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Abstract. The purpose of this work is to investigate the effect of stochastic perturbations of the white noise
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frequency such that a center–saddle bifurcation occurs in the corresponding limiting autonomous system. The
another purpose is determine the dependence of the intervals of stochastic stability of the autoresonance on the
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on the degree of damping of the noise intensity is found. It is shown that more stringent restrictions are required
to preserve the stability of solutions for the bifurcation values of the parameters. Conclusion. At the level of
differential equations describing capture into autoresonance, the effect of damped stochastic perturbations on the
center–saddle bifurcation is studied. The results obtained indicate the possibility of using damped oscillating
perturbations for stable control of nonlinear systems.
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Introduction

The paper considers a model system of differential equations that describes autoresonance
capture in nonlinear oscillating systems with small chirped pumping [1]. The phenomenon of
autoresonance, associated with stable adjustment of the system phase to the pump phase and a
significant increase of the oscillation amplitude, has a wide range of applications and has been
actively studied recently [2]. The paper discusses a special case when the pump amplitude and
frequency are matched in such a way that when the parameters vary, a center–saddle bifurcation
occurs for resonant solutions in the corresponding limiting autonomous system. The influence
of deterministic perturbations on such a bifurcation was discussed in [3], where the conditions
under which the corresponding bifurcation is preserved or destroyed are described. In this case,
the influence of stochastic disturbances was not considered. In this paper, we study the existence
and stability of autoresonance with respect to stochastic disturbances when parameters pass
through bifurcation values.

1. Formulation of the problem

We consider a non-autonomous system of two nonlinear differential equations

𝑑ρ
𝑑τ

+ α(τ)ρ = β(τ) sinφ,(︂
𝑑φ
𝑑τ

− ρ2 + λ(τ)
)︂
ρ = β(τ) cosφ

(1)

with smooth functions α(τ), β(τ) and λ(τ) defined for all τ > 0 and having the following
asymptotic behavior at infinity:

α(τ) ∼ τ−1
∞∑︁
𝑘=0

α𝑘τ
−𝑘, β(τ) ∼ τ𝑏−1

∞∑︁
𝑘=0

β𝑘τ
−𝑘, λ(τ) ∼ τ2𝑏

∞∑︁
𝑘=0

λ𝑘τ
−𝑘, τ→ ∞,

where α𝑘, β𝑘, λ𝑘 ∈ R, α0, λ0 ∈ R+, β0 = 1 and 2𝑏 ∈ Z+. System (1) arises when studying
the phenomenon of autoresonance in a wide class of nonlinear oscillating systems with small
chirped pumping and weak dissipation [1]. The function α(τ) is associated with dissipation in the
system, β(τ) and λ(τ) — with the amplitude and frequency of the disturbance, respectively. The
solutions of the system ρ(τ) and φ(τ) play the role of the amplitude and phase detuning of the
nonlinear oscillator. Of interest are the solutions ρ(τ) → ∞ and φ(τ) = 𝒪(1) as τ → ∞, which
correspond to synchronization of the oscillator phase with the perturbation phase and capturing
the system into autoresonance. In this case, solutions with ρ(τ) = 𝒪(1) and |φ(τ)| → ∞ as
τ → ∞ correspond to the phenomenon of phase drift and the absence of autoresonance . As a
simple example leading to system (1), consider

𝑑2𝑥

𝑑𝑡2
+ 𝑈 ′(𝑥) = −𝐴(𝑡)

𝑑𝑥

𝑑𝑡
+ ε̃𝐵(𝑡) cosΛ(𝑡), (2)

where 𝐴(𝑡) ≡ 𝐴0(1+ ε̃𝑡)−1, 𝐵(𝑡) ≡ 𝐵0(1+ ε̃𝑡)𝑏−1, Λ(𝑡) ≡ 𝑡−2𝑡2𝑏+1, 𝑈(𝑥) = 𝑥2/2−𝑥4/4+𝒪(𝑥6)
at 𝑥 → 0, 𝐴0, 𝐵0,2, ε̃ ∈ R+. The right side of the equation represents a perturbation with
small parameters 0 < 𝐴0, ε̃ ≪ 1. Note that the autonomous system corresponding to (2) with
ε̃ = 𝐴0 = 0 has a Lyapunov-stable equilibrium (0, 0) of center type (see, for example, [4, §4.1 ]). In
this case, solutions to the perturbed equation with ε̃ ̸= 0, 𝐴0 ̸= 0 and initial data near the point
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(0, 0), for which the energy 𝐸(𝑡) ≡ (𝑥′(𝑡))2/2 + 𝑈(𝑥(𝑡)) increases significantly with time, and
the phase Ψ(𝑡) = arctan(𝑥′(𝑡)/𝑥(𝑡)) adjusts to the phase of the disturbance Ψ(𝑡)−Λ(𝑡) = 𝒪(1),
correspond to the capture into autoresonance. For an asymptotic description of such solutions at
the initial stage of the capture, we introduce slow and fast variables τ = ε𝐵0𝑡/(2κ) and ζ = Λ(𝑡)
with κ = (4𝐵0/3)

1/3. It is easy to check that the substitution 𝑥(𝑡) = ε̃1/3κρ(τ) cos(φ(τ)−ζ)+𝒪(ε̃)
as ε̃ → 0 into equation (2) and averaging over the fast variable (see, for example, [5]) lead to
system (1) with α(τ) ≡ κ𝐴(𝑡)𝐵−1

0 ε̃
−2/3, β(τ) ≡ 𝐵(𝑡)𝐵−1

0 and λ(τ) ≡ 2(1+2𝑏)(2κε̃−2/3𝐵−1
0 )2𝑏+1τ2𝑏.

A similar transition to systems of type (1) takes place when studying autoresonance in infinite-
dimensional systems described by nonlinear partial differential equations [1]. Note that systems
of the form (1) arise, in particular, in problems of controlling the dynamics of domain walls in
ferromagnetic films in a weak external magnetic field [6].

