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Abstract. This study aims to consider an ensemble of hippocampal neurons coupled in a ring, which may
be responsible for generation of the primary rhythm at limbic epilepsy. Methods. Model equations were solved
numerically. To determine the areas of oscillatory and excitable regime existance for a single neuron, the bifurcation
analysis for the leakadge conductivity parameter was performed. The coupling delays was not implemented directly,
instead, inertia in the synapse was introduced. To determine the stability of generation some couplings were
removed and parameter detunig was introduced. Results. In the single neuron model the bistability region was
detected, in which a stable focus coexhists with a limit cycle. Two main synchronous regimes were detected. The
first regime inherits frequency of individual oscillator, with a relatively small phase shift between oscillators in
the ring. The frequency of the second regime depends on the number of neurons in the ring, with the phase
shift between neighbor oscillators being equal to ratio of oscillation period and number of neurons. This second
regime can occur both for the parameters corresponding to bistabler regime in the individual neuron and for the
parameters at which the only existing attractor is stable focus. The second synchronous regime is preserved for
parameter detuning of 2% from their absolute values. Conclusion. It was shown that in the mathematical model
of the ring of hippocampal neurons, where all the main significant currents are taken into account for individual
neurons, and their parameters can vary, there is an oscillatory mode, the frequency of which is determined by
the length of the ring and synaptic conductivity, rather than by the parameters individual neuron. In this case,
a small change in synaptic conductivity can lead to a sharp (2–7 times) change in the generation frequency.
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Introduction

Epilepsy is a complex of various types of functional disorders that lead to disruptions in
the normal functioning of the brain. The common place of all forms of epilepsy is the generation
of relatively synchronous, high-amplitude pathological electromagnetic activity by neurons of
one or more brain systems, for example, thalamocortical or limbic system. Different forms of
epilepsy have different etiology (origin) and differ both by the areas involved in the generation
of pathological activity and by the scenario of the occurrence and development of epileptic
activity. In this regard, modeling different types of epilepsy from the point of view of the theory
of dynamical systems must be made differently, and the description of epileptic activity in a
particular form can be achieved by involving specific concepts. Thus, for modeling absence
epilepsy, the structure of connections in the thalamocortical network is important, while the
thalamus and cortex cannot be considered in isolation since oscillations appear immediately
throughout the system. Spike-wave discharges in absence epilepsy are highly nonlinear oscillations
with a specific shape and spectrum that persist throughout the discharge. Therefore, a large
number of works were devoted mainly to reproducing these features [2]. It is important that
the processes in the brain responsible for the cessation of pathological activity have not yet been
discovered, which led to the creation of a number of models of spike-wave discharges based on the
concept of transients [3, 4] in contrast to earlier models based on switching between attractors,
one of which responsible for normal, and the second — for epileptiform activity [2,5]. At the same
time, in limbic epilepsy, pathological activity is initially and for a long time concentrated inside
the hippocampus, and the question of how the basic rhythm is formed and evolves is important,
since the frequency and shape of oscillations change greatly during discharge and may even differ
qualitatively in different subjects [6]. At the same time, the spread of pathological activity beyond
the primary network of the hippocampus (secondary generalization) is a separate process that
can occur months and years after the formation of the primary generator of pathological activity
and has its own mechanisms [7].

In the work [8] it was shown that the generator of epileptiform activity can be implemented
in the form of a ring of neurons, each of those is in a subthreshold non-oscillatory mode, and the
final activity is a function of connections and delay time in the synapse: an impulse excited by
an external input (another neuron not included in the oscillatory ring) sequentially runs through
to all cells of the ring and again excites the first neuron, etc. The model proposed in [8] had a
number of disadvantages, namely:

• The Hodgkin-Huxley equations in their original form were used to describe an individual
neuron, while hippocampal cells have significant specificity and are described by more
complex models with a large number of equations, other parameter values and excellent
nonlinear functions [9];

• the delay was added to the communication function directly for simplicity, while in reality
the delay is a function of synapse inertia;

• all the neurons in the ring were identical in parameters.

Considering the delay as a delay line in a electronic generator made it possible in the
works of [8, 10] to investigate a large set of modes and obtain an analytical dependence of the
generation frequency on the delay and delay time. But if we talk about the initial biological
system, it is important to understand the limits within which the delay can change are important
for understanding what frequencies can be achieved. The identity of the neurons in the ring
obviously contributes to the synchronization of oscillations with a lag equal (in the considered
cases) to 𝑇/𝐷, where 𝑇 is the oscillation period, and 𝐷 is the number of oscillators in the
ring. But in a real system, all neurons will be different, and it is important to know how stable
the studied regime will be. Thus, the solution of all these issues is necessary to confirm the
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fundamental possibility of the existence of the modes found in [8, 10] in hippocampal networks,
which is what this work is devoted to.

