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SCALE PROPERTIES ОЕ RANDOM OPTICAL FIELDS: 

FUNDAMENTALS AND APPLICATIONS 

D.A. Zimnyakov, V.V. Tuchin, 1.5. Peretochkin 

Scaling analysis ОЁ speckle intensity fluctuations induced by coherent light scattering 
by dynamic inhomogeneous media 18 carried out for different types оЁ scuttering systems. 
Relations between box dimensions оё the intensity time series and corresponding dimensions 
describing structure от dynamics оЁ the scattering object have been obtained for single 

scattering systems such as pre-fractal phase screens and ensembles of Brownian particles а$ 
well as for multiple scattering objcets. Some applications for morphological analysis ©Ё the 

opticaily inhomogeneous tissues arc discussed. 

Introduction 

Analysis оЁ statistical апа correlation properties of the spatial-temporal fluctuations 
оЁ scattered optical fields 18 опе of the basic technigues оЁ the study of single апа multinle 
scattering media, These fluctuations are induced by the stochastic phase modulation when 
coherent light propagates through dynamic scattering medium. One of the most 
characteristical examples оЁ such dynamic light scattering 18 the detection оЁ remporal 
intensity fluctuations оЁ the scattered light in the clascsical experiments with ensembles ОЁ 
Brownian particles [1]. Оп е contrary, single апа multiple scattering of coherent Iight 
by «steady-structure» objects lead to the formation of stationary speckle patterns 
associated with random inteiference fields; in this case statistical апа correlation analysis 
of spatial fluctuations of speckle intensity can be used for characterization of the 
scattering system ог «time-domain» approach also can be used for {ixed-point detection 
conditions in combination with translation movements of the scattering object [2]. 

Assumptions оп the ergodicity апа the stationarity оЁ scattering systems as well а5 
оп Gaussian statistics оЁ the scattered field with zero mean value are valid for а lot оЁ the 
scattering dynamic systems consisting оЁ а large number of elementary scatterers (except 
some specific cases; see, e.g., some comments in [3] оп non-ergodic scattering systems). 
This allows to find the relation between second-order statistical moments of the field and 
intensity fluctuations оЁ the scattered optical fields through Siegert formula [1]. 

It should be noted that one оЁ the fundamental properties оЁ @е scattered optical 
fields caused by the stochastisity of the scattering process а5 well а5 by the inner 
properties оЁ е scattering dynamic systems is the scale behavior о the statistical 
moments of the field апа intensity fluctuations. In certain cases such scale behavior can 
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be interpreted ав the manifestation оё the fractality оё random optical fields. The aim оё 
this work is the analysis and classification of the various characteristical examples of pre- 
fractal behavior оЁ е dynamic optical fields (here and further the term «pre-fractals 
means that analyzed systems ап processes demonstrate fractal properties @ the limited 
regions of temporal or spatial scales [4]). Some applications of the scaling analysis of the 
scattered light intensity fluctuations for monitoring and visualizing об the structure оЁ 
scattering objects will be discussed. 

Speckle intensity fluctuations ав generalized Brownian process 

Spatial-temporal randomness is the principal property of optical fields induced due 
to dynamic scattering of coherent light by inhomogeneous media. Another principal 
property of the stochastic interference patterns very often observed in scattering’ 
experiments with different types of dynamic media is specific self-affinity [4,5] of 
intensity time series detected in the fixed point in the scattering experiments. For 
example, such self-affinity appears when correlation characteristics of the detected signal 
(which is associated with the analyzed process) are evaluated as the statistical moments 
of the difference оЁ signal values obtained with given time delay т; in general, these 
moments exhibit asymptotic power-law dependencies оп т with ап arbitrary exponent. 

Taking into account common property of the fractal objects which is the difference 
between the object’s fractal dimension (e.g., box dimension) and its topological 
dimension (e.g., for continucus but non-differentiated fractal curves their box dimensions 
are larger than 1), we can interpret such peculiar behavior of the detected intensity time 
series as the manifestation of «fractality» [4]. 

It is necessary to note that fractal behavior observed in the limited region of spatial 
and temporal scales (i.e., pre-fractality) is not an exotic property; on the contrary, a great 
number оё natural and artificial systems апа objects show similar properties and, ав а 
rule, corresponding intervals оЁ pre-fractality cover no more than 1.5+2 decades in е 
spatial or temporal region (for example, see Sayles and Thomas [6]; see also critical 
review оЁ the «abundance» о fractals by Avnir et al. [7]). 

