
Solitons. Autowaves. Self-Organization
Nonlinear Waves. 

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2024;32(1)

Article DOI: 10.18500/0869-6632-003083

Influence of additive noise on chimera and solitary states in neural networks

A.D. Ryabchenko, E.V. Rybalova�, G. I. Strelkova

Saratov State University, Russia
E-mail: andreyryabchenko.2003@gmail.com, � rybalovaev@gmail.com, strelkovagi@sgu.ru
Received 15.08.2023, accepted 3.10.2023, available online 21.12.2023, published 31.01.2024

Abstract. The purpose of this work is to study numerically the influence of additive white Gaussian noise on
the dynamics of a network of nonlocally coupled neuron models which are represented by FitzHugh–Nagumo
oscillators. Depending on coupling parameters between the individual elements this network can demonstrate
various spatio-temporal structures, such as chimera states, solitary states and regimes of their coexistence (combined
structures). These patterns exhibit different responses against additive noise influences. Methods. The network
dynamics is explored by calculating and plotting snapshots (instantaneous spatial distributions of the coordinate
values at a fixed time), space-time diagrams, projections of multidimensional attractors, mean phase velocity
profiles, and spatial distributions (profiles) of cross-correlation coefficient values. We also evaluate the cross-
correlation coefficient averaged over the network, the mean number of solitary nodes and the probability of
settling spatio-temporal structures in the neuronal network in the presence of additive noise. Results. It has
been shown that additive noise can decrease the probability of settling regimes of solitary states and combined
structures, while the probability of observing chimera states arises up to 100%. In the noisy network of FitzHugh
–Nagumo oscillators exhibiting the regime of solitary states, increasing the noise intensity leads, in general case,
to a decrease of the mean number of solitary nodes and the interval of coupling parameter values within which
the solitary states are observed. However, there is a finite region in the coupling parameter plane, inside which
the number of solitary nodes can grow in the presence of additive noise. Conclusion. We have studied the impact
of additive noise on the probability of observing chimera states, solitary states and combined structures, which
coexist in the multistability region, in the network of nonlocally coupled FitzHugh–Nagumo neuron models. It has
been established that chimera states represent more stable and dominating structures among the other patterns
coexisting in the studied network. At the same time, the probability of settling regimes of solitary states only,
the region of their existence in the coupling parameter plane and the number of solitary nodes generally decrease
when the noise intensity increases.
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Introduction

Real systems inevitably contain various inhomogeneities and noises, which can have both
constructive and destructive effects on the spatiotemporal dynamics of complex systems [1–8].
Noise sources can be used to stabilize and/or effectively control the operating modes of systems
[2–4, 9–13], as well as to improve a number of characteristics of their functioning. Such effects
include, for example, stochastic resonance [1, 6, 14] and coherent resonance [5, 15]. Recently,
special attention has been paid to the influence of noise and inhomogeneities on the dynamics of
networks in coupling with the discovery of new modes of partial synchronization in networks of
coupled systems, namely chimera states [16–20] and solitary states [21,22].

Chimera states were first discovered in ensembles of nonlocally coupled identical phase
oscillators [16, 17]. This special spatiotemporal regime of dynamics represents an intermediate
stage in the transition from the regime of coherent dynamics (synchronization) to incoherent
(spatiotemporal chaos) and corresponds to the coexistence of clusters localized in the space of
the ensemble with coherent (synchronized) and incoherent (desynchronized) dynamics of the
ensemble oscillators. Theoretical and numerical studies have shown that chimeras can arise in
networks with partial elements of different natures and with different topologies of couplings
between them [16–20, 23–31]. This regime of cluster synchronization is observed not only in
computer experiments, but also in real systems, for example, in power grids [32–34], in social
systems [35, 36], as well as in neurobiology [37–39]. It has been shown that states similar to
chimeras occur in the brain during Parkinson’s disease [40], during sleep with one hemisphere
in birds and mammals [41], during eye movements [42, 43], during epileptic seizures [44]. The
stability of chimera states to noise disturbances was studied in networks of nonlocally coupled
of oscillators with discrete [45–51] and continuous time [52–55].

