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Abstract. The purpose of this work is to modify the learning mechanism of a collective classifier in order to provide
learning by population dynamics alone, without requiring an external sorting device. A collective classifier is an
ensemble of non-identical simple elements, which do not have any intrinsic dynamics neither variable parameters;
the classifier admits learning by adjusting the composition of the ensemble, which was provided in the preceding
literature by selecting the ensemble elements using a sorting device. Methods. The population dynamics model of
a collective classifier is extended by adding a “learning subsystem”, which is controlled by a sequence of training
examples and, in turn, controls the strength of intraspecific competition in the population dynamics. The learning
subsystem dynamics is reduced to a linear mapping with random parameters expressed via training examples. The
solution to the mapping is an asymptotically stationary Markovian random process, for which we analytically find
asymptotic expectation and show its variance to vanish in the limit under the specified assumptions, thus allowing
an approximate deterministic description of the coupled population dynamics based on available results from the
preceding literature. Results. We show analytically and illustrate it by numerical simulation that the decision rule
of our classifier in the course of learning converges to the Bayesian rule under assumptions which are essentially
in line with available literature on collective classifiers. The implementation of the required competitive dynamics
does not require an external sorting device. Conclusion. We propose a conceptual model for a collective classifier,
whose learning is fully provided by its own population dynamics. We expect that our classifier, similarly to the
approaches taken in the preceding literature, can be implemented as an ensemble of living cells equipped with
synthetic genetic circuits, when a mechanism of population dynamics with synthetically controlled intraspecific
competition becomes available.
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Introduction

The classification task consists of assigning a classified object to one of a predetermined
set of classes based on the value of some observable feature, which can be either a real value or,
for example, a real vector, etc. [1, 2]. The number of classes, generally speaking, is determined
by the statement of the problem; the present study is limited to the two-class case. The decision
rule of a classifier is a function that maps a set of attribute values to a set of classes. If the
conditional probability distributions on the set of attribute values are known according to the
condition of the classified object belonging to each of the classes, then the minimum probability
of classification error is ensured by Bayes’ decision rule [1, section. 1.1–1.2], [2, sec. 3]. If these
distributions are unknown, but a set of “training examples” — values of the attribute are given,
each of which is equipped with a “class label”, that is, an indication that the object belongs to
a certain class, then the process of constructing an optimal classifier (for example, in the sense
of minimizing the probability of error) based on training examples is called classifier training.
The vast majority of research in the field of machine learning is focused on creating algorithms
that can be executed by digital computing devices [1, 2]. At the same time, in nature there are
non-algorithmic learning systems in which learning is provided by the own dynamics of these
systems. These include not only the nervous systems, but also, for example, the adaptive immune
systems of living organisms. It is of interest not only to study similar objects in living nature,
but also to create artificial learning systems based on similar principles (see literature review
in [3]).

In the works [4,5], collective classifiers were introduced into consideration - learning systems,
the material basis of which is ensembles of non-identical elements of limited complexity, each of
which implements some fixed (and quite simple) function of response to input features that does
not have tuning parameters, and the classifier (the ensemble as a whole) is trained by forming an
optimal ratio of the numbers of elements of various types in the ensemble. A method for carrying
out such learning was described by selecting an ensemble (selectively removing elements) using
an external sorting device based on the responses of individual elements to training examples.
An implementation of an ensemble element in the form of a bacterial cell with a synthetic gene
network was proposed, therefore, for definiteness, we will further call the element of the collective
classifier a cell, although this study is of a general nature, without reference to a biological or other
implementation. Moreover, the selection procedure described in [4, 5] always leads to a mode of
competitive population dynamics with a single winner (in the limit, a single cell type remains),
which significantly limits the applicability of this approach; in particular, it is impossible to
ensure the asymptotic convergence of the trained classifier in the limit of the learning process to
the optimal (for example, Bayesian) decision rule.

In subsequent work [3], an approach was proposed to overcome this limitation through a
transition in population dynamics from a regime with a single winner to a regime of competition
with coexistence. A model of competitive dynamics was proposed that has the required properties
and ensures the formation of a trained ensemble as a stable state of equilibrium in population
dynamics; It is also proposed to implement the required competitive dynamics using a selection
algorithm controlled by training examples. A common disadvantage of selection methods when
training collective classifiers [3–5] is the need to use a sorting device that is external to the
system, since this means that the system is not trained using only its own dynamics.

The purpose of this study is to fill this gap. The model of competitive dynamics, previously
proposed in [3], is modified and supplemented with a subsystem that ensures, firstly, training the
system using examples directly due to the dynamics of the system and, secondly, maintaining the
composition of the ensemble after training. It is shown analytically and illustrated by numerical
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simulation that the ensemble formed as a result of the proposed population dynamics is a trained
collective classifier, the response function of which is an approximation of the Bayesian decision
rule.

1. Methodology

1.1. A coexistence competition model based on an external sorter. In the work
[3], a collective classifier training strategy was proposed and investigated, based on population
dynamics, including intraspecific competition along with competition for a common resource,
thereby ensuring competition with coexistence. The dynamics of the numbers of cell types is
described by a system of ordinary differential equations

�̇�𝑖 = 𝑏𝑖𝑛𝑖

⎛⎝1− 1

𝑁𝑐

𝑠∑︁
𝑗=1

𝑛𝑗

⎞⎠− (1− 𝑏𝑖)
𝑛2
𝑖

𝑁𝑐
, 𝑖 = 1 . . . 𝑠, (1)

where the numbers of cell types 𝑛𝑖 act as continuous dynamic variables, the index 𝑖 numbers the
cell types, 𝑠 — the number of cell types, 𝑏𝑖 — competitiveness parameters, 𝑁𝑐 > 0 - – “medium
capacity”. The parameters are subject to the constraint 0 < 𝑏𝑖 < 1, and the phase space is limited
by a non-negative orthant (all 𝑛𝑖 ⩾ 0), which is an invariant region in the complete real space.

