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Abstract . The purpose of this work is a study of the dynamics of the systems of ordinary differential equations
of the second order, which is obtained using the Lagrange formalism. These systems describe the parametric
interaction of oscillators (modes) in the presence of a general quadratic or cubic nonlinearity. Also, we compare
the dynamics of the systems of ordinary differential equations of the second order and dynamics of the Vyshkind
–Rabinovich and Rabinovich–Fabrikant models in order to determine the possibilities of the latter models when
modeling coupled oscillators of the above type. Methods. The study is based on the numerical solution using the
methods of the theory of the obtained analytically differential equations. Results. For both systems of second-
order differential equations, is was presented a chart of in the parameter plane, a graphs of Lyapunov exponents
at the value of the parameter that specifies the dissipation of oscillators, a time dependences of the generalized
coordinates of oscillators and its amplitudes, portraits of attractors, a projection of the attractors on a phase
planes of oscillators. A comparison with the dynamics of the Vyshkind–Rabinovich and Rabinovich–Fabrikant
models is carried out. These models are three-dimensional real approximations of the above systems obtained by
the method of slowly varying amplitudes. Conclusion. The study of the constructed systems showed that in the
parameter space there are regions corresponding to both various regular regimes, such as the equilibrium position,
limit cycle, two-frequency tori, and chaotic regimes. For both systems, it was shown that the transition to chaos
occurs as a result of a sequence of period doubling bifurcations of the tori. In addition, a comparison of the
dynamics of the constructed systems with the dynamics of the Vyshkind– Rabinovich and Rabinovich–Fabrikant
models allows us to assert that if the Vyshkind–Rabinovich model predicts the dynamics of the corresponding
initial system well enough, then the Rabinovich–Fabrikant model does not have such a property.
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Introduction

Parametric interaction of wave or vibrational modes in nonlinear systems occurs in various
fields of natural science [1–9]. A general model describing such interaction is a system called
a resonant triplet, assuming that in a nonlinear system there is a weak interaction of three
vibrational modes (the main mode and its two satellites), the frequencies of which satisfy the
condition of parametric resonance. The simplest case refers to a degenerate parametric resonance,
when the frequencies of the satellites are the same and the problem is reduced to considering the
interaction of two vibrational modes. This assumption facilitates consideration and makes the
analysis more understandable, since the dynamics depend on a smaller number of parameters.

One example of such systems is the Vyshkind-Rabinovich [8] and Rabinovich-Fabrikant [9]
models proposed in the 70s of the last century. In the work [8] the authors considered the problem
of weak interaction on the quadratic nonlinearity of three vibrational modes, the frequencies of
which are subject to the parametric resonance condition ω2 = ω1 + ω0. Moreover, if in such
a system a high-frequency mode is excited due to linear instability, and low-frequency modes
are characterized by damping, then saturation of oscillations will be observed, determined by
parametric decay. For the case of degenerate resonance, the authors of the work [8] obtained a
model in the form of a system of three first-order differential equations:

�̇� = 𝑧 + δ𝑦 − 2𝑦2 + γ𝑥,

�̇� = −δ𝑥+ 2𝑥𝑦 + γ𝑦,

�̇� = −2𝑧(𝑥+ 1).

(1)

Here 𝑥, 𝑦, 𝑧 are dynamic variables, and γ and δ are parameters. The works [8,10] show that the
dynamics of such a system can become chaotic, and the transition to chaos occurs through a
sequence of bifurcations doubling the period of the limit cycle (Fig. 1, a).

The second model was obtained in the work [9]. In it, the authors considered the problem
of modulation instability and the emergence of chaos during the parametric interaction of three
modes in a nonequilibrium dissipative medium with cubic nonlinearity and a spectrally narrow
gain. As for the previous model, in the case of degenerate resonance, the problem is reduced, under
a number of simplifying assumptions, to a finite-dimensional system of differential equations for

Fig 1. a — Chart of dynamical regimes of the Vyshkind–Rabinovich model (1) at (δ, γ) parameter plane. The
chart taken from the work [10]. Blue color corresponds to the period one limit cycle, the green color correspond to
the period two limit cycle, the red color correspond to the period four limit cycle, etc., the black color correspond
to the chaos. b — Chart of dynamical regimes of the Rabinovich–Fabrikant model (2) at parameter plane (ν, γ).
The chart taken from a work [18]. At the chart the blue color correspond to the equilibrium point, the light blue
color correspond to the period one limit cycle, the yellow color correspond to the period two limit cycle, the
red color correspond to the period four limit cycle, etc., the black color correspond to the chaos, the white color
correspond to the regime when the trajectory go to infinity (color online)
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three real variables
�̇� = 𝑦(𝑧 − 1 + 𝑥2) + γ𝑥,

�̇� = 𝑥(3𝑧 + 1− 𝑥2) + γ𝑦,

�̇� = −2𝑧(υ+ 𝑥𝑦),

(2)

where 𝑥, 𝑦, 𝑧 are dynamic variables, and γ and ν are parameters. Research in recent years has
shown that the system (2) demonstrates quite rich dynamics: regular and chaotic attractors of
different topologies, multistability, etc., and the transition to chaos, as for the previous model,
occurs through a sequence of period doubling bifurcations limit cycle (Fig. 1, b) [11–20].

Note that the Vyshkind-Rabinovich (1) and Rabinovich–Fabrikant (2) models are universal
in nature, since they describe systems of various physical natures, many of which have practical
significance [1, 2, 6, 11,21,22].