Solitary states represent another important regime of spatiotemporal dynamics, which is
observed in ensembles of coupled oscillators [21,22]. This regime is characterized by the fact that
most of the elements of the system are in some typical state, and the rest belong to other states
(solitary), of which in the general case there may be several. In this case, elements belonging
to solitary states (solitary nodes) are distributed throughout the entire ensemble randomly, but
in a fairly uniform manner, that is, they do not cluster (unless special initial conditions are
used), as happens in the chimera regime. Note that the number of solitary nodes increases as the
coupling strength between network elements decreases. Research has shown that the emergence
of solitary states is associated with the appearance of bistability in the system due to the nonlocal
interaction of partial elements [21,22]. Solitary states were discovered in networks of Kuramoto-
Sakaguchi models and Kuramoto oscillators with inertia [21, 22, 56–58], systems with discrete
time [28,59,60], FitzHugh–Nagumo oscillator systems [61–64], electrical network models [65–67]
and even in experimental setups of coupled pendulums [68]. Regimes similar to solitary states also
occur in neural ensembles in the brain. An example is the reaction of only individual neurons to
certain stimuli [69,70], including the so-called grandmother neurons [71,72], the dynamics of an
ensemble of neurons in the categorization task [73]. In contrast to chimera states, the robustness
of solitary states to noise has been studied very little. For example, in the work [74] it was shown
that the presence of noise in a ring of nonlocally coupled FitzHugh–Nagumo models leads to a
transition from solitary states to “patched synchrony”. The authors of the work [48] found that
in the ring of nonlocally coupled Losi maps, the introduction of additive noise leads to a decrease
in the interval in the parameters of the ensemble in which solitary states are observed, and to a
decrease in the number of solitary nodes, but mainly at the boundaries of the region of existence
of these modes. Noise modulation of control parameters leads to a qualitatively similar effect, as
shown in the work [75].

122
Ryabchenko A.D., Rybalova E.V., Strelkova G. I.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2024;32(1)



This work is aimed at expanding knowledge about the effects that arise when additive
noise acts on chimera and solitary states realized in ensembles of coupled nonlinear oscillators.
This paper examines the dynamics of a ring of nonlocally coupled FitzHugh–Nagumo oscillators,
which are classical models of neural activity. In the works [63, 76] it was shown that in such
a system it is possible to establish many spatio-temporal regimes when varying the coupling
parameters between partial elements. In particular, chimera and solitary states can be observed,
as well as the regime of their coexistence — a combined structure — in the ensemble space. An
analysis is made of the influence of additive noise on the regime of only solitary states, as well as
on the regimes observed in the multistability region: chimera states, solitary states and combined
structures.

1. Model studied and methods used

In this work, we study the dynamics of a ring of nonlocally coupled FitzHugh–Nagumo
oscillators [77, 78] in an oscillatory mode with additive white Gaussian noise added to the slow
variable (inhibitor). The network under study is described by the following system of stochastic
differential equations:

𝜀
𝑑𝑢𝑖
𝑑𝑡

= 𝑢𝑖 −
𝑢3𝑖
3

− 𝑣𝑖 +
σ
2𝑅

𝑖+𝑅∑︁
𝑗=𝑖−𝑅

[𝑏𝑢𝑢(𝑢𝑗 − 𝑢𝑖) + 𝑏𝑢𝑣(𝑣𝑗 − 𝑣𝑖)],

𝑑𝑣𝑖
𝑑𝑡

= 𝑢𝑖 + 𝑎+
σ
2𝑅

𝑖+𝑅∑︁
𝑗=𝑖−𝑅

[𝑏𝑣𝑢(𝑢𝑗 − 𝑢𝑖) + 𝑏𝑣𝑣(𝑣𝑗 − 𝑣𝑖)] +
√
2𝐴ξ𝑖(𝑡),

(1)

