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Abstract. The purpose of this study — to represent a detailed description of the procedure for creating and
training a neural network mapping on the example of the dynamics modeling of a neural oscillator of the Hodgkin
—Huxley type; to show that the neural network mappings trained for single oscillators can be used as elements
of a coupled system that simulate the behavior of coupled oscillators. Methods. Numerical method is used for
solving stiff systems of ordinary differential equations. Also a procedure for training neural networks based on
the method of back propagation of error is employed together with the Adam optimization algorithm, that is a
modified version of the gradient descent supplied with an automatic step adjustment. Results. It is shown that the
neural network mappings built according to the described procedure are able to reproduce the dynamics of single
neural oscillators. Moreover, without additional training, these mappings can be used as elements of a coupled
system for the dynamics modeling of coupled neural oscillator systems. Conclusion. The described neural network
mapping can be considered as a new universal framework for complex dynamics modeling. In contrast to models
based on series expansion (power, trigonometric), neural network mapping does not require truncating of the
series. Consequently, it allows modeling processes with arbitrary order of nonlinearity, hence there are reasons to
believe that in some aspects it will be more effective. The approach developed in this paper based on the neural
network mapping can be considered as a sort of an alternative to the traditional numerical methods of modeling
of dynamics. What makes this approach topical is the current rapid development of technologies for creating fast
computing equipment that supports neural network training and operation.
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Introduction

The study of the dynamics of nonlinear systems largely boils down to processing and
analysis of data generated during the evolution of these systems. By this reason for enriching the
scientific tools of nonlinear dynamics and for expanding the range of tasks to be solved, it seems
natural to turn to experience currently rapidly developing disciplines in the field of machine
learning and data science.

Without pretending to be complete, as an example of such interdisciplinary enrichment
Several works can be mentioned: the use of neural networks for adaptive modeling and control
of systems [1], application of neural networks for reconstructing the El Nino attractor 2], use
neural networks to predict dynamics based on the performed reconstruction state space [3], use
of machine training for building models and analyzing the dynamics of biological systems [4].

One of the most important elements of the foundation of productive interaction of nonlinear
dynamics with data science and machine learning is a series of theorems, with mathematical rigor
justifying the possibility of approximating arbitrary functions of many variables using neural
networks [5—10]. From these works it follows that already a two-layer fully connected network
with a sigmoid function activation is sufficient to approximate any function with a given accuracy
many variables. The approximation accuracy is determined by the size of the network layers, and
also by choosing an effective learning algorithm. In the most general terms this means that for
solving problems related to the search or analysis of functional dependencies, you can use neural
networks. One more element, no longer strictly mathematical, but rather heuristic is the ability
of neural networks to generalization. With proper organization of the network learning process, it
is not easy remembers the data presented to it, and isolates the most significant from them, their
most common signs. Subsequently, this allows the already trained network effectively process
new data samples that were not presented to it during the process training [11].

This paper explores the applicability of neural networks for modeling nonlinear dynamics:
it seems interesting to find a universal architecture, which could, after appropriate training,
with a given accuracy reproduce any or almost any behavior of nonlinear systems. In favor the
possibility of constructing such an architecture is indicated by the above-mentioned theorems
about approximation and generalization ability of neural networks. Theoretical motivation such
research is to obtain another universal model of dynamics, along with with models widely used
today, for example, based on power or trigonometric series. It can be expected that the use of
a neural network model will be in some aspects more effective compared to models based on
series expansions. The latter always take into account limited, often small the number of terms
of the series and therefore the order of the modeled nonlinearity is also limited. In the case of a
neural network, this limitation is removed. Besides, of interest is the ability of neural networks to
generalize — ideally even with a limited amount of data, one can hope that the network will be
in able to extract from them information about dynamic phenomena that is inaccessible to other
modeling methods. From a practical point of view, dynamics modeling using neural networks can
be considered as a kind of alternative numerical methods for solving model equations. Traditional
numerical methods simulations are best implemented on computers with classical architecture
and often even parallelizing them into several computing cores causes difficulties. At the same
time, modern computing technology is developing towards adaptation to support the work of
neural networks. Examples include gaming video cards and so-called AI accelerators [12-15].
Therefore one can expect that the development of methods for modeling dynamics using neural
networks will have great practical significance.

Previously, in the work of [16] it was shown that even the simplest two-layer the network
can be trained to reproduce quite different types of dynamics (systems Lorenz and Réssler), as
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well as the Hindmarsh-Rose neuron model. Demonstrated good agreement between bifurcation
patterns, Fourier spectra and indices Lyapunova. The work of [17] proposes a more complex
network structure, when each of the variables is modeled by a separate subnetwork. Such a
network copes with modeling of rigid dynamics, when system variables have different time scales.
It was shown that the network reproduces the behavior of the model physiological neuron specified
by a system of equations formulated in based on the Hodgkin-Huxley formalism [18]. It has been
demonstrated that Due to its ability to generalize, a neural network model can successfully
reproduce the bistability mode even when in the process of learning it only one of the branches
of the solution was presented. Neural network model trained only on the oscillatory solution,
also finds a stable solution coexisting with it fixed point, and in addition correctly reproduces
its dependence eigenvalues of parameters. In this work we will consider a neural network the
model proposed in the article [17]. Purpose of the study is demonstrate that such models trained
on single systems can be done without additional training used to reproduce the dynamics of
related systems It will be shown that there is good qualitative and quantitative correspondence
of various dynamic modes of coupled systems and their bifurcation transformations.