One of the easiest ways to estimate fractal dimension of the random one- 
dimensional process (such as, e.g., intensity time series observed in the scattering 
experiments) for а given range оЁ scales 15 the evaluation оЁ the exponent оЁ the 
corresponding structure function iniroduced а5 

8,(1) = I(t+1) - ()}?) - . (1) 

In particular, ав it follows from analysis carried out by M.Berry ([8], see also [4]) 
fractal dimension D, is related with v, а5 

D,=2-v/2 (2) 

Thus, for «conventional», «physically differentiated» processes characterized by 
approximately quadratic form of autocorrelation function in the vicinity of zero value of 
its argument v=2 and, correspondingly, D=1. On the other hand, so-called Omstein- 
Uhlenbeck process [9] 15 characterized by v=1; this allows to estimate fractal dimension 
ав 1.5. More commonly, value D=1.5 is typical for classical Brownian fractal curves 
describing е current displacement of the Brownian random walker with respect to its 
initial position [4]. 

Mandelbrot and Van Ness [10] have introduced the concept оЁ generalized, ог 
fractional, Brownian process for identification of pre-fractal processes which are 
characterized by the structure functions with an arbitrary values of exponent v taking 
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values from O to 2. Below we will take into consideration following dynamic scattering 
systems inducing speckle intensity fluctuations ав generalized Brownian process when 
coherently illuminated: 

- single scattering moving fractal phase screens; 

- single scattering ensembles оЁ Brownian particles; 
- multiple scattering Brownian ensembles and moving «steady-structure» 

scatterers. Moreover, «conventional» intensity fluctuations with v=2 and D=1 (e.g., 
characterized by Gaussian power spectrum) сап be considered а5 а particular case оЁ the 
generalized Brownian process. 

Single scattering systems inducing fractional Brownian intensity fiuctuations 

а. Moving random screens with fractal structure. Let us consider scattered field 
formation in the case of coherent beam diffraction оп the moving amplitude апа phase 
screens. By introducing such optical model as amplitude or phase screen to describe 
absorbing от scattering medium and using scalar diffraction approach муе do not take into 
account ап influence of optical thickness оЁ medium layer оп the scatiered field formation 
апа shall characterize this layer by two-dimensional distribution оё amplitude ог phase 
transmittance (or reflectance) coetficient 1(x,y). Moreover, we should restrict our analysis 
only by the case of large-scale amplitude ог phase inhomogeneities with characteristical 
sizes larger than wavelength used [11]. 

Despite these strong limitations such approach is adequately proper for the analysis 
of е diffraction fields induced by the wide variety of the coherently illaminaied 
optically inhomogeneous objects (e.g., rough surfaces, thin layers of biotissues, etc.). 

For the transverse movement of the coherently illuminated screen we can express 
current intensity in е on-axis detection point ав [12,13]: 

oz 

©) =1l L ACry) UG-8 3-8 ey, (3) 
where А(х.у) is the generalized aperture function оё е optical system used, which is 
determined by the distribution оЁ the complex amplitude т the illuminating beam апа 
detection conditions. For example, in the case оЁ screen position 1а the waist plane of the 
Gaussian illuminating beam and detection point position in е paraxial region оЁ е 
Fresnel diffraction zone generalized aperture function is: 

А(х.у) = Aexpl-(a2+y")w lexpljn(x2+y?)/(AZ)}, 4 

where w, is the waist radius оЁ е illuminating beam, A, is on-axis beam amplitude, % is 
wavelength оЁ the probe Беат ап{ 7 is the distance between screen апа detection planes. 
Ufx,y) describes the boundary field distribution which is formed immediately behind the 
scattering object illuminated by the plane wave with uniformly distributed amplitude 
equal to 1. For pure amplitude screens U(x,y)=1(x,y) and, respectively, for pure phase 
screens U{x,y)=exp[jt(x,y)] ( this case ((х,у) describes phase perturbation оЁ the probe 
coherent beam). Term «transverse movement» means that screen displaces т the 
direction perpendicular to optical axis оЁ е illuminating beam; displacement 18 
determined by е module оЁ vector ©. The integral transform in е right part оЁ Eq. (3) 
can be considered а5 convolution of the generalized aperture function A{x,y} апа 
boundary field distribution U(x,y). Thus, Fowrier spectrum оГ the current intensity 
fluctuations in the detection point caused by screen displacement can be expressed as: 

