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RELAXATION OSCILLATIONS IN SOLID-STATE LASERS
WITH DERIVATIVE FEEDBACK

N.B. Abraham, P.A. Khandokhin, V.G. Zhislina

The feedback proportional to the derivative of laser intensity can affect only the
system stability without changing the system steady state.

In the present work by the example of a two-mode solid-state Jaser we show the
possibility to excite quasi-sinusoidal self-modulation regime using only negative feedback
which is proportional in this case to the derivative of the strong mode intensity /,. The region
of parameters at which the stationary regime becomes unstable is found.

Modulation of pump parameter being introduced in the laser equations as A=A (1+
+ (7)) and feedback as - K(di,/dt). K is the feedback coefficient which we change to gol the
unstability region.

At approaching the bifurcation boundary the effect of regencrative amplification of
noise in the vicinity of low-frequency relaxation oscillation must be observed. In the iransfer
{functions (in the presence of the feedback) it looks like disappearing of high frequency peak
while low frequency peak grows and narrows. The effect of regenerative amplification of
noise (increase in the amplitude of the low frequency peak) is accompanicd by the effect of
tolal suppression of the high frequency relaxation oscillation and by a significant decrease of
the system sensitivity to the external perturbations

1. Intreduction

Investigations of the possibilities for controlling relaxation oscillations and
decreasing the level of technical fluctuations in solid-state lasers have been conducted for
a fairly long time. Conventional approaches (e.g., stabilizing the power supply of flash
lamps and decreasing the temperature variations of the cooling liquid, and thereby, of the
laser rod) have been used successfully to reduce technical fluctuations {1]. However, for
frequencies at or above 10 kHz, the noise level approached its natural limit, although a
noise resonance peak in the range of 50 - 100 kHz remained, refiecting the specific
dynamical nature of solid-state lasers.

The recent developmeni of monolithic ring lasers with high stability and
semiconductor diode laser pumping has aroused new interest in the creation of low- noise
lasers to be used as master oscillators for various precision systems. Harb et al. [2]
demonstrated experimentally the suppression of relaxation oscillations in a unidirectional
ring laser using feedback. The theoretical and expevimental possibility of manipulating
relaxation osciliations in a multimode laser using a combination of both positive and
negative derivative feedback has also been shown [3,4]. The use of feedback proportional
to the derivative of the laser intensity is more preferable than other types of feedback,
since it does not alter the steady state affecting only the transient process [3].
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to the derivative of the laser intensity is more preferable than other types of feedback,
since it does not alter the steady state affecting only the transient process [3].

The present work considers a method for suppression of relaxation oscillations in
solid-state class B lasers by using feedback proportional either to the derivative of the
lotal intensity or to the derivative of intensity of an individual selected mode. We have
studied the relaxation oscillations in lasers with negative derivative feedback proportional
either to the total intensity or to the intensity of a selected mode. At some feedback value
the in-phase relaxation oscillations disappear causing a decrease in the noise modulation
depth of laser radiation. This phenomenon is studied for the example of a two-mode
solid-state laser with a Fabry - Perot cavity.

2. Two-mode laser with derivative feedback

The dynamics of multimode class B lasers is described by the rate equations [2,4]):
dl /dv = GI/.(N0 +N,-1- Cj),
dNjdi=A-N(1+XI,)-ZNJ, (1)
dN/dt = -Nj(l +2I,) - 0.5N,,

where 7, - is the jth mode intensity, N, - is the jth amplitude of the population inversion
gratings, N, - is the spatially uniform part of inversion, j=1,2 in the case of a two-mode
laser, and G(1+C.) is the loss rate for mode j.

The optoellectronic derivative feedback is introduced by controlling the power of a

pump laser
A=A, -K(dl/d), where i=tot, 1,2,

according to the scheme shown in Fig.1. Using this scheme we can choose either the total
intensity or the selected mode intensity for the negative derivative feedback lcop. The
additional losses we have chosen for the modes are:

C,=0, 0<C,=C<03,

By controlling additional losses in the second mode (C), we can vary the steady state
intensities of lasing modes /, and /, .

Pump i
Laser ND: YAG laser 50% mirror F-P PD
PD
Ampl ) (11“2)
Lyor
d
—_— Lyt
at o

Fig. 1. The feedback application scheme: F-P is Fabry - Perot etalon; PD is Photo diode
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Fig. 2. Transfer functions of the total intensity and of the individual modes (without feedback)

There is only one steady state solution around which the linearized dynamics are
governed by the following characteristic equation:

A, - 28,1l =0. 2)

Here A are the coefficients of characteristic matrix of the system 8, is the Kronecker
delta. In the absence of the feedback the system possesses 2 pairs of com lex-conjugate
eigenvalues with negative real part plus 1 negative real root:

hyy=0,20Q, Ay =5 )

with §, 8,, 8,<0. Relaxation oscillations appear as resonance peaks at Q) and Q
transfer func‘uons and power spectra (Fig.2). Eigenvalues A , comrespond to in- phase
relaxation oscillations of the laser mode intensities at frequency Q, with damping rate 8.
The low-frequency relaxation oscillations at £, indicate the competitive interaction of the
modes in a laser which appears only in transfer functions and power spectra of individual
modes.

