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Abstract. The purpose of this study is to study the influence of synaptic plasticity on excitatory and inhibitory
synapses on the formation of the feature space of the input image on the excitatory and inhibitory layers of neurons
in a spiking neural network. Methods. To simulate the dynamics of the neuron, the computationally efficient model
“Leaky integrate-and-fire” was used. The conductance-based synapse model was used as a synaptic contact model.
Synaptic plasticity in excitatory and inhibitory synapses was modeled by the classical model of time dependent
synaptic plasticity. A neural network composed of them generates a feature space, which is divided into classes by a
machine learning algorithm. Results. A model of a spiking neural network was built with excitatory and inhibitory
layers of neurons with adaptation of synaptic contacts due to synaptic plasticity. Various configurations of the
model with synaptic plasticity were considered for the problem of forming the feature space of the input image
on the excitatory and inhibitory layers of neurons, and their comparison was also carried out. Conclusion. It has
been shown that synaptic plasticity in inhibitory synapses impairs the formation of an image feature space for a
classification task. The model constraints are also obtained and the best model configuration is selected.
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Introduction

Encoding information in spiking neural networks is an active research topic in neuroscience
and machine learning. This approach to information processing has its unique advantages, such
as low power consumption, high computational efficiency and the ability to process signals in
real time. In the article, by information encoding we will understand the mapping of input data
vectors into input spike trains, and the transformation of input spike trains into output ones,
which is performed by a spiking neural network, will be called the selection of significant features.
Currently, various encoding methods have been proposed.

One common encoding method is the spacing between spikes. For example, in rate coding,
information is represented by the number of spikes in a specific time window. The more spikes
a neuron generates over a certain period of time, the higher the value of the transmitted
information. This encoding method has been widely studied in both biological systems and
spiking neural networks. For example, Song et al [1] showed that spiking neural networks can
achieve robust frequency encoding by adjusting synaptic weights between neurons. Another
method is time coding. Here, information is encoded by the time interval between successive
spikes. The relative time between pulses can carry specific information about the stimulus. For
example, a shorter interval may mean the transmission of a unit of information, and a longer one
may mean a zero. Thorpe et al [2] proposed the concept of “temporal coupling” and showed that
spiking neural networks can use precise firing timing to efficiently encode and process information.
There are also other encoding methods such as rank-order coding [3] and phase coding [4]. Burst
coding relies on the collective activity of a group of neurons to represent information. The pattern
of activity in a population carries encoded information. A study by Bohte et al [5] showed that
spiking neural networks can learn to encode input signals using distributed burst dynamics. The
choice of a specific coding method depends on the task and characteristics of a particular spiking
neural network. In addition, decoding of spike information plays an important role in the analysis
and interpretation of these data.

The involvement of spike-timing-dependent synaptic plasticity (STDP) in information
encoding is one of the important topics in the study of spiking neural networks. STDP is a
form of synaptic plasticity that is based on the timing of spikes in presynaptic and postsynaptic
neurons. STDP weakens or strengthens connections between neurons based on the time intervals
between spikes. If a presynaptic neuron spikes before a postsynaptic neuron, the synapse is
strengthened, causing the connection to increase in weight. If a presynaptic neuron spikes after
a postsynaptic neuron, the synapse weakens, resulting in a decrease in connection weight. Such
feedback, along with other mechanisms, allows the neural network to learn and adapt to the
presented stimuli and images [6–9]. The STDP rule can be used to encode and store information
in the [10] network. Neurons that fire frequently at the same time can form stronger connections
among themselves, while neurons that fire weakly can have weaker connections. The work of
Masquelier et al [11] showed that STDP can enable a spiking neural network to extract features
from natural images. STDP is also actively researched and applied in the field of machine learning
and intelligent systems. The application of STDP to the problem of information processing based
on spiking networks opens up new opportunities for creating efficient and energy-efficient learning
and recognition algorithms.

Extracting new features from images using spiking neural networks is an active area of
research that has the potential to develop efficient methods for image processing and analysis [12].
Spiking neural networks are a powerful tool for image analysis and classification because they
can take into account the timing of signals and provide low processing latency.