е{( ) = 1Е (o)F (@)|OlF (0 (@), ©) 

`о
 

<
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where symbol * denotes complex conjugation, / а(0) апа F, (0) are Fourier spectra оЁ the 
generalized aperture function and boundary field amplitude, 

For random screens with spatial distributions of the local values of transmittance 
coefficient #(x,y) demonstrating fractal properties translation movements with constant 
velocity will induce time-dependent intensity fluctuations with properties of the 
generalized Brownian process. Relation between such parameter оё the fractal distribution 
t(x,y) ав fractal dimension and corresponding fractal dimension оё the observed speckle 
intensity fluctuations can be obtained using the analysis of Eq.(5). In particular, 
theoretical analysis of the relationships between fractal dimensions оё spatial fluctnations 
of the boundary field amplitude with zero mean value and phase апа temporal 
fluctuations оЁ the speckle intensity in the paraxial region оё фе far diffraction zone with 
experimental verification оё the obtained results was carried out in {12, 13] for the cases 

of е broad collimated and sharply focused beam illumination оё the 2-D-isotropic pre- 
fractal phase screens characterized by large-scale phase inhomogeneities. Thus, there is 
no necessity to discuss аП details оЁ this study, апа for this reason оу the brief review оЁ 
the principal results will be given here. For broad collimated illuminating beam and far 
zone detection (in this case far diffraction zone is considered with respect to maximal 
characteristical size of the screen structure, and we analyze model of the unbounded 

screen illuminated by the plane wave with uniform amplitude distribution) equality оЁ the 
fractal dimensions оЁ the detected intensity fluctuations and boundary field amplitude will 

take place. It should be noted that such equality was obtained for the values of fractal 
dimension of the boundary field amplitude estimated for arbitrary selected one- 
dimensional cross-section of the two-dimensional isotropic distribution of the boundary 
field amplitude. Following the results оЁ analysis presented by B.Mandelbrot (see, e.g., 
[5]), we сап use relation between 1-D and 2-D fractal dimensions оё the isotropic spatial 
distributions: 

р® = 20 + 1, (6) 

For sharply focused beam, when A(x,y)~8(x,y) and, correspondingly, F,(w)~const, we 
will observe increased values of the fractal dimension оЁ е speckle intensity fluctuations 
т comparison with the fractal dimension оЁ isotropic boundary field (i.e., «chaotization» 
of the speckle intensity takes place). For random phase screens inducing statistically 
homogeneous апа isotropic fractal distributions оЁ the boundary fields with zero mean 
field fractal dimensions of intensity апа amplitude are related with each other ав; 

D,=2D, -1, (7) 

where D 15 fractal dimension оЁ Ше boundary field fluctuations determined by using one- 
dimensional arbitrary selected cross-section. This expression follows from the 
relationships between exponents of power spectra and structure functions of two- 
dimensional isotropic random distributions satisfying Eq.(5) [12,13]. So, Brownian frac- 
tal distributions with 1-D fractal dimension equal 10 1.5 induce «extreme» fractal 
intensity fluctuations with D=2. Similar analysis carried out for the case оЁ one- 
dimensional («corrugated») amplitude fractal screens illuminated by sharply focused 
coherent beam gives the less strong criterion of the «full chaotization» (D, is close to 2) 
of the intensity fluctuations оЁ the scattered field: extreme value оё D will be equal 10 1.75. 

