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Abstract. Aim of this work is to develop the theory of mutual synchronization of two oscillators with hard
excitation associated with a delay. Taking into account the delay of a coupling signal is necessary, in particular,
when analyzing synchronization at microwave frequencies, when the distance between the oscillators is large
compared to the wavelength. Methods. Theoretical analysis is carried out under the assumption that the delay
time is small compared to the characteristic time for the oscillations. The phase approximation is used when the
frequency mismatch and the coupling parameter are considered small. Results. Taking into account the change in
oscillation amplitudes up to first-order terms in the coupling parameter, a generalized Adler equation for the phase
difference of the oscillators is obtained, which takes into account the combined type of the coupling (dissipative
and conservative coupling) and non-isochronism. The conditions for saddle-node bifurcations are found and the
stability of various fixed points of the system is analyzed. The boundaries of the domains of in-phase and anti-phase
synchronization are plotted on the plane of the parameters “frequency mismatch–coupling parameter”. Conclusion.
It is shown that, depending on the control parameters (non-isochronism parameter, excitation parameter, phase
advance of the coupling signal), the system exhibits behavior typical of either dissipative or conservative coupling.
The obtained formulas allow for trace the transition from one type of coupling to another when varying the control
parameters.
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Introduction

The study of mutual synchronization in ensembles of coupled oscillators is a fundamental
problem of radiophysics and is of great importance for many applications [1–5]. In particular,
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for modern ultrahigh frequency electronics, the addition of the capacities of several coupled
generators [6] is of great interest. Synchronization in systems of coupled magnetrons and vircators
has been most widely studied (see, for example, [7–10]). In particular, mutual synchronization was
experimentally observed in ensembles of several relativistic magnetrons with different coupling
topology [11]. Recently, the problem of mutual synchronization of powerful gyrotrons [12,13] has
also attracted attention, since complexes consisting of several gyrotrons are used to heat plasma
in controlled thermonuclear fusion plants [14].

Since at ultrahigh frequencies the distance between the coupled generators can significantly
exceed the wavelength, it is necessary to take into account the delay of the signal propagating
between them. There is no doubt that the synchronization pattern in delayed systems has a
number of specific features compared to systems with a small number of degrees of freedom. As
is known, in the theory of synchronization, two types of communication are usually distinguished:
dissipative (diffusive) and conservative (inertial, reactive) [2–5, 15, 16]. These cases differ in the
arrangement of synchronization languages, and with conservative communication, the synchro-
nization mode becomes bistable: synchronization is possible on both in-phase and antiphase
modes. In the works [17–19], where a simple model of two self-oscillating systems with a limit
cycle associated with delay was studied, it was shown that, depending on the phase of the signal,
either dissipative or conservative coupling dominates in the communication channel. Since the
phase advance is determined by the time of propagation of the signal between the generators,
when the distance between the generators changes by an order of magnitude of the wavelength,
the nature of the connection and, accordingly, the device of the synchronization languages can
change significantly.

It should be noted that in high-power gyrotrons, the maximum efficiency is achieved in
the hard excitation mode [20]. Therefore, the study of the synchronization features of generators
operating in the hard excitation mode is of considerable interest. In particular, in [21], the theory
of synchronization of a generator with rigid excitation, which is affected by an external harmonic
signal, was developed. A number of important differences were found from the well-known pattern
of synchronization of a generator with mild self-excitation. These differences are mainly due to
the unstable nature of the self-oscillating system with rigid excitation [1, 3].

This work is devoted to the study of the mutual synchronization of two generators with
rigid excitation associated with delay. The work consists of two parts. In the first part, the
problem is solved within the framework of the phase approximation, which is valid in the case of
two weakly coupled systems whose natural frequencies differ slightly. At the same time, it can be
assumed that the coupling practically does not change the oscillation amplitude of the interacting
subsystems, so that we can limit ourselves exclusively to analyzing the dynamics of the phase
difference, which greatly simplifies the consideration. At the same time, from a practical point
of view, this situation is of the greatest interest.

