
R1(U)

R2(U)

C(U)

Innovations in applied physics

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2024;32(2)

Article DOI: 10.18500/0869-6632-003091

Peculiarities of the dynamics of a viscous liquid
with a free boundary under periodic influences

V.L. Sennitskii

Lavrentyev Institute of Hydrodynamics SB of the RAS, Novosibirsk, Russia
E-mail: � sennitskii@yandex.ru

Received 29.08.2023, accepted 23.10.2023, available online 8.02.2024,
published 29.03.2024

Abstract . Purpose of the work is revealing and researching of peculiarities of a motion of a viscous liquid having a
free boundary and undergoing periodic in time influences which are characterized by the absence of a predominant
direction in space. Methods. The analytic investigation methods of non-linear problems, of boundary problems
for the system of Navier–Stokes and continuity equations are used that are the method of perturbations (the
method of a small parameter) the method of Fourier (the method of a separation of variables), an averaging,
a construction and studying of asymptotic formulas. Results. A new problem on the motion of a viscous liquid
is formulated and solved. Asymptotic representations of the found solution are constructed and explored. New
hydromechanical effects are revealed. Conclusion. The work is fulfilled in the development of a perspective direction
in liquid mechanics that is of researching the dynamics of hydromechanical systems under periodic influences. The
obtained results can be used in particular in further investigations of a non-trivial dynamics of hydromechanical
systems, under working for the methods of a control of hydromechanical systems.
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Introduction

Theoretical and experimental study of the dynamics of hydromechanical systems under
periodic time effects is one of the promising areas in liquid mechanics. A number of non-trivial
results have been obtained in this direction (see the works [1–31] and [32–38]). The conducted
studies allowed us to prove the existence of the phenomenon of predominantly unidirectional
motion of compressible inclusions in a vibrating liquid [1,2,9,26,38]; to construct a mathematical
model of the hydromechanical analogue of the “Kapitsa pendulum” [17, 39]; detect the effects
of paradoxical behavior of a solid body in a vibrating liquid [26, 32, 33, 35–37], “levitation” of
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liquid [31], “spontaneous” transition of a solid inclusion in an oscillating liquid to a position with
a given orientation in space [23].

In this paper, we consider the problem of the motion of a viscous liquid caused by the
translational periodic motion of a flat wall and a flat plate with a boundary permeable to the
liquid. The liquid fills two regions of space. The motion of the liquid in these regions occurs
under substantially different hydromechanical conditions: the liquid in one region has only solid
boundaries, while in the other region it has a solid and free boundary. New hydromechanical
effects have been discovered. In particular, the presence of an effect has been established, consisting
in the fact that against the background of oscillations the liquid in one region is at rest, while in
the other region it performs a stationary motion.

1. Formulation of the problem
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Fig 1. Hydromechanical system

There is a hydromechanical system
consisting of an incompressible viscous liquid,
a gas, an absolutely rigid plate η and an
absolutely rigid wall ξ (Fig. 1). The liquid
borders the gas, the plate and the wall.
The plate boundary η is permeable to the
liquid. The plate moves translationally relative
to the inertial rectangular coordinate system
𝑋,𝑌, 𝑍 with velocity U = {𝑈𝑋 , 0, 0}. Velocity
𝑈𝑋 changes periodically with time 𝑡 in a
given manner, with a period 𝑇 , (𝑈𝑋 =̃︀𝑈 sin(2π𝑡/𝑇 ); ̃︀𝑈 > 0 — constant). The wall ξ
performs a given translational motion along
the 𝑌 axis. The boundary Γξ of the wall ξ
is the plane 𝑌 = 𝐻ξ; −∞ < 𝑋 < ∞,
−∞ < 𝑍 < ∞ (𝐻ξ = ̃︀𝐻 sin(2π𝑡/𝑇 + 3);̃︀𝐻 > 0, 3 are constants). The boundary Γη1,Γη2 of the plate η is the planes 𝑌 = 𝐻1, 𝑌 = 𝐻2;

−∞ < 𝑋 < ∞, −∞ < 𝑍 < ∞(𝐻2 > 𝐻1, 𝐻1 > ̃︀𝐻 are constants, the difference 𝐻2 − 𝐻1

is the plate thickness η). The free boundary Γ𝑓 of the liquid is characterized by the relations
𝑌 = 𝐿; −∞ < 𝑋 < ∞, −∞ < 𝑍 < ∞ (𝐿 = ̂︀𝐿 +𝐻ξ; ̂︀𝐿 > 𝐻2 + ̃︀𝐻 — constant). The regions
Ω1 : 𝐻ξ < 𝑌 < 𝐻1 and Ω2 : 𝐻2 < 𝑌 < 𝐿 (−∞ < 𝑋 < ∞, −∞ < 𝑍 < ∞) are filled with liquid.