This paper studies the influence of stochastic disturbances on the stability of autoresonant
solutions of system (1). We will consider the perturbed system in the form

𝑑ρ
𝑑τ

+ α(τ)ρ = [β(τ) + 𝜀σ1(τ)ξ1(τ)] sinφ,(︂
𝑑φ
𝑑τ

− ρ2 + λ(τ)
)︂
ρ = [β(τ) + 𝜀σ1(τ)ξ1(τ)] cosφ+ 𝜀σ2(τ)ξ2(τ)ρ,

(3)

where ξ1(τ) and ξ2(τ) are independent stochastic processes defined on the probability space
(Ω,F,P). It is assumed that E[ξ𝑖(τ)] = 0 and E[ξ𝑖(τ)ξ𝑖(τ′)] = δ(τ − τ′) for all 𝑖 ∈ {1, 2}, where
δ(τ) is the Dirac δ function. Deterministic functions σ1(τ) and σ2(τ) with parameter 𝜀 ∈ R+ are
used to control the noise intensity. Let us set ξ𝑖(τ) = 𝑊̇𝑖(τ), where 𝑊1(τ),𝑊2(τ) are independent
Wiener processes. Then system (3) can be considered in the form Itô stochastic differential
equations [7, Ch. 5]. The purpose of the work is to describe the conditions under which the
capture into autoresonance persists in perturbed system with a probability close to unity.

2. Resonant solutions of an unperturbed system

Let us select the component in the amplitude that grows over time and make the substitution

ρ(τ) =
√︀
λ(τ) + τ−

1
2𝑅(𝑠(τ)), φ(τ) = Ψ(𝑠(τ)), 𝑠(τ) =

2

𝑞
τ
𝑞
2 , 𝑞 = 2𝑏+ 1 (4)

in unperturbed system (1). Then for the new variables 𝑅(𝑠), Ψ(𝑠) the system takes the form

𝑑𝑅

𝑑𝑠
= 𝐹 (𝑅,Ψ, 𝑠),

𝑑Ψ

𝑑𝑠
= 𝐺(𝑅,Ψ, 𝑠), (5)

where

𝐹 (𝑅,Ψ, 𝑠(τ)) ≡ τ−
𝑞−3
2

(︃
β(τ) sinΨ− α(τ)

√︀
λ(τ)− λ′(τ)

2
√︀
λ(τ)

)︃
+ τ−

𝑞−2
2

(︂
1

2
τ−1 − α(τ)

)︂
𝑅,

𝐺(𝑅,Ψ, 𝑠(τ)) ≡ 2τ−𝑏
√︀
λ(τ)𝑅+ τ−

𝑞
2𝑅2 +

β(τ)τ−
𝑞−2
2 cosΨ√︀

λ(τ) + τ−
1
2𝑅

.

Note that

λ
𝑚
2 ∼ τ𝑏𝑚λ

𝑚
2
0

∞∑︁
𝑘=0

τ−𝑘ζ𝑚𝑘 , βλ−
1
2 ∼ λ−

1
2

0

∞∑︁
𝑘=0

τ−𝑘γ𝑘, τ−
𝑞−3
2

(︂
α
√
λ+

λ′

2
√
λ

)︂
∼

∞∑︁
𝑘=0

τ−𝑘µ𝑘
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at τ → ∞, where ζ𝑚𝑘 , γ𝑘, µ𝑘 = const. In particular, ζ𝑚0 = γ0 = 1, µ0 =
√
λ0(1 + 𝑏) > 0,

ζ𝑚1 = 𝑚λ1/λ0, γ1 = β1 + ζ
−1
1 , µ1 =

√
λ0α1 + λ1/

√
4λ0. It is easy to verify that the asymptotic

expansions take place 𝐹 (𝑅,Ψ, 𝑠) ∼
∑︀∞

𝑘=0 𝑠
−𝑘/𝑞𝐹𝑘(𝑅,Ψ), 𝐺(𝑅,Ψ, 𝑠) ∼

∑︀∞
𝑘=0 𝑠

−𝑘/𝑞𝐺𝑘(𝑅,Ψ) as
𝑠 → ∞, where

𝐹𝑘(𝑅,Ψ) ≡ 𝑓𝑘/2(Ψ) +𝑅ν(𝑘−𝑞)/2, 𝐺𝑘(𝑅,Ψ) ≡ 𝑅η𝑘/2 + 𝑔𝑘−𝑞(𝑅,Ψ),

𝑓𝑘(Ψ) ≡ (β𝑘 sinΨ− µ𝑘)
(︂
2

𝑞

)︂ 2𝑘
𝑞

, ν𝑘 =

(︂
1

2
δ𝑘,0 − α𝑘

)︂(︂
2

𝑞

)︂ 2𝑘
𝑞
−1

,

𝑔𝑘(𝑅,Ψ) ≡ δ𝑘,0
2𝑅2

𝑞
+

∑︁
𝑞𝑙+2(𝑚+𝑛)=𝑘

(−1)𝑙𝑅𝑙 cosΨλ
− 𝑙+1

2
0 ζ−𝑙

𝑚 γ𝑛

(︂
2

𝑞

)︂1+ 𝑘
𝑞

, η𝑘 = 2
√︀
λ0ζ1𝑘

(︂
2

𝑞

)︂ 2𝑘
𝑞

.

Note that 𝑞 ∈ Z+ and 𝑞 ⩾ 2. It is assumed that 𝑓𝑘(Ψ) ≡ 𝑔𝑘(𝑅,Ψ) ≡ 0 and ν𝑘 = η𝑘 = 0 if 𝑘 ̸∈ N0.
Thus, system (5) is asymptotically autonomous [8]. The corresponding limit system

𝑑𝑅

𝑑𝑠
= sinΨ− µ0,

𝑑Ψ

𝑑𝑠
=
√︀
4λ0𝑅 (6)

has two fixed points: 𝑧𝑠 = (0, arcsin µ0) is a saddle and 𝑧𝑐 = (0,π − arcsin µ0) is a center if
µ0 ∈ (0, 1). At µ0 = 1 the saddle and the center merge into a degenerate fixed point 𝑧0 = (0, 1),
which disappears at µ0 > 1. If µ0 > 1, then all trajectories of the limit system turn out to be
unbounded.

Note that the functions 𝐹 (𝑅,Ψ, 𝑠) ≡ 𝐹 (𝑅,Ψ, 𝑠)−𝐹0(𝑅,Ψ) and 𝐺̃(𝑅,Ψ, 𝑠) ≡ 𝐺(𝑅,Ψ, 𝑠)−
− 𝐺0(𝑅,Ψ) play the role of damped disturbances of system (6). It is easy to verify that in
the vicinity of the saddle such additions do not lead to a qualitative change in the behavior of
trajectories (see, for example, [3]). In this case, the dynamics near the center and the degenerate
point depend on the disturbance parameters.

