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Abstract. The purpose of this work is to analyse qualitative features of the information transmission process via
several communication schemes based on the synchronization of transmitter and receiver, both being complex
signal generators. For this purpose generators of the hyperbolic chaos and generators with the strange nonchaotic
attractor are employed. Evaluation of advantages and disadvantages of such schemes is made comparing themselves
with each other as well as with schemes based on the nonhyperbolic chaotic generators. Methods. The power
spectra and the distributions of the largest finite-time Lyapunov exponent are used to confirm the complexity
of the dynamics of the generators in use and to verify the wide-bandness, robustness and stochasticity of their
signals. Confidentiality of the informational signal transmission is achieved using its nonlinear mixing to the
dynamics of the transmitter. The special phase mixing is used since the model generators employed for the
research demonstrate nontrivial dynamics for the angular variable — oscillations phase shift. The digital image
is used as an information for transmission. Visual control during the transmission process allows to carry out
the qualitative analysis of the success of the signal coding and its detecting by the receiver. Results. Successful
transmission and decoding of information for all schemes under investigation are demonstrated for the case of
identical transmitter and receiver. Parameter detuning of these generators leads to difficulties in separation of the
informational signal from the chaotic/complex carrier due to loss of the full synchronization. For the nonhyperbolic
chaos detuning of the parameter responsible for the amplitude of the signal leads to the bad quality of the detection
while frequency detuning makes detection absolutely impossible. Schemes with the hyperbolic chaos and strange
nonchaotic dynamics appear to demonstrate much better results. The information detection is much better in
this case because of the robustness of the generalized synchronization. Conclusion. Robust chaotic and complex
nonchaotic generators appear to have significant advantages for communication systems comparing to the chaotic
generators of nonhyperbolic type.
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Introduction

Previously, the actual problem of chaotic communication quickly lost popularity due to
its inherent intractable disadvantages [1, 2]. One of these disadvantages is the instability of
communication circuits based on synchronization of the receiver with the transmitter. Synchroni-
zation is necessary to extract information from the signal that is transmitted over the communica-
tion signal. To achieve complete synchronization, the complete identity of the receiver and
transmitter is required. This requirement can be considered from the point of view of confidentiali-
ty of the transfer. Not only the specific type of generator-transmitter, but also the exact values of
the parameters are the key to decoding the transmitted information. On the other hand, unlike
the mathematical model, it is quite difficult to achieve the absolute identity of the generator-
transmitter and the generator-receiver even when creating a laboratory radio engineering layout.
The effect of distortion and interference on the signal in the communication channel can make full
synchronization unattainable. In the case of moderate non-identity , generalized synchronization
[3] may occur, when the dynamic implementations of two related generators do not coincide,
but correlate with each other. This work is devoted to the creation of a communication system
in which generalized synchronization would be a sufficient condition for functional consistency.
(The problem was identified earlier in the works of [2, 4]).

The method of manipulating the phases of self-oscillating systems, proposed in 2005 by
S.P.Kuznetsov, allowed us to obtain the dynamics of an artificial mathematical model, which
previously existed only in the form of a display, in a realistic physical system [5]. We are talking
about a mapping whose attractor is the Smale-Williams solenoid. In subsequent works, the
method was developed and made it possible to implement a number of other mathematical
artifacts. For example, the Hunt–Ott [6] mapping. These mappings are associated with chaotic
hyperbolic dynamics and a strange non-chaotic attractor. The first type of behavior has the
property of rudeness - insensitivity to disturbances [7], demonstrates rough synchronization
modes [8,9]. Therefore, it seems promising for schemes based on synchronization of communication
[10]. The second type of dynamics is non-chaotic. The achieved synchronization mode of coupled
generators with such behavior should be rough in the absence of disturbances that remove the
system from the class of quasi-periodically excited ones. The complex fractal structure of the
attractor [11] should provide some privacy [12–14]. In this paper, communication schemes with
generators with hyperbolic [5] and strange non-chaotic [6] dynamics with non-identical receiver
and transmitter are analyzed, their advantages compared to conventional chaotic communication
are shown.