A more rigorous bifurcation analysis of synchronization, which is not limited to the phase
approximation, will be presented in the second part of this paper.

1. Basic equations and classification of fixed points

In the works [17–19], where a system of two generators with soft self-excitation associated
with delay was considered, a system of quasi-linear differential equations for slowly varying
complex oscillation amplitudes was formulated, which was further generalized to the case of
two coupled gyrotrons [12, 13]. A model of coupled generators with rigid excitation can be
constructed in a similar way. It is only necessary to modify the function that defines the

Adilova A.B., Ryskin N.M.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2024;32(1) 43



nonlinear characteristic of the generator so that it describes the effects of hard excitation. The
generators are considered identical except for a slight natural frequency disorder ω1 ̸= ω2, and
|ω1 − ω2| ≫ ω1,2. As a result, we can write the following system of equations:

𝑑𝐴1

𝑑𝑡
+

𝑖∆
2
𝐴1 =

(︁
σ+ (1 + 𝑖𝑏) |𝐴1|2 − |𝐴1|4

)︁
𝐴1 + ρ𝑒−𝑖ψ𝐴2 (𝑡− τ) ,

𝑑𝐴2

𝑑𝑡
− 𝑖∆

2
𝐴2 =

(︁
σ+ (1 + 𝑖𝑏) |𝐴2|2 − |𝐴2|4

)︁
𝐴2 + ρ𝑒−𝑖ψ𝐴1 (𝑡− τ) .

(1)

Here 𝐴1,2 is slowly changing (compared to exp (𝑖ω1,2𝑡)) complex oscillation amplitudes of the first
and second generators, σ is excitation parameter, 𝑏 is nonisochronity parameter, ∆ is normalized
natural frequency detuning, τ is delay time (for more information, see [12,13,17–19]). The coupling
coefficient ρ is determined in such a way that the value ρ2 characterizes the proportion of power
coming from the output of one generator to the input of another, while it obviously takes
the values 0 < ρ < 1 [7–13, 17–19]. The parameter ψ represents the phase shift of the signal
propagating in the communication channel. All values in (1) are considered dimensionless, and
in the accepted normalization, the hard excitation mode is realized at −1/4 < σ < 0 (see [3,21]).

We will assume that the delay time is small compared to the characteristic time for the
establishment of oscillations, that is, τ≪ 1. In this case, the equations (1) turn into a system of
ordinary differential equations

𝑑𝐴1

𝑑𝑡
+

𝑖∆
2
𝐴1 =

(︁
σ+ (1 + 𝑖𝑏) |𝐴1|2 − |𝐴1|4

)︁
𝐴1 + ρ𝑒−𝑖ψ𝐴2,

𝑑𝐴2

𝑑𝑡
− 𝑖∆

2
𝐴2 =

(︁
σ+ (1 + 𝑖𝑏) |𝐴2|2 − |𝐴2|4

)︁
𝐴2 + ρ𝑒−𝑖ψ𝐴1.

(2)

Assuming 𝐴1,2 = 𝑅1,2 exp (𝑖31,2), where 𝑅1,2 and 31,2 are real amplitudes and phases of oscillations,
respectively, we obtain from (2) a system of equations of the third order

�̇�1 =
(︀
σ+𝑅2

1 −𝑅4
1

)︀
𝑅1 + ρ𝑅2 cos (ψ+ 3) ,

�̇�1 =
(︀
σ+𝑅2

2 −𝑅4
2

)︀
𝑅2 + ρ𝑅1 cos (ψ− 3) ,

3̇ = −∆+ 𝑏
(︀
𝑅2

2 −𝑅2
1

)︀
+ ρ

[︂
𝑅1

𝑅2
sin (ψ− 3)− 𝑅2

𝑅1
sin (ψ+ 3)