Let us give a definition of the stability of resonant solutions with increasing amplitude,
which will be used below.

Definition 1. A solution ρ*(τ), ψ*(τ) of system (1) is called stable if ∀ ε > 0 there exist δ0 > 0
and τ0 > 0 such that for any 40 and 30: |ρ*(τ0)− 40|+ |ψ*(τ0)−30| ⩽ δ0, for solving ρ(τ), ψ(τ)
system (1) with initial data ρ(τ0) = 40, ψ(τ0) = 30 the inequality holds

sup
τ⩾τ0

{︁
τ
1
2 |ρ(τ)− ρ*(τ)|+ |ψ(τ)− ψ*(τ)|

}︁
⩽ ε.

Let us first consider the behavior of trajectories near the point 𝑧𝑐. Fair

Theorem 1. Let 0 <
√
λ0(1 + 𝑏) < 1 and α0 >

1

2
− 4(𝑏+ 1)

(2𝑏+ 1)2
. Then system (1) has a stable

solution ρ𝑐(τ) ≡
√︀
λ(τ) + τ−1/2𝑅𝑐(𝑠(τ)), φ𝑐(τ) ≡ Ψ𝑐(𝑠(τ)), where 𝑠(τ) = (2/𝑞)τ𝑞/2,

𝑅𝑐(𝑠) ∼
∞∑︁
𝑘=1

𝑠
− 𝑘

𝑞 𝑟𝑘, Ψ𝑐(𝑠) ∼ ψ0 +
∞∑︁
𝑘=1

𝑠
− 𝑘

𝑞ψ𝑘, 𝑠 → ∞, (7)

with coefficients 𝑟𝑘,ψ𝑘 = const, ψ0 = π− arcsin µ0, 𝑞 = 2𝑏+ 1.

Proof. Substituting (7) into system (5) and grouping expressions with the same powers of 𝑠
lead to a system of recurrent equations:√︀

4λ0𝑟𝑘 = 𝒜𝑘, −
√︁

1− µ20ψ𝑘 = ℬ𝑘, 𝑘 ⩾ 1, (8)
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where 𝒜𝑘 and ℬ𝑘 are expressed in terms of 𝑟1,ψ1, . . . , 𝑟𝑘−1,ψ𝑘−1. In particular,

𝒜1 = −𝐺1(0,ψ0), 𝒜2 = −𝐺2(0,ψ0)− 𝑟1𝜕𝑅𝐺1(0,ψ0)− ψ1𝜕Ψ𝐺1(0,ψ0),

ℬ1 = −𝐹1(0,ψ0), ℬ2 = µ0ψ21/2− 𝐹2(0,ψ0)− 𝑟1𝜕𝑅𝐹1(0,ψ0)− ψ1𝜕Ψ𝐹1(0,ψ0).

Since λ0 ̸= 0 and 0 < µ0 < 1, then system (8) is solvable. To prove the existence of a solution to
system (7), we define the functions 𝑅𝑁 (𝑠) ≡

∑︀𝑁
𝑘=1 𝑠

−𝑘/𝑞𝑟𝑘, Ψ𝑁 (𝑠) ≡ ψ0 +
∑︀𝑁

𝑘=1 𝑠
−𝑘/𝑞ψ𝑘 with

some integer 𝑁 ∈ N. It follows from the construction that

𝑅′
𝑁 (𝑠)− 𝐹 (𝑅𝑁 (𝑠),Ψ𝑁 (𝑠), 𝑠) = 𝒪(𝑠

−𝑁+1
𝑞 ), Ψ′

𝑁 (𝑠)−𝐺(𝑅𝑁 (𝑠),Ψ𝑁 (𝑠), 𝑠) = 𝒪(𝑠
−𝑁+1

𝑞 )

as 𝑠 → ∞. Substitution 𝑅(𝑠) = 𝑅𝑁 (𝑠) + 𝑟(𝑠), Ψ(𝑠) = Ψ𝑁 (𝑠) + ψ(𝑠) in (5) leads to the system

𝑑𝑟

𝑑𝑠
= ℱ𝑁 (𝑟,ψ, 𝑠),

𝑑ψ
𝑑𝑠

= 𝒢𝑁 (𝑟,ψ, 𝑠), (9)

where ℱ𝑁 (𝑟,ψ, 𝑠) ≡ 𝐹 (𝑅𝑁 (𝑠)+𝑟,Ψ𝑁 (𝑠)+ψ, 𝑠)−𝑅′
𝑁 (𝑠) and 𝒢𝑁 (𝑟,ψ, 𝑠) ≡ 𝐺(𝑅𝑁 (𝑠)+𝑟,Ψ𝑁 (𝑠)+

+ ψ, 𝑠)−Ψ′
𝑁 (𝑠). It is easy to check that

ℱ𝑁 =

𝑞∑︁
𝑘=0

𝑠
− 𝑘

𝑞
{︀
𝑓𝑘/2(ψ+Ψ𝑁 )− 𝑓𝑘/2(Ψ𝑁 ) + δ𝑘,𝑞ν0𝑟

}︀
+𝒪(𝑑)𝒪(𝑠

− 𝑞+1
𝑞 ) +𝒪(𝑠

−𝑁+1
𝑞 ),

𝒢𝑁 =

𝑞∑︁
𝑘=0

𝑠
− 𝑘

𝑞
{︀
𝑟η𝑘/2 + δ𝑘,𝑞

(︀
𝑔0(𝑟 +𝑅𝑁 ,ψ+Ψ𝑁 )− 𝑔0(𝑅𝑁 ,Ψ𝑁 )

)︀}︀
+𝒪(𝑑)𝒪(𝑠

− 𝑞+1
𝑞 ) +𝒪(𝑠

−𝑁+1
𝑞 )

as 𝑠 → ∞ and 𝑑 := 𝑑(𝑟,ψ) ≡
√
𝑟2 + ψ2 → 0. As a Lyapunov function, consider 𝑉 (𝑟,ψ, 𝑠) ≡

𝑉𝑐(𝑟,ψ, 𝑠; Ψ𝑁 (𝑠),2), where

𝑉𝑐(𝑟,ψ, 𝑠; Ψ𝑁 ,2) =
𝑞∑︁

𝑘=0

𝑠
− 𝑘

𝑞

⎧⎨⎩η𝑘/𝑞 𝑟22 −
ψ∫︁

0

𝑓𝑘/2(φ+Ψ𝑁 ) 𝑑φ+ ψ𝑓𝑘/2(Ψ𝑁 )

⎫⎬⎭+ 𝑠−12𝑟ψ.