Reilation between fractal properties оЁ spatial disributions оЁ the boundary field 
phase апа amplitude which is necessary for inverse problem оЁ fractal structure 
characterization is determined by the relation between their structure functions. In 
particular, for phase screens with Gaussian statistics оЁ boundary field phase fluctuations 

transverse coherence function of the boundary field will be related with structure function 
оё the boundary field phase as (if mean boundary field is equal 10 zero) [11]: 
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LT D, g,(Ar) = exp(-D (Ar)/2). (8) 
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10 ман R - 12 inhomogeneitics we can use simple 

оннн asymptetic form оЁ in the region оё small 
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and, correspondingly, we will have the 
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Fig. 1. Dependencies оЁ structure function exponent ?Ь}’тръі)ілс Ё ЧЪ.ШШУ о‹{ DU and Dl' Nlth.an 
v, @*.+) апа fractal (box) dimension D () of near шсгеаве ©Ё induced ph&sel modulation 

zone intensity fluctuations оп haltwidth оЁ Fourier depth additional «chaotization» оЁ е 
spectrum module оё generalized aperture function. boundary field amplitude fluctuations wiil 
Experiment with. fine-structured lngying ground take place. 
glass. Markgrs (B,*,+) correspond ю different values Та the intermediate case об limited 

of illuminating beam waist radius (taken from [14]) . - s . 
width of A(x,y) spectrum relationship 
between and has the more complicated 

character and vaiue of D, will be less ап upper value of fractal dimension calculated by 
using Eq. (7). Thus, with the broadening оё spatiai spectrum оЁ the generalized aperture 
function D, will increase пр 10 this extreme value. Similar behavior is illustrated by the 
dependence оЁ D. оп the halfwidth оё А(х.у) spectrum (see Fig.1) obtained т е 
experiments with fine-structured ground glasses [14]. Used experimental conditions 
(detection of the speckle intensity fluctuations ш the Fresnel diffraction zone and 
Gaussian illuminating beam) allowed to vary е halfwidth оЁ the aperture function 
spectrum in the wide limits. 

Presence оЁ non-zero mean value оЁ boundary field wili lead to the distortion оЁ the 
simple relation between scaling parameters оЁ the boundary field amplitude апа far-zone 
intensity fluctuations given by Eq. (7) in the case оё zero mean field. In this case, ав it 
follows from Eq. (5), decay оё power spectrum of the speckle intensity fluctnations wiil 
be determined by е contribution of «linear» and «quadratic» term; thus, resulting 
effective value of Э) will be between D апа value determined by Eqg. (7). Such boundary 
fields with non-zero mean value appear in the case of «pure» amplitude screens and 
«weak» phase screens (with boundary field phase variance much less than 1). 

В. Single scattering Brownian ensembles. Coherent light scattering 15 iraditionally 
nsed for analysis оЁ е stochastical systems such ав Brownian ensembles consisting оё 
non-interacting particles [1]. In ®е most simple case оЁ single scattering diluted liguid 
suspensions оЁ monodisperse spherical particles autocorrelation function оЁ the scattered 
field has е well-known classical exponential form [1]: 

£,(1) = exp(-A,q,77)exp(-jan), 
where A, is the translation diffusion coefficient and ¢, is scattering vector module equal 
to (dnn,/A)sin(8/2), where п is refractive index and 6 18 scattering angle. For ideal 
deteciion conditions normalized intensity autocorrelation function looks ав (by using the 
Siegert relation [1], g,(t)=1+Blg,(t)!% for ideal detection conditions В=1): 

2,(1) - 1 =exp(-2A,4,’7). (9) 

Thus, it 15 easy 10 see that in the region оЁ small temporal scales intensity fluctuations о 
the scattered light can be considered ав @е «classical» Brownian process with v=1, 
D=1.5 апа topothesy equal ю 4А,° (topothesy is parameter оЁ the fractional random 
curve determining the two points separation for which the average slope оё chord Бегуее 
points will be equal to 1 {15]). 
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For Brownian systems consisting оЁ non-spherical particles, rotation diffusion will 
give contribution in the decay of correlation of intensity fluctuations; for example, even 
for simple scattering models such as elliptical particles and rod-like particles field and 
intensity autocorrelation functions have the more complicated polyexponential form ап 
given above. Nevertheless, for small time scales we can approximate decay of g,(1) апа 
8,(7) by the linear function and also consider intensity fluctuations ав classical Brownian 
process with topothesy determined by the combination оё transiational апа rotational 
terms with corresponding weighting coefficients. It is necessary to note that for small 

scattering angles, when gL<<1 (L 18 characteristical size of non-spherical particle), 
contribution of rotational diffusion in the formation of speckle intensity fluctuations is 
negligible and we can take into account only the translational component [1]. 