]︂
,

(3)

where 3 = 31 − 32 is the phase difference, the dot on top means time differentiation 𝑡.
To analyze synchronization modes, it is first necessary to consider the fixed points of

the system (3). Note that in a system of coupled generators with hard excitation the situation
becomes more complicated compared to that considered in [17–19], since the number of fixed
points increases. Indeed, let us first consider isolated generators (ρ = 0). In this case, from the
equations (3) we obtain

σ+𝑅2
1,2 −𝑅4

1,2 = 0. (4)

The solutions to this equation have the form

𝑅2
1,2 = 𝑅2

± +
1±

√
1 + 4σ
2

. (5)

The solution 𝑅+ is stable, but 𝑅− is unstable [3]. In addition, for σ < 0 the zero solution 𝑅1,2 = 0
is also stable.
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Now let us consider the case of coupled generators, assuming that the coupling is weak,
that is, ρ ≪ 1, and for simplicity we will also set ∆ = 0. In this case, to determine the fixed
points we will have the equations(︀

σ+𝑅2
1 −𝑅4

1

)︀
𝑅1 + ρ𝑅2 cos (ψ+ 3) = 0,(︀

σ+𝑅2
2 −𝑅4

2

)︀
𝑅2 + ρ𝑅1 cos (ψ− 3) = 0,

𝑏
(︀
𝑅2

2 −𝑅2
1

)︀
+ ρ

[︂
𝑅1

𝑅2
sin (ψ− 3)− 𝑅2

𝑅1
sin (ψ+ 3)

]︂
= 0.

(6)

The solutions of the equations (6) can be divided into symmetric ones, for which the
oscillation amplitudes of the first and second generators are the same, and asymmetric ones.
Obviously, there are two types of symmetric solutions. First, these are solutions for which 𝑅1,2 =
𝑅++𝑂 (ρ). They correspond to the modes of in-phase and out-of-phase synchronization; we will
denote them as 𝐼 and 𝐴, respectively. There are also solutions for which 𝑅1,2 = 𝑅−+𝑂 (ρ), they
will be denoted as 𝐼− and 𝐴−. At the same time, it is obvious that since 𝑅− corresponds to an
unstable oscillation mode of an isolated generator, then the solutions 𝐼−, 𝐴− will be unstable.

Next, we will discuss asymmetric solutions. The equations (6) obviously have solutions for
which one of the amplitudes is close to 𝑅+, and the other to 𝑅−. Indeed, with weak coupling, in
addition to the two limit cycles mentioned above, for which 𝑅1,2 ≈ 𝑅+ or 𝑅1,2 ≈ 𝑅−, two more
limit cycles appear in the phase space of the system (3), for which 𝑅1 ≈ 𝑅+, and 𝑅2 ≈ 𝑅− or vice
versa. Both of these cycles are obviously unstable. With an increase in the coupling parameter,
as a result of saddle nodal bifurcations, pairs of saddle (unstable node points) are born on these
cycles. We will denote them as 𝑆𝑘, 𝑘 = 1, 2, 3, 4.

In addition, there are four more asymmetric solutions, for which one of the amplitudes is
close to zero, and the other is to 𝑅+ or to 𝑅−. However, the bifurcations of these points are not
described by the phase approximation, so we will postpone their consideration until the second
part of this paper.

Finally, the equations (6) have a zero solution 𝑅1 = 𝑅2 = 0, which, at least with weak
coupling, is stable.

As is known, with weak communication, the transition to synchronous mode is carried out
as a result of mutual frequency capture [1–4]. Such a mechanism corresponds to a saddle nodal
bifurcation. Since the number of possible fixed points increases in the case of coupled systems
with rigid excitation, the situation becomes more complicated. The bifurcations of symmetric
and non-symmetric fixed points should be considered separately.