1. Communication schemes

We will consider the following two mathematical models of communication schemes. The
first model:

⎧⎨⎩𝑥1 − (𝐴1 cos (ω1𝑡/𝑁)− 𝑥21)𝑥1 + ω
2
1𝑥1 = 𝜀𝑦1 sin (ω1𝑡+ ρ(𝑡)),

𝑦1 − (−𝐴1 cos (ω1𝑡/𝑁)− 𝑦21)𝑦1 + (2ω1)2𝑦1 = 𝜀𝑥21,
(1)

𝑠(𝑡) = 𝑦1 sin (ω1𝑡+ ρ(𝑡)), (2)⎧⎨⎩𝑥2 − (𝐴2 cos (ω2𝑡/𝑁)− 𝑥22)𝑥2 + ω
2
2𝑥2 = 𝜀𝑠(𝑡),

𝑦2 − (−𝐴2 cos (ω2𝑡/𝑁)− 𝑦22)𝑦2 + (2ω2)2𝑦2 = 𝜀𝑥22.
(3)
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Here (1) — transmitter, (2) — signal in the communication channel, (3) — receiver. The second
model:

⎧⎨⎩𝑥1 − (𝐴1 cos (ω1𝑡/𝑁)− 𝑥21)𝑥1 + ω
2
1𝑥1 = 𝜀𝑦1 sin (ω1𝑡+ ξω1𝑡/𝑁 + ρ(𝑡)),

𝑦1 − (−𝐴1 cos (ω1𝑡/𝑁)− 𝑦21)𝑦1 + (2ω1)2𝑦1 = 𝜀𝑥1 sinω1𝑡,
(4)

𝑠(𝑡) = 𝑦1 sin (ω1𝑡+ ξω1𝑡/𝑁 + ρ(𝑡)), (5)⎧⎨⎩𝑥2 − (𝐴2 cos (ω2𝑡/𝑁)− 𝑥22)𝑥2 + ω
2
2𝑥2 = 𝜀𝑠(𝑡),

𝑦2 − (−𝐴2 cos (ω2𝑡/𝑁)− 𝑦22)𝑦2 + (2ω2)2𝑦2 = 𝜀𝑥2 sinω1𝑡,
(6)

Similarly, the equations (4), (5) and (6) are the transmitter, the signal in the communication
channel and the receiver. In both circuits, the transmitter and receiver are identical generators
connected to each other via the function 𝑠(𝑡) — the signal in the channel. Transmitted information
signal ρ(𝑡) is non-linearly mixed with the dynamics of the transmitter. Such mixing has advantages
in terms of increasing confidentiality compared to the usual additive [15–17]. Information is
mixed into the phase fluctuations of the signal generated by the transmitter. Let’s explain how
this happens.

In the absence of mixing ρ = 0, the transmitters (1) and (4) are a hyperbolic chaos
generator [5] and a generator with a strange non-chaotic attractor [6]. In this study, the same
parameter values for both generators were used, but different from those indicated in the original
works

𝐴1 = 8.0, ω1 = 2π, 𝑁 = 6, 𝜀 = 0.5. (7)

This is done to maximize the similarity between them. Both generators operate on the principle
of phase manipulation. They consist of two van der Pol oscillators, which are alternately and
counterphase slowly excited. The natural frequencies of the oscillators differ twice. Specially
selected communication functions in the right-hand sides of the oscillator equations carry out the
transmission in a resonant manner the transformed phase of oscillation between the oscillators. In
the hyperbolic chaos generator (1), a transformation occurs in a stroboscopic section with a period
𝑇 = ω1/𝑁 with a phase 3𝑛 = 3(𝑛𝑇 ) 3𝑛+1 = 23𝑛. This corresponds to the Bernoulli mapping.
For the generator (4) in the same stroboscopic section, the phase undergoes a transformation
3𝑛+1 = 3𝑛 + θ𝑛 + 𝐹 (3𝑛, θ𝑛), where θ𝑛+1 = θ𝑛 + ξω/𝑁 — quasi-periodic (with irrational ξ =
(
√
5− 1)/2) impact, and 𝐹 —some function of nonlinearity. This transformation corresponds to

the Hunt-Ott mapping. The chosen method of introducing an information signal allows you to
mix it directly with a non-trivially behaving oscillation phase produced by signal generators.

With an alternative set of parameters

𝐴1 = 3.79981, ω1 = 2π, 𝑁 = 6, 𝜀 = 0.5 (8)

the generator (1) can produce chaotic dynamics of a non-hyperbolic type. This can be seen
from Fig. 1. The fragment a shows a hyperbolic attractor that is topologically equivalent to the
Smale-Williams solenoid. On the fragment b, the attractor is quite complex, but does not have
the characteristic structure of a solenoid. The c fragment demonstrates a strange non-chaotic
attractor. The diagrams for the angular variables are shown below. Fig. 1, d and e — iterative
diagrams, equivalent to the dynamics of the Bernoulli mapping and destroyed. Fragment f —
dependence of the oscillator oscillation phase (4) on a quasi-periodic impact variable, which is
clearly fractal in nature, as it should be for a strange non-chaotic attractor.