Introduction of the negative feedback leads to a sharp increase in the damping rate
of in-phase relaxation oscillations §. A pair of complex-conjugate roots transforms into a
pair of negative real roots at a certain critical value of negative feedback. This
corresponds to a disappearance of the in-phase resonance peak at frequency O from the
transfer function (see Fig.3). However, in each case (with derivative feedback
proportional to the individual modes or the total intensity) the main relaxation oscillation
is suppressed at different values of feedback coefficients K, @, K|, K,”. The following
relation is fulfilled here (K, )'=(K)'+ (K,*)", reflecting the ‘simple fact that
I =1+,

Qua‘ltatlve differences in feedbacks of different types are seen by the difference in
their effect on low-frequency relaxation oscillation. The total mntensity feedback does not
in any way affect the low-frequency oscillation while the feedback proportional to the
strong and weak modes affect this oscillation in quite opposite ways. This is seen in Fig.
3. The main difference is in the dependences of § (K,) and 8,(X,). The figure shows that
there is a domain of values of the feedback coefficient K, where the damping rate 3 (K)
approaches zero so that there is a probability that the sign of § (K,) will change. We
found a domain of parameters (A, C, Kl) where the sieady state regime of two-mode
lasing becomes unstable (8,(K,)>0). Fig.4 shows the domain of laser instability in the
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Fig. 3. Eigenvalues (damping rates and oscillation frequencies) versus the strength of feedback
coefficients for different types of negative derivative feedback: from modulating total intensity (a). a
strong mode (b) and a weak mode (c)

plane of parameters (C, K,) for fixed pumping rate A=2.0. An increase in pumping
starting from this level (A) leads to a gradual decrease of the area of the instability
domain down to zero with a simultaneous shift of the domain to iarger values of the loss
difference and the feedback coefficient (point A=2.4). A decrease in the pumping rate
below A=2.0 also leads to a gradual disappearance of the instability domain, but this is
accornpanied by a shift of the domain to smaller values of the loss difference and the
feedback coefficient (point A=1.4).

Inside the shaded area the intensities are spontaneously meduiated quasi-
sinusoidally at a frequency close to ,. Fig.5 presents the modulation depih of each mode

M, %
60
-0.04 - :
, o,
A=24 40 a
-0.08+ ‘
K, 2.0 t
0124 - 201 L M
T A1a M 8,x10
B L N !
0} “;.J/ ............. o ‘..E,V.. ....................
—016 J ' T /n : T T T - . ]
0.05 025 0.30 0.05 0.10 0.15 K,

Fig. 4. Laser instability domain (shaded) in the Fig. 5. The modulation depth of the intensities for
(C, K.,) parameter plane for A=2.0 each mode M, , and the totul intensity M, versus
o feedback coeftitient
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(M, ) and of the total intensity (M ) versus the feedback coe‘rﬁment In the center of the
mstablhtv domain the modulation depth is: about M,=75% (for a weak mode), M,=10%
(for a strong mode) and about M, ~15% for the tota] intensity. The dashed curve shows
the behavior of dependence & (K, ) 10 which clearly delineates the instability domain. On
the boundary of the instability the modulation depth is close to zero indicating that there
is a supercritical Hopf bifurcaiion at the frequency of the low-frequency relaxation
oscillations.

How can it be explained from a physical point of view that a laser instability
appears for pegative feedback derived from only the strong mode? The reasons are
evident from the Fig. 6, where the transfer function for the strong mode is given i a
cylindrical coordinates in the absence of a feedback. The amplitude of laser response is
plotted along the radius, the azimuthal angle represents the phase difference between the
laser response and the external perturbations while the axial indicates the oscillation
frequency. The bottom figure (Fig. 6,b) shows the projection of this curve on the plane
(amplitude - phase) in the polar coordinates. It is seen from the figures that the response
at the low-frequency resonance peak in the transfer function for a strong mode is
antiphased with respect to the response at the high-frequency resonance peak. Hence
negative derivative feedback (in general) becomes positive feedback in the vicinity of the
low-frequency resonance peak. That is why suppression of the high frequency relaxation

oscillation at certain parameters of the system leads to excitation of oscillations at
relaxation frequency Q. For cemparison Fig. 7 shows the transfer function for a weak
mode. It is obvious from this figure that the response at the low-frequency resonance
80
7013
50.!

80 ~80

a

b

Fig. 6. The transfer function for a strong mode Fig. 7. The transfer function for a weak mode
(without feedback) in a cylindrical coordinate (without feedback) in a cylindrical coordinate
system (radial coordinate: modulation depth; axial system. Coordinates as in Fig. 6

coordinate: modulation frequency, azimuthal angle:

relative phase of modulation and response)

96



peak in the transfer function for a weak mode is in-phase with the response at the high-
frequency resonance peak.