Note that 𝑉 (𝑟,ψ, 𝑠) = (η0𝑟2 +
√︀

1− µ20ψ2)/2 + 𝒪(𝑑3) + 𝒪(𝑑2)𝒪(𝑠−1/𝑞) as 𝑠 → ∞ and 𝑑 → 0,
where η0 =

√
4λ0 > 0. The derivative of the function 𝑉 (𝑟,ψ, 𝑠) on the trajectories of system (9)

has the following form:

𝑑𝑉

𝑑𝑠

⃒⃒⃒
(9)

= 𝑠−1
(︁
−𝐴2𝑟

2 −𝐵2ψ
2 +𝒪(𝑑3) +𝒪(𝑠

− 1
𝑞 )𝒪(𝑑2)

)︁
+𝒪(𝑑)𝒪(𝑠

−𝑁+1
𝑞 )

as 𝑠 → ∞ and 𝑑 → 0 with parameters 𝐴2 = η0(𝑞(2α0 − 1)/4 − 2) и 𝐵2 =
√︀

1− µ20(2 +

2µ0/
√︀

𝑞2λ0). Let us choose the parameter 2 = 2𝑐 that satisfies the inequalities −2µ0/
√︀

𝑞2λ0 <
2𝑐 < 𝑞(2α0 − 1)/4, then 𝐴2 > 0 and 𝐵2 > 0. Consequently, there are 𝑑1 > 0 and 𝑠1 > 0 such
that

𝑚−𝑑
2 ⩽ 𝑉 (𝑟,ψ, 𝑠) ⩽ 𝑚+𝑑

2,
𝑑𝑉

𝑑𝑠

⃒⃒⃒
(9)

⩽ −𝑠−1𝐶𝑑2 + 𝑠
−𝑁+1

𝑞 𝐷𝑑 (10)

as 𝑠 ⩾ 𝑠1 and 𝑑 ⩽ 𝑑1 with positive parameters 𝑚−, 𝑚+, 𝐶 = min{𝐴2, 𝐵2}/2 and 𝐷 . Let us
choose 𝑁 ⩾ 𝑞, then for any ε ∈ (0, 𝑑1) there are

δε = min

{︃
𝑑1,

2𝑠
−1/𝑞
ε

𝐶
, ε
√︂

𝑚−
2𝑚+

}︃
, 𝑠ε = max

{︂
𝑠1,

(︂
4

𝐶ε

)︂𝑞}︂
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such that 𝑑𝑉 /𝑑𝑠|(9) = −𝑠−1(𝐶𝑑2−𝑠
−1/𝑞
ε δ−1

ε 𝐷𝑑2) ⩽ −𝑠−1𝐶𝑑2/2 < 0 for all 𝑠 ⩾ 𝑠ε and (𝑟,ψ) such
that δε ⩽ 𝑑(𝑟,ψ) ⩽ ε. Hence and from the inequalities sup𝑑⩽δε 𝑉 (𝑟,ψ, 𝑠) ⩽ 𝑚+δ2ε ⩽ 𝑚−ε2 =
= inf𝑑=ε 𝑉 (𝑟,ψ, 𝑠) for all 𝑠 ⩾ 𝑠ε it follows that any solution of system (9) with initial data
𝑑(𝑟(𝑠ε),ψ(𝑠ε)) ⩽ δε does not leaves the ε-neighborhood of zero 𝑑(𝑟(𝑠),ψ(𝑠)) ⩽ ε as 𝑠 ⩾ 𝑠ε.
Moreover, from (10) it follows that 𝑑𝑉 /𝑑𝑠|(9) ⩽ 𝑠−1−(𝑁+1−𝑞)/𝑞ε𝐷 for all 𝑠 ⩾ 𝑠ε and 𝑑 ⩽ ε.
Integrating the last inequality, we get 𝑑(𝑟(𝑠),ψ(𝑠)) = 𝒪(𝑠−(𝑁+1−𝑞)/(2𝑞)) as 𝑠 → ∞ for any
𝑁 ⩾ 𝑞. This implies the existence of a stable solution to system (9) with asymptotics (7). Taking
into account the substitution (4), we obtain the proof of theorem 1. □

If µ0 = 1, system (8) turns out to be unsolvable, and an asymptotic solution in the form (7)
near the degenerate point 𝑧0 cannot be constructed. In this case, depending on the disturbance
parameters, the appearance of either a stable regime with trajectories tending to equilibrium of
limit system (6) or an unstable regime with infinitely growing trajectories is possible.

We have

Theorem 2. Let
√
λ0(𝑏 + 1) = 1, β1 > µ1 and α0 >

1

2
− 4𝑏− 1

(2𝑏+ 1)2
. Then system (1) has a

stable solution ρ0(τ) ≡
√︀
λ(τ) + τ−1/2𝑅0(𝑠(τ)), φ0(τ) ≡ Ψ0(𝑠(τ)), where 𝑠(τ) = (2/𝑞)τ𝑞/2,

𝑅0(𝑠) ∼
∞∑︁
𝑘=1

𝑠
− 𝑘

𝑞 𝑟𝑘, Ψ0(𝑠) ∼
π
2
+

∞∑︁
𝑘=1

𝑠
− 𝑘

𝑞ψ𝑘, 𝑠 → ∞, (11)

with coefficients 𝑟𝑘,ψ𝑘 = const, ψ1 =
√︀

2(β1 − µ1)(2/𝑞)1/𝑞, 𝑞 = 2𝑏+ 1.