1. Model

1.1. Node Model. A single-compartment (single-chamber) Hodgkin-Huxley [11] model
was used as a network node, written in accordance with [12,13] for pyramid cells of the hippocampal
CA3 field (1). It should be noted that when writing equations, there are two main approaches
to the dimensionality of the capacitance and conductivity parameters. The first approach is as
follows: parameter values are written for the entire neuron as if it were a localized in space element
(we can also assume that the parameters correspond to the result of integration over the area of
the entire neuron). The second approach is to record the specific conductivities and capacitances
per unit area [9], which can be useful, for example, when switching from single-compartment to
multi-compartment models. In this paper, we used integrated values, since the values were taken
from the work [13].

𝐶
𝑑𝑉𝑖

𝑑𝑡
= −𝐼Na𝑖 − 𝐼Ca𝑖 − 𝐼Ca(low)𝑖

− 𝐼K(DR)𝑖
− 𝐼K(A)𝑖

− 𝐼K(AHP)𝑖
− 𝐼K(C)𝑖

− 𝐼L𝑖 − 𝐼syn𝑖 , (1)

where 𝑉𝑖 is the potential on the membrane of the 𝑖-th neuron, 𝑡 is the dimensional time, 𝐶 is
the membrane capacity (in this work 𝐶 = 0.1µF). The currents of the ion channels are described
below.

𝐼Na is a sodium current :

𝐼Na𝑖 = 𝑔Na𝑖𝑚
2
𝑖ℎ𝑖(𝑉𝑖 − 𝑉Na𝑖),

𝑑𝑚𝑖

𝑑𝑡
= αm(𝑉𝑖)(1−𝑚𝑖)− βm(𝑉𝑖)𝑚𝑖,

𝑑ℎ𝑖
𝑑𝑡

= αh(𝑉𝑖)(1− ℎ𝑖)− βh(𝑉𝑖)ℎ𝑖,

where the maximum electrical conductivity of the sodium channel is 𝑔Na = 1.0 µS, the equilibrium
potential (reversal potential) of the sodium channel is 𝑉 Na = 50.0 mV. For 𝑔Na and 𝑉 Na,
the average values are indicated, since later in the work, among other things, an experiment
with detuning according to these parameters is described. 𝑚,ℎ are gate variables of the sodium
channel, α and β are functions of opening and closing gate variables (transitions):

αm(𝑉𝑖) =
−0.32(𝑉𝑖 + 51.9)

exp(−(𝑉𝑖 + 51.9)/4)− 1
, βm(𝑉𝑖) =

0.28(𝑉𝑖 + 24.9)

exp((𝑉𝑖 + 24.9)/5)− 1
,

αh(𝑉𝑖) = 0.128exp(−(𝑉𝑖 + 48)/18), βh(𝑉𝑖) =
4

1 + exp(−(𝑉𝑖 + 25)/5)
.

𝐼Ca is a calcium current :

𝐼Ca𝑖 = 𝑔Ca𝑖𝑠
2
𝑖 𝑟𝑖(𝑉𝑖 − 𝑉Ca𝑖),

𝑑𝑠𝑖
𝑑𝑡

= αs(𝑉𝑖)(1− 𝑠𝑖)− βs(𝑉𝑖)𝑠𝑖,

𝑑𝑟𝑖
𝑑𝑡

= αr(𝑉𝑖)(1− 𝑟𝑖)− βr(𝑉𝑖)𝑟𝑖,

where 𝑔Ca = 0.13 µS, 𝑉 Ca = 75.0 mV, 𝑠, 𝑟 — gate variables of the sodium channel, transition
functions:
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αs(𝑉𝑖) =
0.2

1 + exp(−0.072𝑉𝑖)
, βs(𝑉𝑖) =

0.0025(𝑉𝑖 + 13.9)

exp((𝑉𝑖 + 13.9)/5)− 1
,

αr(𝑉𝑖) =

⎧⎨⎩
exp(−(𝑉𝑖 + 65)/20)

1600
(𝑉𝑖 > −65),

0.000625 (𝑉𝑖 ⩽ −65),

βr(𝑉𝑖) =

⎧⎨⎩
0.005− 8αr(𝑉𝑖)