In this paper, we propose a model for extracting significant image features using a spiking
neural network with synaptic plasticity for the recognition task. The number of spikes on
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each neuron in the inhibitory and excitatory layers is used as a new feature space. Based on
the proposed model, we study the influence of synaptic plasticity at excitatory and inhibitory
synapses on the formation of a new feature space of the input image on the excitatory and
inhibitory layers of neurons of the spiking neural network.

1. Methodology

1.1. Mathematical model of a neuron. The neuron dynamics in our model were
described using the Leaky-Integrate-and-Fire (LIF) neuron model [13]. The system of equations
describing the dynamics of the membrane potential of a LIF neuron can be written as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ𝑉 𝑉̇𝑖 = (𝑉rest − 𝑉𝑖) + 𝑔𝐸𝑖 (𝑉
𝐸
syn − 𝑉𝑖) + 𝑔𝐼𝑖 (𝑉

𝐼
syn − 𝑉𝑖),

𝑔̇𝐸𝑖 = − 𝑔𝐸𝑖
τ𝑔𝐸𝑖

+
∑︁
𝑖

𝑤𝐸 · δ (𝑡− 𝑡spike,𝑖),

𝑔̇𝐼𝑖 = − 𝑔𝐼𝑖
τ𝑔𝐼𝑖

+
∑︁
𝑖

𝑤𝐼 · δ (𝑡− 𝑡spike,𝑖).

(1)

Here 𝑉𝑖 is the membrane potential; 𝑉rest is reverse potential; 𝑉 𝐸,𝐼
syn is reversible potential for

excitatory and inhibitory synapses; 𝑔𝐸,𝐼
𝑖 is synaptic conductance; τ𝑣 is time constant of membrane

potential relaxation; τ
𝑔𝐸,𝐼
𝑖

is time constant of relaxation of synaptic conductance; 𝑡spike,𝑖 are time
points of successive presynaptic spikes. When the membrane potential reaches the threshold value
𝑉thr, a spike is generated and the membrane potential value returns to 𝑉reset. The refractoriness
for excitatory neurons was 5 ms, for inhibitory neurons it was 2 ms. The membrane potential
equation for an inhibitory neuron included only the synaptic conductance of excitatory synapses.

A spiking neural network consists of many such neurons, each of which integrates input
signals and generates spikes depending on its state. The spikes generated by one neuron can
be coupled to the input currents of other neurons in the network, allowing information to be
transferred and processed within the neural network.

In our work, we propose to use two populations of neurons interacting with each other:
excitatory and inhibitory.

For the model of excitatory neurons, the following parameters were used: 𝑉 𝐸
rest = −60 mV,

𝑉 𝐸
reset = −65 mV, 𝑉 𝐸

thr = −52 mV, 𝑉 𝐸
syn = 0 mV, 𝑉 𝐼

syn = −100 mV, τ𝐸𝑉 = 100 ms, τ𝑔𝐸𝑖 = 5 ms and
τ𝑔𝐼𝑖 = 10 ms.

For the model of inhibitory neurons, the following parameters were used: 𝑉 𝐼
rest = −60 mV,

𝑉 𝐼
reset = −45 mV, 𝑉 𝐼

thr = −40 mV, τ𝑔𝐸𝑖 = 5 ms.
For connections “excitatory neuron – inhibitory neuron” the value of synaptic weight was

taken equal to 3, for connections of the type “inhibitory neuron – excitatory neuron” the value
of synaptic weight was taken equal to 0.3.

1.2. Synaptic plasticity. STDP synaptic plasticity is responsible for regulating the
strength of connections between neurons in the brain. It allows neurons to change the strength of
their connections based on the time difference between the signals they transmit to each other. A
study by Guo-qiang Bi and Mu-ming [14] identified changes in synaptic connections as a function
of the relative timing of pre- and postsynaptic spikes. The results of their experiment are shown
in Fig. 1 with black dots. As a result of approximating the obtained data with exponential
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Fig 1. Experimental dependence of the change in synaptic weight on the difference in the times of occurrence
of spikes, obtained in the work [14]. Black dots indicate experimental data. The red and blue curves are an
approximation of the exponential dependence of the experimental data (color online)

dependences, it is possible to write a system of equations

∆𝑤 =

⎧⎨⎩𝐴+ · exp(∆𝑡/τ−), ∆𝑡 < 0,

𝐴− · exp(−∆𝑡/τ+), ∆𝑡 > 0.
(2)

Here ∆𝑡 = 𝑡pre − 𝑡post is the time difference between the pre- (𝑡pre) and postsynaptic spike
(𝑡post); τ− and τ+ are conductivity relaxation times. The constants 𝐴+ and 𝐴− were obtained
by approximating experimental data.