1. Model neuron based on the Hodgkin—Huxley formalism

We consider a model neuron whose equations are derived based on Hodgkin-Huxley forma-
lism [18]. In addition to the original system, we We will also consider its modified version,
proposed in work [19]. The original system in the oscillation mode has unstable fixed point. The
modification leads to the fact that in space parameters, an area appears in which the fixed point
stable, that is, bistability occurs in the system, characteristic of neural models [20-22]. Since she
is responsible for this modification is activated only in a small area nearby fixed point, this has
virtually no visible effect on the quality nature of the oscillatory solution.

W o= —Ica(V) = Ig(V,n) — Ige(V) — I5(V, S),
= 0[neo(V) —nl, (1)
158 = Seo(V)— 8.

Table 1. Parameters of the system (1)

T=0.02s Tg = 358 0=20.93

9ca = 3.6 gk =10 gs =4 gr2 = 0.12
Voo =25mV Vg = —-75mV

0,, = 12mV 0, = 5.6 mV 0g = 10mV 0, = 1mV
Vin=-20mV V,=-16mV Vsg=-36mV V,=-49.5mV
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Here V', n and S are dynamic variables. Functions included in the equations are given by the
formulas (2), and the numeric values used parameters are summarized in table 1.

IC'a(V) = gCa moo(v) (V - VCa)v (23)
Ix(Vin) = gxn(V —Vk), (2b)
Is(V,S) = gsS(V —Vk), (2¢)
Ica(V) = gr2peo(V) (V — Vi), (2d)
-1
0so(V) = <1 + exp Vo - V> , ow=m,n,S, (2e)
-1
Po(V) = (exp 4 gpvp + exp Vpe_p V> . (2f)

The equations correspond to the original system with gxo = 0. Modified the system is considered
at gxo = 0.12. System variables as well the functions and parameters included in the equations
have a biological interpretation, a discussion of which can be found in the works [18,19].

Fig. 1, a, b and ¢ shows various dynamics modes of the modified version systems (1).
Fig. 1, a and b illustrate bistability: depending on the starting point, the trajectory goes either
to burst attractor (see Fig. 1, a), or to a fixed point (see Fig. 1, b) . It can be seen that in the burst
attractor mode the variables V' and n changes much faster than the variable S. Systems with this
type behaviors are called hard [23|. Fig. 1, ¢ demonstrates another mode of the system, spike. In
this mode, all three variables change with the same time scales. Transition from a burst attractor
to a spike attractor occurs when the parameter Vg increases through a bifurcation called blue
sky disaster [19,24]. Note that batch or spike activity of the system, switching between which
occurs when changing parameters is called neuromorphic dynamics [25].

Fig. 2 shows the phase portraits of the modified system in three dimensions. Fig. 2, a
demonstrates the burst attractor It is clearly seen that in this regime the attractor has a
characteristic structure of several turns with a loop closing them. The spike attractor is presented
in fig. 2, b. Since all variables in this mode fluctuate with identical time scales, the attractor has
the form of a limit cycle.

The original version of the system also demonstrates burst and spike modes. Visually they
are indistinguishable from those shown in Fig. 1 and 2 and are therefore not shown in a separate
figure.

To clearly demonstrate changes in the nature of system behavior in depending on the
parameters and the choice of initial conditions, we will calculate scalar characteristic quantity

to+1
Q:¢;A] S2(t)dt. (3)

Here S(t) is a dynamic variable of the system (1), ¢o is some, rather large, time for the system
to enter the mode, 7' is time observations. We use ¢ty = 100 and 7' = 100. Below, looking at the
system connected model neurons (11), calculate value Q = (Q1 + @Q2)/2, where @ and Q4 are
obtained from formula (3) with S replaced by the corresponding value S or Ss.

The meaning of the formula (3) is to compare scalars with invariant ones sets in the
phase space of the system in order to be able to compactly and clearly visualize its structure. It
doesn’t matter how exactly it will be look like the dependence of ) on the parameters. We are
interested in regime restructuring, Therefore, it is important that when the nature of the system
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Fig 1. Solutions for modified system (1), i.e. e. at gx2 = 0.12 (a, b, ¢), and for the corresponding neural network
mapping (5) (d, e, f). Diagrams a, d, b and e illustrate bistability at Vg = —36: a, d — bursts when starting
from the point Vo = —51, ng = 2- 1073, Sp = 0.185; b, e — approach a fixed point when starting from the point
Vo = =51, ng =2-1073, Sp = 0.189. Diagrams ¢, f demonstrate spikes at Vo = —34

behavior changes, the value of Q would change quite significantly. Theoretically, different sets
can be described by the same () and be indistinguishable on this basis. However the likelihood
of this is quite low. To further reduce this likelihood S(t) is squared so that in the hypothetical
case of occurrence negative values, () would be affected only by their absolute values. Doesn’t
have it makes no sense to construct more complex formulas for @, since the representation
multidimensional set using a scalar quantity always leads to loss any information and, therefore,
cannot be considered exhaustive. Therefore, when using @), one should correlate its values with
information about the nature of the system dynamics obtained from other considerations. In
relation to the system under study, we know in advance that in it burst and spike modes may be
observed, and in addition there may be stable fixed point. Therefore, calculating ) depending
on the parameters, we expect three typical values of this quantity to occur.