8
(𝑉𝑖 > −65),

0 (𝑉𝑖 ⩽ −65),

𝐼Ca(low) is a low-threshold calcium current :

𝐼Ca(low)𝑖
= 𝑔Ca(low)𝑖

𝑠2Ca(low)𝑖
𝑟Ca(low)𝑖

(𝑉𝑖 − 𝑉Ca𝑖),

𝑑𝑠Ca(low)𝑖

𝑑𝑡
= αsCa(low)

(𝑉𝑖)
(︁
1− 𝑠Ca(low)𝑖

)︁
− βsCa(low)

(𝑉𝑖)𝑠Ca(low)𝑖
,

𝑑𝑟Ca(low)𝑖

𝑑𝑡
= αrCa(low)

(𝑉𝑖)
(︁
1− 𝑟Ca(low)𝑖

)︁
− βrCa(low)

(𝑉𝑖)𝑟Ca(low)𝑖
,

where 𝑔Ca(low) = 0.03 µS, 𝑉 Ca = 75.0 mV, 𝑠Ca(low), 𝑟Ca(low) are gate variables, functions transitions:

αsCa(low)
(𝑉𝑖) =

1.6

1 + exp(−0.072(𝑉𝑖 + 40))
, βsCa(low)

(𝑉𝑖) =
0.02(𝑉𝑖 + 53.9)

exp((𝑉𝑖 + 53.9)/5)− 1
,

αrCa(low)
(𝑉𝑖) =

⎧⎨⎩
exp(−(𝑉𝑖 + 105)/20)

200
, (𝑉𝑖 > −105)

0.005, (𝑉𝑖 ⩽ −105)

βrCa(low)
(𝑉𝑖) =

{︃
0.005− αrCa(low)

(𝑉𝑖), (𝑉𝑖 > −105)

0, (𝑉𝑖 ⩽ −105)

𝐼K(DR) is a fast delayed rectification potassium current :

𝐼K(DR)𝑖
= 𝑔K(DR)𝑖

𝑛𝑖(𝑉𝑖 − 𝑉K𝑖),

𝑑𝑛𝑖

𝑑𝑡
= αn(𝑉𝑖)(1− 𝑛𝑖)− βn(𝑉𝑖)𝑛𝑖,

where 𝑔K(DR) = 0.08 µS, 𝑉 K = −80mV, 𝑛 is gate variable (transition constants):

αn(𝑉𝑖) =
−0.016(𝑉𝑖 + 29.9)

exp(−(𝑉𝑖 + 29.9)/5)− 1
, βn(𝑉𝑖) = 0.25exp(−(𝑉𝑖 + 45)/40).

𝐼K(A) is an A-type potassium current :

𝐼K(A)𝑖
= 𝑔K(A)𝑖

𝑎𝑖𝑏𝑖(𝑉𝑖 − 𝑉K𝑖),

𝑑𝑎𝑖
𝑑𝑡

= αa(𝑉𝑖)(1− 𝑎𝑖)− βa(𝑉𝑖)𝑎𝑖,

𝑑𝑏𝑖
𝑑𝑡

= αb(𝑉𝑖)(1− 𝑏𝑖)− βb(𝑉𝑖)𝑏𝑖,
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where 𝑔K(A) = 0.17 µS, 𝑉 K = −80 mV, 𝑎, 𝑏 are gate variables (transition constants):

αa(𝑉𝑖) =
−0.02(𝑉𝑖 + 51.9)

exp(−(𝑉𝑖 + 51.9)/10)− 1
, βa(𝑉𝑖) =

0.0175(𝑉𝑖 + 24.9)

exp((𝑉𝑖 + 24.9)/10)− 1
,

αb(𝑉𝑖) = 0.0016exp(−(𝑉𝑖 + 78)/18), βb(𝑉𝑖) =
0.05

1 + exp(−(𝑉𝑖 + 54.9)/5)
.

𝐼K(AHP) is a slow calcium-dependent potassium current after hyperpolarization:

𝐼K(AHP)𝑖
= 𝑔K(AHP)𝑖

𝑞𝑖(𝑉𝑖 − 𝑉K𝑖),

𝑑𝑞𝑖
𝑑𝑡

= αq(𝑉𝑖)(1− 𝑞𝑖)− βq(𝑉𝑖)𝑞𝑖,

where 𝑔K(HP) = 0.07 µS, 𝑉 K = −80 mV, 𝑞 is a gate variable, transition functions:

αq(𝑉𝑖) =

⎧⎪⎪⎨⎪⎪⎩
0, ((χ𝑖 − 140) < 0)

0.00002(χ𝑖 − 140), (0 ⩽ (χ𝑖 − 140) < 500)

0.01, (500 ⩽ (χ𝑖 − 140))

βq(𝑉𝑖) = 0.001.