The STDP model parameters were assumed to be as follows: τ− = 20 ms, τ+ = 20 ms,
𝐴+ = 0.01 and 𝐴− = 0.01.

Thus, synaptic weights, in accordance with the stated plasticity rule, depending on each
pair of pre- and postsynaptic spikes, will change as follows:

𝑤 ← 𝑤 + ∆𝑤. (3)

In this case, a change in synaptic conductance will occur when a spike occurs on the presynaptic
neuron for an excitatory synapse as 𝑔𝐸𝑖 ← 𝑔𝐸𝑖 +𝑤𝐸 and for an inhibitory synapse as 𝑔𝐼𝑖 ← 𝑔𝐼𝑖 +𝑤𝐼 .

1.3. Data. The classical task of image classification requires a significant amount of
labeled data of the same type, which can be easily processed and analyzed. To explore the
issue of feature space extraction using spiking neural network, we chose the MNIST database
(http://yann.lecun.com/exdb/mnist) [15]. Each image in the dataset is a single-channel square
matrix consisting of 784 pixels, each encoded by one byte.

In general terms, the classification problem can be described as follows.
1. Allocation of feature space based on data features.
2. Identification of significant features.
3. Divides the selected space into classes according to the selected metric.
4. Estimate results based on statistics obtained from an “unknown” sample.
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In this work, special attention is paid to the feature space of neuronal responses to an input
stimulus and the quality of its choice, which is influenced by synaptic plasticity in the spiking
neural network model.

1.4. Formation of the input signal. The input image is converted into a sequence
of input spikes distributed according to a Poisson process [16] with a frequency equal to the
pixel intensity value. This transformation forms the zero layer (input layer), where an event in
the spike train determines the timing of the presynaptic spike. The algorithm for generating a
sequence of spikes is shown schematically in Alg. 1. The frequency is determined proportionally
to the pixel intensity with a proportionality factor of 0.5.

Algorithm 1. Generating an input stimulus from a single-channel MNIST image
forall pixels ∈ image do

Set the average intensity of the Poisson process according to the pixel intensity
−→ λ

Set the duration of the time interval on which the process −→ 𝑇 will be generated
Calculate the average time between events (intensity inversion) −→ 𝑡𝑖𝑛𝑣
Initialize an empty array to store event timestamps
while current timestamp will not exceed the duration of the time interval (T) do

Generate a random number from a uniform distribution on the interval
[0, 1] −→ 𝑛

Calculate the value: 𝑡𝑖𝑛𝑣 · ln(𝑛) −→ τ
Increment current timestamp by τ
Add timestamp to events array

end
Generate spikes from timestamps
Use the received signal as input for each neuron of the corresponding layer

end

1.5. Description of the network. In our work, we propose the application of image
recognition and classification processes using spiking neural network coding. For this purpose, a
two-layer model of a spiking neural network was built, shown in Fig. 2. To ensure homogeneity,
the generated signal was synchronously applied to all neurons of the excitatory layer of the model.
In Fig. 2 the layer of excitatory neurons is indicated in red, and the layer of inhibitory neurons is
indicated in blue. Each layer consists of 100 neurons. The layer of excitatory neurons is connected
to the layer of inhibitory neurons by the “one to one” rule, where each neuron from one layer
influences the corresponding neuron of the opposite layer. In contrast, feedback from the layer
of inhibitory neurons is determined by the rule “one to all but one” where the inhibitory neuron
influences all excitatory neurons except one. This type of connection implements the Winner
Take All mechanism, which includes lateral inhibition.

To train and test the network, a stimulus presentation procedure was developed,
schematically presented in Fig. 3 and consisting of the following main steps:

1) sending a useful signal for 350 milliseconds;
2) period of silence for 150 milliseconds.