3. Suppression of the nroise by negative derivative feedback

Introduction of white noise modulation of the pump A=A (1+{(t)) to the linear
differential equations obtained by linearizing the system (1) around the steady state with
further Fourier transformation leads to linear algebraic equations of the following form:

al S - ol
LA, -8 )E(@) =B, r=12..5 4)

Here w is the modulation frequency, B}l is the normalized vector of the right-hand sides of
the system, which describes the pump modulation Buz[O, 0, m'2, 0, 0], m is the intensity
of the technical noise source {(t), and § (w) is the complex transfer function (amplitude
spectrum) which describes the laser response to modulation.

We have numerically calculated the power spectra for the total intensity and the
intensities of each mode with different feedbacks (see Fig. 8).

The dotted lines show noise spectra in the absence of the feedback. The solid
curves indicate the system’s response to external pump modulation of large levels of the
feedback (K>>K/"). It is seen from this figure that external perturbations are most
effectively suppressed by using the total intensity feedback.
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Fig. 8. The power spectra for the total intensity and Fig. '9. Fractional modulation ‘depth. in both the
the intensities of each mode with different negative individual modes and the total intensity versus the
derivative feedback from: total intensity (2); strong  values of different feedback coefficients

mode (b); and weak mode (c)
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The area below the curves has the physical meaning of modulation depth of the
laser intensities. It is convenient to use this parameter to evaluate guaantitatively the
effectiveness of the feedback used. We calculated the dependences on the feedback value
and type of the modulation depth using the formula

p, =L 1. 8da. (5)

The calculation showed that the {feedback significantly decreases the modulation depth in
both the individual modes and the totai intensity (Fig. 9). It is obvious from this figure
that the external influence is most effectively suppressed by the total intensity feedback.
Our estimates show that in such a way it is possible to suppress technical fluctuations by
30 - 40 decibels.

4, Conclusion

These results allow us to conclude that negative derivative feedback proportional to
the total intensity can significantly decrease the system response to external perturbations
and can therefore reduce the leve] of technical noise.

As a result of observing a Hopf
bifurcation in the case of multimode lasing,
we can conclude that if a strong mode is
used to form a signal in the circuit of the
optoelectronic differential feedback it Is

l ! l I always possible to find a domain of para-
et - meters where excitation of undamping

o qgasi-sipusoida] oscillatiqns is observed
with a frequency of the highest frequency
of the family of relaxation oscillations in
Fig. 10. Schematic dessign of the spectrum of the group of antiphase relaxation oscilla-
multimode laser relaxation oscillations tions (see Fig. 10).

The in-phase
relaxation
oscillation

The group of antiphase
relaxation oscillations
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PENJAKCAHUOHHGLIE KOJEBAHMIL
B TBEPXOTE/IbHLIX TA3BEPAX C OBPATHOU CBA3LID

H. Abpaxam, I1.A. Xandoxun, B.I. Kucauna

OGparsag CBsI3b, IPONIOPIFIOHANBHAA POU3BOJHON OT U3.IYUEHHS JTa3epa, MOXKEeT
BO3JEHCTBOBATL HA yCTOMYMBOCTL CHCTEMBI, HE MEHAA €€ CTALMOHAPHBLIX COCTOsSHHI. B
FaHHOA paboTe HA OpEMepe [OBYXMONOBOTO Jasepa IOKa3aHa BO3MOXKHOCTH
BO30YXACHNS KBA3HUCHHYCOUANGHOTO PEXHMA CAMOMOBY/AUMH TIPH HCIONL30BAHNA
TONBKO OTPHUIATENBHON OOpAaTHOH CBA3M, NPONOPLHECHAIBHOH TPOU3BOAHOW OT
AHTEHCUBHOCTH CHILHOA mMopabl Iaiifena o0pacTe mapaMeTpoB, [OpH  KOTOpOH
CTalUOHAPHBIA PEXUM CTAHOBHUTCS HECTACHIBHBIM.

Mopgynsms Hakauky OpefcTaBiseTcd B cucreme ypasHennit TSDM  xax
A=A (1+((7)), a oOparsas cms3p BBORETCA 10 (opmyne K(dI/dr). 3pecs K -
xoapuunenT npu oobpatHoii caa3u. [Ipw oupeenenibIx COOTHOMIEHHAX TapaMeTpoB K,
A u C (MEXXMOFOBOI Pa3HOCTH [IOTEPD) CHCTEMA MONAJAET B OGIACTS HEYCTORUNBOCTH -
HabmopaeTes 2¢hhekT pereHepaTHBHOrO YCHICHHS LIyMOB B 0ONACTH HI3KOYACTOTHOTO
koneGarns. B mepenaTodnnBIx  (PYHRUESX 3TO NPOSIBISIETCS Kak  HACUC3HOBEHHE
BBICOKOYACTOTHOrO MAKA ¥ OHOBPEMEHHOE YBEIHICHHE H CYKEHUE HH3KOYACTOTHOrO.

Tax:ke TPOMCXOIUT CYIISCTBEHIIOS YMCHBIUCHHME TYBCTBHTENLHOCTH CHCTEMBI K
BHELIHHM BO3IEHACTBHAM (YMEHbIIACTCS MHTCIPAILHAS TUIYOHHA MOTYISILUR).
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