Note, however, that both models were obtained under a number of simplifying assumptions
for special cases of nonlinear equations with respect to complex amplitudes, which are generaliza-
tions of the well-known Landau model, and quadratic and cubic nonlinearities selected in a
certain way. At the same time, in the work [19] the authors proposed a methodology based on the
Lagrange mechanical formalism, which makes it possible to describe the parametric interaction of
oscillators (oscillatory modes) in systems with a general nonlinearity using a system of ordinary
differential equations (oscillator type) of the second order with respect to real variables. The
idea of the method proposed in the work [19] is as follows. Let there be a system of oscillators
described by the Lagrange equation:

𝑑

𝑑𝑡

(︂
𝜕𝐿

𝜕�̇�𝑗

)︂
− 𝜕𝐿

𝜕𝑥𝑗
= − 𝜕𝑅

𝜕�̇�𝑗
, 𝑗 = 1, 2, . . . , 𝑁. (3)

Here

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑁 ) =
1

2

𝑁∑︁
𝑛=1

(𝑚𝑛�̇�
2
𝑛 − 𝑘𝑛𝑥

2
𝑛)− 𝑈(𝑥1, 𝑥2, . . . , 𝑥𝑁 ) (4)

Lagrange function, and

𝑅(𝑥1, 𝑥1, . . . , 𝑥𝑁 ) =
𝑁∑︁

𝑛=1

𝑝𝑛γ̄𝑛�̇�2𝑛 (5)

Rayleigh function, which determines the dissipation entering the system. The interaction potential
𝑈(𝑥1, 𝑥2, . . . , 𝑥𝑁 ) is specified by a polynomial, the degree of which depends on what kind of
nonlinearity is required and which is completely symmetric with respect to the permutation of
oscillators. Then the Lagrange equations can be written as follows

�̈�𝑗 + 2𝑝𝑗
γ̄𝑗
𝑚𝑗

�̇�𝑗 + ω2𝑗𝑥𝑗 +
1

𝑚𝑗

𝜕𝑈

𝜕𝑥𝑗
= 0, 𝑗 = 1, 2, . . . , 𝑁. (6)

Here 𝑥𝑗 are generalized coordinates of oscillators, γ̄𝑗 are dissipation coefficients of oscillators,
ω𝑗 =

√︀
𝑘𝑗/𝑚𝑗 — natural frequencies of oscillators, 𝑚𝑗 — masses of oscillators. Note that the

value 𝑝𝑛 will take the following values: 𝑝𝑛 = −1 if the dissipation coefficient is negative, and
𝑝𝑛 = 1 if it is positive. Obviously, the specific form of the system (6) will depend on the number
of oscillators, the type of interaction potential, and the resonant condition imposed on the natural
frequencies of the oscillators.

In this work, we study the simplest case—the parametric interaction of two oscillators
(oscillatory modes). Two systems are considered. The first is a system of two (the main mode
and its satellite) parametrically interacting oscillators in the presence of a general quadratic
nonlinearity, and the second is in the presence of a general cubic nonlinearity. For both systems,
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we choose the dissipation coefficients to be positive for the satellite and negative for the main
mode. And the resonance conditions are respectively the same as for the Vyshkind-Rabinovich
(case of quadratic nonlinearity) and Rabinovich-Fabrikant (case of cubic nonlinearity) models.
The dynamics of both systems were studied numerically: in the space of selected parameters,
regions of regular and chaotic dynamics were found and their transformation was studied when
the remaining parameters included in the equations changed; the transition from regular to
chaotic dynamics is described. A comparison of the obtained results with the results known for
the Vyshkind-Rabinovich and Rabinovich-Fabrikant models was carried out in order to determine
their capabilities and limitations when modeling coupled oscillators of the above type.

1. Parametric interaction of two oscillators
in the case of general quadratic nonlinearity

First, let us consider the problem of the parametric interaction of two oscillators (oscillatory
modes) in the presence of a general quadratic nonlinearity. In this case, we write the interaction
potential 𝑈(𝑥1, 𝑥2, . . . , 𝑥𝑁 ) in the following form:

𝑈(𝑥1, 𝑥2) = −1

3
(𝑥31 + 𝑥32)− µ(𝑥21𝑥2 + 𝑥22𝑥1), (7)

where µ is a parameter characterizing the nonlinear interaction (nonlinearity parameter), and
the Rayleigh function will be written as

𝑅(𝑥1, 𝑥2) = −γ̄1�̇�21 + γ̄2�̇�22. (8)

Then the Lagrange equations (6) can be written explicitly as follows:

�̈�1 + 2
γ̄1
𝑚1

�̇�1 + ω21𝑥1 −
1

𝑚1
(𝑥21 + 2µ𝑥1𝑥2 + µ𝑥22) = 0,

�̈�2 − 2
γ̄2
𝑚2

�̇�2 + ω22𝑥2 −
1

𝑚2
(𝑥22 + 2µ𝑥1𝑥2 + µ𝑥21) = 0.