2. Synchronization analysis in the phase approximation

2.1. Saddle-node bifurcations of symmetric solutions. As noted above, in the case
of weak coupling and small detuning, the bifurcation of the fixed points of the system (3) can
be analyzed within the framework of a phase approximation. By introducing a weak coupling
between generators, ρ ≪ 1, stable solutions 𝑅1,2 = 𝑅+ turn into a stable limit cycle. If the
frequency disorder is small, a saddle node bifurcation occurs on this cycle, as a result of which
the points 𝐼 and 𝐴 are born (see section 1). Since the coupling is considered weak, the oscillation
amplitudes vary slightly compared to isolated generators, 𝑅1,2 ≈ 𝑅+. In this case, the system
(3) is reduced to a first-order equation for the phase difference 3, which is often called the Adler
equation [3, 5, 22]. However, as shown in [17–19], in the case of delay-related generators, the
Adler equation in its traditional form does not adequately describe the synchronization pattern,
in particular, to trace the transition from dissipative to conservative coupling. It is necessary to
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use a more accurate approximation, finding the oscillation amplitudes up to terms of the order
of ρ. So, we will look for solutions in the form of 𝑅1,2 = 𝑅+ + 𝑟1,2, where 𝑟1,2 ∼ ρ are small
additives. Substituting these relations into the first two equations of the system (6) and limiting
them to terms of the order ρ, we obtain(︀

σ+𝑅2
+ −𝑅4

+

)︀
𝑟1 +

(︀
2𝑅+ − 4𝑅3

+

)︀
𝑅+𝑟1 + ρ𝑅+ cos (ψ+ 3) = 0,(︀

σ+𝑅2
+ −𝑅4

+

)︀
𝑟2 +

(︀
2𝑅+ − 4𝑅3

+

)︀
𝑅+𝑟2 + ρ𝑅+ cos (ψ− 3) = 0.

(7)

From here, taking into account (4), we find that

𝑟1 = − ρ

2𝑅+

(︀
1− 2𝑅2

+

)︀ cos (ψ+ 3) = 0,

𝑟2 = − ρ

2𝑅+

(︀
1− 2𝑅2

+

)︀ cos (ψ− 3) = 0.
(8)

Now it is possible to approximate the ratio of the oscillation amplitudes included in the equation
for the phase in the system (3). After a number of transformations, we get

𝑅1

𝑅2
≈ 1− 2ρ√

1 + 4σ
(︀
1 +

√
1 + 4σ

)︀ sinψ sin3,
𝑅2

𝑅1
≈ 1 +

2ρ√
1 + 4σ

(︀
1 +

√
1 + 4σ

)︀ sinψ sin3. (9)

These relations should be substituted into the third equation of the system (3). Also included in
this equation is the term 𝑏

(︀
𝑅2

2 −𝑅2
1

)︀
, which is decomposed up to terms of the order ρ2:

𝑏
(︀
𝑅2

2 −𝑅2
1

)︀
≈ 𝑏ρ

1− 2𝑅2
+

(cos (ψ+ 3)− cos (ψ− 3))+

+
𝑏ρ2

4𝑅2
+

(︀
1− 2𝑅2

+

)︀ (︀cos2 (ψ− 3)− cos2 (ψ+ 3)
)︀
.

(10)

As a result, substituting (9) and (10) into the third equation of the system (3), we obtain the
generalized Adler equation:

3̇+ ∆ = −2ρ sin3
(︂
cosψ− 𝑏√

1 + 4σ
sinψ

)︂
− ρ

2

λ
sin 23

(︂
sin2 ψ− 𝑏

4
√
1 + 4σ

sin 2ψ
)︂
, (11)

where the designation is entered

λ =
1

2

√
1 + 4σ

(︀
1 +

√
1 + 4σ

)︀
. (12)

A member of the order ρ proportional to sin3, on the right side of the equation (11) is responsible
for the dissipative coupling, a member of the order ρ2 proportional to sin 23 for the conservative
[5, 16].

In Fig. 1 shows the dependence of the parameter λ on the excitation parameter σ, constructed
according to (12). At σ→ −0.25, the parameter λ turns to zero, and with the growth of σ increases
monotonously and at σ = 0 becomes equal to one.