Proof. Substituting (11) into system (5) and equating the expressions for the same powers of
𝑠 lead to the equation

ψ21
2

= (β1 − µ1)
(︂
2

𝑞

)︂ 2
𝑞

. (12)

The remaining coefficients 𝑟𝑘, ψ𝑘 are determined from the system of equations√︀
4λ0𝑟𝑘 = 𝒜𝑘, −ψ1ψ𝑘+1 = 𝒞𝑘+1, 𝑘 ⩾ 1, (13)

where 𝒜𝑘 and 𝒞𝑘 are expressed in terms of 𝑟1,ψ1, . . . , 𝑟𝑘−1,ψ𝑘−1. For example,

𝒜1 = −𝐺1

(︁
0,
π
2

)︁
, 𝒜2 = −𝐺2

(︁
0,
π
2

)︁
− 𝑟1𝜕𝑅𝐺1

(︁
0,
π
2

)︁
− ψ1𝜕Ψ𝐺1

(︁
0,
π
2

)︁
,

𝒞2 = −δ𝑞,2ν0𝑟1, 𝒞3 = −ψ
4
1

24
+
ψ22
2

+ β1
ψ21
2

(︂
2

𝑞

)︂ 2
𝑞

− δ𝑞,3ν0𝑟1 + (µ2 − β2)
(︂
2

𝑞

)︂ 4
𝑞

.

Since λ0 ̸= 0 and β1 > µ1, then there is a solution to system (12), (13), which depends on the
choice of the root of equation (12).

Consider the functions 𝑅𝑁 (𝑠) ≡
∑︀𝑁

𝑘=1 𝑠
−𝑘/𝑞𝑟𝑘, Ψ𝑁 (𝑠) ≡ π/2+

∑︀𝑁
𝑘=1 𝑠

−𝑘/𝑞ψ𝑘. Substitution
𝑅(𝑠) = 𝑅𝑁 (𝑠) + 𝑠−3/(2𝑞)𝑟(𝑠), Ψ(𝑠) = Ψ𝑁 (𝑠) + 𝑠−1/𝑞ψ(𝑠) in (5) leads to system (9) with

ℱ𝑁 (𝑟,ψ, 𝑠) ≡ 𝑠
3
2𝑞

(︁
𝐹 (𝑅𝑁 (𝑠) + 𝑠

− 3
2𝑞 𝑟,Ψ𝑁 (𝑠) + 𝑠

− 1
𝑞ψ, 𝑠)−𝑅′

𝑁 (𝑠)
)︁
+ 𝑠−1 3𝑟

2𝑞
,

𝒢𝑁 (𝑟,ψ, 𝑠) ≡ 𝑠
1
𝑞

(︁
𝐺(𝑅𝑁 (𝑠) + 𝑠

− 3
2𝑞 𝑟,Ψ𝑁 (𝑠) + 𝑠

− 1
𝑞ψ, 𝑠)−Ψ′

𝑁 (𝑠)
)︁
+ 𝑠−1ψ

𝑞
.
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It is easy to check that

ℱ𝑁 =

𝑞+2∑︁
𝑘=0

𝑠
− 2𝑘−3

2𝑞

{︁
𝑓𝑘/2(𝑠

− 1
𝑞ψ+Ψ𝑁 )− 𝑓𝑘/2(Ψ𝑁 )

}︁
+ 𝑠−1

(︂
ν0 +

3

2𝑞

)︂
𝑟+

+𝒪(𝑑)𝒪(𝑠
− 𝑞+1

𝑞 ) +𝒪(𝑠
− 2𝑁−1

2𝑞 ) = 𝑠
− 1

2𝑞 (−ψ1ψ+𝒪(𝑑2) +𝒪(𝑠
− 1

𝑞 )),

𝒢𝑁 =

𝑞∑︁
𝑘=0

𝑠
− 2𝑘+1

2𝑞 𝑟η𝑘/2 + 𝑠
−1+ 1

𝑞

(︁(︀
𝑔0(𝑠

− 3
2𝑞 𝑟 +𝑅𝑁 , 𝑠

− 1
𝑞ψ+Ψ𝑁 )− 𝑔0(𝑅𝑁 ,Ψ𝑁 )

)︀)︁
+ 𝑠−1ψ

𝑞
+

+𝒪(𝑑)𝒪(𝑠
− 𝑞+1

𝑞 ) +𝒪(𝑠
−𝑁

𝑞 ) = 𝑠
− 1

2𝑞 (η0𝑟 +𝒪(𝑠
− 1

𝑞 ))

as 𝑠 → ∞ and 𝑑(𝑟,ψ) → 0.
Let ψ1 > 0. In this case, the limit system corresponding to (9) has a fixed point of the center

type. Consider the Lyapunov function for system (9) in the form 𝑉 (𝑟,ψ, 𝑠) ≡ 𝑉0(𝑟,ψ, 𝑠; Ψ𝑁 (𝑠),2),
where 2 — some parameter and

𝑉0(𝑟,ψ, 𝑠,Ψ𝑁 ,2) ≡
𝑞∑︁

𝑘=0

𝑠
− 𝑘

𝑞 η𝑘/𝑞
𝑟2

2
−

𝑞+2∑︁
𝑘=0

𝑠
− 𝑘−2

𝑞

⎧⎨⎩
ψ∫︁

0

𝑓𝑘/2(𝑠
− 1

𝑞φ+Ψ𝑁 ) 𝑑φ− ψ𝑓𝑘/2(Ψ𝑁 )

⎫⎬⎭+

+ 𝑠
− 2𝑞−1

2𝑞 2𝑟ψ.

notice, that 𝑉 (𝑟,ψ, 𝑠) = (η0𝑟2 +ψ1ψ2)/2+𝒪(𝑑3) +𝒪(𝑑2)𝒪(𝑠−1/𝑞) as 𝑠 → ∞ and 𝑑 → 0, where
η0 =

√
4λ0 > 0. The derivative of the function 𝑉 (𝑟,ψ, 𝑠) on the trajectories of system (9) has

the form

𝑑𝑉

𝑑𝑠

⃒⃒⃒
(9)

= 𝑠−1
(︁
−𝐴2𝑟

2 −𝐵2ψ
2 +𝒪(𝑑3) +𝒪(𝑠

− 1
𝑞 )𝒪(𝑑2)