(9)

Next, for convenience of research, we introduce new parameters. Namely γ𝑗 = γ̄𝑗/𝑚𝑗 — dissipation
parameter and α𝑗 = 1/𝑚𝑗 — nonlinear interaction parameter. Then the system (9) will take the
form:

�̈�1 + 2γ1�̇�1 + ω21𝑥1 − α1(𝑥21 + 2µ𝑥1𝑥2 + µ𝑥22) = 0,

�̈�2 − 2γ2�̇�2 + ω22𝑥2 − α2(𝑥22 + 2µ𝑥1𝑥2 + µ𝑥21) = 0.
(10)

Here the main mode corresponds to the oscillator with the index 2, and the satellite corresponds
to the index 1. Note that in what follows we will study the system (10), which we will call the
original system.

Let the resonance condition have the form ω2 ≈ 2ω1. Then, assuming that nonlinearity and
dissipation are small, that is, the amplitudes of the oscillators change slightly over a characteristic
time interval, we apply the method of slow amplitudes to the system (10). To do this, let us
represent the generalized coordinates of the oscillators in the form

𝑥1 = 𝐴1𝑒
𝑖ω1𝑡 +𝐴*

1𝑒
−𝑖ω1𝑡,

𝑥2 = 𝐴2𝑒
𝑖ω𝑡 +𝐴*

2𝑒
−𝑖ω𝑡,

(11)

and impose an additional condition

�̇�1𝑒
𝑖ω1𝑡 − �̇�*

1𝑒
−𝑖ω1𝑡 = 0,

�̇�2𝑒
𝑖ω𝑡 − �̇�*

2𝑒
−𝑖ω𝑡 = 0,

(12)
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Fig 2. Charts of Lyapunov exponents of the system (10) and its enlarged fragment at (δ, γ2) parameter plane. a
— ω1 = 6π, ω2 = 2ω1 − δ, γ1 = 1, µ = 1, α1 = 1, α2 = 1; b — ω1 = 6π, ω2 = 2ω1 − δ, γ1 = 0.25, µ = 1, α1 = 1,
α2 = 1; c — ω1 = 6π, ω2 = 2ω1 − δ, γ1 = 1, µ = 0.25, α1 = 1, α2 = 1; d — ω1 = 6π, ω2 = 2ω1 − δ, γ1 = 1, µ = 1,
α1 = 1, α2 = 0.5; e — ω1 = 60π, ω2 = 2ω1 − δ, γ1 = 1, µ = 1, α1 = 1, α2 = 1 (color online)

where 𝐴𝑗 are the complex amplitudes of the oscillators, and ω = 2ω1.
After substituting expressions (11), (12) into equations (10), averaging over time and

bringing similar terms for new complex amplitudes 𝑎𝑗 , where

𝑎1 =
µ
√
α1α2
2ω1

𝐴1,

𝑎2 =
µα1
ω1

𝐴2,

(13)

we obtain the following amplitude equations:

�̇�1 + 2γ1𝑎1 = −𝑖𝑎*1𝑎2,

�̇�2 − 2γ2𝑎2 − 𝑖δ𝑎2 = −𝑖𝑎21,
(14)

where δ = ω1 − ω = ω2 − 2ω1 — frequency detuning from resonance. Note that the system
(14) coincides with a similar system obtained in the works [8, 10], which, when moving to real
amplitudes and phases, is reduced to the Vyshkind–Rabinovich model (1), if we put γ1 = 1,
γ2 = γ, δ = −δ. It is obvious that for the system (14), acting similarly to the works [8, 10], it is
possible to obtain a modification of the Vyshkind–Rabinovich model (1), in which the parameter
γ1. However, as will be shown below, the influence of the dissipation parameter γ1 on the dynamics
of the system (10) consists only of rescaling the parameter plane. Therefore, in this work we will
limit ourselves to only studying the dynamics of the system (10).

Now let us study the dynamics of the system (10). To begin with, let’s construct maps of
Lyapunov exponents for it on the parameter plane (δ, γ2) (Fig. 2). They were built as follows. At
each point of the plane, four (full spectrum) Lyapunov exponents were numerically calculated1, as

1The equality of Lyapunov exponents to zero was checked with an accuracy of tolerance, the value of which was
10−4; the accuracy of calculating the indices themselves was about 10−5 . The calculation time for the indicators
was 107. It should be noted that the appearance of maps on the parameter plane does not change significantly
with increasing duration and accuracy of calculations.
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Fig 3. Graphs of Lyapunov exponents of the system (10) at the value of the parameter γ2. ω1 = 6π, ω2 = 2ω1−δ,
γ1 = 1, µ = 1, α1 = 1, α2 = 1, δ = 0.08 (color online)

was done, for example, in the works [23–25]. After which the point was painted in a certain color
depending on the signature of the indicators. The maps presented in Fig. 2 use the following color
palette: yellow color corresponds to a two-frequency torus, when the first and second indicators
are zero, and the third and fourth are negative; black color corresponds to the chaotic mode —
the highest indicator is positive, the second and third are zero, and the fourth is negative.