In Fig. 3, a and 3, b for the original and modified systems is shown as changing depending
on Vg distribution of () obtained with a large number of system runs with random initial values
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Fig 2. Three-dimensional phase portraits of the modified system (1): a — bursts at Vg = —36, b — spikes at

Vs = —-34

V, n and S. The ensemble of initial values was chosen from scope of the system definition (see
table below 3 and section 4) as follows. Range of parameter values V; was divided into 300
equally spaced points, and at each point 3000 initial values of V', n and S from those indicated in
table 3 ranges. Grayscale display in logarithmic scale of the frequency of occurrence of solutions
characterized by corresponding values of (). It can be seen that these values are well grouped
and form a system of lines, by the appearance of which one can judge what is happening in the
systems bifurcation rearrangements.

In Fig. 3, @ and 3, b the line on the left parts is represented by a burst attractor. The
corresponding solution is shown in Fig. 1, a and 2, a. When driving in side of increasing Vg
near the value of Vg &~ —34 for the original system (see Fig. 3, a) and at Vg ~ —35 modified
(see Fig. 3, b) the value of @ changes jump. This corresponds to the transition from a burst
attractor to a spike attractor (see fig. 1, ¢ and 2, b). In Fig. 3, b, which is built for the modified
system, there is another line of values @) in the range between Vg ~ —37 and Vg &~ —35. This line
corresponds to a fixed point that is stable in this range of values parameter. The line representing
the fixed point is noticeably lighter than the line for oscillatory solution existing at the same
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Fig 3. Distributions of @, see Eq. (3), vs. Vs: a and b — original and modified systems (1), respectively; ¢ and d
— the neural network mapping (5) trained for these systems
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values of Vg. It says that a stable fixed point is small compared to oscillatory solution the size of
the basin of attraction, and therefore the probability if randomly selected initial conditions fall
into it, it is sufficient small This is discussed in more detail in the work [19].

In Fig. 4, a shows how one-dimensional sections of basins of attraction of various invariant
sets in phase space of the modified system depending on Vg. For building of this figure, first the
fixed point V¢, ny, Sy of the system is calculated at Vg = —36. The initial values of the variables
n and S are always set equal ng = ny and So = Sy, and the initial value Vy varies around V;
and these values are plotted vertically in the figure. Parameter Vg varies around the —36 point,
and these values are plotted horizontally. For every pair Vg and Vj are calculated by @ and its
values are displayed in the figure using grayscale.

In Fig. 4, a three areas are distinguished. Dark rectangle in the center is the area from
which the trajectories reach a stable fixed point. The light gray area on the left is the set starting
points from which the system reaches the burst attractor. These two regions coexist at the same
values of Vg, which corresponds to the regime bistability in the system. The dark gray area on
the right shows the points from which the system reaches the spike attractor.

A similar construction for the original system is presented in fig. 5, a. There are only two
areas here: more the light one on the left side corresponds to the exit to the burst attractor, and
the darker one on the right is to the spike one.

0.190
~4671 opE —46 NTW, Lepunk = 10
—48- —48-
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_ -501 _ —501
=~ -~
_52- _52-
0.186
54+ 54+
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a Vs b Vs <
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NTW, Lchunk =1 NTW, Lchunk =100 0.182
48+ _48-
o 0] o 0] F0.180
—52- —52-
—54- —54- L0.178
2375 —37.0 —365 —360 —355 -350 —345 —37.5 —37.0 —365 -360 -355 -350 -345
c Vs d Vs

Fig 4. One-dimensional sections of attraction basins of different dynamic regimes: a — the modified system (1);
b, ¢ and d — the neural network mapping (5) trained on datasets, consisting of trajectory segments of lengths
Lehunk = 10, Lepunk = 1 and Lenunk = 100, respectively. Diagrams are constructed in the vicinity of the point
Vi = —50.6357, ny = 2.05598 x 1073, S; = 0.187922 that is a stable fixed point of (1) at Vs = —36. The initial
value of Vp, vertical axis, is varied within the range V; £ 0.1V}, and starting values for variables no and So are
taken equal to ny and Sy, respectively. For each trajectory @ is calculated and its values are represented via gray
scale
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Fig 5. One-dimensional sections of basins of attraction: a — original system (1); b — the neural network mapping
trained on a dataset with Lcpunk = 10. The diagrams are built in the vicinity of the point Vy = —46.9978,
ny = 3.92943 x 1073, S; = 0.210855. This is an unstable fixed point of the original system at Vs = —33.8

2. Related systems

Let us now consider two systems of the form (1) and introduce a connection between them,
as this is discussed in [26]. The equation for subsystem 1 has view:

Wi = —Ica(Vi) — Ix(Vi,n1) — Igo(Vi) — Is(Vi, 51) + gev (Vi — Vo),
w1 = 0 [neo (V1) — nal, (4)
1591 = Soo1(V1) — Si.

The equations for the second system are obtained by replacing the indices 1 <+»2. The parameter
ge,v is responsible for the strength of the connection. Note that in in equations (4) the function
Soo,1 is provided with the index “1”. This is done because it includes the Vg parameter, see (2e).
We will consider subsystems 1 and 2 with the same parameters with the exception of Vg, which
will be set differently for each of subsystems as Vg1 and Vs o, respectively.