𝐼K(C) is a fast calcium-dependent potassium current :

𝐼K(C)𝑖 = 𝑔K(C)𝑖
min (1, χ𝑖/250)𝑐𝑖(𝑉𝑖 − 𝑉K𝑖),

𝑑𝑐𝑖
𝑑𝑡

= αc(𝑉𝑖)(1− 𝑐𝑖)− βc(𝑉𝑖)𝑐𝑖,

𝑑χ𝑖
𝑑𝑡

= −φ𝐼Ca𝑖 − βχχ𝑖,

where 𝑔K(C) = 0.366 µS, 𝑉 K = −80mV, φ = 50ms−1, βχ = 0.075ms−1, 𝑐, χ are gate variables
(transition constants):

αc(𝑉𝑖) =

⎧⎨⎩
1

18.975
exp(((𝑉𝑖 + 55)/11)− ((𝑉𝑖 + 58.5)/27)) (𝑉𝑖 ⩽ −15),

2exp(−(𝑉𝑖 + 58.5)/27) (𝑉𝑖 > −15),

βc(𝑉𝑖) =

{︃
2exp(−(𝑉𝑖 + 58.5)/27)− αc(𝑉𝑖) (𝑉𝑖 ⩽ −15),

0 (𝑉𝑖 > −15),

𝐼L is a leakage current :
𝐼L𝑖 = 𝑔L𝑖(𝑉𝑖 − 𝑉L𝑖),

where the leakage conductivity 𝑔L varied depending on the position of the neuron in the network,
the equilibrium leakage potential 𝑉𝐿 = −65 mV.

𝐼syn is a synaptic current :

𝐼syn𝑖 = 𝑔syn𝑖(𝑉𝑖 − 𝑉syn𝑖)
∑︁

𝑝𝑗 , (2)
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where the conductivity of the excitatory synapse 𝑔syn changed during the experiments, the
equilibrium potential of the excitatory synapse 𝑉 syn = 0 mV, 𝑝𝑗 are gate variables related
to presynaptic neurons:

𝑑𝑝𝑗
𝑑𝑡

= αp
(1− 𝑝𝑗)

1 + exp(−(𝑉𝑗 − 2)/5)
− βp𝑝𝑗 , (3)

transition constants αp = 1.1 ms−1 and βp = 0.19 ms−1, 𝑉𝑗 is presynaptic neuron potential.
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Fig 1. The structure of the considered network of
hippocampal neurons. Neuron No.0 is used only to trigger
oscillatory activity and is not directly involved in rhythm
generation
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Fig 2. Synapse inertia. The blue line shows the change
in the value of the potential on the presynaptic neuron
membrane on time 𝑉1(𝑡). The green line shows the
dependence of the gate variable of the presynaptic neuron
on time 𝑝(𝑡). The orange line shows the change in
the value of the potential on the postsynaptic neuron
membrane on time 𝑉2(𝑡), 𝑔syn = 2.5·10−3 µ𝑆, 𝑤 = 100 ms
(color online)

1.2. Network model. The neurons
were closed in a ring, connected by a
unidirectional excitatory synapse (Fig. 1). The
number of elements varied from 2 to 35. The
parameters of the ring neurons were set in such
a way that a single element was in a non-
oscillatory subthreshold mode. The starting
neuron No. 0 was in an oscillatory mode.
A short-term impact was applied from the
starting neuron No. 0 to the ring neuron No. 1
(the duration of the impact 𝑤 varied in the
range [100; 500] ms).

The mathematical model of the synapse
(2, 3) was taken from [9]. Unlike previously
published works [8, 10] no additional time
delay was introduced into the synapse formula.
Instead, the self inertia parameter of the model
was used. Fig. 2 shows the time realizations
of the potential 𝑉1 on the membrane the
first neuron in the ring and the values of
the gate variable 𝑝 of the same neuron (it
is proportional to the potential on the axon
of this neuron), as well as the potential 𝑉2

on the membrane of the next neuron in
ring. One oscillation is shown after skipping
6 s from the beginning of the experiment,
that is, after skipping all transient processes
and establishing an oscillatory regime in the
ring. The results are given at a synaptic
conductivity value of 𝑔syn = 2.5 · 10−3µS.
The study of signal transmission through
the synapse at other values of 𝑔syn made it
possible to determine that the greater is the
value of synaptic conductivity, the less is the
delay between the time series of two neighbor
neurons.