Thus, analyzing scale behavior of speckle intensity fluctuations and estimating 
corresponding values of v and D we can identify single scattering monodisperse Brow- 
nian systems. Presence of the regular component оЁ particles movement such ав «drift» 
with constant velocity will add term exp(-22°q,*t?) in the right part оё formula (9). 

Ми р'!е scattering systems 

In the case of multiple scattering dynamic systems observed random interference 
fields (speckle patterns) demonstrate pre-fractal properties even for regularly moving 
local scatterers. By using the modified random walk approach for analysis оЁ the time 
dependent fluctuations оЁ the scaitered field complex amplitude in the fixed detection 
роши the following expression for g,(t) can be obtained (sce, e.g., [16]): 

g,(t) ~ ехр(-/от) Е„Р(п)ехр[—11((_72)В(т)/б]. (10) 

B(t) is determined by the variance оЁ the displacements оЁ local scatterers in the 
dependence оп time delay 1. This expression is obtained а5 а result оЁ the scattered field 
consideration as the sum of partial contributions induced by the «chains» of scattering 
events; each contribution is characterized by the number л оЁ these events; P(n) is 

weighting function determined by statistics of scattering events; 4 is scattering vector for 
given scattering event. Thus, we can introduce value of optical path s for scattered field 
contribution with given п as s=ln, where [ is so-called mean free-path length. In this case 
we can express g, (t) as: 

g,(v) ~ ехр(-/от)(ехр|-(а)В(5)5/61}) - exp(—jw'c)f(o; p(s)exp{-(gDB(t)sl6l}ds.  (11) 

For optically dense infinite scattering media with embedded coherent point-like source 
and point-like detector, when diffusion mode [17] of light propagation through medium 
takes place, p(s) is {16]: 

p(s) = [3/(4nsi") PRexp[-3r-rF/(4sl)], 

where Г 18 so-called mean transport length and |/-/”| is separation between source апа 
detector. In this case field autocorrelation function in the dependence оп B(t) can be 
expressed as: 

g,(s) ~ ехр(-оу)ехр|-[В(т)(а)/21°] 21 (12) 

Thus, for multiple scattering systems consisting of non-interacting Brownian particles 

B(1)=6A,1 and, respectively, gl(s)sexp(7jmt)exp[-(6r/1:())1/2l;—}'_’|/l°'"], where т =4n%i2A /A% 
As it was mentioned in [16], similar scale propeities оЁ the detected intensity fluctuations 
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are observed for light transmitted through dynamic scattering media with slab geometry, 
if slab thickness W is much larger than mean transport length Г. 

Using Siegert relation, ме can see that inteusity fluctuations of the coherent light 
that undergoes multiple scattering т the enscmbles of Brownian particles are 
characterized the same scale properties as generalized pre-fractal Brownian process with 
v=0.5 and D=1.75: g,(t)=2-const /2. In the case of regular translation movement оЁ the 
«steady-structure» multiplescattering media В(т) can be expressed а5 B(t)=v?t’ (where v 
is translation velocity) and g,(t)=2-const 1. Thus, speckle intensity fluctuations, detected 
in the fixed point during the translation оЁ the «steady-structure» multiple scattering 
object with respect to probe coherent beam can be considered as the «classical» Brownian 
process with v=1 апа D=1.5. Thus, specific property of the multiple scattering 18 ап 
increase of the fractal dimension of the detected optical signal in comparison with 
corresponding dimension describing dynamic properties о the given scattering system; 
we can interpret such property ав manifestation оЁ «chaotization» effect п multiple 
scattering. Even in the case of regular movements of local scatterers (such type of particle 
dynamics can be interpreted аб «marginal» fractal process [15] with v=2 and fractal 
dimension equal to 1) intensity fluctuations demonstrate fractal behavior characterized by 
value of D larger than 1. 1 the extreme case оЁ diffusion mode of coherent light 
propagation through multiple scattering media effect оЁ «chaotization» сап be described 
by the following simple expression: 