An idea of the general picture of the behavior of coupled systems is given by fig. 6, a—d,
fig. 7, a—c and Fig. 8, a—c. In Fig. 6, similar to how it was done in Fig. 3, halftones are shown
distribution of the characteristic quantity @ = (Q1 + Q2)/2, where Q1 and Q> calculated using
the formula (3) for subsystems 1 and 2, respectively. The values of the parameter Vg are plotted
horizontally, and Vg2 is equal to Vg1 + 0.1. Modes of behavior of two related originals systems
largely repeat the modes of a single system (compare fig. 6, ¢ and 3, a). On the left side diagrams,
that is, for smaller values of Vg1 and Vg2, burst mode. This illustrates fig. 7, a. On the right, for
greater Vg1 and Vg9 a spike mode occurs (Fig. 7, ¢). In contrast of single system is manifested in
how the transition from one mode to to another. Instead of a strictly defined bifurcation point,
coupled systems a transition region arises in which burst oscillations with irregular length. As
the parameter increases, the average duration of bursts The burst increases until it turns into a
spike mode. The transient behavior is illustrated in Fig. 7, b.

For a pair of modified systems, the scenario of mode changes when moving along parameters
Vs.1 and Vg o are generally the same: from bursts to spikes through an extended transition region.
As with a single modified system, a pair of linked Such systems have a region of bistability, in
which with the oscillatory solution a stable fixed point coexists (compare Fig. 3, b u 6, b).

The dynamics of the pair are original. The modified system is characterized by broadening
areas of transition from bursts to spikes (see Fig. 6, c), as well as to the emergence of more
complex transition regimes. As an illustration in Fig. 8, a shows oscillations when bursts occur

Kuptsov P. V., Stankevich N. V.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2024;32(1) 79



irregular lengths are different for different subsystems, and Fig. 8, b demonstrates the coexistence
of burst and spike modes for the first and second subsystems.

By increasing the strength of the connection between the original and modified systems the
region of stability of the fixed point is significantly reduced, and the transition the area becomes
even wider (see Fig. 6, d). On Fig. 8, ¢ shows that immediately after the transition region in In
such a system, an irregular spike regime occurs.

In Fig. 9, a—c shows one-dimensional sections of basins of attraction of various modes
associated original and modified systems with increasing bond strength g.y. This the figure is
constructed similarly to Fig. 4 and 5. Only now the initial values change simultaneously variable
V for both the first and second subsystems. Black area in the central part represents the starting
values, from which the system goes to fixed point. Light gray areas around are points from which
the system goes into oscillatory mode. It can be seen that with increasing coupling strength g. v
the region the attraction of the fixed point decreases.
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Fig 6. Distributions of @ = (Q1 + Q2)/2 vs. Vg1 and Vs = Vg1 4+ 0.1: a—d — Eqgs. (4); e-h — the neural
network mapping (11). The following combinations of subsystems are represented: a and e — two original systems
(gr2 = 0); b and f — two modified systems (gx2 = 0.12); ¢, d, g and h — original and modified systems. Coupling
parameter values: a—c and e—g — g.,v = 0.001; d and h — g.,v = 0.01
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3. Neural network mapping

We are interested in constructing a display of the form w(t + At) = F(u(t),p,w), capable
of values of w reproduce the behavior of various dynamic systems. Here u(t) is vector of dynamic
variables, p is vector of control parameters, At is time step, which we will set as fixed size.
Mathematically proven, see works [5-10], which is two-layer a fully connected neural network
can be used to approximate arbitrary functions of many variables. It follows that it must be is
suitable for constructing the above-mentioned universal mapping. This the question is studied
in the work [16]. It was shown quite good quality of dynamics reproduction for various systems:
Lorenz, Rossler, Hindmarsh-Rose neuron model. However, it was discovered that neural network
mapping based on a simple two-layer architecture is quite difficult to train for rigid type systems
in which the variables have very different time scales. Therefore, in the work [17] a more complex
architecture. Instead of one network receiving vector u(t) as input and returning the vector
u(t+ At), for each dynamic variable now a separate subnetwork is created. Also a two-layer fully
connected one. At the same time, everything other variables and values of control parameters
are entered after passing through one more, additional fully connected layer. Such a network was
able to not only simulate the dynamics of a rigid system, but also correctly reproduce behavior,
samples of which were not presented to her during training.

In this work we will consider a neural network mapping from works [17] with minor
modification:

ui(t + At) = (1 —x)ui(t) + X(f (ui(t)ai + i + g(u-i(t)As + pB; + ﬁz)) b; + Yi)- (5)
The modification boils down to the introduction of a stabilizing factor y = 0.001. This eliminates

situations where, as a result, “unsuccessful” initialization of weight coefficients with random
numbers trained the display showed divergence instead of the expected behavior. Here u(t) is

—251 -251
—251 -251

a 100 105 110 115 120 125 d 100 105 110 , 115 120 125

-254 —254
—254 —254

b 100 120 140 160 180 200 100 120 140 160 180 200
251 —251
_50 ) T T T T T T _50 1 T T T T T T
~251 _251
_50 ) T T T T T T _50 1 T T T T T T
c 100 102 104 106 108 o f 100 102 104 106 108 110
t t