Fig. 2, a shows the map of indicators of the Lyapunov system (10), constructed for the
following parameter values ω1 = 6π, ω2 = 2ω1 − δ, γ1 = 1, µ = 1, α1 = 1, α2 = 1 , that is,
for the case when the system (14) completely coincides with a similar system obtained in the
works [8, 10]. In other words, this is the case where the Vyshkind–Rabinovich model (1) can be
considered as a three-dimensional real approximation of the original system (10). Accordingly,
one can compare their dynamics. From a comparison of Fig. 2, a and Fig. 1, a it is clear that,
up to a scale transformation along the axes, very good correspondence. Namely, in the upper
part of both maps there are areas of regular dynamics. In the case of the Vyshkind–Rabinovich
model (1) these are limit cycles of various periods, and in the case of the system (10) these
are two-frequency tori. In the lower part of both maps, areas of chaotic dynamics are observed,
within which there are areas of regular dynamics. It is easy to show that as the parameter γ2
decreases in the system (10), similarly to the Vyshkind–Rabinovich model (1), a transition to
chaos will be observed through a sequence of period doubling bifurcations, only Now it is not
the limit cycles that will double, but the tori. To show this, for the system (10) we plot the
dependence of the Lyapunov exponents on the parameter γ2 at a fixed value of the parameter
δ = 0.08. The corresponding graph is presented in Fig. 3.

From Fig. 3 it is clear that for parameter values γ2 > 0.31 the first and second indicators
are zero, and the third and fourth are negative, which corresponds to a dynamic regime in the
form of a two-frequency torus. In this case, the change in the value of the third exponent with
decreasing parameter γ2 is typical for systems in which there is a transition to chaos through a
sequence of period doubling bifurcations [26]. Namely, its value first decreases in absolute value
until it touches the axis Λ𝑗 = 0, then increases, etc. In Fig. 4, a, textitb presents the time
dependences of the generalized coordinates of the oscillators 𝑥1 and 𝑥2 (left column), as well
as the values of |𝑎1| and |𝑎2| (middle column) for a torus of period one (Fig. 4, a) and a torus
of period two (Fig. 4, b ). The Lyapunov exponents are respectively Λ1 = 0.00000 ± 0.00001,
Λ2 = 0.00000±0.00001, Λ3 = −0.11171±0.00001, Λ4 = −0.98831±0.00001 and Λ1 = 0.00000±
0.00001, Λ2 = 0.00000± 0.00001, Λ3 = −0.09324± 0.00001, Λ4 = −1.20678± 0.00001.
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Fig 4. At the left column present the time dependencies of the generalized coordinates of oscillators 𝑥1, 𝑥2 of the
system (10). At the middle column present the time dependencies of the |𝑎1|, |𝑎2| of the system (10). At the right
column present the projection of the attractors on a (𝑥1, 𝑦1) and (𝑥2, 𝑦2) plane of the system (10). a — The
two-frequency period one torus, γ2 = 0.45; b — the two-frequency period two torus, γ2 = 0.35; c — the chaos,
γ2 = 0.2. Other parameters are ω1 = 6π, ω2 = 2ω1 − δ, δ = 0.08, γ1 = 1, µ = 1, α1 = 1, α2 = 1
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With a further decrease in the parameter γ2, the leading Lyapunov exponent becomes
positive and a chaotic regime is observed in the system (10). The corresponding time dependences
of the generalized coordinates of the oscillators 𝑥1 and 𝑥2 (left column) and the quantities |𝑎1| and
|𝑎2| (middle column) are presented in Fig. 4, c, and the Lyapunov exponents have the values Λ1 =

= 0.06233±0.00001, Λ2 = 0.00000±0.00001, Λ3 = 0.00000±0.00001, Λ4 = −1.66311±0.00001.
Note that all temporary implementations in Fig. 4 demonstrate behavior typical for the presented
modes.

The right column of Fig. 4 shows the projections of the corresponding attractors of the
system (10) on the plane of generalized coordinates of the first and second oscillators. Thus, in
Fig. 4, a an attractor is presented in the form of a torus of period one, in Fig. 4, b — an attractor
in the form of a torus of period two, and in Fig. 4, c — a chaotic attractor. Note that the ranges
of changes in the generalized velocities of the oscillators 𝑦1, 𝑦2 and the generalized coordinates
of the oscillators 𝑥1, 𝑥2 differ by an order of magnitude. Also, the projections of attractors
corresponding to tori, regardless of their period, have a clearly defined internal structure, but a
chaotic attractor does not have such a structure.

Note that the system (10) contains a fairly large number of parameters, so the next step in
the study is obviously to analyze how changing these parameters affects its dynamics. First, let
us change the dissipation parameter γ1. The corresponding map of Lyapunov system exponents
(10) is presented in Fig. 2, b. From a comparison of this figure with Fig. 2, a it is clear that
the dissipation parameter γ1 plays the role of a scale factor. Reducing it causes the map to
shrink along both axes. As a result, the transition from regular to chaotic regimes occurs at
significantly lower values of the parameter γ2, and in the chaos region on the right, new structures
corresponding to regular regimes appear (compare Fig. 2, textita and 2, c).