where 𝑢𝑖 and 𝑣𝑖 are variables describing the time dynamics of the activator (fast variable) and
inhibitor (slow variable), respectively, 𝑖 = 1, 2, . . . , 𝑁 = 300 is element number in the ring. The
small parameter 𝜀 > 0 is responsible for separating the time scales of the fast activator from the
slow inhibitor (in this work the value is fixed at 𝜀 = 0.05), and the parameter 𝑎 determines the
excitability threshold. In this work, the value of this parameter is assumed to be equal to 𝑎 = 0.5
for all elements, which corresponds to the oscillatory mode of dynamics in a single element.
The 𝑅 parameter specifies the number of right and left nearest neighbors that each 𝑖 element
is coupled with. This parameter is the radius of nonlocal coupling and is fixed at 𝑅 = 105 in
the studies. A type of a nonlocal coupling between oscillators in an ensemble (1) was proposed
in the work [76] and is characterized by a coupling strength of σ. The last term in the second
equation corresponds to the introduction into the system of additive noise with intensity 𝐴, ξ𝑖 are
independent sources of white Gaussian noise. The initial conditions of all elements are randomly
and uniformly chosen inside the circle 𝑢2 + 𝑣2 ⩽ 22.

The system (1) contains not only direct couplings between elements, but also cross couplings
between the activator (𝑢) and the inhibitor (𝑣), which are established in accordance with the
rotational coupling matrix [76]:

𝐵 =

(︂
𝑏𝑢𝑢 𝑏𝑢𝑣
𝑏𝑣𝑢 𝑏𝑣𝑣

)︂
=

(︂
cosφ sinφ
− sinφ cosφ

)︂
, (2)

where φ ∈ [−π,π). In the work [76] it was shown that in a ring of nonlocally coupled FitzHugh–
Nagumo oscillators in the oscillatory mode, chimera states can be observed at φ = π/2− 0.1. In
the work [53] this result was extended to partial elements in the excitable mode in the presence
of additive noise in the system.
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a b

Fig 1. Diagrams of dynamical regimes in the network (1) without additive noise for weak (a) and strong (b)
coupling. SYN — synchronization regime, SS — solitary state, CS — chimera state, INCOH — incoherence regime,
TW — traveling wave regime, SSC-1 and SSC-2 — two different types of a solitary state chimera, CS&SS —
coexistence of chimera and solitary states (combined structure). Other parameters: 𝜀 = 0.05, 𝑎 = 0.5, 𝑅 = 105,
𝑁 = 300, 𝐴 = 0 (color online)

In the work [63] the influence of coupling parameters σ and φ on the dynamics of the ring
(1) in the absence of additive noise (𝐴 = 0) was studied. and a map of dynamic regimes was
constructed (Fig. 1). Abbreviations on the map indicate all regimes observed in different regions
of the parameter space. The first diagram (Fig. 1, a) is constructed for the case of weak coupling,
in which two regimes are observed in the system in the region of small values of φ: the regime of
synchronization of all elements in the ring (SYN) and solitary states (SS). The second fragment of
the regime map corresponds to the case of strong coupling (Fig. 1, b). In this region, in addition
to the already mentioned regimes of complete synchronization (SYN) and solitary states (SS),
regimes of classical chimera states (CS) and solitary state chimeras of two types (SSC-1, SSC-2)
are also observed. SSC-1 has a noncoherent cluster consisting of evenly distributed solitary nodes.
Solitary state chimera type 2 (SSC-2) is also characterized by an incoherence cluster consisting
of uniformly distributed solitary nodes. However, at its boundaries “steps” are formed, which are
groups of solitary nodes. In addition to regions in which only chimera states and only solitary
states are observed, there is a region with combined dynamics corresponding to the coexistence
of chimera and solitary states (CS&SS). In what follows we will call this regime a combined
structure. In the INCOH region, the dynamics of the ring are characterized by an incoherent
instantaneous spatial profile and correspond to the desynchronization regime of all elements of
the ensemble. The TW region corresponds to the traveling wave regime. A more detailed analysis
of the dynamics of a ring of nonlocally coupled FitzHugh–Nagumo oscillators for parameters from
all of the above regions is presented in the work [63].