Р, = 1 + В/2, (13) 

where D, is determined by the dynamic properties оё Ше scattering system. 
Asymptotic behavior of е autocorrelation and structure functions оЁ the detecied 

speckle intensity fluctuations strongly depends оп the form оё p(s), or, in the same way, 
on the optical paths statistics. Suppression of the pure diffusion mode of light transport 
through scattering media and, correspondingly, increased coniribution ©Ё е unscattered 
component and components of scatiered field induced by small numbers оЁ scattering 
events lead 10 increase of the structure function exponent v, and, correspondingly, 
dimipishing оЁ Э,. Similar «cut-off» оЁ the field contributions characterized by the high 
level оё randommness due to large values оЁ 5 can be made by фе dilution оЁ scattering 

component от by choose the detection conditions corresponding 10 probability density 
p(s) with «suppressed» tail. Thus, strong dependence of scaling parameters оп form of 

optical paths distribution will be observed 
N шт е region оЁ cross-over between 

$,(5) „ multiple scattering and single scattering 
Vi =0.89 // "::, modes. Fig.2 illustrates the evolution оЁ 

YU e logarithmically scaled structure function of 
3^ к ее° speckle intensity fluctuations in the cross- 95 > . ‚ 

вб° уП 6т8008 — over region for multiple scattering water 
.° К < =883823 suspensions оё polystyrene spheres with the 

ее^ «- C={), 54 . - . . . 

и ‚ МА123 o Ce=pooedl  diminishing оЁ scattering particles concen- 
0 В НОНЕ а i и й Tt I 0.01 ] о T tration. «Chaotization» оЁ е speckle 

intensity fluctuations ш the case оЁ the 

Fig. 2. Evolution of the structure function of the 
transmitted light intensity fluctuations with е 
transition {rom multiple scattering Ю single scattering 
mode. Object under study - water suspensions of 
0.46-um polystyrcne spheres. illumination source - 
Аг laser (A=514 nm); detector unit - HC-120 
(Hamamatsu) photomultiplier tube with single-mode 

fiber. Signa! processing unit - BIC-9000 digital 
correlator 

regularly moving multiple scattering media 
with an increase of contribution of long- 
path components of the scattered field due 
to variation of the detection conditions has 
been observed in е experiments with 
slab-geometry phantom samples [18]. 
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Applications 

Possible applications of the scaling analysis of the speckle intensity fluctuations are 
related to non-contact «speckle» profilometry [12,13] and morphological investigations 
оЁ the relatively thin tissue samples [2,19-21] аз well ав the studies оЁ the regular and 
random motions ©Ё the various tissue fluids. Local estimations оЁ v, (and, 
correspondingly, Э)) during tissue scanning by the probe coherent beam demonstrate high 
sensitivity to the variations оЁ optical parameters оЁ tissue in the intermediate region 
between single scattering and multiple scattering modes. One of the most characteristical 
examples оЁ such sensitivity оЁ scale parameters оЁ the speckle intensity fluctuations to 
the changes of the tissue scattering state are the experiments with optically cleared human 
sclera [2,20]. Native sclera is typically multiple scattering cobject due to its specific 
optical properties (large values of scattering coefficient - typical values are of the order of 
25 cm and relatively low values оЁ absorption coefficient) caused by structural 
peculiarities [20]. Diffusion оё some agents (such ав derivatives of trilodobenzene acid ог 
another liquids like glucose with refractive indices close to 1.4) leads to the suppression 
оЁ the multiple scattering processes and transifion 10 е single scattering mode оЁ light 
propagation through sclera. Correlation experiments with optically cleared sclera made 
by using focused He-Ne laser beam scanning showed that such clearing process is 
accompanied by the sharp increasing оЁ v, from the values close to 1 (as it is mentioned 
above this value is typical for speckle intensity fluctuations induced by regularly moving 
multiple scattering media) пр to the values close Ю0 2 (Fig.3, а) The last value 18 typical 

v, I — 
! ’ /;——a‘u_,a_,_a e P I/IO 82(1:) 

1.5} осН 7 10915 08 \ЁЪ\\ 

L о/^ 2 . : 0.6 \\КЪ\\\\ ОЙ ело © N 
Koy о4 3 Ъ%_Т\\‚Ё‘ 

05 Y И 60592 Сн 
|/ g P ОНО 

0.0 6.0 12.0 18.0 24.0 Ё min 0.0 100 200 300 400 T,s 

a b 

Fig. 3. а - Dependencies оё the structure function exponent , (1) and normalized collimated transmittance 

