gives
the values g,=IL,(2,)-®(z)l, and g,=max L, (z,)-@(z,)!.
Let us decrease A we shall dlscmd one of the neighbours, z,, for which this
opexahon will give the smallest value of e=IL_,(z.)-®(z ). We shall repeat this operation
until (1) k>m+2 and (ii) the decrease of e is at least 2%.

3. Finally we obtain the new k= <k, and the values

'cB:ILk,(Z,.)—tD(ZV.)I, gg=max |L.(z,)-0(z,)!.

In most cases it is possible to classify the points z, with the help of ¢ ,....¢,. Fig. 3
shows the results. Dots show «good» points, crosses ~ «bad» ones. It is obvious, that the
domain of channel can be extracted from these data rather easily. That is, we get the
domain of good predictability for our time series and a simple rule for testing, whether x
belongs to it. We can conclude, that at least in some cases the approach of channels and
jokers can be useful.
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Fig. 3. The results of linear prediction test (LPT) for the short (N= 10%) time series of the observable

for the model system (12). Crosses show «bad» points, where predictability is bad, and dots show «ﬂoo«%»
points. For application of LPT for the low- dimensional projection (m=2, panel ) the domain of channel is
clearly visible, it corresponds to half-plane x>0. For higher-dimensional projection (=6, panel . the
coordinates of the plot are the last two components of 6- dimensional z- vector) LPT almost fails to detect
channel. Therefore the technique of channels search requires searching for proper projection. In our case
this search is not necessary because of the good choice of observable

7. Conclusions and hypotheses

Our hypothesis is that for complex high-dimensional systems such channels-jokers
description may prove useful. In some aspects it can be considered as a genemhzatlon of
symbolic dynamics, in other aspects - as a system of matched simple models. In natural
sciences such description is not popular, but it may be appropriate for social and life
sciences, where usually many simple models are used to describe different aspects of the
same complex object. Probably, those models can be considered as different channels.
Then, for example, the dynarmics of society can be represented as a series of channels
(regular development) and jokers (abrupt changes, revolutions etc.). Such view can also
help in discussions on the correctness of different models: several descriptions may
coexist as different possible channels. The problem is which one corresponds to the
present sitnation , how close is the nearest jokey, can it be avoided and so on.

This approach also can give some hints on the problems of description of complex
objects, In principle, channels need not always be mathematical medels, they may be
sorne typical situation, combination of indicaticns, most important details. Therefore, an
object can be characterized by an «album» of such typical situations with most probable
consequences.

It is interesting that brain possesses great capabilities of finding such important
details, creating «channels» and making predictions. if the set of important parameters is
incomplete, mistakes will occur, therefore, the previous experience may correspond to the
ability of creating proper projections of reality. It seems that this capability is partially
inherited by artificial neural networks, and this may be one of the reasons for their
successes.

Besides such «philosophical» outcome, we expect that the approach of channels
and jokers may be useful in more common problemu. such as time series predictions. One
of such possible applications is proposed in this paper. Note, that when one uses such
local low-dimensional models, the global invariant characteristics like attractor, fractal
dimension, Lyapunov exponents, entropy and so on, can not characterize the model any
more. Only local ones, such as local divergence rate of trajectories can be used.

This work was partiallv supporited by RFBR by grants Ne 96-01-01161, 96-02-
18689, 97-01-00396.
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PYCHA U [KOKEPBI
HEWPOCETEBON B3I HA CTOXHYI0 IUHAMUKY

I Maauneuyruti, A.Bb. [Tomanoe

Cr1ocoGHOCTE K NPEJICKAZAHASM - ORMH W3 BaXKHEHIUNX acneKToB JeSTeNbHOCTH
Mosra. B Hennmpeldol auHaMyKe ObUIM BIOXKEHHl OOMBIUEE yCuius B pa3spaboTKy
METOROB TIPOrHO3a MOBENCHHS CIOXHLIX chcTeM. OfHUM #3 OCHOBHBIX CPEJCTB IIpH
ATOM CJIY3KAT MUOTOCHOWHBIC HeBpouHble ceTH. MeToiel, OCHOBaHHbIE Ha HACAX
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HENMHEHHOH [HMHAMHKH OKa3bIBAIOTCY He CTONb S(PheKTHBHBIMA ©H paboTaroT,
akTruecku, TOALKO A8 MOREHBHBIX chereM HeSomburon pasmeproctu., C mawefi
TOYKH 3peHus, HPOOIeMbl 3UECh HE TEXHHYECKHE, a CBS3aHHbIE € IPHMEHBMOCTBIO
MONIXOfIOB MAaNOMOJIOBOH HEeN@HEeHHO FuHAMBKE K peanbnbiM cricremad. Ilocxonnky
MO3r H HEKOTOpBIC MPOCTEHine MOjend HelpOHHbIX ceTeii  CHOCOOHLI K
NPOrHO3MPOBAHUIO B PEABHBIX CHTyaunaX, Mbl TIpeAnaracM OOLEeNHHHTL HEeH
HEJUHEHHON auHaMuKM W Hefiponubix cetefl. C Hawell TOYKM 3pedis, B CHOXKHBIX
JKH3HEHHBIX CHTYaUHAX MOXET CyLIECTBOBaTh BO3MOXKHOCTL OOHAPYXKATH TIPOCKINH
MaJoll pPA3MEPHOCTH, M KOTODPBIX MOFXOABI HEJHHEHOH JMHAMHKM MOryT OhiTh
HCIIONL30BAHEL, HO ¢ CEPLE3HBIMA OrpaHuvIeHAAMY. DOABIMACTBO TOHATUH, TAKHX Kak
aTTPaKTop, €ro pPasMepHOCTh, JISIIIVHOBCKHME IMOKA3aTeNld H T.OL. CTaHORATCS
HENPIMEHAMBIMI, a ()a30BOE NPOCTPAHCTBO pacliafaeTes Ha O0OJACTH IPEACcKa3yeMOCTH
(«pycna») u ofmacTi HENpeacKasyeMocTu («KOKepbl»), rae Gojee amekBaTHbIM
ABMACTCA BEPOATHOCTHOE onucaHue. Mbl IpejsiaraeM HEKOTOPOE MaTeMaTHdecKoe
ODOCHOBAHHE 3ITOW MIOeH M BO3MOXKHOS €€ HCIONb30BdHWEe B 3ajavyax adaliuisa
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