Now let us consider how the dynamics of the system (10) are influenced by the parameters
characterizing the nonlinear interaction. Namely, the parameters µ and α1,2. Fig. 2, c shows
the map of Lyapunov system exponents (10), constructed for µ = 0.25. From a comparison of
Fig. 2, a and 2, c it is clear that the maps constructed for µ = 1 and µ = 0.25 look almost
identical, demonstrating only a slight downward shift in the transition boundary from regular
to chaotic regimes. Note, however, that at µ = 0 the system (10) turns into a system of two
uncoupled oscillators. In this case, the dissipation of the first oscillator is positive, and the
dissipation of the second is negative, that is, the oscillations of the first oscillator will decay,
and the second will increase indefinitely (run away to infinity). In the case of µ ̸= 0, even if µ is
very small, there will be parametric interaction between the oscillators in the system (10). This
will lead to an exchange of energy between the oscillators and when the parameter µ exceeds a
certain threshold value in the system, saturation of oscillations will be observed. Fig. 5 shows the
dependence graphs of the functions 𝑈1 = 𝑥21 + 2µ𝑥1𝑥2 + µ𝑥22 and 𝑈2 = 𝑥22 + 2µ𝑥1𝑥2 + µ𝑥21 from
the parameter µ, illustrating this process . The graphs are plotted for the following parameter
values: ω1 = 6π, ω2 = 2ω1 − δ, δ = 0.08, γ1 = 1, γ2 = 0.45, α1 = 1, α2 = 1. The figure shows
that for µ = 0, 𝑈1 = 0, and 𝑈2 → ∞. As µ increases, 𝑈1 increases, and 𝑈2 decreases, and at
µ ≈ 0.16 their values become the same. If we continue to increase the parameter µ, then the
values of 𝑈1 and 𝑈2, although they change slightly, will remain close. Thus, the µ parameter is
responsible for establishing oscillation saturation in the system (10). As soon as this happens
(µ > 0.16), the parameter µ weakly, especially in comparison with, for example, the dissipation
parameter, affects the dynamics of the system under consideration. Therefore, all studies of the
system (10) were carried out in that region of the parameter space where saturation of oscillations
was established.

And finally, let us change the frequency of the first oscillator ω1, increasing it tenfold.
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Fig 5. Graphs of the functions 𝑈1,2 at the value of the parameter µ. ω1 = 6π, ω2 = 2ω1 − δ, δ = 0.08, γ1 = 1,
γ2 = 0.45, α1 = 1, α2 = 1

The corresponding map of Lyapunov system exponents (10) is presented in Fig. 2, e. From
a comparison of the figures (see Fig. 2, a and Fig. 2, e) it is clear that the increase in the
frequencies of the first oscillator, as well as and changing the dissipation parameter leads to
a large-scale transformation of the map: the observed picture of areas of regular and chaotic
regimes is compressed along the axes. As a consequence, the transition from regular regimes to
chaos occurs at lower values of the parameter γ2.

In conclusion of this part, we note that not all terms included in the interaction potential
𝑈(𝑥1, 𝑥2) are resonant and contribute to the amplitude equations (14). However, if in the
equations of the system (10) we leave only resonant terms, namely 2µ𝑥1𝑥2 in the first equation
and µ𝑥21 in the second , then the dynamics of the system (10) will remain virtually unchanged:
again, only a large-scale transformation of the parameter space will take place. Therefore, it can
be argued that the non-resonant terms included in the interaction potential 𝑈(𝑥1, 𝑥2) have little
effect on the dynamics of the system (10).

2. Parametric interaction of two oscillators
in the case of cubic nonlinearity of general form

Now let us consider the problem of the parametric interaction of two oscillators (oscillatory
modes) in the presence of a cubic nonlinearity of a general form. In this case, the interaction
potential 𝑈(𝑥0, 𝑥1) will take the following form:

𝑈(𝑥0, 𝑥1) =
1

4

(︀
𝑥40 + 𝑥41

)︀
+ β

(︀
𝑥30𝑥1 + 𝑥31𝑥0

)︀
+

3

2
µ𝑥21𝑥

2
1. (15)

Here µ, β are parameters characterizing nonlinear interaction (nonlinearity parameters). In turn,
we write the Rayleigh function in the form:

𝑅(𝑥0, 𝑥1) =
1

2

(︀
γ̄0�̇�20 − γ̄1�̇�21

)︀
. (16)

Then the Lagrange equations (6) take the form

�̈�0 − γ0�̇�0 + ω20𝑥0 + α0
(︀
𝑥30 + β(3𝑥

2
0𝑥1 + 𝑥31) + 3µ𝑥0𝑥21

)︀
= 0,

�̈�1 + γ1�̇�1 + ω21𝑥1 + α1
(︀
𝑥31 + β(3𝑥

2
1𝑥0 + 𝑥30) + 3µ𝑥1𝑥20

)︀
= 0.

(17)
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Here, as in the previous section, new parameters are introduced: γ𝑗 = γ̄𝑗/𝑚𝑗 — dissipation
parameter and α𝑗 = 1/𝑚𝑗 — nonlinear interaction parameter. In this case, the main mode
corresponds to the oscillator with the index 0, and the satellite corresponds to the index 1. Note
that in what follows the system (17) will be called the original system.

Let the resonance condition have the form ω0 ≈ ω1. Then, similarly to the previous section,
under the assumption of low nonlinearity and dissipation, we apply the method of slow amplitudes
to the system (17), representing the generalized coordinates of the oscillators in the form

𝑥0 = 𝑎0𝑒
𝑖ω0𝑡 + 𝑎*0𝑒

−𝑖ω0𝑡,

𝑥1 = 𝑎1𝑒
𝑖ω1𝑡 + 𝑎*1𝑒

−𝑖ω1𝑡,
(18)

and imposing an additional condition

�̇�0𝑒
𝑖ω0𝑡 − �̇�*0𝑒

−𝑖ω0𝑡,

�̇�1𝑒
𝑖ω1𝑡 − �̇�*1𝑒

−𝑖ω1𝑡,
(19)

where 𝑎𝑗 are the complex amplitudes of the oscillators.
Let us substitute the expressions (18), (19) into the equations (17). Proceeding similarly

to the works of [9,19], after averaging over time and reducing similar terms, taking into account
possible frequency deviation from resonance ∆ω = ω0 − ω1 ̸= 0 in exponent, we obtain the
following equations for complex amplitudes:

�̇�0 =
1

2
γ0𝑎0 + 𝑖

3

2ω0𝑚0

[︀
µ𝑎*0𝑎

2
1𝑒

−2𝑖∆ω𝑡 +
(︀
|𝑎0|2 + 2µ|𝑎1|2

)︀
𝑎0
]︀
,

�̇�1 = −1

2
γ1𝑎1 + 𝑖

3

2ω1𝑚1

[︀
µ𝑎*1𝑎

2
0𝑒

𝑖∆ω𝑡 +
(︀
|𝑎1|2 + 2µ|𝑎0|2

)︀
𝑎1
]︀
.