Vi

V2

Vi

Fig 7. Solutions for the coupled original systems: a—c — Eqs. (4); d—f — corresponding coupled neural network
mappings (11). Represented regimes: a and d — bursts with Vg1 = —36; b and e — irregular bursts with
Vs,1 = —33; c and f — spikes at Vs,1 = —31. In all cases V52 = V5,1 +0.1. The coupling parameter is g.,vv = 0.001
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1
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—504

—251 —251
=501 -50 W

c 1000 1025 1050 1075 1100 1125 1150 f 1000 1025 1050 107.5 1100 1125 1150
t t

Fig 8. Solution for the coupled original and modified systems: a—c — Eqgs. (4); d—f — coupled neural network
mappings (11). Represented regimes: a and d — irregular bursts of different lengths when Vs = —34.4; b and e
— bursts and spikes at Vg = —33.3; ¢ and f — irregular spikes at Vs = —30.5. In all cases V52 = Vg1 + 0.1.
Coupling parameter: a, b, d and e — g.,v = 0.001; ¢ and f — g.,v = 0.01

Table 2. Description of the elements of Eq. (5)

u(t) row vector D,=3

w;(t) scalar

u—i(t) row vector D, -1

P row vector D,=1

a;, W 1 B; row vectors N, = 100

b; column vector Np,

i scalar

A; matrix (Dy — 1) x N,
B; matrix D, x Ny,

X constant 0.001

f(),g9(-)  scalar functions tanh(-)

vector of dynamic system variables of size D,,, u;(t) is the ith variable, and u-;(t) is a vector
obtained from w(t) by removing ith variable. In our case, the vector u(t) contains components
V, nand S. As is customary for neural networks, we will assume that u(t) and u-;(t) these are
row vectors. The symbol p denotes a row vector control parameters of the D), dimension system.
We are considering change only one of the system parameters, namely Vg. Therefore he one-
dimensional. A description of other elements of the formula (5) is given in tab. 2. Functions f(-)
and ¢(-) in terms of neural networks are called activation functions. These are scalar functions
of scalars arguments. It is assumed that when they are applied to vectors they act element by
element.

The structure of the formula (5) corresponds to the structure of a two-layer fully connected
network. The first layer receives the scalar value i-th as input dynamic variable u;, and its output
is a vector of dimension N, (see table 2), obtained after calculating the expression f(u;(t)a;+w;+
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Fig 9. One-dimensional sections of attraction basins for coupled original and modified system: a, b, ¢ — Egs. (4);
d, e, f — coupled neural network mappings (11). Coupling parameter g.,v: 0.001 (a, d); 0.006 (b, €); 0.01 (¢, f).
The diagrams are obtained in the neighborhood of a fixed point Vi y = —49.8965, n, s = 2.34541 x 1073, Si,f =
0.199464, Vo s = —50.5546, na s = 2.08592 x 1073, Sy ; = 0.187634 calculated at Vs = —36 and gy = 0.001.
Initial values of Vi o plotted vertically vary within the range Vi 5 + 0.1V 5, the initial value of V5 also varies:
Va0 = Vi,0 — Vi, + Va2, ¢, and initial values of other variables are chosen equal to the values given above

+ g(...)). This layer is called hidden. However, in Unlike a simple two-layer network, here the
displacement vector (bias) u; adjusted by values supplied through an additional layer g(u—;(t)A4;+
pB; + i), which depends on other dynamic variables and parameters. The second, output layer
of the network has the form: f(...)b; 4+ v;. This layer returns a scalar value, which is then used
to calculate the value of the dynamic variable u; at the new step time as (1 — y)u; + %(...).
Thus, the neural network the mapping (5) is constructed as a neural network that adapts to the
required system by learning weight parameters, presented in the form of the following matrices
and vectors:

w = {a;, Wi, Ai, By, Bi, by, vi | 1 = 1,2, 3} (6)

When actually implementing a neural network mapping (5) it is necessary to take into
account that all modern computing tools for work with neural networks, as well as relevant
theoretical developments, imply standardization of the data set on which the education. This
means that all quantities supplied to the network input must fall into a unit interval near zero.
Therefore, the network will learn and function on data rescaled according to formulas (element-
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wise operations are assumed)
u— (u—my)/su, p— (p—myp)/sp. (7)

Here m,,, m,, s, and s, are, respectively, vectors of average values and standard deviations in the
domain of definition of the neural network display. The calculation of these vectors is discussed
in section 4, and their values are given in table 3. Thus, the original data supplied to the display
input (5) is rescaled according to (7), then the required number of iterations is performed, and
for When presenting the results, the obtained values are rescaled back.

When implementing software mapping in the form of a neural network, we use the following
operators. The Take(u,?) operator returns the ith element of the vector w, and the operator
Sans(u, ), on the contrary, removes the ith element and returns vector u—; without this element.
Operator Dense(x, W,b) = zW + b represents a fully connected layer without an activation
function: multiplying the input vector x by matrix W and shift by vector b. Finally, the square
brackets [, -] denotes the concatenation of two vectors or matrices.