In synchronization mode, when 3 = const, the equation (11) is rewritten as

∆ = −2ρ sin3
(︂
cosψ− 𝑏√

1 + 4σ
sinψ

)︂
− ρ

2

λ
sin 23

(︂
sin2 ψ− 𝑏

4
√
1 + 4σ

sin 2ψ
)︂
. (13)
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Fig 1. Dependence of the parameter λ on the excitation parameter σ

It is not difficult to show that the stability boundary (that is, the condition of saddle-node
bifurcation) is determined from the following relation, which is the condition for merging the two
roots of the equation (13):

𝑑∆
𝑑3

= −2ρ cos3

(︂
cosψ− 𝑏√

1 + 4σ
sinψ

)︂
− 2ρ2

λ
cos 23

(︂
sin2 ψ− 𝑏

4
√
1 + 4σ

sin 2ψ

)︂
= 0. (14)

From here we find

ρ = −
4λ cos3

(︀
cosψ

√
1 + 4σ− 𝑏 sinψ

)︀
cos 23

(︀
4 sin2 ψ

√
1 + 4σ− 𝑏 sin 2ψ

)︀ . (15)

The relations (13) and (15) set parametrically the boundaries of the synchronization
language on the plane ∆, ρ. Note that with

ctgψ =
𝑏√

1 + 4σ
(16)

the connection is purely conservative. When sinψ = 0, as well as when

tgψ =
𝑏

2
√
1 + 4σ

(17)

the connection is purely dissipative. In the case of isochronous oscillators (𝑏 = 0) (16) and (17)
turn into cosψ = 0 and sinψ = 0, respectively.

In Fig. 2 the corresponding dependencies are constructed ψ = ψ (𝑏). Note that in the
isochronous case, the bond is purely dissipative when ψ = π𝑛, and purely conservative, when
ψ = π𝑛+ π/2, 𝑛 ∈ Z (cf. [17]). With an increase in 𝑏, the value of the phase raid, in which the
dissipative bond dominates, increases, while the value of ψ, in which the bond is conservative,
decreases. At the point where the graphs of the functions in Fig. 2 intersect, that is, when 𝑏 =√︀

2 (1 + 4σ), both terms on the right side (13) vanish, that is, the situation becomes degenerate,
and the equation (13) is no longer applicable. To correctly describe the synchronization process,
it is necessary to look for solutions for 𝑟1,2 up to terms of the order ρ2, and terms of the
order ρ3 will appear in the generalized Adler equation. Note that degeneration occurs when
ψ = arctan

(︀
1/

√
2
)︀
≈ π𝑛+ 0.2π.

In Fig. 3 on the plane of the parameters ∆, ρ, the regions of in-phase (𝐼) and antiphase
(𝐴) synchronization are constructed for different values of the phase raid in the communication
channel ψ at 𝑏 = 0.2. For for certainty, let’s choose σ = −0.16, then 𝑅+ =

√
0.8 ≈ 0.894,
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a b

Fig 2. Dependences of the phase shift ψ, at which the coupling is purely dissipative (curves 1 ) and purely
conservative (curves 2 ), on the nonisochronism parameter 𝑏 for σ = −0.16 (а) and on the parameter σ for
𝑏 = 0.5 (b)

𝑅− =
√
0.2 ≈ 0.447. At ψ = 0, when dissipative coupling dominates (Fig. 3,a), synchronization

is possible only in common mode, and the boundaries of the language are straight lines. At ψ ̸= 0,
conservative coupling begins to affect (Fig. 3, b, c) and synchronization regions appear in the
antiphase mode. The multistability of synchronous modes is observed within this region.