Here and below, the system of equations
for both an individual neuron and a ring was solved by the Runge–Kutta method of order 5(4),
in which steps are taken in accordance with the 5-th order formula, but the error is controlled by
the 4-th order of accuracy. For this purpose, the implementation from the scipy.integrate [14]
package was used. A comparison with the results of integrating a system of equations using the
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Adams method of 8-th order of accuracy showed minor differences in the length of the transient
process that do not affect the characteristics of the steady state.

2. Results

Fig 3. The dependence of the main oscillation frequency
and amplitude with a change in the leakage conductivity
𝑔L for one uncoupled node (color online)

2.1. Dynamics of an isolated
neuron. To detect the existence limits of
oscillatory and excitable modes, a partial
bifurcation analysis of the model was carried
out using the leakage conductivity parameter
𝑔L, since this parameter is the most clearly
responsible for losses in the system. For this
purpose, the dependence of the frequency
and amplitude of oscillations on the leakage
conductivity 𝑔L was plotted for one isolated
neuron (Fig. 3) at two different initial
conditions for the variable 𝑉 : close to the
equilibrium potential 𝑉 (𝑡 = 0) = −62 mV
and caused by an external pulse 𝑉 (𝑡 =
0) = 20 mV. The initial conditions for all
other variables were set to correspond to the
stable equilibrium position observed at 𝑔L =
0.040µS. From Fig. 3, b it is clear that on
the segment 𝑔L ∈ [0.0376; 0.0404]µS there is
bistability: a stable point, reached at 𝑉 (𝑡 =
0) = −62 mV, coexists with an oscillatory
mode, which can be obtained at 𝑉 (𝑡 = 0) = 20
mV. In this case, the oscillatory mode itself is the heir (the amplitude and frequency change
continuously as 𝑔L decreases) of the oscillatory mode that exists at lower values of 𝑔L. This
situation can be explained by the fact that at 0.0374 < 𝑔L < 0.0376 a subcritical Andronov–
Hopf bifurcation occurs, as a result of which an unstable cycle is born from an unstable focus, and
the focus becomes stable. Further, at 𝑔L ≈ 0.0406, the stable cycle disappears, and its amplitude
before this is finite, which can be explained by its merger with the unstable cycle.

In the previously published works [8, 10] generation in a ring was always considered with
the parameters of an individual neuron corresponding to the excitable mode (stable focus). But
the presence of bistability on the interval 𝑔L ∈ [0.0376; 0.0404] µS prompted us to consider the
system at two different 𝑔L: 0.040 µS and 0.043 µS, to determine how much a limit cycle coexisting
with a stable focus could distort the dynamics in the ring.

2.2. A network of homogeneous elements. First, we considered a network consisting
of identical neurons i. e. without parameter detuning. The model equations were solved for
different values of synapse conductivity 𝑔syn, which in some way can be considered as an analogue
of the coupling coefficient between network elements 𝑘 from the work [8]. The 𝑔syn parameter
varied in the range [2 · 10−3; 4 · 10−3] µS.

Fig. 4, a shows the dependence of the oscillation frequency in the 𝑓 ring on the number of
neurons in the 𝐷 network for different values of synaptic conductivity 𝑔syn for leakage conductivity
𝑔L = 0.040µS. At small 𝐷, a quasi-synchronous mode is observed (see Fig. 5, a), the frequency of
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a

��

�

���

���

���

���

V
, m

V

������������������������������������������������������
t, ms

�
�
�
�
�
�
�
�
�

b

��

�

���

���

���

���

V
, m

V

�����������������������������������������������������
t, ms

�
�
�
�
�
�
�
�
�
�

Fig 5. Time series at 𝑔syn = 4.0 · 10−3 µ𝑆, 𝑤 = 100 ms. a — the number of neurons in the ring 𝐷 = 8. b — the
number of neurons in the ring 𝐷 = 9 (color online)

which does not depend on the number of neurons in the network and on the coupling strength.
This mode is a direct descendant of the cycle in a separate neuron, coexisting with a stable
focus; it has the same frequency and amplitude. The observed time lag between neurons in the
ring is due to the finite inertia of the synapse. The neurons in the formed train seem to line
up one after another, with the neuron that received the exciting impulse coming ahead in time,
and then all the others in order in a ring with a small time lag. The quasi-synchronous regime,
close to the full synchronization regime, is destroyed as 𝐷 increases. The smaller the synaptic
conductivity of 𝑔syn is, the smaller the area of its existence becomes: for 𝑔syn = 2 it disappears
already at 𝐷 = 6, while for 𝑔syn = 4 — only at 𝐷 = 9. This observation naturally agrees with
the general theory [15], since synaptic conductivity in the considered model plays the role of
coupling strength.