It is required to determine the periodic planar motion of a liquid.
Let τ = 𝑡/𝑇 ; 𝑥 = 𝑋/̂︀𝐿; 𝑦 = 𝑌/̂︀𝐿; 𝑧 = 𝑍/̂︀𝐿; 𝜀 = ̃︀𝐻/̂︀𝐿; 𝑢 = 𝑇𝑈𝑋/̂︀𝐿 = ̃︀𝑢 sin(2πτ);

e𝑥 = {1, 0, 0}; e𝑦 = {0, 1, 0}; ρ and V — the density and velocity of the liquid, respectively;
v = 𝑇V/̂︀𝐿 = 𝑣𝑥(τ, 𝑦)e𝑥 + 𝑣𝑦(τ, 𝑦)e𝑦; 𝑃 — pressure in liquid; 𝑝 = 𝑇 2𝑃/(ρ̂︀𝐿2) = 𝑝(τ, 𝑦); 𝑃𝑔 —
gas pressure on liquid; 𝑝𝑔 = 𝑇 2𝑃𝑔/(ρ̂︀𝐿2) = 𝑝𝑔(τ); ℎξ = 𝐻ξ/̂︀𝐿 = 𝜀 sin(2πτ + 3);ℎ1 = 𝐻1/̂︀𝐿;
ℎ2 = 𝐻2/̂︀𝐿;𝑅𝑒 = ̂︀𝐿2/(ν𝑇 ) — Reynolds number.

The problem of liquid motion consists of the Navier–Stokes equation, the continuity
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equation and the conditions on the free and solid boundaries of the liquid:

𝜕v

𝜕τ
+ (v · ∇)v = −∇𝑝+

1

𝑅𝑒
∆v in Ω1, Ω2; (1)

∇ · v = 0 in Ω1, Ω2; (2)

𝑣𝑦 =
𝑑ℎξ
𝑑τ

, 𝑝− 2

𝑅𝑒

𝜕𝑣𝑦
𝜕𝑦

= 𝑝𝑔,
𝜕𝑣𝑥
𝜕𝑦

= 0 on Γ𝑓 ; (3)

𝑣𝑥 = 0, 𝑣𝑦 =
𝑑ℎξ
𝑑τ

on Γξ; (4)

𝑣𝑥 = 𝑢, 𝑣𝑦 =
𝑑ℎξ
𝑑τ

on Γη1, Γη2. (5)

2. The solution of the problem

According to (2)–(5) we have

𝑣𝑦 = 2π𝜀[cos(2πτ+ 3)] in Ω1, Ω2. (6)

From (1), (3), (6) it follows

𝑝 = 4π2𝜀[sin(2πτ+ 3)]𝑦 + 𝑝′ in Ω1,

𝑝 = 4π2𝜀[sin(2πτ+ 3)(𝑦 − 1− ℎξ) + 𝑝𝑔 in Ω2,
(7)

where 𝑝′ is a function of τ.
Using (1), (3)–(6), we define the tasks

𝜕𝑣𝑥
𝜕τ

+ 2π𝜀[cos(2πτ+ 3)]
𝜕𝑣𝑥
𝜕𝑦

=
1

𝑅𝑒

𝜕2𝑣𝑥
𝜕𝑦2

in Ω1, (8)

𝑣𝑥 = 0 at 𝑦 = ℎξ, (9)

𝑣𝑥 = 𝑢 at 𝑦 = ℎ1 (10)

и

𝜕𝑣𝑥
𝜕τ

+ 2π𝜀[cos(2πτ+ 3)]
𝜕𝑣𝑥
𝜕𝑦

=
1

𝑅𝑒

𝜕2𝑣𝑥
𝜕𝑦2

in Ω2, (11)

𝑣𝑥 = 𝑢 at 𝑦 = ℎ2, (12)

𝜕𝑣𝑥
𝜕𝑦

= 0 at 𝑦 = 1 + ℎξ. (13)

We will consider problems (8)–(10) and (11)–(13) for values of 𝜀 that are small compared
to unity. We will apply the method of expansion in powers of the small parameter [40, 41]. We
will assume that