)︁
+𝒪(𝑑)𝒪(𝑠

− 2𝑁−1
2𝑞 )

as 𝑠 → ∞ and 𝑑 → 0 with parameters 𝐴2 = η0(𝑞(2α0 − 1)/4−3/(2𝑞)−2), 𝐵2 = ψ1(2µ0/
√︀
𝑞2λ0−

− 𝑞−1 + 2). Let us choose 2 = 20 satisfying the inequalities (
√
λ0 − 2)/

√︀
𝑞2λ0 < 20 < (𝑞2(2α0 −

1) − 6)/(4𝑞), then 𝐴2 > 0 and 𝐵2 > 0. Consequently, there are 𝑑1 > 0 and 𝑠1 > 0 such that
𝑚−𝑑

2 ⩽ 𝑉 (𝑟,ψ, 𝑠) ⩽ 𝑚+𝑑
2, 𝑑𝑉 /𝑑𝑠|(9) ⩽ −𝑠−1𝐶𝑑2 + 𝑠−2𝑁−1/(2𝑞)𝐷𝑑 as 𝑠 ⩾ 𝑠1 and 𝑑 ⩽ 𝑑1 with

positive parameters 𝑚−, 𝑚+, 𝐶 = min{𝐴2, 𝐵2}/2 and 𝐷 . Let us choose 𝑁 ⩾ 𝑞 + 1, then,
repeating the reasoning of theorem 1, we obtain a proof of theorem 2. □

Note that the choice of a negative root of the equation (12) corresponds to a saddle-type
fixed point in the limit system. In this case, damped disturbances do not significantly affect the
behavior of nearby trajectories and the asymptotic regime corresponding to (11) with ψ1 < 0
turns out to be unstable.

If µ0 = 1 and β1 < µ1, then an asymptotic solution in the form (11) is not constructed.
Moreover, in this case the trajectories of system (5) behave in the same way as the solutions of
limiting system (6) for µ0 > 1 and are unbounded [3].

3. Stochastic stability of resonant solutions

This section discusses the stability of autoresonant solutions of system (1) with respect to
stochastic disturbances for 0 < µ0 < 1 and for µ0 = 1. It is known that even small stochastic
disturbances can lead to a loss of stability of solutions [9, Ch. 10] and the emergence of new
stable states [10]. Let us describe the conditions under which the stability of autoresonance is
guaranteed to be preserved in probability at least over asymptotically large time intervals.
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Note that the substitution (4) reduces system (3) to the following form (see [7, §8.5]):

𝑑𝑅 = 𝐹 (𝑅,Ψ, 𝑠) 𝑑𝑠+ 𝜀σ1,1(𝑅,Ψ, 𝑠) 𝑑𝑤1(𝑠),

𝑑Ψ = 𝐺(𝑅,Ψ, 𝑠) 𝑑𝑠+ 𝜀σ2,1(𝑅,Ψ, 𝑠) 𝑑𝑤1(𝑠) + 𝜀σ2,2(𝑅,Ψ, 𝑠) 𝑑𝑤2(𝑠),
(14)

where (𝑤1(𝑠), 𝑤2(𝑠)) is some two-dimensional Wiener process,

σ1,1(𝑅,Ψ, 𝑠(τ)) ≡ τ
4−𝑞
4 σ1(τ) sinΨ, σ2,1(𝑅,Ψ, 𝑠(τ)) ≡ τ

2−𝑞
4 σ1(τ) cosΨ√︀
λ(τ) + τ−1/2𝑅

,

σ2,2(𝑅,Ψ, 𝑠(τ)) ≡ τ
2−𝑞
4 σ2(τ).

From Theorem 1 it follows that system (14) for 𝜀 = 0 and 0 < µ0 < 1 has a stable solution
𝑅𝑐(𝑠), Ψ𝑐(𝑠) with asymptotics (7). Let us show that the solution remains stable with respect
to stochastic perturbations at 𝜀 ̸= 0 under certain restrictions on the class of perturbations
𝒦𝑎1,𝑎2 := {(σ1(τ), σ2(τ)) : σ1(τ) = 𝒪(τ𝑎1), σ2(τ) = 𝒪(τ𝑎2) at τ → ∞}. Let us define the function
𝑑(𝑟,ψ) ≡

√
𝑟2 + ψ2. Then, we have

Theorem 3. Let 0 <
√
λ0(1 + 𝑏) < 1, α0 >

1

2
− 4(𝑏+ 1)

(2𝑏+ 1)2
and (σ1(τ), σ2(τ)) ∈ 𝒦𝑎1,𝑎2 with

parameters 𝑎1 ⩽ −1 + (2𝑏+ 1)𝐾/4, 𝑎2 ⩽ −1/2 + (2𝑏+ 1)𝐾/4, 𝐾 ⩽ 1. Then there exists τ0 > 0
such that for any ε1 > 0 and ε2 > 0 there are δ1 > 0 and δ2 > 0 such that any solution ρ(τ),
ψ(τ) systems (3) with 𝑑(ρ(τ0)−ρ𝑐(τ0),ψ(τ0)−ψ𝑐(τ0)) ⩽ δ1 and 0 < 𝜀 < δ2 satisfies the estimate

P
(︂

sup
0⩽τ−τ0⩽𝒯

𝑑
(︁
τ
1
2 (ρ(τ)− ρ𝑐(τ)),ψ(τ)− ψ𝑐(τ)

)︁
⩾ ε2

)︂
⩽ ε1 (15)

with parameter 𝒯 = 𝜀−1 for 0 < 𝐾 ⩽ 1, 𝒯 = 𝑠(τ0)(exp 𝜀−1 − 1) for 𝐾 = 0 and 𝒯 = ∞ for
𝐾 < 0.