To analyze the spatiotemporal dynamics of an ensemble of nonlocally coupled elements,
snapshots (spatial distribution of the values of all dynamic variables at a fixed point in time),
space-time diagrams (on the parameter plane “element number (𝑖) - time (𝑡) )” amplitudes of
partial elements) and projections of multidimensional attractors of the system onto the plane of
dynamic variables are displayed in color. However, to obtain a complete picture of the evolution
of various spatiotemporal regimes of the ensemble in the presence of noise impacts, it seems
appropriate to calculate the cross-correlation coefficient between the ensemble elements and
construct the spatial distribution of its values. The cross-correlation coefficient between the first
element of the ensemble and all others is calculated using the following formula:

𝐶1𝑖 =
⟨�̃�1�̃�𝑖⟩√︀

⟨(�̃�1)2⟩⟨(�̃�𝑖)2⟩
, 𝑖 = 2, 3, . . . , 𝑁, (3)
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where �̃�𝑖 = 𝑢𝑖 − ⟨𝑢𝑖⟩, ⟨𝑢𝑖⟩ — averaging of 𝑢𝑖 values over a set of realizations, which in numerical
experiments was replaced by time averaging. The value (3) shows the degree of correlation
or synchronization between the first element of the ensemble and all the others and varies
from −1 to 1, where “1” corresponds to complete in-phase synchronization, “−1” — antiphase
synchronization. In the absence of correlation between elements, this coefficient is equal to 0.
Due to the fact that the correlation coefficient of solitary nodes is less than that of oscillators
belonging to the coherent part of the profile, this coefficient helps to automatically detect solitary
states and count the number of solitary nodes.

In addition to calculating the cross-correlation coefficient for each element (3), the cross-
correlation coefficient averaged over all elements of the ensemble is also used

𝐶 =
1

𝑁

𝑁∑︁
𝑖=1

⟨�̃�1�̃�𝑖⟩√︀
⟨(�̃�1)2⟩⟨(�̃�𝑖)2⟩

, (4)

where the expression under the sum sign corresponds to the cross-correlation coefficient between
the 1-th and 𝑖-th elements of (3). As was shown in the work [75], the averaged cross-correlation
coefficient can be used as an additional value to estimate the number of solitary nodes in the
system. In the case of coherent dynamics we have 𝐶 → 1; for the regime of solitary states, the
value of the averaged cross-correlation coefficient decreases.

To illustrate the differences between the observed spatiotemporal structures in the ensemble
of nonlocally coupled FitzHugh–Nagumo oscillators, the average phase velocity of each element
in the ensemble is also calculated using the formula

𝑤𝑖 = 2π𝑀𝑖/∆𝑇, (5)

where 𝑀𝑖 is the number of complete rotations around the origin of coordinates performed by
the 𝑖-th FitzHugh–Nagumo oscillator during the time interval ∆𝑇 [76]. In these calculations, the
transition time was taken equal to 𝑇0 = 1000 units of dimensionless time, and the time at which
the cross-correlation coefficients and average phase velocity values were calculated was 𝑇 = 2000.

In some cases, along with the average cross-correlation coefficient, the number of solitary
nodes is directly calculated and a characteristic such as “average normalized number of solitary
nodes” is used, which is defined as follows:

𝑁S =
1

𝑀

∑︁
𝑀

𝑆/𝑁, (6)

where 𝑆 is the number of solitary nodes observed for each the initial conditions of the dynamic
variables and the realization of the noise generator, 𝑁 is the total number of elements in the
ensemble, 𝑀 is the total number of realizations used.