(20)

Note that the system (20), up to changing the coefficients in front of the terms, is similar to the
system obtained in the work [19]2, which, when moving to real amplitudes and phases is reduced
to the Rabinovich–Fabrikant model (2) under the condition µ = 1. The dynamics of the latter
were studied in detail in the works [18–20].

As in the previous section, we begin the study of the dynamics of the system (17) by
constructing maps of Lyapunov exponents. The corresponding maps and their enlarged fragments,
built on the plane (γ0, γ1), are presented in Fig. 6. These maps use the following color palette:
blue color corresponds to the equilibrium position — all indicators are negative; blue color
corresponds to the periodic mode (limit cycle) — one zero indicator; yellow color corresponds to
the quasiperiodic mode (dual-frequency torus) — two zero indicators; black color corresponds to
the chaotic mode — at least one positive indicator, and white color corresponds to the trajectory
running away to infinity.

Fig. 6, a shows the map and its enlarged fragments, built for the following parameter
values: ω0 = 32π, ω1 = ω0 − 1, µ = 8, β = 2, α0 = 1, α1 = 1. The figure shows that in the
lower right part of the map (region γ0 < 1.29 and γ1 > −1.22, blue region) the system exhibits

2Note that in the work [19] a system of three coupled oscillators was considered — the main mode and its
two satellites. Accordingly, the interaction potential contained a larger number of terms and parameters. As
a result, for complex amplitudes a three-dimensional system was also obtained, containing a larger number of
terms and parameters. As a result, to derive the Rabinovich-Fabrikant model, a transition was made to the two-
dimensional case under the assumption that the amplitudes and parameters, such as dissipation and frequency,
of the satellites coincide. Therefore, strictly speaking, the system (20) and the system of amplitude equations
obtained in the work [19] are slightly different models that coincide when replacing parameters and reducing
similar terms.
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a regime in the form of a trivial equilibrium position. This is confirmed by the graphs of the
dependence of the Lyapunov exponent of the system (17) on the parameters γ0 and γ1, presented
in Fig. 7. It is clear from them that in this region all four Lyapunov exponents are negative.

When leaving the region of existence of a trivial equilibrium position through the upper
(increase the parameter γ0) or left (decreasing the parameter γ1) boundaries, the equilibrium
position becomes unstable and a limit cycle is born in the system. On the graphs of the dependence
of the Lyapunov exponents on the parameters γ0 and γ1 (Fig. 7), this corresponds to the fact
that the highest Lyapunov exponent becomes equal to zero, while all the others indicators
continue to remain negative. The corresponding projections of the attractor onto the phase
planes of the oscillators are presented in Fig. 8, a and represent highly elongated ellipses, since

Fig 6. Charts of Lyapunov exponents of the system (17) and its magnified fragments at (γ0, γ1) parameter plane.
a — ω0 = 32π, ω1 = ω0 − 1, µ = 8, β = 2, α0 = 1, α1 = 1; b — ω0 = 32π, ω1 = ω0 − 1, µ = 8, β = 1.8, α0 = 1,
α1 = 1; c — ω0 = 32π, ω1 = ω0 − 1, µ = 16, β = 2, α0 = 1, α1 = 1; d — ω0 = 32π, ω1 = ω0 − 1, µ = 8, β = 2,
α0 = 0.5, α1 = 1 (color online)
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the ranges of variation of the generalized velocities of the oscillators are 𝑦0, 𝑦1 and generalized
coordinates of the oscillators 𝑥0, 𝑥1 differ by an order of magnitude. Lyapunov exponents for
this mode: Λ1 = 0.00000 ± 0.00001, Λ2 = −0.10586 ± 0.00001, Λ3 = −0.10588 ± 0.00001,
Λ4 = −0.74386± 0.00001.

If we continue to increase the parameter γ0 or decrease the parameter γ1, then the limit
cycle disappears and a two-frequency torus is born instead. At the same time, in the graphs of
the dependence of Lyapunov exponents, two indicators, the first and second, become equal to
zero, while the third and fourth remain negative (see Fig. 7). In addition, it is clear from the
figure that in the region of existence of the torus, the graph of the third Lyapunov exponent has
a form typical for systems with period doubling. Thus, it can be argued that in the system under
consideration there is a sequence of torus doubling bifurcations, which leads to the emergence of
a chaotic regime. In this case, the highest Lyapunov exponent becomes positive (see Fig. 7). The
corresponding projections of the attractor onto the phase planes of the oscillators are presented
in Fig. 8, b–d. Fig. 8, b shows projections of a torus of period one, and Fig. 8, c shows a torus of
period two. The Lyapunov exponents for these modes are, respectively, Λ1 = 0.00000± 0.00001,
Λ2 = −0.00000±0.00001, Λ3 = −0.15592±0.00001, Λ4 = −0.15593±0.00001 and Λ1 = 0.00000±
± 0.00001, Λ2 = −0.00000± 0.00001, Λ3 = −0.06971± 0.00001, Λ4 = −0.06973± 0.00001. And
in Fig. 8, d the projections of a chaotic attractor are shown, the Lyapunov exponents of which
have the values Λ1 = 0.09681 ± 0.00001, Λ2 = −0.00000 ± 0.00001, Λ3 = −0.00000 ± 0.00001,