The system (1) has an equilibrium state

𝑛𝑖 = 𝑁𝑐
𝑏𝑖

1− 𝑏𝑖
ℎ, where ℎ =

⎛⎝ 𝑠∑︁
𝑗=1

1

1− 𝑏𝑗
− (𝑠− 1)

⎞⎠−1

, (2)

globally stable in the positive orthant of the phase space (where all 𝑛𝑖 > 0).
In the (1) model, the parameter 𝑏𝑖 specifies the ratio of the contributions of the mechanisms

of intraspecific competition and competition for a common resource in the population dynamics
of the corresponding cell type: with 𝑏𝑖 = 1 on the right side of the 𝑖-th equation in (1) only
the first term is non-zero (meaning competition for a common resource), while for 𝑏𝑖 = 0 only
the second term (meaning intraspecific competition) is non-zero. Based on the (1) model, [3]
proposed a selection algorithm driven by training examples, generating competitive dynamics
that transform into (1) in the continuous limit, resulting in, as shown, a decision rule of the
trained classifier approaches the (optimal) Bayes rule.

The mechanisms for training collective classifiers based on selection, presented in [3–5], have
a common drawback - the need for an external sorting device to provide the required competitive
dynamics. Overcoming this limitation requires solving two problems, which are the focus of this
study: firstly, it is required that the collective classifier be trained using the ensemble’s own
population dynamics, and secondly, the composition of the ensemble must be preserved after
training is completed.

The solution to the first problem, that is, the rejection of external selection during training,
implies the actual implementation of the mechanism of competitive population dynamics in the
ensemble elements (that is, controlled reproduction and removal of elements) together with a
mechanism for adjusting competitiveness parameters controlled by training examples. In the case
of implementing an ensemble element in the form of a bacterial cell with a synthetic gene network
[4], competitiveness control can be organized, for example, by controlling the cell’s antibiotic
resistance through a synthetic gene network, and the input of training examples and turning
on/off the learning mechanism — for example, through the use of chemical channels of intercellular
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communication (such as quorum sensing [4]). In any case, the competitiveness coefficients, which
in the (1) model are constant parameters, when moving to a learning mechanism based on the
element’s own dynamics, become additional dynamic variables, the dynamics of which must be
described by the corresponding subsystem (hereinafter — “subsystem training”), in addition to
the subsystem describing population dynamics. The present study does not aim to describe any
specific material implementation of the required competitive dynamics governed by the training
examples. We limit ourselves to demonstrating the fundamental possibility of solving the problem
posed on the basis of a simple sufficient model.

To solve the second of these problems, that is, to ensure the preservation of the population
structure after training, it is necessary that, outside the learning process, the relative proportions
of cells of different types in the ensemble do not change, or change on a time scale exceeding the
required time for maintaining the trained state of the system. In the original form of the (1) model,
this requirement cannot be met, since learning within the meaning of the model is carried out by
controlling the competitiveness parameters 𝑏𝑖. The termination of training, therefore, implies the
termination of competitiveness control, that is, the return of all parameters 𝑏𝑖 to some “initial”
value, the same for all cells and determined by the implementation of the element. This, in turn,
entails a transition of the system to a stable state of equilibrium, in which the numbers of all
types of cells are also the same, which means that the system forgets its trained state. To solve
this problem, it is proposed to modify the (1) system in such a way that the parameter controlling
the competitiveness of each cell type affects only intraspecific competition within a specific cell
type, while the competitiveness of all cell types in competition for share becomes the same.
With this approach, as shown in section 1.2, the termination of training transfers competition
to a degenerate mode, preserving the proportions of cell types in the ensemble.

1.2. Modified model of competition with coexistence. To implement the required
dynamics, we modify the model (1) by dividing the right-hand side of each equation by 𝑏𝑖 and
introducing redesignation of the parameters, as a result of which the modified model is written
in the form

�̇�𝑖 = 𝑛𝑖

⎛⎝1− 1

𝑁𝑐

𝑠∑︁
𝑗=1

𝑛𝑗

⎞⎠− 𝑘𝑖
𝑛2
𝑖

𝑁𝑐
, where 𝑘𝑖 =

1− 𝑏𝑖
𝑏𝑖

, 𝑖 = 1 . . . 𝑠. (3)

The constraint 𝑏𝑖 ∈ (0, 1) goes to 𝑘𝑖 ∈ (0,+∞). Note that the parameters 𝑘𝑖 in the model (3) from
the point of view of population dynamics are interpreted as determining intraspecific competition.
If the parameters 𝑘𝑖 are constant in time and satisfy the specified constraint, then the expression
for the equilibrium state (2) remains valid and, taking into account the redesignation of the
parameters, is rewritten as

𝑛𝑖 = ℎ𝑁𝑐 𝑘
−1
𝑖 , where ℎ =

⎛⎝1 +

𝑠∑︁
𝑗=1

𝑘−1
𝑗

⎞⎠−1

. (4)

The statement about the global stability of the equilibrium state (4) in the positive orthant
remains valid (see paragraph 1 of the Appendix); this means that the coexistence regime
determined by the equilibrium state (4) is the only possible result of competitive dynamics
in the system (3).

The equilibrium value of the total number of cells does not differ from the known [3, eq.
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(6)] for the model (1) and is obtained by summing all numbers 𝑛𝑖 in the equilibrium state(4):

𝑁∞ =
𝑠∑︁

𝑖=1

𝑛𝑖 = 𝑁𝑐 ℎ
𝑠∑︁

𝑖=1

𝑘−1
𝑖 = 𝑁𝑐 ℎ

(︀
ℎ−1 − 1

)︀
= 𝑁𝑐 (1− ℎ). (5)

We will assume that the termination of training corresponds to the case when all parameters
𝑘𝑖 become zero. The expression for the equilibrium state (4) in this case is not applicable, however
the system itself (3) retains its meaning and turns into a degenerate model of competition with
the same competitiveness

�̇�𝑖 = 𝑛𝑖

⎛⎝1− 1

𝑁𝑐

𝑠∑︁
𝑗=1

𝑛𝑗

⎞⎠, 𝑖 = 1 . . . 𝑠. (6)

This model has a (𝑠− 1)-dimensional invariant manifold given by the equation

𝑠∑︁
𝑗=1

𝑛𝑗 = 𝑁𝑐 (7)

(a hyperplane cutting off identical segments 𝑛𝑖 = 𝑁𝑐 on all coordinate axes), which vanishes the
expression in brackets on the right side of (6), that is, it consists entirely of equilibrium states,
and at the same time is globally stable in the positive orthant ( the proof of the last statement
follows below).