At large values of 𝐷, a family of regimes is observed that are qualitatively similar to the
regimes observed in the works [8, 10] (see Fig. 5, b). In them, all oscillators are shifted in phase
one relative to the other at equal intervals in such a way that the total shift along the ring is
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2π; so the sum of all time shifts is equal to the oscillation period. The frequency of oscillations
decreases as the number of oscillators increases. However, such modes are stable only in a narrow
frequency range. It can be seen that, first, as the number of neurons increases, the frequency
decreases nonlinearly (the curve for 𝑔syn = 4 is close to a hyperbola), then it increases sharply
and at finally begins to fall again. Moreover, the smaller 𝑔syn is (i. e. the closer the neurons are
to the oscillatory mode), the more often (along the 𝑋-axis) jumps occur. Previously, jumps in
the dependence 𝑓(𝐷) were observed in a ring of FitzHugh–Nagumo neurons in the work [10], but
there the increase in frequency was more significant: during the first jump it rose approximately
twice, which corresponded to the regime when two pulses propagate simultaneously in antiphase
along the ring. In this system, there is only one impulse left.

For leakage conductivity 𝑔L = 0.043 µS, at which the cycle for an individual neuron has
already collapsed, the dependences 𝑓(𝐷) have significant differences. For 𝑔syn = 2 oscillations
are not excited at all. It is likely that the connectivity strength in the ring is not sufficient to
compensate for the attenuation. At 𝑔syn ⩾ 3, regimes are observed that are qualitatively similar to
what occurred at 𝑔L = 0.04 µS; there are also frequency jumps. The most interesting dynamics
is observed at 𝑔syn = 2.5, starting from 𝐷 ⩾ 11. When switching from 𝐷 = 10 to 𝐷 = 11,
the frequency drops sharply from 12.5 Hz to 6.5 Hz and it continues to decrease further with
increasing 𝐷 to less than 2 Hz at 𝐷 > 25. Similar dynamics of 𝑓(𝐷) is observed for 𝑔syn = 3, but
with a very large number of neurons in the ring: starting from 𝐷 = 33. Thus, a relatively small
decrease in the synaptic conductivity between values of 3 and 2 µS can lead first to a sharp drop
in the generation frequency, and then — to the oscillation death. This is precisely the behavior
that was previously recorded in some neurophysiological experiments. [16,17].

2.3. System stability to perturbations of connectivity matrix. The question of
the nature of the modes that arise in the ring cannot be solved without studying how excitation
is affected by changes in the structure of connections, primarily by turning off and interrupting
some of them.

The first question that was stated was: what will happen if after the impact all connections
are broken (zero 𝑔syn)? It is especially important to understand this in the bistable mode,
for example, at 𝑔L = 0.04. In the example above shown in Fig. 6, a it is shown (time series
immediately after the impact) that during a time of 100 ms of impact, 7 neurons manage to be
sequentially excited, after which the impact was turned off, as and connections between them.
It can be seen that in this case the remaining three neurons are not excited, and the excited
neurons switched to the mode of their own oscillations, which, due to the difference in the 𝑔L
parameter from the starting neuron (indicated in black), has a different, lower frequency (see
Fig. 3, b). This is clearly visible in Fig. 6, a below (row after a long transition process), where
the black impulse of the zero neuron (𝑔L = 0.35) first follows the purple impulse of the seventh
neuron, and then overtakes it (in the middle of the graph at 𝑡 ≈ 9.9 ms).

If not all the connections are broken when the external driving is terminated, but only
one (between the 4-th and 5-th neurons in Fig. 6, b), the ring turns into a chain. Therefore, the
neurons excited by external influences manage to bring the remaining ones into an oscillatory
mode. As a result, a train of impulses is formed, where the first neuron is the one in front of
which the connection was broken, and the last is its neighbor, after which the connection was
broken. In this case, the oscillation frequency itself is still inherited from the limit cycle of an
individual neuron, but the connection in the chain leads to phase synchronization with a fixed
shift due to inertia in the synapse. If the connection between neurons was initially broken (see
Fig. 6, c), only part of the chain before the break will be excited, but all excited neurons will
still be grouped with exactly the same delay as in Fig. 6, b.
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Fig 6. Time series of oscillations in a ring of 10 neurons immediately after the excitation of oscillations (upper
figure in each fragment) and after 10 seconds (steady-state mode — lower figure in each fragment) (color online)

Finally, if all connections in the ring are preserved, the oscillation frequency depends both
on the own parameters of an individual neuron and on the number of neurons in the ring. This
is clearly seen in Fig. 6, d. First, immediately after excitation, the time distance between the
spikes of neighboring neurons is greater than in the stable regime. This is due to the time shift
between the tenth and first neurons turns out to be too small, which leads to further adjustment
of the oscillations.