НГ (2) оп time е!арвсй after immersion agent application for optically cleared sclera (taken from [2]); 
b - Evolution оЁ the form оГ normalized autocorrelation function оЁ intensity fluctuations with the 
transition from multiple scattering 10 single scattering mode for optically cleared human sclera (taken from 

[2]). Scanning by focused He-Ne laser beam; scanning velocity is equal Ю 5 mm/s. Time elapsed after 
immersion agent application:e@- 100 в; + - 200 s;m- 400 в; х - 500 s 

for the case оЁ single scattering оЁ Gaussian beam by @е fine-structured media moving 
with constant velocity across the illuminated area [11]. Fig.3, b shows the characteristical 

changes оё the forms of modified intensity autocorrelation function g,(t)=g,(t)-1 caused 

by optical clearing of the sclera sample. For early stages of process form of 272('5) is rather 
«exponential» but for the later stages it is rather «Gaussian». Such property оЁ v, апа D, 
as high sensitivity to tissue scattering characteristics in the intermediate region between 
different scattering modes makes the scaling analysis of the scanning-induced intensity 
fluctuations ап atwractive 1001 for monitoring and imaging оЁ tissue structures in е 
vorphological analysis. Good example оЁ similar application is in-vitro imaging оЁ the 
structure оЁ thin tissue samples by using the local estimations of v, exponent [2,21]; 
reconstructed in such а way two-dimensional images («тарз») оЁ е spatial distributions 
of local estimations оЁ v, clearly show spatial macro-inhomogenities оЁ the tissue 
structure (e.g., stimulated by disease progress). Result of applications оё such «mapping» 
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Fig. 4. 2D-images {«maps») оЁ the diseased {psotiatic) human epidermis made by using local estimations 
of the structure function exponent v (carly stage of disease). Scanning by He-Ne laser beam; left image - 
focused scanning beam; right image - broad collimated Беат. Taken from [2] 

technique for in-vizro structure analysis of the human epidermis is illustrated by Fig.4 
(see, e.g.. [2] for detailed qualitative interpretation оЁ changes оЁ epidermis scattering 
structure caused by psoriasis progress). 

Conclusion 

As ме сап see, fractional character [10] оё the noise-like speckle intensity 
fluctuations allowing 10 interpret them а5 pre-fractal processes can be caused by inner 
structure ог dynamics of е scattering system а8 well а5 by the stochastisity of the 
multiple scattering. For non-absorbing optically inhomogeneous dynamic media relation 
between structure function оЁ the field fluctnations and structure function of the phase 
perturbations of the probe optical field has the exponential form. This gives asymptotical 
linear dependence оЁ the field scaling parameters (e.g., box dimension) оп corresponding 
phase scaling parameters only for temporal or spatial scales characterized by local phase 
variance much less than 1. As a rule, interval of self-affinity associated with «pure» 
fractal behavior span around 1.5+2.0 orders of magnitude. Nevertheless, such limitation 
is the common property of the wide variety of empirical fractal objects caused by their 
random пагате [7]. 

The research described in this publication was made possible т part by Award N 
КВ1-230 of the US Civilian Research & Development Foundation for the Independent 
States of the Former Soviet Union (CRDF) апа by Award N 96-15-86389 («Leading 

scientific schools о] Russia») of the RFBR.
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УДК 535.24; 535.6 

МАСШТАБНЫЕ СВОЙСТВА СЛУЧАЙНЫХ ОПТИЧЕСКИХ ПОЛЕЙ: 

ФУНДАМЕНТАЛЬНЫЕ АСПЕКТЫ И ПРИЛОЖЕНИЯ 

Д.А. Зимняков, В. В. Тучин, И.С. Переточкин 

Рассмотрены масштабные свойства флуктуаций интенсивности спеклов, 
образующихся — при — рассеянии — когерентного — излучения — динамическими 
пространственно-неоднородными — средами — в — случае — различных — типов 
рассеивающих систем. Получены соотношения между емкостной размерностью 
временных реализаций наблюдаемых флуктуаций интенсивности спеклов и 
соответствующей  размерностью, характеризующей структуру или динамику 
рассеивающего объекта как в режиме однократного рассеяния (префрактальные 
фазовые экраны и ансамбли броуновских частиц) так и для многократно 
рассеивающих систем. Обсуждаются некоторые приложения анализа масштабных 
свойств флуктуаций интенсивности для морфологических исследований биотканей. 
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