Proof. Substitution 𝑅(𝑠) = 𝑅𝑐(𝑠) + 𝑟(𝑠), Ψ(𝑠) = Ψ𝑐(𝑠) + ψ(𝑠) in (14) leads to the system

𝑑𝑟 = ℱ(𝑟,ψ, 𝑠) 𝑑𝑠+ 𝜀σ̃1,1(𝑟,ψ, 𝑠) 𝑑𝑤1(𝑠),

𝑑ψ = 𝒢(𝑟,ψ, 𝑠) 𝑑𝑠+ 𝜀σ̃2,1(𝑟,ψ, 𝑠) 𝑑𝑤1(𝑠) + 𝜀σ̃2,2(𝑟,ψ, 𝑠) 𝑑𝑤2(𝑠),
(16)

where ℱ(𝑟,ψ, 𝑠) ≡ 𝐹 (𝑅𝑐(𝑠)+𝑟,Ψ𝑐(𝑠)+ψ, 𝑠)−𝐹 (𝑅𝑐(𝑠),Ψ𝑐(𝑠), 𝑠), 𝒢(𝑟,ψ, 𝑠) ≡ 𝐺(𝑅𝑐(𝑠)+𝑟,Ψ𝑐(𝑠)+
ψ, 𝑠) − 𝐺(𝑅𝑐(𝑠),Ψ𝑐(𝑠), 𝑠), σ̃𝑖,𝑗(𝑟,ψ, 𝑠) ≡ σ𝑖,𝑗(𝑅𝑐(𝑠) + 𝑟,Ψ𝑐(𝑠) + ψ, 𝑠) and (𝑅𝑐(𝑠),Ψ𝑐(𝑠)) is the
solution of system (5) with asymptotic behavior (7). It is easy to check that

ℱ =

𝑞∑︁
𝑘=0

𝑠
− 𝑘

𝑞
{︀
𝑓𝑘/2(ψ+Ψ𝑐)− 𝑓𝑘/2(Ψ𝑐) + δ𝑘,𝑞ν0𝑟

}︀
+𝒪(𝑑)𝒪(𝑠

−1− 1
𝑞 ),

𝒢 =

𝑞∑︁
𝑘=0

𝑠
− 𝑘

𝑞
{︀
𝑟η𝑘/2 + δ𝑘,𝑞

(︀
𝑔0(𝑟 +𝑅𝑐,ψ+Ψ𝑐)− 𝑔0(𝑅𝑐,Ψ𝑐)

)︀}︀
+𝒪(𝑑)𝒪(𝑠

−1− 1
𝑞 ),

σ̃𝑖,𝑗 = 𝒪(𝑠−1+𝐾)

as 𝑠 → ∞ and 𝑑 → 0.
Let’s define the operator

ℒ = 𝜕𝑠 + ℱ𝜕𝑟 + 𝒢𝜕ψ +
𝜀2

2

(︀
σ̃21,1𝜕

2
𝑟 + 2σ̃1,1σ̃2,1𝜕𝑟𝜕ψ + (σ̃22,1 + σ̃

2
2,2)𝜕

2
ψ

)︀
,
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associated with (16) and playing a key role in the study of stochastic stability (see [11, §3.6]).
Consider the auxiliary function 𝑉 (𝑟,ψ, 𝑠) ≡ 𝑉𝑐(𝑟,ψ, 𝑠; Ψ𝑐(𝑠),2𝑐) with the parameter 2𝑐 defined
in the proof of the theorem 1. Note that there are 𝑑0 > 0 and 𝑠0 > 0 such that

𝑚−𝑑
2(𝑟,ψ) ⩽ 𝑉 (𝑟,ψ, 𝑠) ⩽ 𝑚+𝑑

2(𝑟,ψ),

ℒ𝑉 (𝑟,ψ, 𝑠) ⩽ −𝑠−1𝐶𝑑2(𝑟,ψ) + 𝑠−1+𝐾𝜀2𝑀
(17)

as 𝑠 ⩾ 𝑠0 and 𝑑(𝑟,ψ) ⩽ 𝑑0 with positive constants 𝑚−, 𝑚+, 𝐶 and 𝑀 . Then the Lyapunov
function for system (16) can be taken in the following form [12, 13]: 𝑈(𝑟,ψ, 𝑠) ≡ 𝑉 (𝑟,ψ, 𝑠) +
+ 𝜀2𝑀θ𝐾(𝑠) с

θ𝐾(𝑠) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑠−1+𝐾
0 (𝒯 + 𝑠0 − 𝑠), 0 < 𝐾 ⩽ 1,

log(𝒯 + 𝑠0)− log 𝑠, 𝐾 = 0,

𝒯 +𝑠0∫︀
𝑠
ς𝐾−1 𝑑ς, 𝐾 < 0.

Note that

𝑈(𝑟,ψ, 𝑠) ⩾ 𝑚−𝑑
2(𝑟,ψ), ℒ𝑈(𝑟,ψ, 𝑠) ⩽ 0 (18)

for all (𝑟,ψ, 𝑠) ∈ 𝒟(𝑑0, 𝑠0, 𝒯 ) := {(𝑟,ψ, 𝑠) : 𝑑 ⩽ 𝑑0, 0 ⩽ 𝑠 − 𝑠0 𝑙𝑒𝑞𝒯 }. Let us fix the parameters
ε1 ∈ (0, 𝑑0) and ε2 > 0. Let (𝑟(𝑠),ψ(𝑠)) be a solution to system (16) for 𝑑(𝑟(𝑠0),ψ(𝑠0)) ⩽ δ1
and 0 < 𝜀 < δ2. Let us denote by 𝑠𝒟 the moment of the first exit of trajectories from the region
𝒟(δ1, 𝑠0, 𝒯 ), and set ς𝑠 ≡ min{𝑠𝒟, 𝑠}. Then (𝑟(ς𝑠),ψ(ς𝑠), ς𝑠) is a process stopped at the moment
of the first exit from the region 𝒟(δ1, 𝑠0, 𝒯 ). Moreover, from (18) it follows that 𝑈(𝑟(ς𝑠),ψ(ς𝑠), ς𝑠)
is a non-negative supermartingale [11, §5.2], and the estimates hold

P( sup
0⩽𝑠−𝑠0⩽𝒯

𝑑(𝑟(𝑠),ψ(𝑠)) > ε1) = P(sup
𝑠⩾𝑠0

𝑑(𝑟(ς𝑠),ψ(ς𝑠)) > ε1)

⩽ P(sup
𝑠⩾𝑠0

𝑈(𝑟(ς𝑠),ψ(ς𝑠), ς𝑠) > 𝑚−ε21) ⩽
𝑈(𝑟(𝑠0),ψ(𝑠0), 𝑠0)

𝑚−ε21
.