𝑣𝑥 ∼ 𝑣0 + 𝜀𝑣1 at 𝜀 → 0. (14)
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Using (8)–(14), in the 𝜀𝑁 -approximation (𝑁 = 0, 1) we obtain

𝜕𝑣𝑁
𝜕τ

+ 2𝑁π[cos(2πτ+ 3)]
𝜕𝑣0
𝜕𝑦

=
1

𝑅𝑒

𝜕2𝑣𝑁
𝜕𝑦2

in Ω̄1, (15)

𝑣𝑁 = −𝑁 [sin(2πτ+ 3)]
𝜕𝑣0
𝜕𝑦

at 𝑦 = 0, (16)

𝑣𝑁 = (1−𝑁)𝑢 at 𝑦 = ℎ1, (17)

𝜕𝑣𝑁
𝜕τ

+ 2𝑁π[cos(2πτ+ 3)]
𝜕𝑣0
𝜕𝑦

=
1

𝑅𝑒

𝜕2𝑣𝑁
𝜕𝑦2

in Ω̄2, (18)

𝑣𝑁 = (1−𝑁)𝑢 at 𝑦 = ℎ2, (19)

𝜕𝑣𝑁
𝜕𝑦

= −𝑁 [sin(2πτ+ 3)]
𝜕2𝑣0
𝜕𝑦2

at 𝑦 = 1, (20)

where Ω̄1 and Ω̄2 are regions respectively 0 < 𝑦 < ℎ1 and ℎ2 < 𝑦 < 1 (−∞ < 𝑥 < ∞,−∞ < 𝑧 <
∞).

Let 𝑁 = 0. Problem (15)–(17) has a solution

𝑣0 = ̃︀𝑢 Imag

(︂
sh 𝑞𝑦

sh 𝑞ℎ1
𝑒2π𝑖τ

)︂
for 0 ⩽ 𝑦 ⩽ ℎ1, (21)

problem (18)–(20) has a solution

𝑣0 = ̃︀𝑢 Imag

[︂
ch 𝑞(1− 𝑦)

ch 𝑞(1− ℎ2)
𝑒2π𝑖τ

]︂
for ℎ2 ⩽ 𝑦 ⩽ 1, (22)

where 𝑞 = (1 + 𝑖)
√
π𝑅𝑒.

Let 𝑁 = 1. We perform averaging (15)–(20) over dimensionless time τ. As a result, we
obtain

2π
⟨
[cos(2πτ+ 3)]

𝜕𝑣0
𝜕𝑦

⟩
=

1

𝑅𝑒

𝑑2𝑣

𝑑𝑦2
in Ω̄1, (23)

𝑣 = −
⟨
[sin(2πτ+ 3)]

𝜕𝑣0
𝜕𝑦

⟩
at 𝑦 = 0, (24)

𝑣 = 0 at 𝑦 = ℎ1, (25)

2π

⟨
[cos(2πτ+ 3)]

𝜕𝑣0
𝜕𝑦

⟩
=

1

𝑅𝑒

𝑑2𝑣

𝑑𝑦2
in Ω̄2, (26)

𝑣 = 0 at 𝑦 = ℎ2, (27)

𝑑𝑣

𝑑𝑦
= −

⟨
[sin(2πτ+ 3)]

𝜕2𝑣0
𝜕𝑦2

⟩
at 𝑦 = 1. (28)

Here ⟨...⟩ =
∫︀ τ+1
τ ... 𝑑τ′; 𝑣 = ⟨𝑣1⟩. Problem (15)–(17) has a solution

𝑣1 = 𝑣 +Real[𝑣(1)𝑒4π𝑖τ] for 0 ⩽ 𝑦 ⩽ ℎ1, (29)
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Problem (18)–(20) has a solution

𝑣1 = 𝑣 +Real[𝑣(2)𝑒4π𝑖τ] for ℎ2 ⩽ 𝑦 ⩽ 1, (30)

here 𝑣(1), 𝑣(2) — functions 𝑦.
From (21)–(28) it follows

𝑣 =

√︂
π
2
𝑅𝑒 ̃︀𝑢 Real

[︁(ch 𝑞ℎ1)𝑦 − ℎ1 ch 𝑞𝑦

ℎ1 sh 𝑞ℎ1
𝑒𝑖(

π
4
−3)