In addition, an invariant manifold is each ray in phase space emanating from the origin
and described by the equation

𝑛𝑖 = ν𝑖𝑁, (8)

where ν𝑖 are constants specifying the direction of the ray, and 𝑁 ∈ [0,+∞) is the coordinate
along the ray. In fact, substituting (8) into (6) turns each equation of the system (6) into the
same equation describing the dynamics of the variable 𝑁 (motion along the ray)

�̇� = 𝑁

⎛⎝1− 𝑁

𝑁𝑐

𝑠∑︁
𝑗=1

ν𝑗

⎞⎠. (9)

Without loss of generality, we will assume that the constants ν𝑖 satisfy the additional condition

𝑠∑︁
𝑗=1

ν𝑗 = 1 (10)

(which can be done for any ray (8) by multiplying the right side of (8) by a constant), then from
(8) we have

𝑁 =
𝑠∑︁

𝑗=1

𝑛𝑗 . (11)

In this case, the variable 𝑁(𝑡) has the meaning of the total number of cells, and its dynamics
are then described by a special case of the equation (9)

�̇� = 𝑁

(︂
1− 𝑁

𝑁𝑐

)︂
, (12)

164
Sutyagin A.A., Kanakov O. I.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2024;32(2)



having two equilibrium states: unstable 𝑁 = 0 and stable 𝑁 = 𝑁𝑐. Substituting 𝑁 = 𝑁𝑐 into the
equation of the ray (8) and taking into account (10), we are convinced that the stable equilibrium
state on each ray lies on the invariant manifold (7). Since each point in the positive orthant lies
on some ray of the form (8), this reasoning implies the above-mentioned global stability of the
invariant manifold (7) in the positive orthant.

The expression (8) when executing (10) can be considered as a solution to the system (6)

𝑛𝑖(𝑡) = ν𝑖𝑁(𝑡), (13)

where 𝑁(𝑡) is the solution to the equation (12).

1.3. Training subsystem and method of training a collective classifier. Let us
formulate a method for training a collective classifier based on competitive dynamics, based
on the assumption that the population dynamics of the ensemble during the learning process is
described by the model (3), where the parameters 𝑘𝑖, which determine the strength of intraspecific
competition, are now considered time-variable, namely the dynamics variables 𝑘𝑖(𝑡) in the
learning process are determined by training examples sequentially presented to the system, and
after the end of training all 𝑘𝑖 turn to zero (the dynamics of the system are then described by
the degenerate model (6)).

Let 𝑥 be the input of the classifier (a feature or, generally speaking, a vector of features),
and for each type of cell a response function 𝑓𝑖(𝑥) ⩾ 0 is given, which describes the response of
any cell of the 𝑖-th type to the input the value of the feature 𝑥 (everywhere we use the notation
corresponding to [3]).

Let there be a training sequence {πα}𝑁learn
α=1 containing the total number of 𝑁learn training

examples , each of which is a pair πα = (𝑥α, 𝑐α), consisting of the attribute value 𝑥α and the class
label 𝑐α ∈ {+,−}, which specifies whether the example belongs to one of two classes, which are
further referred to as “positive” and “negative” and are denoted by the corresponding symbols
‘+’ and ‘−’.

We will assume that all training examples are presented sequentially, in a random order,
the duration of presentation of each example is a fixed value 𝑇𝑠, and there are no time intervals
between the presentation of successive examples (the total training time is therefore 𝑁learn ·𝑇𝑠).

Let us introduce into consideration the dynamics of variables 𝑘𝑖 — “learning subsystem”,
described by the equations

�̇�𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−τ−1

𝑙 𝑘𝑖 outside the learning process,

τ−1
𝑙 𝑓𝑖(𝑥α) (𝑘

+ − 𝑘𝑖), if 𝑐α = +,

τ−1
𝑙 𝑓𝑖(𝑥α) (𝑘

− − 𝑘𝑖), if 𝑐α = −,

(14)

where α is the number of the training example presented at the current time, τ𝑙 is a parameter
that determines the time scale of the learning process, 𝑘+ and 𝑘− are constants.

If for some 𝑘𝑖 only one of the cases on the right side of the equation (14) is implemented
for an unlimited time, and 𝑥α = const (that is, one training example or none is presented for
an unlimited time example), then we have for 𝑘𝑖 an autonomous system of the 1st order (on the
phase line), which for 𝑓𝑖(𝑥α) > 0 has a unique globally stable equilibrium state 𝑘𝑖 = 0, 𝑘𝑖 = 𝑘+

or 𝑘𝑖 = 𝑘−, according to the cases on the right side of (14). The characteristic time for the value
𝑘𝑖(𝑡) to approach the equilibrium state depends on the value 𝑓𝑖(𝑥α), and in the case of 𝑓𝑖(𝑥α) = 0
(if the 𝑖th type cells does not respond to the value of the feature 𝑥α), the dynamics (14) for the
variable 𝑘𝑖 degenerates into a constant (that is, this training example does not affect the value
of the variable 𝑘𝑖).
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The intuitive justification for the proposed training methodology is based on the
consideration that a sequence of randomly selected training examples leads to stochastic
dynamics, as a result of which the steady average value of each variable 𝑘𝑖 is determined only by
those training examples that fall within the region of the non-zero response of the corresponding
(𝑖-th) type of cells, namely — the ratio between the numbers of examples from the positive and
negative classes among them. In particular, if in the response region of the 𝑖-th cell type there are
only examples from the positive (negative) class, then during the learning process in the system
(14) the right-hand side turns out to be non-zero only for the case corresponding to 𝑐 𝑎𝑙𝑝ℎ𝑎 = +
(𝑐α = −), and then 𝑘𝑖(𝑡) tends to the deterministic limit value 𝑘𝑖(𝑡) → 𝑘+ (𝑘𝑖(𝑡) → 𝑘−). If
cells of the 𝑖-th type give a non-zero response to examples from both classes present in the
training sequence in random order, then during the learning process random fluctuations of the
variable 𝑘𝑖(𝑡) are inevitable in the interval between 𝑘+ and 𝑘−, and we can expect that if among
the corresponding (that is, cells of the 𝑖 type that give a non-zero response) training examples,
examples from the positive (negative) class predominate, then the values of 𝑘𝑖(𝑡) on average will
be closer to 𝑘+ (𝑘−). In addition, the fulfillment of the condition

𝑇𝑠 ≪ τ𝑙 (15)

implies that during the time τ𝑙 the system is presented with a large number of training examples,
due to which their effect on the system should be effectively averaged, that is, the variance of
fluctuations of the variables 𝑘𝑖(𝑡) should decrease with a decrease in the ratio 𝑇𝑠/τ𝑙.