With an increase in ψ, the size of the antiphase synchronization region increases, and at
ψ ≈ 0.4π, when the coupling becomes purely conservative, the synchronization boundaries on
the in-phase and antiphase modes are degenerated (Fig. 3, d). In this case, phase bistability is
observed throughout the synchronization region. With a further increase in the phase inrush,
the synchronization boundaries in the common-mode and antiphase modes change places. From
Fig. 3, e it can be seen that now, with weak communication, synchronization is possible only
in the antiphase mode. At ψ = π, the dissipative coupling dominates again, but the generators
synchronize in the opposite phase (see Fig. 3, f ). It is clear that there is a fundamental difference
between Fig. 3, a and 3, f none: in the second case, during the passage through the communication
channel, the signal acquires an additional phase shift ψ = π and enters the oscillatory system
of another generator exactly in phase with by his own hesitation. A similar behavior occurs for
coupled generators with mild excitation [17,18].

Now let’s consider the transformation of synchronization languages when changing the
excitation parameter. In Fig. 4 common-mode and antiphase synchronization regions are construct-
ed at ψ = 0.3π and 𝑏 = 0.5. According to the formulas (16) and (17), a purely dissipative bond
is realized at σ ≈ −0.24, and a purely conservative one at σ ≈ −0.13. Indeed, in Fig. 4, a only
common-mode synchronization is observed. When the σ parameter is increased, the influence
of a conservative connection begins to manifest itself. This leads to the appearance of areas
of antiphase synchronization, which increase in size, as shown in Fig. 4, b, c. In Fig. 4, d
the boundaries of in-phase and out-of-phase synchronization are degenerating. With a further
increase in σ, the in-phase synchronization boundary breaks away from the horizontal axis and
swaps places with the antiphase synchronization boundary (Fig. 4, e, f ). Now, with small values
of the coupling parameter and frequency detuning, only antiphase synchronization takes place.

Similarly, it is possible to find the boundaries of a saddle-node bifurcation on an unstable
limit cycle, as a result of which the points 𝐼− and 𝐴− are born. To do this, it is enough in the
above formulas (7), (8) to replace 𝑅+ with 𝑅−. As a result, the boundaries of the saddle-node
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Fig 3. Domains of in-phase and anti-phase synchronization on the parameter plane ∆, ρ for σ = −0.16, 𝑏 = 0.2
and for different values of the phase shift ψ = 0 (a), 0.25π (b), 0.3π (c), 0.4π (d), 0.5π (e), 1.0π (f )

bifurcation instead of (13), (15) will be determined by the following formulas:

∆ = −2ρ sin3

(︂
cosψ+

𝑏√
1 + 4σ

sinψ

)︂
− ρ

2

λ
sin 23

(︂
sin2 ψ+

𝑏

4
√
1 + 4σ

sin 2ψ

)︂
, (18)

ρ = −
4λ cos3

(︀
cosψ

√
1 + 4σ+ 𝑏 sinψ

)︀
cos 23

(︀
4 sin2 ψ

√
1 + 4σ+ 𝑏 sin 2ψ

)︀ , (19)

and the expression (12) will take the form

λ = −1

2

√
1 + 4σ

(︀
1−

√
1 + 4σ

)︀
. (20)

It makes sense to talk about this bifurcation only at −1/4 < σ < 0, that is, when 𝑅2
− > 0 ( see
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Fig 4. Domains of in-phase and anti-phase synchronization on the parameter plane ∆, ρ for 𝑏 = 0.5, ψ = 0.3π and
for different values of excitation parameter σ = −0.24 (a), −0.23 (b), −0.2 (c), −0.13 (d), −0.1 (e), −0.01 (f )

(5)). Since this bifurcation results in the birth of a saddle and an unstable node, the lines (18),
(19) are not the boundaries of the synchronization region.

2.2. Saddle-node bifurcations of asymmetric solutions. Within the framework of
the phase approximation, it is also possible to analyze saddle node bifurcations of another type,
as a result of which asymmetric fixed points 𝑆1,2,3,4 appear. To do this, we will look for solutions
in the form of 𝑅1 = 𝑅+ + 𝑟1, 𝑅2 = 𝑅− + 𝑟2, where 𝑟1,2 ∼ ρ are small additives. Then instead of
the ratios (8) we get

𝑟1 = − ρ𝑅−

2𝑅2
+

(︀
1− 2𝑅2

+

)︀ cos (ψ+ 3) = 0,

𝑟2 = − ρ𝑅+

2𝑅2
−
(︀
1− 2𝑅2

−
)︀ cos (ψ− 3) = 0.