Fig 7. a — Graphs of Lyapunov exponents of the system (17) at the value of the parameter γ0, γ1 = 0.2. b —
Graphs of Lyapunov exponents of the system (17) at the value of the parameter γ1, γ0 = −0.3. Other parameters
are ω0 = 32π, ω1 = ω0 − 1, µ = 8, β = 2, α0 = 1, α1 = 1. The gap in the graphs corresponds to the area where
the trajectory go to infinity (color online)
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Fig 8. Projections of the attractors on the plane (𝑥0, 𝑦0) and (𝑥1, 𝑦1) of the system (17). a — The limit cycle,
γ0 = 2.0; b — the two-frequency period one torus, γ0 = 2.6; c — the two-frequency period two torus, γ0 = 2.76; d
— the chaos, γ0 = 2.8. Other parameters are ω0 = 32π, ω1 = ω0 − 1, µ = 8, β = 2, α0 = 1, α1 = 1

Λ4 = −0.24215± 0.00001.
Now, just like in the previous section, we will study the influence of the parameters included

in the equations of the system (17) on its dynamics. First, we will change the parameters
characterizing the nonlinear interaction between the oscillators. The study showed that changing
(either increasing or decreasing) the parameter β does not affect the dynamics of the system
(17). The corresponding map of Lyapunov exponents, constructed for β = 1.8 (other parameters
remained unchanged), is presented in Fig. 6, b. From its comparison with the map presented in
Fig. 6, a, it is clear that they are almost identical. Changing the parameter µ leads to the fact
that the regions of existence of the limit cycle, torus and chaos, located to the left of the region
of the trivial equilibrium position, increase in size if the parameter µ increases. While the areas
of the same regimes located above the area of the trivial equilibrium position do not change.
This is clearly visible on the map of Lyapunov exponents of the system (17), constructed for
µ = 16 and presented in Fig. 6, c. If the parameter µ decreases, then all regions of existence of
the limit cycle, torus and chaos, regardless of their location, will also decrease in size until they
completely disappear.

Now consider the case α1 > α0. The corresponding map of Lyapunov system exponents
(17), constructed for the values α0 = 0.5, α1 = 1, is presented in Fig. 6, d. In this case, the
regions of existence of all regimes observed in the system increase significantly in size, and
the boundary of the region of existence of the trivial equilibrium position shifts up and to the
left. The configuration of the region of existence of the torus, located above the region of the
trivial equilibrium position, resembles the structure of the “crossroad area”, and within the region
corresponding to the chaotic regime, regions corresponding to two-frequency tori have appeared.
With the opposite ratio of the parameters α1,2, the regions of existence of all modes, except
for the region of the trivial equilibrium position, will correspondingly decrease in size, and the
boundary of the region of existence of the trivial equilibrium position shifts down and to the
right.

And finally, let us consider what a change in frequency ω0 (frequency of the fundamental
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Fig 9. a–c — Charts of Lyapunov exponents of the system (17) and its magnified fragments at (γ0, γ1) parameter
plane. a — ω0 = 32π, ω1 = ω0 − 0.1, µ = 8, β = 2, α0 = 1, α1 = 1; b — ω0 = 32π, ω1 = ω0 − 10, µ = 8, β = 2,
α0 = 1, α1 = 1; c — ω0 = 2π, ω1 = ω0 − 0.06, µ = 8, β = 2, α0 = 1, α1 = 1. d — Chart of Lyapunov exponents of
the system (17) and it magnified fragment at (γ0, γ1) parameter plane. The chart plotted for the case when the
interaction potential contains only resonant terms. ω0 = 32π, ω1 = ω0 − 1, µ = 8, β = 2, α0 = 1, α1 = 1 (color
online)

mode) and frequency deviation from resonance ∆ω will lead to. Reducing the detuning from
resonance ∆ω while maintaining the frequency value ω0, that is, the resonance condition is
satisfied more strictly, leads to the disappearance of the regions of existence of two-frequency
tori and chaos, while the regions of existence of the limit cycle and trivial the equilibrium positions
do not change (Fig. 9, a). An increase in ∆ω leads to the disappearance of the regions of existence
of chaos and the two-frequency torus to the left of the region of the trivial equilibrium position
and the region of the chaotic regime above the region of the trivial equilibrium position. The
region of the torus located above the region of existence of the trivial equilibrium position is
preserved, but changes its shape. Now it is similar in shape to the “Arnold’s tongue”, the base
of which is located at the intersection point of the upper and left boundaries of the region of
existence of the trivial equilibrium position (Fig. 9, b). A decrease in the frequency ω0 (in this
case, the deviation of the frequency from the resonance ∆ω also decreases in proportion to the
decrease in ω0) leads to the complete disappearance of the region of existence of the chaotic mode
and a significant decrease in the regions of existence of all others modes, with the exception of
the region of the trivial equilibrium position (Fig. 9, c).