1.6. Classification. As a result of stimulation of the network with signals encoding the
pixels of the MNIST dataset images as a spike trains, spikes will appear on the neurons. The
number of spikes received on each of the excitatory or inhibitory layer neurons in response to an
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Fig 2. Scheme for creating a new feature description of an image with a detailed diagram of a spiking neural
network with synaptic plasticity. The input layer (zero layer) is highlighted in yellow, representing a set of spike
sequences distributed according to a Poisson process with a frequency (𝑓𝑖) equal to the intensity of individual
pixels in the image (𝐼𝑝𝑖𝑥𝑒𝑙). The number of spike sequences is equal to the number of pixels in the encoded
image. The excitatory population of neurons (first layer) is denoted in red, and the inhibitory population of
neurons (second layer) is shown in blue. Red arrows on the diagram represent excitatory synapses, characterized
by a set of excitatory synaptic weight coefficients 𝑤0

𝑖,𝑗 , where 𝑖 = 1, 784, 𝑗 = 1, 100, evolving according to the
synaptic plasticity rule. Blue arrows represent inhibitory synapses, characterized by a set of inhibitory synaptic
weight coefficients 𝑤2

𝑖,𝑗 , where 𝑖 = 1, 100, 𝑗 = 1, 100, 𝑖 ̸= 𝑗. Purple synaptic weights do not evolve, and their
weight coefficients are constant and equal to 0.03. Initial values of excitatory and inhibitory synaptic weights were
randomly chosen according to a uniform distribution in the range from 0 to 1. Classifiers are also provided. The
classifier denoted in blue takes data from the inhibitory layer as input, and the classifier denoted in red takes data
from the excitatory layer (color online)

input stimulus has been proposed as two different features. The process of encoding an image
into a new feature space is schematically presented in Fig. 3. To classify the obtained data, a
random forest algorithm was used with a maximum tree depth of 4.

2. Results

2.1. Evolution of synaptic weights. To study the dynamics of synaptic weights, an
experiment was conducted in which a sample of 100 random images from the MNIST dataset
was compiled and fed to the network input using the previously described method. Next, we
examined the evolution of synaptic weights in the presence of synaptic plasticity in the layers
of excitatory and inhibitory neurons. Let us consider the evolution of synaptic weights between
a layer of excitatory neurons and an input signal. A raster diagram illustrating the normalized
synaptic weights between the input signal and the layer of excitatory neurons of the model is
shown in Fig. 4. Over time, as a stimulus is presented, synaptic weights adapt due to synaptic
plasticity, as shown in a graph of changes in synaptic weights over time for several neurons, as
well as in the corresponding distributions of synaptic weights (Fig. 4).

Synaptic weights between inhibitory and excitatory neuron layers in the presence of
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Fig 3. A scheme for forming a new feature space of an image using a spiking neural network with a stimulus
presentation procedure. In the study, the network’s response to the input image is represented by the number of
spikes of each neuron in the examined layer (color online)

synaptic plasticity were also analyzed. The results are shown in Fig. 5. It should be noted that
there is a significant difference from the first case both in the distribution of synaptic weights
and in their adjustment.

Table 1. Feature comparison table for samples
of 100 images of each class

Excitatory Inhibitory
Class x σ x σ

“0” 517 131 1817 396
“1” 146 93 534 290
“2” 432 146 1551 496
“3” 413 127 1311 534
“4” 305 117 1013 449
“5” 330 137 753 313
“6” 380 133 1183 372
“7” 287 106 869 338
“8” 397 133 1351 183
“9” 303 105 882 235

Here x is the average number of spikes in the
neural network layer; σ is standard deviation

2.2. Feature space. To analyze the
feature space, the dimension of which
corresponds to the number of neurons in
the population, the total value of spikes for
the entire layer was chosen as a metric for
assessing the quality of clustering. It was
assumed that the distribution of spikes among
the neurons of the group is uniform, given
that each neuron in the excitatory layer of
the model is connected to all pixels of the
input image. On average, all neurons in each
population receive the same signal, allowing
the sum of spikes to be used as a metric for
the feature space. To analyze and calculate the
metric, it was proposed to use data obtained
from the excitatory and inhibitory layers of
neurons. To do this, the constructed model for
both cases was trained on 100 random images
of the MNIST database.

Based on the analysis, a comparative table was compiled (Table 1), demonstrating the
selected metric for a sample of 100 images of each class.