(21)
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Using (21), taking into account the expressions (5) for 𝑅±, after a series of calculations we find
that

𝑅1

𝑅2
≈ 1 +

√
1 + 4σ

1−
√
1 + 4σ

+
ρ
(︀
1 +

√
1 + 4σ

)︀
4σ2

√
1 + 4σ

(︀
(1 + 2σ) cosψ cos3+

√
1 + 4σ sinψ sin3

)︀
, (22)

𝑅2

𝑅1
≈ 1−

√
1 + 4σ

1 +
√
1 + 4σ

−
ρ
(︀
1−

√
1 + 4σ

)︀
4σ2

√
1 + 4σ

(︀
(1 + 2σ) cosψ cos3+

√
1 + 4σ sinψ sin3

)︀
. (23)

Substituting (22) and (23) into the third equation of the system (3), we obtain a generalized
Adler equation, which, after a series of transformations, can be reduced to a relatively compact
form:

3̇+ ∆ = 𝑏
√
1 + 4σ+

ρ√
−σ

(︀√
1 + 4σ sinψ cos3− cosψ sin3

)︀
×

×
[︂
1 +

ρ

2σ2
√
1 + 4σ

(︀
(1 + 2σ) cosψ cos3+

√
1 + 4σ sinψ sin3

)︀]︂
.

(24)

Note that for ρ ≪ 1, the second term in the square bracket can be neglected (except for
the degenerate cases σ→ 0 and σ→ −1/4). As a result (24) is greatly simplified:

3̇+ ∆ = 𝑏
√
1 + 4σ+

ρ√
−σ

(︀√
1 + 4σ sinψ cos3− cosψ sin3

)︀
. (25)

Unlike the equation (11), the coefficient for a term of the order of ρ in (25) does not
identically vanish at any particular value of the phase raid parameter ψ.

Assuming in (25) 3̇ = 0, we obtain an equation for determining fixed points

∆ = 𝑏
√
1 + 4σ+

ρ√
−σ

(︀√
1 + 4σ sinψ cos3− cosψ sin3

)︀
. (26)

Large industrial enterprises are distinguished from the association of two key enterprises (26):

𝜕∆
𝜕3

=
ρ√
−σ

(︀√
1 + 4σ sinψ sin3+ cosψ cos3

)︀
= 0,

how can we find that
tg3 = − ctgψ√

1 + 4σ
.

Substituting this ratio into (26), after a series of calculations we find

∆ = 𝑏
√
1 + 4σ± ρ√

−σ

√︀
1 + 4σ sin2 ψ. (27)

This expression defines the bifurcation lines on the plane ∆, ρ.
Obviously, there is another asymmetric solution for which 𝑅1 = 𝑅− + 𝑟1, 𝑅2 = 𝑅+ + 𝑟2.

For him, the conditions of saddle node bifurcation coincide with (27) up to the sign:

∆ = −𝑏
√
1 + 4σ± ρ√

−σ

√︀
1 + 4σ sin2 ψ. (28)

Based on the above relations, it is possible to construct all lines of saddle-node bifurcations
on the plane of the parameters ∆, ρ. An example for the case of σ = −0.16, 𝑏 = 0.2,ψ = 0.35π is
shown in Fig. 5. The common-mode synchronization area is shaded in blue, and the antiphase one
is purple. They are bounded by the lines 𝑆𝑁1 saddle of nodal bifurcations of symmetric solutions.
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Fig 5. Lines of saddle-node bifurcations 𝑆𝑁1−4, plotted on the parameter plane ∆, ρ for σ = −0.16, 𝑏 = 0.2 and
ψ = 0.35π. Synchronization domains are shaded (color online)

𝑅1,2 = 𝑅++𝑂 (ρ), which are set by the ratios (13), (15). This figure also shows the lines 𝑆𝑁2 of
saddle-node bifurcations of unstable solutions 𝑅1,2 = 𝑅− + 𝑂 (ρ), constructed according to the
relations (18), (19). They lie below the lines 𝑆𝑁1.