Isaeva O.B., Lubchenko D.O.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2024;32(1) 33



a b c

d e f

Fig 1. Phase portraits of the stroboscopic map with the period 𝑇 = 2π𝑁/ω1: for the generator (1) at the
parameter values (7) in the hyperbolic chaos regime (a); for the same generator at the parameter values (8) in
the nonhyperbolic chaos regime (b); for the generator with the strange nonchaotic attractor (4) at the parameter
values (7) (c). Iteration diagrams for the angular variable 3𝑛 = Arg(𝑥1(𝑛𝑇 )+ 𝑖𝑥1(𝑛𝑇 )/ω1) for hyperbolic (d) and
nonhyperbolic (e) attractor. Diagram of angular variable 3𝑛 versus the variable of quasi-periodic forcing θ𝑛 =
𝑛ω(

√
5− 1)/2 for the strange nonchaotic attractor (f ). Figures are obtained in the absence of the informational

signal ρ(𝑡) = 0

a b c

Fig 2. Power spectrum of the stroboscopic map for generation associating with the hyperbolic chaotic attractor (a),
nonhyperbolic chaotic attractor (b) and strange nonchaotic attractor (c)
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a b c

Fig 3. Distribution of the values of the largest finite-time Lyapunov exponent estimated on the period τ = 5𝑇
of the stroboscopic map for the generation associating with the hyperbolic chaotic attractor (a), nonhyperbolic
chaotic attractor (b) and strange nonchaotic attractor (c)

a b c

Fig 4. The transmitted informational signal — Claude Shannon photograph with resolution 571× 630 pixels and
“256 gray color tones” codiing (a), the signal in the communication channel after low-frequency filtration (b) and
the decoded signal (c). The communication scheme (1–3) is used at the parameter values (7). The transmitter
and the receiver are identical 𝐴1 = 𝐴2, ω1 = ω2

A convenient demonstration and confirmation of the specific properties of the dynamic
modes used by us can be the power spectrum and the distribution of the largest finite-time
Lyapunov exponent. (By distribution we mean the probability density - a function characterizing
the comparative probability of the realization of certain values of the local Lyapunov exponent.)
In Fig. 2 it can be seen that the spectra of all three selected dynamic modes are visually
comparable to noise-like. For hyperbolic chaos, the spectrum is closest to the white noise spectrum,
for non-hyperbolic chaos, the spectrum looks solid enough, but decreases, for non-chaotic mode,
the spectrum may well be singularly continuous (advanced statistical spectral analysis is needed
to confirm this fact). All three spectra look quite broadband, which is a useful property for a
communication system. The distribution of the values of the local Lyapunov exponent λ1 for
the considered generations also correspond to known patterns (Fig. 3). For hyperbolic chaos, the
local indicators are well grouped and are in the positive region. For non-hyperbolic chaos, the
distribution has two distinct maxima— in the positive and negative regions. However, the full
Lyapunov exponent Λ1 is positive. The third distribution, with a small (in absolute value) but
negative total indicator, captures both negative and positive regions. This corresponds to the
presence of an inhomogeneous local 1)instability on the attractor, leading to its fractalization.
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2. Demonstration of the functioning of communication schemes

Next, we present a demonstration of numerical modeling of the schemes under consideration.
A graphic image was selected as the transmitted information message (Fig. 4, a). The information
signal was a stepwise function of time. Each step had a length of τ and a height corresponding
to one of the 256 grayscale colors of a single pixel in the image. The scope of this step function
ranged from 0 to π/2.

In Fig. 4, b, c a demonstration of communication via a scheme (1–3) is shown with
parameter values (7) and 𝐴2 = 𝐴1, ω2 = ω1. The results of the communication schemes with a
nonhyperbolic chaotic and a strange nonchaotic carrier do not visually differ and therefore are
not given. On the fragment b you can see the signal entering the communication channel, on the
fragment c you can see perfectly detected information. The detection was performed according
to the following method:

sin ρ′ = ⟨2𝑠(𝑡) cos(ω2𝑡)/𝑦2(𝑡)⟩τ, (9)

where the angle brackets mean the averaging over the period τ.
This period should be at least several periods of slow modulation of the carrier signal.

For the results presented in the paper, τ = 5𝑇 . This averaging removes the high-frequency
components from the result of multiplying by the cosine of the ratio of the receiver and transmitter
variables corresponding to each other (𝑦1/𝑦2) sin (ω1𝑡+ ρ(𝑡)) cos (ω2𝑡) for a 𝑠(𝑡) signal of the
form (2). These variables are the same in case of full synchronization. With matching frequencies
ω1 = ω2, according to as a rule, the product of trigonometric functions decomposes into the
sum of the high-frequency component and the slowly changing sin ρ: sin (ω1𝑡+ ρ(𝑡)) cos (ω1𝑡) =
(1/2)(sin ρ+sin (2ω1𝑡+ ρ)). Thus, for an identical receiver and transmitter, the result is obvious
sin ρ′ = sin ρ. Similar reasoning can be done for the case of a signal in a communication channel
(5).