2. Impact of noise on modes in the multistability region

In this case, when studying the dynamics of a ring of nonlocally coupled FitzHugh–Nagumo
models, the system parameters were chosen such that in the absence of noise a combined structure
could be observed in the system (see Fig. 1, b, region “CS&SS”, highlighted with dots). In addition
to the combined structure, in this parameter range, depending on the initial conditions, only
chimera states or regimes of only solitary states can also be realized. Moreover, the probability
of establishing regimes of combined structure and purely chimera states is higher than the regime
of solitary states. Fig. 2 illustrates all these three regimes in the absence of additive noise in the
ensemble(1).
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If only chimera states are established in the system, clusters with coherent and incoherent
oscillator dynamics coexist in the ensemble space (Fig. 2, a), projection of a multidimensional
attractor onto the (𝑢, 𝑣) plane qualitatively coincides with the attractor typical of the FitzHugh–
Nagumo oscillator, but there are small fluctuations in amplitude (Fig. 2, a, III). On the profile of
average phase velocities, two dome-shaped dependences are observed in the region of incoherent
clusters (Fig. 2, a, IV), and the cross-correlation coefficient in the region of incoherent clusters
takes values less than one (Fig. 2, a, V). When a regime of only solitary states is established in the
system (Fig. 2, b, I, II), two attractors can be distinguished in the phase portrait of all elements,
where the smaller one corresponds to solitary nodes (Fig. 2, b, III). In this case, the values of
the average phase velocities for all elements are almost equal (Fig. 2, b, IV), and the values of
the cross-correlation coefficient of elements corresponding to solitary nodes are significantly less
than those of other elements (Fig. 2, b, V). In the case of a combined structure (coexistence of
chimeras and solitary states), all the above-described features take place (Fig. 2, c).

When additive noise is added to the ensemble (1), the probability of establishing (from
random initial conditions) the regime of solitary states and the regime of a combined structure
tends to zero, and all considered initial conditions lead to the implementation of chimera states
(Fig. 3). Thus, in the presence of noise of even sufficiently low intensity 𝐴 < 2 · 10−7, solitary
states cease to be established in the system, and at 𝐴 > 7 · 10−6 regimes of combined structures
are no longer observed . Note that there is a noise intensity value, 𝐴 = 5 · 10−6, at which the
establishment of only chimera states and the combined structure regime is equally probable.

Fig. 4 shows the results of calculations of characteristics illustrating the dynamics of a ring
of nonlocally coupled FitzHugh–Nagumo models with the addition of additive noise of different
intensity. At low noise intensity, combined structures may still occur in the system, but in this
case only a few solitary nodes (about 1...3) are observed in the ensemble, which is reflected in
Fig. 4, a. A further increase in noise intensity leads to the establishment of only chimera states

I II III IV V

a

b

c

Fig 2. Dynamics of the noise-free ring network of nonlocally coupled FitzHugh–Nagumo oscillators (1) for the
coupling parameters σ = 0.325, φ = 1.48 and different initial distributions of dynamical variables: chimera
state (a), solitary state (b), and combined structure (c). Space-time diagrams (column I), snapshots (column II),
projections of a multidimensional attractor on the (𝑢, 𝑣) plane (column III), mean phase velocity profiles (column
IV), cross-correlation coefficient profiles (column V). Other parameters: 𝜀 = 0.05, 𝑎 = 0.5, 𝑅 = 105, 𝑁 = 300,
𝐴 = 0 (color online)
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Fig 3. Probabilities of settling chimera states P(CS),
solitary state regime P(SS), and combined structure
regime P(CS&SS) in the network of FitzHugh–
Nagumo oscillators versus the noise intensity 𝐴. The
dependences are plotted using 100 different sets of
initial conditions. Other parameters: 𝜀 = 0.05, 𝑎 = 0.5,
𝑅 = 105, 𝑁 = 300 (color online)

in the ensemble (Fig. 4, b, c).

3. Impact of noise on solitary states

Let us analyze the influence of independent sources of additive normal white noise on the
dynamics of the ensemble of FitzHugh–Nagumo oscillators (1) at values of the ensemble control
parameters that correspond to the establishment of a regime of solitary states in the region of
weak and strong coupling (see Fig. 1, blue areas).