]︁
for 0 ⩽ 𝑦 ⩽ ℎ1, (31)

𝑣 =

√︂
π
2
𝑅𝑒 ̃︀𝑢 Real

[︁sh 𝑞(1− 𝑦)− sh 𝑞(1− ℎ2)

ch 𝑞(1− ℎ2)
𝑒𝑖(

π
4
−3)

]︁
for ℎ2 ⩽ 𝑦 ⩽ 1. (32)

The formulas
𝑣𝑥 = 𝑣0 + 𝜀𝑣1 (33)

и (6), (7), (22), (23), (29)–(32) define an approximate solution to the problem (1)–(5). This
solution indicates the presence of an effect consisting in the fact that (against the background of
oscillations) the liquid performs a stationary motion.

Let us consider the question of the average time flow of a liquid for values of 𝑅𝑒 that are
small compared to unity. Using (6), (21), (22), (29)–(33), we obtain

⟨v⟩ ∼ − 1

2
𝜀̃︀𝑢(cos3)ℎ1 − 𝑦

ℎ21
e𝑥 for 0 ⩽ 𝑦 ⩽ ℎ1, (34)

⟨v⟩ ∼ − π𝜀̃︀𝑢𝑅𝑒(sin3)(𝑦 − ℎ2) e𝑥 for ℎ2 ⩽ 𝑦 ⩽ 1 (35)

at 𝑅𝑒 → 0.
According to (34), (35) (against the background of oscillations) the following takes place.

In the region Ω̄1 at cos3 > 0 the liquid moves in the direction opposite to the direction of the 𝑋

axis; at cos3 < 0 the liquid moves in the direction coinciding with the direction of the 𝑋 axis;
at cos3 = 0 the liquid is at rest. In the region Ω̄2 at sin3 > 0 the liquid moves in the direction
opposite to the direction of the 𝑋 axis; at sin3 < 0 the liquid moves in the direction coinciding
with the direction of the 𝑋 axis; at sin3 = 0 the liquid is at rest. When (sin3) cos3 > 0 the liquid
in the regions Ω̄1, Ω̄2 moves (along the 𝑋-axis) in the same directions; when (sin3) cos3 < 0

the liquid in the regions Ω̄1, Ω̄2 moves (along the 𝑋-axis) in mutually opposite directions; when
(sin3) cos3 = 0 the liquid in one of the regions Ω̄1, Ω̄2 is at rest, and in the other it moves
in the direction coinciding with the direction of the 𝑋-axis or in the direction opposite to the
direction of the 𝑋-axis.

Using (34), (35), we find that for (sin3) cos3 ̸= 0 the relation

(cos3)
(︁ 1

1− ℎ2

1∫︁
ℎ2

⟨v⟩ 𝑑𝑦
)︁

= 2π𝑅𝑒(sin3)ℎ1(1− ℎ2)
(︁ 1

ℎ1

ℎ1∫︁
0

⟨v⟩ 𝑑𝑦
)︁
. (36)

According to (36) for small values of 𝑅𝑒 (in (34), (35) 𝑅𝑒 → 0) and any (admissible) values of
ℎ1, 1 − ℎ2 when the liquid moves in both regions Ω̄1, Ω̄2, the fluid in region Ω̄2, on average,
moves significantly slower than in region Ω̄1.

Let us consider the question of the average time flow of liquid in the regions Ω̄1, Ω̄2 for
values small compared to unity ℎ1, 1−ℎ2. Let σ1 = (ℎ1−𝑦)/ℎ1 (0 ⩽ σ1 ⩽ 1 at 0 ⩽ 𝑦 ⩽ ℎ1); σ2 =
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(𝑦 − ℎ2)/(1− ℎ2) (0 ⩽ σ2 ⩽ 1 at ℎ2 ⩽ 𝑦 ⩽ 1). Using (6), (21), (22), (29)–(33), we obtain

⟨v⟩ ∼ − 1

2
𝜀̃︀𝑢(cos3)σ1

ℎ1
e𝑥 for 0 ⩽ 𝑦 ⩽ ℎ1, (37)

⟨v⟩ ∼ − π𝜀̃︀𝑢𝑅𝑒(sin3)σ2(1− ℎ2) e𝑥 for ℎ2 ⩽ 𝑦 ⩽ 1 (38)

at ℎ1 → 0, 1− ℎ2 → 0 (and fixed 𝑅𝑒, ̃︀𝑢,3).
The expressions on the right-hand sides of (37), (38) coincide with the expressions on the

right-hand sides of (34), (35, respectively. Unlike formulas (34), (35), which are suitable for small
𝑅𝑒 > 0 and any (admissible) ℎ1, 1− ℎ2, formulas (37), (38) are suitable for small ℎ1, 1− ℎ2 and
any (fixed) 𝑅𝑒 > 0.