Finally, if in the equations of the system (17) in the expression for the interaction potential
we leave only resonant terms, these are terms of the form 𝑥30 and 3µ𝑥0𝑥21 in the first equation
and 𝑥31 and 3µ𝑥1𝑥20 in the second, then the change in the Lyapunov exponent map will be the
same as when 𝑐ℎ𝑎𝑛𝑔𝑒𝑠ω0 and ∆ω (Fig. 9, d). Namely, all areas of regular and chaotic regimes
located to the left of the area of the trivial equilibrium position completely disappear. Above this
region, one can observe only the regions of the limit cycle and the chaotic regime, which have
significantly decreased in size.

In conclusion of this section, we note that a comparison of the map of dynamic regimes of
the Rabinovich–Fabrikant model (2) (see Fig. 1, b) and maps of Lyapunov system exponents (17),
primarily shown in Fig. 6, a, shows that they differ significantly from each other. This means
that, unlike the Vyshkind-Rabinovich model, the Rabinovich-Fabrikant model cannot be used
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as a three-dimensional real approximation of the original system of equations (17). At the same
time, the question of at what stage of the derivation of the generalized Rabinovich-Fabrikant
model the loss of accuracy occurred requires additional research.

Conclusion

In this work, systems of second-order ordinary differential equations with respect to real
variables, constructed within the framework of Lagrange’s mechanical formalism, are numerically
studied, making it possible to describe the parametric interaction of two oscillators (oscillatory
modes) in dissipative media with quadratic and cubic nonlinearities of general form. It was
shown analytically that in the case of quadratic nonlinearity, the original system of second-order
differential equations can be reduced to the three-dimensional real Vyshkind-Rabinovich model,
and in the case of cubic nonlinearity, to the Rabinovich-Fabrikant model. For both systems under
study, maps of Lyapunov exponents were constructed on the plane of frequency detuning from
resonance — dissipation parameter of the second oscillator (fundamental mode) for the case of
quadratic nonlinearity and on the plane of dissipation parameters of both oscillators for the
case of cubic nonlinearity; dependence of the spectrum of Lyapunov exponents on the parameter
that specifies the dissipation of oscillators; temporary realizations of generalized coordinates
of oscillators and their amplitudes; projections of attractors onto phase planes of oscillators.
The change in Lyapunov exponent maps was studied with variations in other parameters, such
as parameters characterizing the nonlinear interaction of oscillators, oscillator frequencies, and
frequency detuning from resonance. A comparison was also made of the results obtained for
the systems under study with the known results for the Vyshkind-Rabinovich and Rabinovich-
Fabrikant models.

The study of the first model (Section 1), obtained for the case of quadratic nonlinearity,
showed that, firstly, only two types of modes are observed in the system. Namely, regular modes
in the form of two-frequency tori of various periods and chaotic modes. Moreover, the transition
to chaos occurs through a sequence of bifurcations of doubling the period of the tori. Secondly,
at small values of the nonlinearity parameter in the system under consideration, a runaway to
infinity is observed for the main mode and damping of oscillations for the satellite. When this
parameter exceeds a threshold value in the system, oscillations become saturated. After which,
changes in the parameters characterizing the nonlinear interaction between the oscillators have
a weak effect, compared to other parameters, on the dynamics of the original system. But a
change in the frequency of the first oscillator or the parameter characterizing its dissipation
leads to rescaling of the maps of Lyapunov exponents. In this case, the boundary of transition
from regular regimes to chaos shifts up or down depending on which parameter changes and how.
For example, it will shift down if the dissipation parameter of the first oscillator decreases or if
the frequency of the first oscillator increases. A comparison of the maps of Lyapunov exponents
of the original system of differential equations with the map of dynamic regimes of the Vyshkind–
Rabinovich model showed complete identity of their dynamics and allows us to conclude that
the latter is an adequate three-dimensional approximation of the above system.

The study of the second model (Section 2), obtained for the case of cubic nonlinearity,
showed that, unlike the first, it demonstrates a larger number of dynamic modes. Namely, the
equilibrium position, the limit cycle, two-frequency tori of various periods, chaos. Moreover, such
regimes as tori and chaos are observed only in the case of sufficiently large values of oscillator
frequencies (about 100 normalized units) and not very large values of frequency detuning from
resonance. An increase or decrease in the frequency detuning from resonance leads to their
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disappearance, and only a trivial equilibrium position and a limit cycle of period one are observed
in the system. Changing the parameters characterizing the nonlinear interaction between oscilla-
tors leads, in turn, to an increase or decrease in the areas of tori and chaos, depending on which
parameter is changed and how. A comparison of the maps of Lyapunov exponents constructed for
the original system of differential equations with the map of dynamic regimes of the Rabinovich-
Fabrikant model showed their complete difference. This means that the Rabinovich-Fabrikant
model cannot be used as a three-dimensional approximation of the above system. Moreover,
taking into account only resonant terms in the equations of the original system does not improve
the correspondence between the original system and the Rabinovich–Fabrikant model, but only
leads to the complete disappearance of chaotic modes and a significant reduction in the regions
of existence of two-frequency tori and the limit cycle. At the same time, the question of at what
stage of the derivation of the Rabinovich-Fabrikant model the loss of accuracy occurred requires
additional research.
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