The above intuitive reasoning is formalized in the Appendix, which provides an analysis of
the dynamics of the learning subsystem (14) both for a deterministic formulation of the problem,
in which the training sequence is considered given, and for a stochastic formulation, where the
training sequence is considered as a random sample from some general population. It is shown
that in the latter case the mathematical expectations of (random) variables 𝑘𝑖(𝑡) converge over
time to stationary values

⟨𝑘𝑖(𝑡)⟩ −−−→
𝑡→∞

𝑘𝑖, (16)

Moreover, when the condition (15) is satisfied, the stationary values of the variances 𝐷[𝑘𝑖(𝑡)]
tend to zero.

The corresponding competitive dynamics of the numbers of cell types 𝑛𝑖, described by
the subsystem (3), where instead of constant parameters 𝑘𝑖 random processes 𝑘𝑖(𝑡) must now
be substituted, which are the solution of the learning subsystem (14), also becomes stochastic.
However, in the steady-state (stationary) mode of the learning subsystem, under the assumption
that the variances of the variables 𝑘𝑖(𝑡) are small, which is ensured by the condition (15), one
can expect that the variances of the numbers 𝑛𝑖(𝑡) should also be small. For these reasons, we
neglect fluctuations when describing the asymptotic state of the subsystem (3), which in this
approximation is considered as deterministic and is described by a globally stable equilibrium
state (4), where instead of 𝑘𝑖 the corresponding stationary values of mathematical expectations
�̂�𝑟𝑒𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑑𝑘𝑖:

⟨𝑛𝑖(𝑡)⟩ −−−→
𝑡→∞

�̂�𝑖 = ℎ𝑁𝑐 𝑘
−1
𝑖 . (17)

The stationary value of the total number is given by the expression (5), namely

𝑠∑︁
𝑖=1

�̂�𝑖 = 𝑁𝑐 (1− ℎ). (18)

After the end of training, according to the first case in (14), all variables 𝑘𝑖 tend to
zero exponentially, with a time constant τ𝑙. Assuming that this scale is small compared to the
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characteristic time scale of population dynamics (3), we can assume that the dynamics of the
system instantly switches to the degenerate competition mode (6), for which the asymptotic
state of the learning process is (17) acts as an initial condition. As shown in section 1.2, further
movement of the representing point in phase space occurs along the corresponding ray (8) and
tends to a stable equilibrium state lying at the intersection of this ray with the invariant manifold
(7). Movement along the ray (8) implies that the values of the variables in the equilibrium state
𝑛𝑖 = 𝑛eq

𝑖 are obtained by proportionally scaling the initial values 𝑛𝑖 = �̂�𝑖 while maintaining the
relationships between them, that is

𝑛eq
𝑖 = 𝑏 �̂�𝑖, (19)

where 𝑏 is an unknown constant. On the other hand, due to the equation of the invariant manifold
(7), we have

𝑠∑︁
𝑖=1

𝑛eq
𝑖 = 𝑁𝑐. (20)

From the equations (18)–(20) we find 𝑏 = (1− ℎ)−1. Then from the equations (19) and (17) we
obtain the steady-state values of the numbers of cell types 𝑛eq

𝑖 , which determine the resulting
composition of the trained classifier

𝑛eq
𝑖 =

ℎ

1− ℎ
𝑁𝑐 𝑘

−1
𝑖 . (21)

1.4. Approximation of a Bayesian decision rule by a trained classifier. If the
prior probabilities of the classified object belonging to each of the two classes are the same, then
the Bayesian decision rule is optimal from the point of view of minimizing the probability of
classification error [1, section. 1.1–1.2], [2, sec. 3], [3, eq. (9)]

𝐶Bayes(𝑥) =

{︃
+, if 𝑤+(𝑥) > 𝑤−(𝑥),

−, if 𝑤+(𝑥) ⩽ 𝑤−(𝑥),
(22)

where 𝑤+(𝑥) and 𝑤−(𝑥) are functions of the conditional probability density distribution of
attribute 𝑥 according to the condition of the object belonging to class 𝑐:

𝑤+(𝑥) = 𝑤(𝑥|𝑐 = +), 𝑤−(𝑥) = 𝑤(𝑥|𝑐 = −). (23)

Within the framework of the learning task, the functions 𝑤+(𝑥) and 𝑤−(𝑥) are not specified
a priori, and the decision rule of the classifier must be obtained as a result of training with
examples.

Let us show that the decision rule of a classifier trained using the method described in
section 1.3, under certain conditions, can be considered as an approximation of the (22) rule.
Following the approach used in [3], we will consider the cell response functions 𝑓𝑖(𝑥) to be
“narrow” in the sense that they satisfy the approximate relation [3, Eq. (19)] (the issue of
formalizing this approximation is discussed below)∫︀

𝑔(𝑥)𝑓𝑖(𝑥)𝑑𝑥∫︀
𝑓𝑖(𝑥)𝑑𝑥

≈ 𝑔(𝑥𝑖), (24)

where 𝑔(𝑥) = 𝑤+(𝑥) or 𝑔(𝑥) = 𝑤−(𝑥), 𝑥𝑖 — “central” value of the argument (feature) that can
be assigned to each function 𝑓𝑖(𝑥) in such a way that “significantly different from zero” (making
the main contribution to the integral) values of 𝑓𝑖(𝑥) are achieved for values of the argument
𝑥 concentrated in the neighborhood of 𝑥 = 𝑥𝑖. The set of values {𝑥𝑖} for all types of cells can
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form a uniform or, generally speaking, non-uniform grid on the set of values of the feature 𝑥.
Note that the relation (24) becomes exact if the response functions are expressed through the
Dirac delta function in the form 𝑓𝑖(𝑥) = 𝑐𝑖δ(𝑥 − 𝑥𝑖), where 𝑐𝑖 are constants. For real response
functions, the relation (24) is satisfied the more accurately, the less the functions 𝑤+(𝑥) and
𝑤−(𝑥) change on the “effective width” (which makes the main contribution to the integral) of the
response function 𝑓𝑖(𝑥). The Appendix shows that when (15) and (24) are executed, in the case
of equal prior probabilities of two classes (which, however, is not a fundamental requirement; the
calculations can be modified for the case of unequal prior probabilities of classes), the stationary
state (16) of the learning subsystem, established during the learning process, is approximated by
the expression