From (37), (38) follows a relation coinciding with (36), according to which for small values
of ℎ1, 1− ℎ2 (in (37), (38) ℎ1 → 0, 1− ℎ2 → 0) and any value of 𝑅𝑒 > 0, when the fluid moves
in both regions Ω̄1, Ω̄2, the fluid in region Ω̄2, on average, moves significantly slower than in
region Ω̄1.

Let us dwell on the question of the time-average force action from the liquid on the plate
η in the direction of the 𝑋 axis along which the plate η moves. Let ∆η be a body, a part of the
plate η, at an (arbitrary) moment of time 𝑡 = 𝑡* occupying the region Ω∆η : 𝑋* < 𝑋 < 𝑋*+𝐷𝑋 ,
𝐻1 < 𝑌 < 𝐻2, 𝑍* < 𝑍 < 𝑍* +𝐷𝑍 (𝑋*, 𝑍*, 𝐷𝑋 > 0, 𝐷𝑍 > 0 are constants). Let us determine
the time-average force 𝐹 acting from the liquid on the body ∆η in the direction of the 𝑋 axis.
Using (6), (21), (22), (29)–(33), we find

𝐹 = 𝜀
ρ̂︀𝐿4

𝑅𝑒 𝑇 2

[︁
− (

𝑑𝑣

𝑑𝑦
)|𝑦=ℎ1

+ (
𝑑𝑣

𝑑𝑦
)|𝑦=ℎ2

]︁
𝑠 = −

√︂
π
2

𝜀√
𝑅𝑒

ρ̂︀𝐿4̃︀𝑢
𝑇 2ℎ1

Real
[︁
(cth 𝑞ℎ1)𝑒

𝑖( π
4
−3)

]︁
𝑠, (39)

where 𝑠 = 𝐷𝑋𝐷𝑍/𝐿
2.

According to (39), the average time force action from the liquid on the plate η in the
direction of the 𝑋 axis does not depend on the “thickness” 1− ℎ2 of the Ω̄2 region.

From (39) it follows

𝑓 =
𝐹𝑇 2

ρ̂︀𝐿4
∼ −

√︂
π
2

𝜀√
𝑅𝑒

̃︀𝑢
ℎ1

cos
(︁
3− π

4

)︁
(40)

at 𝑅𝑒 → ∞ (and fixed ℎ1, ̃︀𝑢,3).
Formula (40) demonstrates that for Reynolds numbers large compared to unity (in the

approximation under consideration), for cos(3 − π/4) = 0 the force 𝐹 is zero, and there is no
time-averaged force action in the direction of the 𝑋 axis from the liquid on the plate η; for
cos(3− π/4) ̸= 0, with increasing 𝑅𝑒 the modulus of the force 𝐹 decreases according to the law
𝑅𝑒−1/2.

Conclusion

The conducted research led to the discovery of new effects of unusual liquid motion under
periodic time effects. The behavior of a viscous liquid caused by effects that do not have a
distinguished direction in space is considered. From what is presented in the work it follows that
such effects are capable of generating qualitative changes in the liquid motion. The reason for
the discovered effects is the consistency (with each other) of the effects exerted on the liquid.
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A hydromechanical system, subjected to periodic impacts in time that do not have a
specific direction in space, produces responses (reactions to impacts) that are characterized by
the presence of a specific direction in space and are expressed in the fact that the free parts of
the system (parts of the system whose movement is not specified) — for example, liquid layers
— perform an average movement against the background of oscillations.

This is in direct connection with the following generalized principle of average motion: the
fundamental reason that periodic in time (oscillatory, vibrational) effects on a hydromechanical
system that do not have a specific direction in space generate average in time motion of the
free parts of the system is the possibility of the free parts of the system performing motion in
different directions in space under different conditions (see also [26]).

The obtained results can be used in conducting targeted experimental studies of non-
trivial dynamics of hydromechanical systems; in developing promising methods of controlling
hydromechanical systems; in creating hydromechanical systems with prescribed properties, for
example, systems that respond in a given way to periodic effects.
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