Fig. 5 shows the distribution of the values of the correlation coefficient (4) in accordance
with the regime maps shown in Fig. 1. It can be seen that in the region that corresponds to
the presence of solitary nodes in the system, the cross-correlation coefficient averaged over the
ensemble is 𝐶 ≈ 0.96 (compare Fig. 1 and Fig. 5). This value of 𝐶 corresponds to the presence of

I II III IV V

a

b

c
Fig 4. Dynamics of the network of nonlocally coupled FitzHugh–Nagumo oscillators for different values of the noise
intensity: 𝐴 = 10−7 (a), 10−6 (b), 10−5 (c). Space-time diagrams (column I), snapshots (column II), projections
of a multidimensional attractor on the (𝑢, 𝑣) plane (column III), mean phase velocity profiles (column IV), cross-
correlation coefficient profiles (column V). Other parameters and initial conditions corresponds to the structure
in Fig. 2, c (color online)

Ryabchenko A.D., Rybalova E.V., Strelkova G. I.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2024;32(1) 127



a small number of solitary nodes in the system. As mentioned earlier, the correlation coefficient
can only qualitatively display changes in the number of solitary nodes with increasing intensity
of additive noise, but it allows us to monitor changes in the region of existence of solitary states.

In this regard, the distribution of values of averaged cross-correlation coefficients at different
intensities of additive noise was constructed for one realization of random initial conditions of
ensemble elements (Fig. 6). As can be seen, both regions of existence of solitary states decrease
with increasing noise intensity. However, the region that is in the weak coupling range is more
resistant to external influences (Fig. 6, a–d) than the one that is in the strong coupling range
( fig. 6, e–h). Studies have shown that the region in which solitary state modes are observed in
weak coupling completely disappears at 𝐴 ≈ 7 ·10−4, while in the case of strong coupling, a noise
intensity one order of magnitude less than 𝐴 ≈ 7 · 10−5 so that solitary nodes are not observed
in the ensemble.

For a more detailed study of the influence of additive noise on solitary states in a ring
of nonlocally coupled FitzHugh–Nagumo oscillators, the dependence of the average number of
solitary nodes on the coupling strength between elements and the intensity of additive noise
was analyzed for fixed values of the φ parameter in the range of weak (Fig. 7, a) and strong
coupling (Fig. 7, b). In this case, one realization of randomly distributed initial values of dynamic
variables and ten different realizations of independent white Gaussian noise sources were used. As
you can see, with a weak coupling the number of solitary nodes is less than with a strong coupling
(compare the range of colorboxes of 𝑁S in Fig. 7, a and 7, b). Moreover, the dependence of the
number of solitary nodes on σ and 𝐴 in the weak coupling interval, having a dome-shaped shape,
is qualitatively reminiscent of the dependences that were observed in the rings of nonlocally
coupled Lozi maps studied in the work [48]. The region of existence of solitary states in the
case of strong coupling has a more linear left boundary (see Fig. 7, b). However, in all cases,
an increase in the noise intensity leads predominantly to a decrease in the number of solitary
nodes and the range of parameter values σ in which they are observed. Only in the case of weak
coupling at σ ≈ 0.119 can one observe that at 𝐴 = 0 the number of solitary nodes tends to 0, and
at 𝐴 > 0 it can be at the level of 𝑃 ≈ 0.006 (which corresponds to the presence of two or three
solitary nodes in the ensemble), however, when 𝐴 > 0.002 the value of 𝑁S again decreases to 0
(see Fig. 7, a) . The same is observed in the distribution maps of the average cross-correlation
coefficient for the case of weak coupling, when, with increasing noise intensity, the region of
existence of solitary states decreased and slightly shifted to the right towards larger σ values (see
Fig. 6, a–d).

a b

Fig 5. Distributions of averaged cross-correlation coefficient (4) values in the noise-free network (1) for weak (a)
and strong (b) coupling. Other parameters: 𝜀 = 0.05, 𝑎0 = 0.5, 𝑅 = 105, 𝑁 = 300, 𝐴 = 0 (color online)
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a b c d

e f g h
Fig 6. Distribution diagrams for the averaged cross-correlation coefficient (4) in the network (1) in the (σ,φ)
parameter plane for weak (a–d) and strong (e–h) coupling for different values of the noise intensity: 𝐴 =
0.000005 (a), 0.000025 (b), 0.000100 (c), 0.000200 (d), 0.000005 (e), 0.000010 (f ), 0.000025 (g), 0.000050 (h).
Other parameters: 𝜀 = 0.05, 𝑎0 = 0.5, 𝑅 = 105, 𝑁 = 300 (color online)

a b

Fig 7. Mean normalized number of solitary nodes 𝑁S in the network of coupled FitzHugh–Nagumo oscillators
in the (σ, 𝐴) parameter plane for weak (a) and strong (b) coupling and for fixed values of the parameter φ:
0.52 (a), 1.4 (b). Calculations were performed for a single realization of randomly distributed initial conditions
of the dynamical variables and 10 different noise realizations (𝑀 = 10). Other parameters: 𝜀 = 0.05, 𝑎0 = 0.5,
𝑅 = 105, 𝑁 = 300 (color online)