2.4. Network with detuned parameters. To understand the limits of stability of the
oscillatory modes detected in the ring, a small detuning was introduced for all parameters except
𝐶 (an arbitrary change in this parameter is impossible, since it actually leads to a renormalization
of time in the first equation of the system (1)), 𝑔L (the value 𝑔L = 0.043 µS was always used) and
𝑉0 = 0. The parameter spread was about 2% in absolute value for each parameter independently.
The detuning was introduced randomly. In fact, it is not clear how close this spread corresponds
to the distribution of real brain cells. The main results on the study of the parameter spread for
hippocampal neurons, including field CA3, are known primarily for morphological rather than
electrophysiological parameters, see [18]. Nevertheless, the introduction of detuning is important
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for understanding whether the observed regimes are degenerate.
Parameter values for the detuned neurons were generated randomly in a given range of ±2%

for each of the parameters 𝑔Na, 𝑔Ca, 𝑔Ca(low), 𝑔K(DR), 𝑔K(A), 𝑔K(AHP), 𝑔K(C), 𝑉Na, 𝑉Ca, 𝑉K, 𝑉syn,
𝑉L, φ and βχ. A total number of 600 parameter sets was generated. Of these, two nonoverlapping
sets of 35 neurons were selected. The neurons from the first set demonstrated a bistable mode
despite the fact that the initial value of 𝑔L = 0.043 µS corresponded to a mode with one attractor.
The neurons from the second set demonstrated an excitable mode with a single attractor in the
form of a stable focus. For both of them, the dependences of the generation frequency 𝑓 on the
number of neurons in the ring 𝐷 were plotted for different values of synaptic conductivity 𝑔syn
by analogy with Fig. 4 — see Fig. 7.

A comparison of Fig. 4, a and Fig. 7, a allows us to conclude that for the case of neurons
that were in the bistable mode, the introduction of a detuning in parameters does not affect
the dynamics qualitatively: there is still a minimal value of the number of neurons, in this case
𝐷 = 8, at which quasi-synchronous oscillations are destroyed. For the larger 𝐷 the frequency
depends on the number of elements in the network approximately according to a hyperbola with
jumps, due to the fact that the total frequency range should be within 13–14.7 Hz. For excitable
neurons (see Fig. 4, b) the dependence looks more complicated. No sharp drop in frequency, as in
Fig. 4, b for 𝑔syn = 2.5, is observed for the detuned neurons. At the same time, if 𝑔syn is decreased
from 𝑔syn = 2.5 to 2.2 ⩽ 𝑔syn ⩽ 2.4 µS at relatively large 𝐷 (𝐷 ⩾ 24 for 𝑔syn ℎ𝑚 = 2.2 µS and
𝐷 ⩾ 27 for 𝑔syn = 2.4 µS) there is a sharp drop in frequency to 2 Hz or less. The same drop
was seen for identical neurons, but with somewhat larger synaptic conductivity. This behavior
of the dependence 𝑓(𝐷) for different 𝑔syn indicates that the non-identity of neurons leads to a
decrease of the region in which the desired mode exists, so to achieve it becomes necessary to
reduce the synaptic conductivity (in other terms, the coupling strength). Nevertheless, the mode
of slow oscillations, the frequency of which is determined solely by the number of oscillators
in the network and the conductivity of the connection and has no relation to the frequencies
of the autonomous oscillations of the neuron, turns out to be structurally stable even at the
simultaneous variation of 14 parameters. This allows us to hope that a sharp switch in the
oscillation frequency in the ring of hippocampal neurons, which occurs with a relatively small
change in synaptic conductivity (in our case, between values of 2.4 µS and 2.5 µS) is physiological
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and can indeed determine the transitions between different stages of limbic epileptic discharge.