𝑘𝑖 ≈
𝑘+ + 𝑘−

2
+

𝑘+ − 𝑘−

2
· 𝑤+(𝑥𝑖)− 𝑤−(𝑥𝑖)

𝑤+(𝑥𝑖) + 𝑤−(𝑥𝑖)
, (25)

whence, assuming for definiteness 𝑘+ < 𝑘−, we obtain the relation

𝑘𝑖

⎧⎨⎩
>
=
<

⎫⎬⎭ 𝑘+ + 𝑘−

2
at

⎧⎪⎨⎪⎩
𝑤+(𝑥𝑖) < 𝑤−(𝑥𝑖),

𝑤+(𝑥𝑖) = 𝑤−(𝑥𝑖),

𝑤+(𝑥𝑖) > 𝑤−(𝑥𝑖),

(26)

performed with accuracy to all approximations made above.
Substituting the result (26) into the expression (21), for the numbers of cell types in the

trained classifier 𝑛eq
𝑖 we have

𝑛eq
𝑖

⎧⎪⎨⎪⎩
< Θ at 𝑤+(𝑥𝑖) < 𝑤−(𝑥𝑖),

= Θ at 𝑤+(𝑥𝑖) = 𝑤−(𝑥𝑖),

> Θ at 𝑤+(𝑥𝑖) > 𝑤−(𝑥𝑖),

where Θ =
ℎ

1− ℎ
𝑁𝑐

2

𝑘+ + 𝑘−
. (27)

A strict formalization of the approximation (24) requires specification of assumptions about
the functions included in it. The Appendix provides one version of such a formalization, presented
in the form of an interval estimate (in the form of a double inequality) within the framework of
conditions satisfied by the family of response functions 𝑓𝑖(𝑥) used in section 2. The corresponding
modification of the relations (26), (27) is also given in the Appendix and can be used when
developing a classifier, however, for compactness of calculations, a simplified formulation given
by the relations (25)–(27) is considered below.

Let us introduce into consideration the decision rule of the collective classifier, defined
similarly to [3, eq. (10)] in the form

𝐶Collective(𝑥) =

{︃
+, if 𝐹 (𝑥) > Θ,

−, if 𝐹 (𝑥) ⩽ Θ,
𝐹 (𝑥) =

∑︁
𝑖

𝑛𝑖𝑓𝑖(𝑥), (28)

where 𝐹 (𝑥) is the total response of all cells that make up the collective classifier, Θ is the
classification threshold. Let us assume that the response functions 𝑓𝑖(𝑥) satisfy the additional
requirement

𝑓𝑖(𝑥𝑗) = δ𝑖𝑗 , (29)

where δ𝑖𝑗 is the Kronecker symbol, as a result of which we have

𝐹 (𝑥𝑖) = 𝑛𝑖. (30)

In the example discussed in section 2, the relations (29), (30) are satisfied exactly; for real
response functions (for example, when implementing a classifier in the form of an ensemble of
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living cells with synthetic gene structures [4,5]), they can be considered as approximate, and the
fulfillment of these relations can be ensured with some accuracy.

Applying the expression (30) in the case of a trained classifier, that is, for 𝑛𝑖 = 𝑛eq
𝑖 , and

taking into account the relation (27) together with the expression for the threshold Θ introduced
in it, we conclude that The decision rule of the trained collective classifier (28) approximates
the Bayesian rule (22) in the sense that for feature values 𝑥 falling on grid nodes 𝑥 ∈ {𝑥𝑖}, the
response of the collective classifier (28) coincides with the Bayesian decision rule (22) with an
accuracy determined by the approximations used, and outside the grid nodes depends on the
specific choice of response functions 𝑓𝑖(𝑥) (for example, for the case considered in section 2 , is
determined by linear interpolation of 𝐹 (𝑥) values between grid nodes).

In general, the expression for the threshold Θ introduced in (27) is not directly suitable for
practical application, since the value ℎ included in it, initially defined in (4), is itself expressed
through subsystem variables learning 𝑘𝑖, the equilibrium values of which are established during
the learning process and are not known a priori. To solve the problem of practically finding the
value of the threshold Θ, consider the limiting case

𝑘+ ≪ 𝑘−, (31)

at which the expression for Θ becomes

Θ =
ℎ

1− ℎ
𝑁𝑐

2

𝑘−
. (32)

Let us assume that among the cell types there is at least one such cell (let’s denote its number
as 𝑖*), for which the overwhelming predominance of training examples from the negative class is
realized, that is, 𝑤+(𝑥𝑖*) ≪ 𝑤−(𝑥𝑖*). In this limit, the expression (25) for 𝑘𝑖* becomes 𝑘𝑖* = 𝑘−,
and the corresponding number of cells of a given type in the trained classifier, according to (21),
is

𝑛eq
𝑖* =

ℎ

1− ℎ
𝑁𝑐

1

𝑘−
. (33)

Note that for 𝑘+ < 𝑘− the expression (25) gives 𝑘𝑖 ⩽ 𝑘− for all cell types 𝑖. Then the value (33)
can be found as the smallest number among all cell types in the trained classifier (21)

𝑛eq
𝑖* = 𝑛min = min

𝑖
{𝑛eq

𝑖 }, (34)

or, according to (30), as the smallest value of the total response of the trained classifier 𝐹 (𝑥) at
grid nodes {𝑥𝑖}

𝑛eq
𝑖* = 𝑛min = min

𝑖
𝐹 (𝑥𝑖). (35)

Comparing the expressions (32) and (33), we note that the desired threshold value Θ can be
found as double the value 𝑛eq

𝑖* , that is

Θ = 2𝑛min = 2min
𝑖

𝐹 (𝑥𝑖). (36)

Due to the above, for the practical determination of the Θ threshold, it is necessary to
ensure that among the cell types there is at least one “calibration” type for which there is an
overwhelming predominance of training examples from the negative class among the examples
that cause a non-zero response from cells of this type; in this case, the value of the threshold Θ
can be set according to the expression (36).
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2. Results

Let us specify the problem as follows. In the population dynamics subsystem (3) the
only free parameter is 𝑁𝑐, but changing 𝑁𝑐 is equivalent to simultaneously rescaling all state
variables 𝑛𝑖, so the value of 𝑁𝑐 can be chosen without loss of generality. Let us set 𝑁𝑐 = 1, which
corresponds to measuring the number of cells 𝑛𝑖 in fractions of the medium capacity 𝑁𝑐.