(19)

The last estimate follows from Doob’s inequality for supermartingales. Note that 𝑈(𝑟(𝑠0),ψ(𝑠0), 𝑠0) ⩽
𝑚+δ21 + 𝜀2𝑀θ𝐾(𝑠0). Let us choose δ1 = ε2

√︀
ε2𝑚−/(2𝑚+) and

δ2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚+δ21𝑀

−1𝑠1−𝐾
0 , 0 < 𝐾 ⩽ 1,

𝑚+δ21𝑀
−1, 𝐾 = 1,

𝑚+δ21𝑀
−1|𝐾|𝑠−𝐾

0 , 𝐾 < 0.

From here, from (4) and (19) the estimate (15) follows. □

Theorem 4. Let
√
λ0(1 + 𝑏) = 1, β1 > µ1, α0 >

1

2
− 4𝑏− 1

(2𝑏+ 1)2
and (σ1(τ), σ2(τ)) ∈ 𝒦𝑎1,𝑎2 with

parameters 𝑎1 ⩽ −7/4 + (2𝑏+ 1)𝐾/4, 𝑎2 ⩽ −1 + (2𝑏+ 1)𝐾/4, 𝐾 ⩽ 1. Then there exists τ0 > 0
such that for any ε1 > 0 and ε2 > 0 there are δ1 > 0 and δ2 > 0 such that any solution ρ(τ), ψ(τ)
of system (3) with 𝑑(ρ(τ0)− ρ0(τ0),ψ(τ0)− ψ0(τ0)) ⩽ δ1 and 0 < 𝜀 < δ2 satisfies the estimate

P
(︂

sup
0⩽τ−τ0⩽𝒯

𝑑
(︁
τ
5
4 (ρ(τ)− ρ0(τ)), τ

1
2 (ψ(τ)− ψ0(τ))

)︁
⩾ ε2

)︂
⩽ ε1
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with parameter 𝒯 = 𝜀−1 for 0 < 𝐾 ⩽ 1, 𝒯 = 𝑠(τ0)(exp 𝜀−1 − 1) for 𝐾 = 0 and 𝒯 = ∞ for
𝐾 < 0.

Proof. Substitution 𝑅(𝑠) = 𝑅0(𝑠) + 𝑠−3/(2𝑞)𝑟(𝑠), Ψ(𝑠) = Ψ0(𝑠) + 𝑠−1/𝑞ψ(𝑠) in (14) for µ0 = 1
leads to system (16) with

ℱ(𝑟,ψ, 𝑠) ≡ 𝑠
3
2𝑞

(︁
𝐹
(︁
𝑅0(𝑠) + 𝑠

− 3
2𝑞 𝑟,Ψ0(𝑠) + 𝑠

− 1
𝑞ψ, 𝑠

)︁
− 𝐹 (𝑅0(𝑠),Ψ0(𝑠), 𝑠)

)︁
+ 𝑠−1 3𝑟

2𝑞
,

𝒢(𝑟,ψ, 𝑠) ≡ 𝑠
1
𝑞

(︁
𝐺
(︁
𝑅0(𝑠) + 𝑠

− 3
2𝑞 𝑟,Ψ0(𝑠) + 𝑠

− 1
𝑞ψ, 𝑠

)︁
−𝐺(𝑅0(𝑠),Ψ0(𝑠), 𝑠)

)︁
+ 𝑠−1ψ

𝑞
,

σ̃1,1(𝑟,ψ, 𝑠) ≡ 𝑠
3
2𝑞 σ1,1

(︁
𝑅0(𝑠) + 𝑠

− 3
2𝑞 𝑟,Ψ0(𝑠) + 𝑠

− 1
𝑞ψ, 𝑠

)︁
,

σ̃2,𝑗(𝑟,ψ, 𝑠) ≡ 𝑠
1
𝑞 σ2,𝑗

(︁
𝑅0(𝑠) + 𝑠

− 3
2𝑞 𝑟,Ψ0(𝑠) + 𝑠

− 1
𝑞ψ, 𝑠

)︁
,

where 𝑅0(𝑠), Ψ0(𝑠) are the solution of system (5) for µ0 = 1 with asymptotics (11). It is easy to
check that

ℱ =

𝑞+2∑︁
𝑘=0

𝑠
− 2𝑘−3

2𝑞

{︁
𝑓𝑘/2(Ψ0 + 𝑠

− 1
𝑞ψ)− 𝑓𝑘/2(Ψ0)

}︁
+ 𝑠−1

(︂
ν0 +

3

2𝑞

)︂
𝑟 +𝒪(𝑑)𝒪(𝑠

− 𝑞+1
𝑞 ),

𝒢 =

𝑞∑︁
𝑘=0

𝑠
− 2𝑘+1

2𝑞 𝑟η𝑘/2 + 𝑠
− 𝑞−1

𝑞

(︁(︀
𝑔0(𝑅0 + 𝑠

− 3
2𝑞 𝑟,Ψ0 + 𝑠

− 1
𝑞ψ)− 𝑔0(𝑅0,Ψ0)

)︀)︁
+

+ 𝑠−1ψ
𝑞
+𝒪(𝑑)𝒪(𝑠

− 𝑞+1
𝑞 ),

σ̃𝑖,𝑗 = 𝒪(𝑠−1+𝐾)

as 𝑠 → ∞ and 𝑑(𝑟,ψ) → 0. Note that the function 𝑉 (𝑟,ψ, 𝑠) ≡ 𝑉0(𝑟,ψ, 𝑠; Ψ0(𝑠),20) with
the parameter 20 defined in the theorem 2, satisfies (17). In this case, the construction of the
Lyapunov function for stochastic system (16) and further justification are carried out in the same
way as in the proof of the theorem 3. □

Conclusion

Thus, the conditions are described under which the autoresonant regime is preserved and
disappears when the pump parameters pass through bifurcation values in the corresponding limit
system. The influence of damped stochastic disturbances is studied and the dependence of the
intervals of stochastic stability of autoresonance on the degree of noise intensity attenuation is
found. It is shown that to maintain the stability of solutions at appropriate bifurcation values of
the parameters, more stringent restrictions are required.

The results obtained expand the possibility of using the autoresonance phenomenon for
stable control of nonlinear dynamics. The possibility of a significant change in the energy of
oscillating systems using a small chirped disturbance in the presence of weak dissipation and
noise has been proven. In particular, it is shown that stochastic perturbations do not destroy
capture into autoresonance when the pump parameters pass through bifurcation values.
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