Conclusion

The paper presents the results of numerical simulation of the dynamics of an ensemble of
nonlocally coupled FitzHugh–Nagumo oscillators in the presence of additive noise. To analyze
the influence of noise, we selected the values of the control coupling parameters corresponding to
the multistability region, in which, depending on the initial conditions, chimera states, solitary
state modes and combined structures can be observed, as well as the corresponding existing in
the ensemble of only the solitary state (in the range of weak and strong coupling ).

It is shown that in the ring of nonlocally coupled FitzHugh–Nagumo oscillators, the effect
of additive noise on regimes occurring in the multistability region leads to an increase in the
probability of establishing only chimera states, while the probabilities of observing other regimes
decrease to zero with increasing noise intensity. Thus, in the presence of additive noise influence,
chimera states manifest themselves as more stable and dominant structures among all others
coexisting in the ensemble.

When additive noise is introduced into the ensemble under study, which in the absence
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of noise exhibits only solitary state, an increase in the noise intensity in the general case leads
to a decrease in the range of coupling parameters in which solitary states are observed and to
a decrease in the number of solitary nodes, which also occurred in rings of nonlocally coupled
Lozi maps [48]. However, in a ring of nonlocally coupled FitzHugh–Nagumo oscillators, in the
case of weak coupling, the introduction of additive noise can promote the appearance of solitary
states with a coupling strength approximately 0.04 greater than the maximum coupling strength
at which solitary nodes were observed in the noise-free ensemble.
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45. Malchow A-K, Omelchenko I, Schöll E, Hövel P. Robustness of chimera states in nonlocally
coupled networks of nonidentical logistic maps. Physical Review E. 2018;98(1):012217.
DOI: 10.1103/PhysRevE.98.012217.

46. Bukh AV, Slepnev AV, Anishchenko VS, Vadivasova TE. Stability and noise-induced tran-
sitions in an ensemble of nonlocally coupled chaotic maps. Regular and Chaotic Dynamics.
2018;23(3):325–338. DOI: 10.1134/S1560354718030073.

47. Rybalova EV, Klyushina DY, Anishchenko VS, Strelkova GI. Impact of noise on the
amplitude chimera lifetime in an ensemble of nonlocally coupled chaotic maps. Regular
and Chaotic Dynamics. 2019;24(4):432–445. DOI: 10.1134/S1560354719040051.
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network of excitable elements. Physical Review Letters. 2016;117(1):014102. DOI: 10.1103/
PhysRevLett.117.014102.

54. Zakharova A, Loos S, Siebert J, Gjurchinovski A, Schöll E. Chimera patterns: influence of
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58. Berner R, Polanska A, Schöll E, Yanchuk S. Solitary states in adaptive nonlocal oscillator
networks. The European Physical Journal Special Topics. 2020;229(12–13):2183–2203.
DOI: 10.1140/epjst/e2020-900253-0.

59. Semenova NI, Rybalova EV, Strelkova GI, Anishchenko VS. “Coherence–incoherence” transi-
tion in ensembles of nonlocally coupled chaotic oscillators with nonhyperbolic and hyperbolic
attractors. Regular and Chaotic Dynamics. 2017;22(2):148–162. DOI: 10.1134/S15603
54717020046.

60. Semenova N, Vadivasova T, Anishchenko V. Mechanism of solitary state appearance in an
ensemble of nonlocally coupled Lozi maps. The European Physical Journal Special Topics.
2018;227(10–11):1173–1183. DOI: 10.1140/epjst/e2018-800035-y.
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