As a result of the analysis, it was discovered that the selected feature leads to the
intersection of image classes, which prompted us to exclude some of them from further analysis.
The classes selected for the experiment are highlighted in color in the table. In addition,
dependences were constructed showing the distribution of the total number of spikes in the
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a

b

c

Fig 4. Analysis of the evolution of the synaptic weights of the excitatory layer of neurons: a — raster diagram of
the distribution of the normalized value of the synaptic weight for each synapse; b — changing synaptic weights
over time; c — histogram of distribution of synaptic weights for neurons fig. 4, b (color online)
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a

b

c

Fig 5. Analysis of the evolution of the synaptic weights of the inhibitory layer of neurons: a — raster
diagram of the distribution of the normalized value of the synaptic weight for each synapse; b — changing
synaptic weights over time; c — histogram of distribution of synaptic weights for neurons fig. 5, b (color
online)
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Fig 6. The dependence of the sum of spikes of the excitation layer during the response of the network to images
from different classes. Blue color indicates data collected from images belonging to class “0” — target 0; orange
color indicates data collected from images belonging to the class “1” — target 1; green color indicates data collected
from images belonging to the class “8” — target 8

Fig 7. The dependence of the sum of inhibitory layer spikes in the response of the network to images from different
classes. Blue color indicates data collected from images belonging to class “0” — target 0; orange color indicates
data collected from images belonging to the class “1” — target 1; green color indicates data collected from images
belonging to the class “8” — target 8 (color online)
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Fig 8. Confusion matrices for classifying data from
the excitatory population: a — confusion matrix for
the model with excitatory and inhibitory plasticity;
b — confusion matrix for the model with excitatory
plasticity; c — confusion matrix for the model with
inhibitory plasticity; d — confusion matrix for a model
without plasticity (color online)

Fig 9. Confusion matrices for classifying data from
the inhibitory population: a — confusion matrix for
the model with excitatory and inhibitory plasticity;
b — confusion matrix for the model with excitatory
plasticity; c — confusion matrix for the model with
inhibitory plasticity; d — confusion matrix for a model
without plasticity (color online)

excitatory and inhibitory layers, shown in Fig. 6 and 7.

2.3. Study of the influence of synaptic plasticity. In order to study the influence
of synaptic plasticity on the quality of feature space formation, eight model configurations were
considered, reflecting the participation of synaptic plasticity in different connections of neuron
populations, as well as obtaining a feature space only from the excitatory population of neurons
or only from the inhibitory population of neurons. To train and test the models, a data sample
of 6000 random images was formed, of which 5000 images were used to form the feature space,
and 1000 images were used for testing. As a result, error matrices were constructed to evaluate
the performance of the models (see Fig. 8 and Fig. 9).

The classification accuracies of each model configuration were also listed in separate tables:
from the exciting population — Table 2, braking — Table 3.

As can be seen from the presented tables, the highest classification accuracy is achieved
in the configuration of only excitatory synaptic plasticity for both of the considered cases.

Table 2. Accuracy comparison table for 4 model
configurations

eSTDP ON eSTDP OFF
iSTDP ON 0.736 0.683
iSTDP OFF 0.803 0.745

Table 3. Accuracy comparison table for 4 model
configurations

eSTDP ON eSTDP OFF
iSTDP ON 0.742 0.700
iSTDP OFF 0.813 0.745

eSTDP is synaptic plasticity between input stimuli and the excitatory layer of neurons; iSTDP is
synaptic plasticity between inhibitory and excitatory layers. The model configuration that produces
the best results is highlighted in color.
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In contrast, the lowest accuracy is achieved when using only synaptic plasticity between the
inhibitory and excitatory layers. If we independently compare the classification configurations
from the excitatory and inhibitory populations, the case with the classification of images from
the excitatory group with active synaptic plasticity between the input stimuli and the excitatory
layer of neurons performed best.

Conclusion

A model was proposed for image encoding using spiking neural network to solve the
recognition problem. The number of spikes of each neuron in the excitatory and inhibitory layers
was used as new features representing the response of the neural network to a sensory stimulus.
The model demonstrated the most efficient feature separation for digit images from the MNIST
database when spike-timing-dependent plasticity (STDP) was used at excitatory synapses. The
model also showed the worst feature separation in the presence of STDP for inhibitory synapses.

It should be noted that to improve the separation of image classes based on the new
feature space, additional improvements can be made to the resulting feature space, the model
configuration, or the method of delivering the input stimulus. These areas can be considered as
potential avenues for future research and experimentation.
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