In the learning subsystem (14) we set 𝑘− = 5, 𝑘+ = 0.5 ≪ 𝑘−, which satisfies (31). Let us
choose the time scale of the learning subsystem τ𝑙 = 2.

We define the response functions of cell types similarly to [3] in the form of a linear
interpolation basis on an equidistant grid

𝑥𝑖 = 𝑥1 + (𝑖− 1)∆, (37a)

𝑓𝑖(𝑥) = max

{︂
1−

⃒⃒⃒⃒
𝑥− 𝑥𝑖
∆

⃒⃒⃒⃒
, 0

}︂
, (37b)

which satisfies the requirement (29). Then 𝐹 (𝑥) in (28) is a piecewise linear interpolation of the
values of (30) at grid nodes. We assume that the grid step ∆ is equal to 1, the number of cell
types is 𝑠 = 9, the grid 𝑥𝑖 runs through integer values from 𝑥1 = 2 to 𝑥9 = 10. The graph of one
of the functions of this family is shown in Fig. 1.

The initial conditions for the population dynamics subsystem are given by 𝑛𝑖(0) = 𝑁𝑐/𝑠,
and for the learning subsystem 𝑘𝑖(0) = 1.

The duration of presentation of one training example is 𝑇𝑠 = 0.01 ≪ τ𝑙, which ensures the
execution of (15). The total number of training examples presented is 𝑁learn = 20000, so the
total training time is 𝑇𝑠 ·𝑁learn = 200. The duration of the system evolution after completion of
training (after presentation of all training examples) is 𝑇free = 20.

Training examples during the training process are selected from two classes randomly, with
equal probability and independently. The conditional probability density functions of classes to
obtain a sample of training examples are specified similarly to the work of [3]: one of these
functions (for the “negative” class) is represented by a Gaussian distribution, the second (for the
“positive” class) is represented by a bimodal distribution distribution obtained by superposition
of two Gaussian functions:

𝑤+(𝑥) =
1

2
√
2π

(︃
1

σ1
𝑒
− (𝑥−µ1)

2

2σ21 +
1

σ2
𝑒
− (𝑥−µ2)

2

2σ22

)︃
, 𝑤−(𝑥) =

1

σ3
√
2π

𝑒
− (𝑥−µ3)

2

2σ23 , (38)

Simulation results are presented for the following combinations of parameters:

µ1 = 3, µ2 = 9, µ3 = 6, σ1 = σ2 = σ3 = 1; (39a)

µ1 = 3, µ2 = 7, µ3 = 6, σ1 = 1, σ2 = σ3 = 0.5. (39b)

Fig 1. Graph of cell response function 𝑓𝑖(𝑥) for 𝑖 = 2 (𝑥𝑖 = 3)
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The corresponding graphs of the functions 𝑤+(𝑥) and 𝑤−(𝑥) are shown in the upper panels of
Fig. 2. The values of the (39a) parameters are identical to those discussed in [3]. Additional
vertical grid lines mark the values 𝑥 = 𝑥𝐿 and 𝑥 = 𝑥𝑅, which are the roots of the equation
𝑤+(𝑥) = 𝑤−(𝑥) and represent the boundaries of the solution domains of the Bayesian decision
rule (22) .

Numerical modeling of the dynamics of the complete system has been performed, consisting
of the population dynamics subsystem (3), which describes the dynamics of the numbers of
cell types 𝑛𝑖(𝑡), and the learning subsystem (14), which describes the dynamics of intraspecific
competition coefficients 𝑘𝑖(𝑡) . The resulting evolution of the dynamics of all model variables is
presented in Fig. 3.

Response graphs of the trained collective classifier 𝐹 (𝑥) according to (28), where the cell
numbers at the final moment of the numerical experiment are taken 𝑛𝑖 = 𝑛𝑖(𝑇𝑠 ·𝑁learn + 𝑇free ),
along with the corresponding threshold value Θ according to (36), are shown in the lower panels
of Fig. 2. A comparison of the upper and lower panels of Fig. 2 shows that the decision rule of
the trained collective classifier (28), as predicted by theory, approximates the Bayesian decision
rule (22) in the sense that the inequality 𝐹 (𝑥𝑖) > Θ (positive response of the collective classifier)
occurs for feature values 𝑥 in those grid nodes 𝑥 = 𝑥𝑖 in which the Bayesian classifier gives a
positive response (𝑤+(𝑥𝑖) > 𝑤−(𝑥𝑖)), and vice versa, 𝐹 (𝑥𝑖) < Θ for 𝑤+(𝑥𝑖) < 𝑤−(𝑥𝑖), which
confirms the efficiency of the proposed method for training a collective classifier without an
external sorter.

Conclusion

The new model of competitive dynamics, which is a modification of the system proposed
in [3], provides training of a collective classifier only due to population dynamics, without using an
external sorter. To do this, the system is supplemented with a “learning subsystem”, the dynamics
of which are determined by the sequence of training examples and, in turn, controls the strength of
intraspecific competition in population dynamics. Using the example of the considered conceptual