The lines 𝑆𝑁3,4 correspond to saddle-node bifurcations of asymmetric solutions. Since in
the equations (27), (28) there is a term responsible for non-isochronism on the plane ∆, ρ these
lines are based on the horizontal axis not at the origin, but at points ∆ = ±𝑏

√
1 + 4σ = ±0.12.

Using the above relations, it is also useful to construct dependences of the oscillation
amplitudes of various modes on the parameter ρ. An example of such dependencies is shown in
Fig. 6 (for simplicity, consider the case of ∆ = 0). The figure shows the dependencies only for
the amplitude 𝑅1. It is not necessary to give values for the oscillation amplitude of the second
oscillator, since at zero detuning for in-phase and antiphase modes 𝑅1 = 𝑅2, and the solutions
𝑆1,2 and 𝑆3,4 are pairwise symmetric to each other with respect to substitution

(𝑅1, 𝑅2,3) → (𝑅2, 𝑅1,−3) .

In the case of a non-zero disorder, the degeneracy is removed and the specified symmetry is
violated.

From Fig. 6 it can be seen that with increasing coupling, the amplitude of the in-phase mode
𝐼 increases, and the amplitude of the antiphase mode 𝐴 decreases. For solutions corresponding to
saddle node bifurcation on an unstable cycle, the situation is the opposite. Indeed, the formulas
(8) include the value 1− 2𝑅2

+ = −
√
1 + 4σ. When we consider the solutions 𝐼−, 𝐴−, in (8) it is

Fig 6. Dependences of the oscillation amplitudes of various modes on the coupling parameter ρ for σ = −0.16,
ψ = 0.2π, and 𝑏 = 0 (color online)
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necessary to replace 𝑅+ with 𝑅−, while 1− 2𝑅2
− =

√
1 + 4σ and the right parts (8) change the

sign.
As for the asymmetric solutions, for two of them, with increasing coupling, the oscillation

amplitudes of the first oscillator increase (at a given value of ψ it is 𝑆1 and 𝑆4), and the second
one decrease, for the other two the opposite situation takes place.

Conclusion

In this paper, based on the phase approximation, an analysis of the synchronization of
a system of two generators with rigid excitation associated with a delay is carried out in
an approximation when the delay time is considered small compared with the characteristic
oscillation time. It is shown that the dynamics in such a system is significantly more complicated
compared to coupled systems with mild self-excitation. In the phase space, in addition to the
fixed points corresponding to the modes of in-phase and antiphase synchronization, there are a
couple more unstable fixed points for which the oscillation amplitudes of the first and second
oscillators are close to the amplitude of the unstable state 𝑅−, as well as asymmetric fixed points
for which the oscillation amplitudes of the first and second oscillators differ significantly from
each other.

Generalized Adler equations for various situations are obtained, from which simple ana-
lytical formulas follow for conditions of saddle-node bifurcations, as a result of which fixed
points arise. Conditions have been found under which the bond is purely conservative or purely
dissipative (ratios (16) and (17)). With an increase in the nonisochronous parameter 𝑏, the value
of the phase incursion ψ, at which the dissipative coupling dominates, increases, and the value
at which the coupling is purely conservative decreases. When dissipative coupling dominates,
synchronization is possible only in common mode. When conservative coupling dominates, phase
bistability appears in the system, that is, areas of antiphase synchronization appear. The obtained
formulas made it possible to trace the transition from one type of connection to another when
changing control parameters.

However, it should be noted that the phase approximation is valid only for weak coupling
and for small detunements. A more rigorous analysis within the framework of the so-called
amplitude-phase approximation will be presented in the second part of this paper.
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