Conclusion

Mathematical modeling of brain signals at the limbic (temporal lobe) epilepsy is a difficult
task, primarily because these signals themselves can be very different. The best known results
were obtained using a macroscopic approach, when epileptic activity is described as a whole, and
individual neurons are not modeled, see e. g. [19]. Despite the fact that the time series obtained in
the work [19] correspond quite well to various types of epileptiform activity during focal seizures,
this approach is still rather phenomenological. It ignores the main cause of focal epilepsy — the
presence of small neural ensembles (circuits), having a specific pathological structure [20]. There
are separate attempts to consider limbic epilepsy from the point of view of mesoscale models
[21], including those implementation of possible behavior control (prevention or termination of
discharges) [22]. However, the results achieved up to date are highly preliminary, mostly due to
the complexity of the phenomenon being modeled and the variety of types of activity in limbic
epilepsy.

In this work, we follow our previously proposed approach [8, 10] — breaking the entire
modeling process into parts. First of all, we need to model the epileptic focus, which in most cases
is located in the hippocampus [23]. This can be a very small network of literally ten of dozen of
neurons. Its only function is to generate the basic rhythm of pathological activity. Moreover,
the presence and prevalence of long-distance connections in the hippocampus, including in
its CA3 formation [24], suggests that such a circuit may not form in any specific place, but
may be partially distributed throughout the hippocampus. This corresponds to the ideas about
reoccurrence of epilepsy after removal of the epileptic focus [25].

Previously, in the works [8, 10] we proposed a relatively simple mathematical model of
the fundamental frequency generator of epileptiform activity, which is a ring of neurons with
unidiractional couplings. Numerical and electronic simulations have shown that such a generator
can effectively adjust its frequency depending on the number of elements in the ring and the delay
time in the connections. In this case, relatively simple FitzHugh–Nagumo equations in [10] or
Hodgkin–Huxley equations in their original form in [8] were used as models of individual neurons.
These models do not reflect the specifics of hippocampal neurons. In mesoscale modeling, the
properties of individual neurons are not so important and the determining factor is the network
structure, since each node in the network in reality represents a large number of nodes with
similar parameters [26, 27]. On the contrary, in the case of modeling an epileptic focus in the
hippocampus, we are actually dealing with microscale modeling, that is, with a ratio of the
number of model and real neurons close to 1:1. With this relationship, the choice of model for an
individual neuron becomes a key factor. Therefore, in this work, the goal was to determine which
properties of the previously proposed ring structure can be effectively repeated using models that
reproduce all the main currents in the pyramids of the CA3 field of the hippocampus. One of
the key features of such modeling is the refusal to explicitly take into account the delay in the
synapse and the transition to equations for the synaptic variable, where the role of the delay is
played by inertia.

For network dynamics to be determined primarily by the number of elements in the ring
and communication parameters, individual neurons must be in an excitable mode. Otherwise,
the natural generation frequency of an individual neuron will greatly limit the frequency tuning
capabilities of a ring oscillator. Therefore, a bifurcation analysis was carried out for an individual
neuron using the leakage conductivity parameter 𝑔L. This analysis showed that during the
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transition from the oscillatory mode to the excitable one, two bifurcations occur. First, the
subcritical Andronov–Hopf bifurcation, as a result of which a cycle is born from the unstable
focus, and the focus itself becomes stable. So, bistability and threshold oscillation excitation of
are observed in the system. Second, there is a bifurcation, at which the stable and the unstable
cycles merge, as a result of which the stable focus remains the only attractor.

A numerical study of the dependence of the oscillation frequency in the ring on the number
of neurons in it in a bistable mode showed that the frequency can vary in a relatively narrow
range of 12.7–14.8 Hz. This is due to the existence of an oscillatory attractor for an individual
neuron. This mode remains stable even when the ring neurons are detuned in parameters by an
amount of about 2% of their absolute value. However, this behavior may be interesting only for
modeling a relatively smooth change in frequency at some stages of an epileptic seizure. More
interesting is the regime achieved at certain values of synaptic conductivity for models when
an individual neuron has a single fixed point attractor. It is characterized by a sharp drop in
frequency with an increase in the number of elements in the ring above a certain level. So, the
frequency of 2 Hz and lower, characteristic of the depression phase after a discharge in biological
experiment, can be achieved. In this oscillation mode, the period actually depends almost linearly
on the number of neurons, as was the case in the models proposed earlier in [8, 10]. It becomes
clear that the change in synaptic conductivity 𝑔syn is the most promising mechanism for variation
in oscillation frequency from a physiological point of view rather than a change in the number of
neurons in the ring or the delay time in the synapse. This mechanism can lead to both a sharp
a drop or increase in the generation frequency several times (for example, from 14 Hz to 2 Hz),
and the death of oscillations (which may correspond to the cessation of the discharge) with a
further drop in 𝑔syn.
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