Fig 2. Upper panels: graphs of the conditional probability density functions for the classes 𝑤+(𝑥) and 𝑤−(𝑥)
(38). Lower panels: summary response function 𝐹 (𝑥) (28) of the trained classifier. Additional vertical grid lines
denote the decision boundaries 𝑥𝐿, 𝑥𝑅 for the Bayesian classification rule (22); additional horizontal grid lines in
the lower panels denotes the threshold (36) for the collective classifier decision rule (28). Parameter values: left
column (39a), right column (39b)
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Fig 3. Evolution of the dynamical variables of the learning subsystem (14) 𝑘𝑖(𝑡) (upper panels) and of the
population dynamics subsystem (3) 𝑛𝑖(𝑡) (lower panels). Time ranges: 𝑡 = 0 . . . 200 — learning, 𝑡 = 200 . . . 220 —
transient process after learning. Parameter values: left column (39a), right column (39b) (color online)

model, it is shown that the decision rule generated by the trained classifier is an approximation
of the optimal Bayesian rule if a number of assumptions are satisfied: during the characteristic
time scale of the dynamics of the learning subsystem, a large number of training examples,
selected randomly and independently, must be presented for their effective averaging (reducing
fluctuations); the duration of training must be long enough to ensure convergence to a stable
equilibrium state; the competitiveness of cell types outside the learning process must be the same
to maintain the proportions of cell types in the trained ensemble; Cell response functions must
be narrow in comparison with the conditional distributions of classes in the feature space and
together must have the properties of an interpolation basis to form the total response function.
These assumptions do not differ from those made in [4], where the implementation of a collective
classifier in the form of an ensemble of living cells with synthetic gene structures was considered,
which allows one to count on the possibility of such an implementation for the approach proposed
in this study, but the problem of implementation remains open < <learning subsystems», that
is, managing intraspecific competition based on a sequence of training examples.

Application

1. Global stability of the coexistence regime. In the work [6] the Lotka–Volterra
model is written in the form

�̇�𝑖 = 𝑛𝑖

⎛⎝𝑏𝑖 +
𝑠∑︁

𝑗=1

𝑎𝑖𝑗𝑛𝑗

⎞⎠ , 𝑖 = 1 . . . 𝑠.
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In the case of a non-degenerate coefficient matrix 𝐴 = (𝑎𝑖𝑗), the parentheses simultaneously
vanish at a single point in the phase space, which is thus the equilibrium state of the system.
The theorem [6] then states that this equilibrium state is globally stable in the positive orthant
if it is in it, and there is a constant diagonal matrix with positive coefficients 𝐶 such that the
matrix 𝐶𝐴+ (𝐶𝐴)T (where T is the transposition operation) is negative definite.

To apply this theorem to the system (3) (for clarity, the system dimension is chosen 𝑠 = 3),
the matrix 𝐴 is written in the form

𝐴 = − 1

𝑁𝑐

⎛⎝1 + 𝑘1 1 1
1 1 + 𝑘2 1
1 1 1 + 𝑘3

⎞⎠,

and the matrix 𝐶 is assumed to be singular, then

𝐶𝐴+ (𝐶𝐴)T = − 2

𝑁𝑐

⎡⎣⎛⎝1 1 1
1 1 1
1 1 1

⎞⎠+

⎛⎝𝑘1 0 0
0 𝑘2 0
0 0 𝑘3

⎞⎠⎤⎦.
Here the matrix of ones is positive semidefinite, the diagonal matrix has positive coefficients and,
therefore, is positive definite, therefore the expression as a whole is a negative definite matrix.
The remaining conditions of the theorem are also satisfied.

2. Deterministic description of the learning process. The equations that make up
the learning subsystem (14) are independent of each other, so further consideration refers to one
individual equation of the system, that is, the value of the index 𝑖 is fixed; everywhere below the
notation 𝑘 is used as a shorthand equivalent for 𝑘𝑖. Since the learning process is described by
the second and third cases in (14), they are considered further.

If the sequence of training examples {πα}𝑁learn
α=1 is given, then the system (14) describes

deterministic dynamics with abrupt changes in time parameters on the right side. The moment
of time at which the presentation of the training example begins under the number α will be
denoted by

𝑡α = 𝑇𝑠(α− 1). (40)

At each time interval of presentation of a separate training example 𝑡 ∈ (𝑡α, 𝑡α+1) the system
(14) has constant parameters and can be represented in the form

�̇� = −λα(𝑘 − 𝑘0α), (41)

where the notation is introduced

λα = τ
−1
𝑙 𝑓𝑖(𝑥α), 𝑘0α =

{︃
𝑘+, if 𝑐α = +,

𝑘−, if 𝑐α = −.
(42)

Based on the continuity of the solution 𝑘(𝑡) at the break points of the right side 𝑡 = 𝑡α
(that is, at the moments when the training example changes), introducing the notation

𝑘α = 𝑘(𝑡α) (43)

for the value of the variable 𝑘(𝑡) at the initial moment of presentation of the training example
πα and considering this value as the initial condition for the equation (41), we write the
corresponding particular solution in the form

𝑘(𝑡) = 𝑘0α + (𝑘α − 𝑘0α)𝑒
−λα(𝑡−𝑡α), 𝑡 ∈ [𝑡α, 𝑡α+1], (44)
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As a result, the value of the variable 𝑘(𝑡) at the end of the presentation of the training example
πα (that is, at time 𝑡 = 𝑡α + 𝑇𝑠 = 𝑡α+1) , which coincides with the initial condition 𝑘α+1 for the
next training example, expressed by dot mapping

𝑘α+1 = 𝑘0α + (𝑘α − 𝑘0α)𝑒
−λα𝑇𝑠 (45)

or equivalent
𝑘α+1 = 𝑘α(1− 𝜀α) + 𝑘0α𝜀α, (46)

where the designation is introduced

𝜀α = 1− 𝑒−λα𝑇𝑠 = 1− 𝑒
−𝑇𝑠
τ𝑙

𝑓𝑖(𝑥α). (47)

Since 𝑓𝑖(𝑥) ⩾ 0, we always have 𝜀α ∈ [0, 1), and 𝜀α = 0 is realized only in the case of
𝑓𝑖(𝑥 𝑎𝑙𝑝ℎ𝑎) = 0, that is, if the 𝑖-th cell type gives a zero response to the value of the feature
𝑥 = 𝑥α. In addition, by assuming the response functions 𝑓𝑖(𝑥) to be bounded and introducing
the parameter

µ =
𝑇𝑠

τ𝑙
, (48)

which is small within the framework of the assumption (15) about the small duration of
presentation of one training example 𝑇𝑠 in comparison with the time scale of the training
subsystem τ𝑙, and expanding the exponent in (47) into a series in powers of µ , we find

𝜀α = µ𝑓𝑖(𝑥α) +𝑂(µ2), (49)

which is a small quantity of order 𝑂(µ).
Thus, having a given sequence of training examples {πα}𝑁learn

α=1 , through which the
expressions (42) and (47) are determined by the sequences of parameters {𝑘0α} and {𝜀α} in
the mapping (46), as well as by specifying the initial condition 𝑘(𝑡 = 0) = 𝑘1, we obtain from
(46) the values of the variable 𝑘(𝑡) at the moments of changing training examples 𝑘(𝑡α) = 𝑘α,
then the values of 𝑘(𝑡) within the intervals of presentation of training examples are given by the
expression (44).