Full synchronization with the same parameter values in the communication circuits (1–3)
and (4–6) is achieved due to a sufficiently strong one-way communication via the 𝑠(𝑡) signal.
When the parameters are disrupted, full synchronization is disrupted. As you can see in Fig. 5,
this greatly affects the result. When the parameters 𝐴1 and 𝐴2, which are responsible for the
amplitude of generation, are detuned, the detected image turns out to be quite noisy by five
percent. At the same time, to a greater extent this happens for nonhyperbolic chaos. Setting the
frequency parameters of the receiver and transmitter makes it completely impossible to recognize
the transmitted message in this case. For a hyperbolic chaotic carrier and a strange nonchaotic
carrier, part of the message is approximately restored. This is possible during the time intervals
of information transmission, when the oscillators of the transmitter and receiver are pumped in
the same phase.

3. An alternative method of information detection

The more successful results of restoring the transmitted information (Fig. 5) in the case of
hyperbolic chaotic and strange nonchaotic carrier are explained, in our opinion, by the occurrence
of coarse generalized synchronization for such modes. In generalized synchronization, there
should be a non-zero correlation between the variables. Its time-local values probably behave
more smoothly for coarse hyperbolic and nonchaotic strange coupled systems. Based on this
assumption, an alternative method of information detection is proposed

sin ρ′ = ⟨2𝑠(𝑡) cos(ω2𝑡)𝑦2(𝑡)⟩τ. (10)
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a b c

d e f

Fig 5. The image detected via the method (9) at nonidentical transmitter and receiver with the detuning 𝐴2 =
1.05𝐴1 (a–c) and ω2 = ω1 + 10−7 (d–f ). Figures a, d are for the communication with the hyperbolic chaotic
carrier, b, e — nonhyperbolic, c, f — strange nonchaotic

a b c

d e f

Fig 6. The image detected via the method (10) at nonidentical transmitter and receiver with the detuning 𝐴2 =
1.05𝐴1 (a–c) and ω2 = ω1 + 10−7 (d–f ). Figures a, d are for the communication with the hyperbolic chaotic
carrier, b, e — nonhyperbolic, c, f — strange nonchaotic

Here, unlike (9), it is not the ratio that is averaged, but the product of the variables 𝑦1 and 𝑦2.
Averaging gives a local correlation value.

From the results of alternative detection in Fig. 6, a and c it can be seen that the local
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correlation 𝐶τ(𝑡) = ⟨𝑦1(𝑡)𝑦2(𝑡)⟩τ it is constant in time. Reconstructed image for hyperbolic and
nonchaotic cases it is practically not noisy. However, its tone is slightly darker than that of the
original image. This is explained by multiplying by the correlation constant: sin ρ′ = 𝐶τ sin ρ.
Images detected using an alternative method also look a little better with frequency detuning.
The results of applying the method (10) are radically different for any nonidentical parameters
for nonhyperbolic chaos. There is no local correlation, and recovery is absolutely impossible.

Conclusion

The use of a hyperbolic chaos generator and crude strange nonchaotic dynamics opens
up new prospects for the development of confidential and broadband communication systems. In
recent years, interest in this area of the technical application of dynamic chaos has declined. This
is due to the extreme difficulties in achieving complete synchronization between the transmitter
and receiver in a real experiment, which is necessary for successful detection of the transmitted
information. In this paper, it is shown that coarse systems with complex dynamics can provide
coarse generalized synchronization even in the case of nonidentical subsystems. Taking into
account this fact makes it possible to successfully isolate the information component from the
signal that came through the communication channel.

Communication schemes based on generalized synchronization have already been described
in the literature and even embodied in the radio engineering experiment [2, 4]. These circuits
work on the principle of switching the transmitter between two states corresponding to different
synchronization modes of a receiver that is notidentical to it. Such schemes allow the transmission
of only a binary digital signal: “1”, if generalized synchronization takes place; “0” - absent. The
transmission demonstrated in this paper is carried out for a digital signal at a speed of 8 bits
per count (that is, 8 times faster than in previously known circuits). And, moreover, it can
be generalized to completely analog information. The advantage of the proposed scheme is the
absence of transients that occur when switching the transmitter between two states. Taking
into account these transients slows down transmission and complicates communication schemes
in [2, 4].
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