Using these notations, the action of a neural network mapping can be illustrated using
the diagram in Fig. 10 and corresponding formulas (8), which show how calculations for the
i-th variable are organized. The neural network has two inputs vectors, p = (Vg) and u =
(V(t),n(t),S(t)), formula (8a). At first w is split into a scalar w; and a vector u-;, in which
the ith element missing, formula (8b). Layer (8c) accepts u-; and p and calculates a vector h;
of dimension Ny, which includes information about the influence of control parameters and all
variables for with the exception of ¢th. This vector is added to the output of the processing
layer ith component, formula (8d). The result is a vector hidden layer ¢; of dimension Nj. It is
transmitted on the weekend layer (8e), after which it is used directly for calculating the solution
at a new time step v) = u(t + At). Repeating these calculations for i = 1,2, 3 we get the solution
vector generated by the network /(¢ + At).

p = Input(), u = Input(), (8a)
u; = Take(u,i), u-; = Sans(u,1), (8b)
hi = g(Dense([u~i,p|, [4i, Bil, Bi)), (8¢c)
qi = f(Dense(u;, a;, w;) + h;), (8d)
v; = (1 = %)u; + y Dense(q;, bi, vi)- (8e)

When the network has already been trained and is used to calculate the trajectory of
the system, you need put «'(t + At) = u(t + At). During the training process, weights network
coefficients (6) are adjusted so that difference between the generated result u/(t + At) and the
required u(t + At) was minimal. Therefore, it is natural to choose the square as the objective
function norms of the difference between these vectors:

L=|—2| (9)

Table 3. Datasets parameters

Vs € [—40,—30], V € [-70, —18], n € [0.0,0.13], S € [0.14,0.26],
my = (—44,0.065,0.2), m, = —35, s, = (26,0.065,0.06), s, = 5,
Lehunk = 10, Nepunks = 10°, At = 0.005,

Ltrain = Lchunk X Nchunks = 1067 Lvalidation = 1057 Lbatch = 104
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»| u-Take(y, i) » V'=(1-x) u+xDense(q;, b,,v;) > V'
u A
> uﬂ.=Sans(u, i) > a7 f(Dense(ui, ai,pi)+hl.)
A
p > h=gDense(lu_;, pl,[4;, B],B))

Fig 10. The structure of the neural network that corresponds to the mapping (5) for ith variable. Here u = u(t),
v; = u;j(t + At). The prime denotes a value computed by the network. This value in the course of training is
compared with the “correct” value u; (¢t + At) from the training dataset

The training consists of using the gradient descent method, step by step calculate corrections
to the weighting coefficients (6), leading to decrease L:

w— w— VL, (10)

where % is usually a small parameter that regulates the value step. In fact, when teaching, we
use a modification of the method gradient descent — method Adam [27]. This is most common
currently used algorithm for optimizing network weights. Its advantage is that the value of x is
automatically adjusted during iterations, that provides a high speed of their convergence.

4. Training dataset and network training

We are creating a neural network that is somewhat similar to the so-called recurrent
network [11]: the vector u(t) is supplied to the input, and the output is u(t + At) is formed,
which is again fed to the input of the same network for calculation of the next value. However,
there are important differences. Firstly, the internal structure of the network is selected so
that it is possible to describe it in form of mapping, explicit and sufficiently compact, allowing
further theoretical analysis, see formula (5). Modern recurrent cells such as LSTM and GRU are
designed significantly more difficult [11]. It doesn’t make much sense for them to try to write out
appropriate display due to its bulkiness. Secondly, the procedure training of our network will be
organized differently. Traditional recurrent networks are trained on fixed sequences, usually not
very large length. This assumes that they will function on sequences the same length. The neural
network mapping (5) must be capable of generating trajectories of arbitrary length. Therefore, in
the learning process we do not use recursion. Pairs will be used as training data (u(t), u(t+At)),
where the first value is supplied to the input, the network makes only one iteration and the
calculated result u/(t + At) is compared with expected u(t + At).

To form a data set, we set the definition area in this way: so that all invariant objects of
phase space appear in it, attractors of oscillatory solutions and a fixed point. To do this, we first
set range of variation of the Vg parameter, see table 3. Let us remind you that we will change
the values of only this one parameter, the values of the rest are given in table 1. Changing
Vs, we will construct numerical solutions to the system (1), repeatedly starting from randomly
selected starting points and defining the minimum and maximum values that accept V, n and
S. Additionally, we will calculate the position of the stationary points at different Vg and adjust
the found ranges of change variables to include her in them. We will then expand the found
ranges approximately 10% from each edge and round to two significant figures. Where in the
lower bound for n goes a little into the negative area, replace it zero. The resulting ranges for
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V, n and S along with the range for Vg, see table 3, set the scope of definition of the neural
network mapping when it models the system (1). Note that in work [17], where the main goal
is modeling of a single systems, training was carried out on fragments of the oscillatory solution
systems. Since this work explores the possibility of modeling connected systems (4), the network
is trained over the entire definition domain.

For the resulting domain of definition, the average values of m, and m, are calculated,
and also the corresponding standard deviations s, and s, see table 3. The data supplied to the
network input, that is, to display (5), pre-scaled by formulas (7) so that in fact the values of all
variables and parameters range from —1 to 1. After calculating the trajectory data, generated
by the network are subject to inverse transformation for subsequent analysis.

The training data set is created as follows. Randomly selected value parameter Vg and
initial values of dynamic variables u(0) = (V,n,S) from domain of definition, the boundaries of
which are given in table 3. Then the solution to the equations (1) is calculated in Lepynk + 1 steps
with time interval At, see table 3. From the received sequences are constructed by Lcpunk records of
the form (Vg, u(0), u(At)), (Vs, u(At), u(2At)), (Vs, u(2At), u(3At)) and so on, which are placed
in the array training data. In general, for the training data set it is generated Ncpunks Segments
of trajectories so that the total length of the training data set is equal Liyain = Lehunk X Nehunks-
Before the beginning training records in the training set are mixed, so that the network “sees” in
Each moment of learning is individual points of trajectories, and not entire fragments.

To control the quality of training, a validation data set of length Lyajidation. For validation,
trajectory segments of length one step. This means that for randomly generated Vg and u(0) it
is calculated u(At), entry (Vs, u(0), u(At)) is placed in the array validation data and then a new
record is generated.

The standard way to save memory during the learning process is to apply to the input
network data in portions, which in English-language literature are called “batches”, which is
usually translated into Russian as “packages”. For our network, packet size is equal to Lypatch, see
table 3. Networks first The training data set is presented, packet by packet. For each package the
gradient descent step (10) is performed and adjusted network weights w. When all training set
packets have been processed, it is said that one era of learning has passed. After this, the network
is presented with validation data, for which the value of the objective function is calculated.
Gradient descent and correction no weighting coefficients are applied to the validation data.
Curves dependence of the objective function on the epoch number for training and validation
data are called learning curves.

The result of training a neural network significantly depends on the length fragments

107! T
train Lehunk =10

train 1 Lenunk = 100
=-=-=- valid.

train
--=-- valid.

Lepunk =1

-=--- valid.

T VAR R eI

0 2500 5000 7500 10000 O 2500 5000 7500 10000 O 2500 5000 7500 10000
Epoch Epoch Epoch
a b c

Fig 11. Learning curves of the neural network mappings (5) for modified system: a, b and ¢ — lengths of the
training trajectory chunks Lchunk are 1, 10 and 100, respectively. Both training and validation curves are sgown.
On the diagram a the curves coincide
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of trajectories Lcphunk. In Fig. 11 learning curves on the modified system data set are shown.
Vertically the value of the objective function is postponed (9). Fig. 11, a, b, ¢ obtained for
sets data with different lengths of trajectory segments, Lehunk = 1, Lehunk = 10, Lehunk = 100,
respectively. It is clear that what higher L.y, the more the training and validation ones diverge
curves: the target function on the training data remains at the same level, and validation gets
worse.

Since, unlike the training data, the validation data has an adjustment network weighting
coefficients w are not produced, that is, they are not produced adapting the network directly to
this data, comparing the values of the objective function on training and validation data allows
us to judge how well the network has learned to find generalized features, and therefore how well
it will function upon completion of training. Strong discrepancy between validation and training
curves indicate overfitting. It means that the network mostly just remembers the training data.
An example of this behavior is shown in Fig. 11, ¢ — when fragments trajectories are long, the
network more “willingly” remembers them, whereas on at arbitrary points of phase space its
behavior differs noticeably from behavior of the simulated system.

On the other hand, decreasing L.hunk also leads to negative effect. Figures 4, b, ¢ and d
show one-dimensional sections of basins of attraction of different display modes (5) trained with
Lehunk = 10, Lehunk = 1, Lepunk = 100, respectively. Comparing these diagrams from Fig. 4, a,
which is built directly for numerical solutions of the system (1), we see that the network trained
on one-step trajectory segments, Lepunk = 1, does not “see” at all stable fixed point. Absent in
Fig. 4, c the characteristic dark rectangle in the center that is present on all others diagrams.
Retrained network at L¢uunk = 100 is also bad reproduces the features of the dynamics of the
system (1). It is clear that the area stability of a fixed point (width of the dark central rectangle),
and also, the transition point from the burst mode to the spike mode (the border between the
light gray and dark gray areas) differs from the correct values by fig. 4, a. Thus, it is clear that
the optimal value for training neural network mapping (5) for reproduction modified system
Lchunk:10~

For the original system, learning curves are not shown, since they are visual indistinguishable
from the corresponding curves for the modified system on fig. 11. One-dimensional cross-section
of basins of attraction in depending on the Vg parameter for the neural network display (5)
trained with L¢yunk = 10 is shown in Fig. 5, b. It can be seen that it reproduces well the diagram
for modeled system (1).

Thus, to simulate the dynamics of the original and modified versions (1) systems are best
suited for training data sets, containing trajectory segments of length Lcpuni = 10. In the future
we We consider neural network mappings trained on such data sets.

5. Dynamics of neural network mapping

Neural network mapping (5), trained as described above, reproduces well the dynamics of
the original and modified versions systems (1). Figures 1, d, e and f show the time dependences
for the modified system, generated by neural network mapping. There is a very good agreement
with Fig. 1, a, b and ¢, obtained as numerical solutions (1). Similar ones not shown here pairs
of solutions for the original system, since they also correspond well each other and are visually
indistinguishable from those shown in Fig. 1.

Changes in the nature of dynamics depending on the Vg parameter are demonstrated fig. 3.
It can be seen that the neural network mapping reproduces well bifurcation restructuring from
burst to spike attractors as in original (compare Fig. 3, a and ¢), and in modified (compare
fig. 3, b and d) systems. In addition, for the modified system, the neural network mapping
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correctly repeats the bistability region in which the burst attractor coexists with a fixed point.

As mentioned above, in Fig. 4, a and b it is shown that neural network mapping reproduces
with a high degree of accuracy structure of basins of attraction of various modes of the system.
Similar the correspondence of the attraction pools for the original system is shown in fig. 5.

Let us now discuss coupled systems. We are going to demonstrate that if between neural
network mappings trained for single systems, enter connection, they will reproduce the dynamics
of coupled systems (4).

Since in the equations (4) the connection is introduced through the components V; and V3,
when moving to mappings you need to modify the corresponding parts neural network mapping
(5), adding to them the one responsible for connection term proportional to g v:

Vilt A1) = D (A0, m(0), $1(0) + S22 (Vi(1) ~ Va(0)). (11)

Here Fo(l) denotes the right side of the neural network mapping for zero components of the first
subsystem, that is, for Vi. The mapping for V5 is by replacing the indices 1 <+ 2. All other
components are calculated as and earlier, using the appropriate neural network mapping like (5).

Thus, to simulate the dynamics of coupled systems (4) we we will use neural network
mappings trained for single systems, like described in sections 3 and 4, introducing a relationship
between them like (11).

Fig. 6 compares the transformations of the dynamics modes of coupled oscillators (4) with
the corresponding neural network model (11). The left column is obtained based on numerical
solutions to equations (4), and the column on the right is for iterations associated neural network
mappings. Pairs matched original (see fig. 6, a and e), modified (see fig. 6, b and f), and the
original is a modified subsystem (see Fig. 6, ¢, d, g and h). For the latter, cases of two different
values are shown bond strength g.y. A very good correspondence between the drawings can be
seen. Character mode rearrangements, demonstrated by neural network mappings, corresponds
to rearrangements in the system specified by the equations (4). it’s the same illustrated by Fig. 7
and 8, which show examples of solutions for different values of Vg. In these pictures the right
columns are obtained as numerical solutions (4), and on the right are iterations of related neural
network mappings. We see very good compliance across all cases.

Let us now discuss the situation when the behavior of coupled neural network mappings
corresponds to the behavior of the system (4) insufficiently accurately. On Fig. 6, ¢ and d, which
are built for the pair original - modified subsystem with g.y = 0.001 and g.y = 0.01, in the
region of Vg = —36, along with an oscillatory solution there is range of stability of a fixed
point. Note the low saturation of the image this solution, which indicates a low probability of
the system reaching it when starting from random starting points. Also note that the width by
Vs range of existence of a stable fixed point decreases with increasing g.y. The corresponding
neural network mapping reproduces very well stability region of a fixed point at g.1 = 0.001
(compare fig. 6, g and ¢). However, with By increasing g.y to 0.01, it disappears for the neural
network mapping (compare Fig. 6, h and d). This situation analyzed in Fig. 9. Shown here are
one-dimensional cross-sections pools of attraction of different modes depending on Vg for a pair
original-modified system for different force values communications. Fig. 9, a—c are constructed
for solutions of coupled equations (4), and Fig. 9, 6—f — for associated neural network mappings.
The black central area in these pictures represents the values of the variables, starting from
which the system goes to fixed point. With weak coupling, these regions are almost identical
for equations and for neural network mappings. However, as g.y increases modification of the
region occurs in different ways: in both cases it narrows along Vg, but for displays this is faster.
The difference is clearly visible when g,y = 0.006 in Fig. 9, b and e: black central area in the
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picture on the right much narrower than on the left. Further, at g,y = 0.01 the region of exit
to the fixed point for equations is still preserved, and for neural network mappings is no longer
available. This suggests that with increasing coupling strength in the system neural network
mappings, a fixed point completely loses stability earlier than in the simulated equations.
Thus, in general, we can conclude that the associated neural network mappings, trained
separately, generally reproduce well the behavior of related systems For a fixed point there are
minor differences in the boundaries areas of its stability observed when the bond strength changes.

Conclusion

We analyzed the procedure for constructing and training a neural network mapping,
capable of modeling the dynamics of nonlinear systems. Considered in detail the architecture of
such a mapping, the method of generating a data set and the learning process itself. The modeled
system was considered neuron defined by equations based on formalism Hodgkin-Huxley [18].
Distinctive feature of dynamics neuron is rigidity, that is, the presence of very different temporal
the scale of change in variables. This is an additional factor complicating the construction of an
appropriate neural network mapping and requires using a special neural network architecture.
Each variable should be modeled by a separate subnet [17].

The main goal of this work was to show that the proposed neural network display can be
used as part of linked systems. Linked neural network mappings trained for single systems can
without additional training to reproduce the dynamics of relevant related neurons. The example
of connected neurons shows a good correspondence between the dynamics original equations
and associated neural network mappings. Restructuring the nature of behavior reproduced well,
when changing a parameter. In particular, the appearance and disappearance of bistability is
reproduced.

The approach developed in the work is formulated in the most general way form. You
can try to build the considered neural network mapping for any dynamic systems and introduce
arbitrary connections between them. Wherein the question of the limits of its applicability has not
yet been worked out. In particular, it is not clear Is it possible to indicate practically interesting,
not “exotic” examples dynamic systems for which neural network mapping training impossible.
Also of interest is the question of whether neural networks are capable of displays without
additional training are good at reproducing the dynamics of more than two connected systems
with different, including nonlinear, connections. All these questions require further study.
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