3.Stochastic description of the learning process. Let us now consider a stochastic
formulation of the problem, where each training example πα = (𝑥α, 𝑐α) is selected randomly
from a certain general population of training examples, that is, the training sequence { 𝑝𝑖α}𝑁learn

α=1

represents a random sample of some random variable π = (𝑥, 𝑐) ∈ R 𝑡𝑖𝑚𝑒𝑠{+,−}. Note that
in this case, different examples πα and πβ̸=α are independent of each other and have the same
probabilistic properties, but the quantities 𝑥α and 𝑐α within each example are, generally speaking,
dependent (it is on this dependence that the possibility of classification is based). The mapping
(46) then defines a Markov random process {𝑘α} with discrete time and random parameters 𝑘0α
and 𝜀α, and the learning subsystem solution 𝑘(𝑡) obtained from (44) is a continuous-time random
process.

Since the (random) parameters 𝑘0α and 𝜀α in (46) are uniquely expressed through the
example components πα, they are dependent on each other, however, they are independent of the
value 𝑘α, which has the meaning of the initial condition for the learning subsystem when presented
with an example πα, which means 𝑘α can depend on previous examples 𝑝𝑖β<α, but not from πα.
From this follows the factorization of the mathematical expectation ⟨𝑘α𝜀α⟩ = ⟨𝑘α⟩⟨𝜀α⟩ [7, §25];
then from (46) we obtain a mapping for mathematical expectations

⟨𝑘α+1⟩ = ⟨𝑘α⟩(1− ⟨𝜀⟩) + ⟨𝑘0𝜀⟩, (50)
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where the notations ⟨𝜀⟩ = ⟨𝜀α⟩ and ⟨𝑘0𝜀⟩ = ⟨𝑘0α𝜀𝑎𝑟𝑒𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒𝑑α⟩, independent of α due to the
identity of the probabilistic properties of training examples under all numbers α.

Except for the degenerate case ⟨𝜀⟩ = 0, which means that the 𝑖-th cell type does not respond
to any example (see the comment to the equation (47); in this case, this type is “redundant” and
can be excluded), the mapping (50) has a fixed point

𝑘 =
⟨𝑘0𝜀⟩
⟨𝜀⟩

, (51)

which is found from the condition ⟨𝑘α+1⟩ = ⟨𝑘α⟩ = 𝑘, is stable due to |1 − ⟨𝜀⟩| < 1 and
determines the stationary value to which the mathematical expectation of the process {𝑘α}
converges. In addition, the mathematical expectation of a process with continuous time 𝑘(𝑡),
which is determined by the expression (44) and takes values between 𝑘α and 𝑘α+1 on each
segment 𝑡 ∈ [𝑡α, 𝑡α+1], which justifies the formula (16).

According to the formula for the total mathematical expectation [7, §23, Eq. (5)] we find

⟨𝜀⟩ = ⟨𝜀α|𝑐α = +⟩𝑃 (𝑐α = +) + ⟨𝜀α|𝑐α = −⟩𝑃 (𝑐α = −), (52a)

⟨𝑘0𝜀⟩ = ⟨𝑘0α𝜀α|𝑐α = +⟩𝑃 (𝑐α = +) + ⟨𝑘0α𝜀α|𝑐α = −⟩𝑃 (𝑐α = −). (52b)

Note that the values of 𝑘0α for a given 𝑐α are determined by the expression (42), which means
that when calculating conditional mathematical expectations in (52b) they can be considered
deterministic values , that is

⟨𝑘0α𝜀α|𝑐α = +⟩ = 𝑘+⟨𝜀α|𝑐α = +⟩, ⟨𝑘0α𝜀α|𝑐α = −⟩ = 𝑘−⟨𝜀α|𝑐α = −⟩. (53)

For compactness of calculations, we will consider the prior probabilities of the two classes
to be the same, that is, 𝑃 (𝑐α = +) = 𝑃 (𝑐α = −) = 1/2. This requirement is not fundamental;
further calculations can be modified for the case of unequal prior probabilities of classes.

Introducing notation for (independent of α) conditional mathematical expectations

⟨𝜀+⟩ = ⟨𝜀α|𝑐α = +⟩, ⟨𝜀−⟩ = ⟨𝜀α|𝑐α = −⟩ (54)

and using the relations (52a,b), (53), we rewrite (51) in the form

𝑘 =
𝑘+⟨𝜀+⟩+ 𝑘−⟨𝜀−⟩

⟨𝜀+⟩+ ⟨𝜀−⟩
=

𝑘+ + 𝑘−

2
+

𝑘+ − 𝑘−

2
· ⟨𝜀

+⟩ − ⟨𝜀−⟩
⟨𝜀+⟩+ ⟨𝜀−⟩

. (55)

Let the general population from which the training examples are selected be described by
the conditional probability distribution densities of the feature 𝑥 according to the condition of
the example belonging to each of the two classes, introduced in (23). Then, under the assumption
that the parameter µ is small, the conditional mathematical expectations ⟨𝜀+⟩ and ⟨𝜀−⟩ in (54)
can be written (with an accuracy of 𝑂( 𝑚𝑢2)) based on the expression (49) in the form

⟨𝜀+⟩ = µ
∫︁

𝑓𝑖(𝑥)𝑤+(𝑥)𝑑𝑥, ⟨𝜀−⟩ = µ
∫︁

𝑓𝑖(𝑥)𝑤−(𝑥)𝑑𝑥. (56)

If the functions 𝑓𝑖(𝑥) are “narrow” in the sense of the approximate relation (24), then the
expressions (56) can be approximated in the form

⟨𝜀+⟩ ≈ 𝑤+(𝑥𝑖) · µ
∫︁

𝑓𝑖(𝑥)𝑑𝑥, ⟨𝜀−⟩ ≈ 𝑤−(𝑥𝑖) · µ
∫︁

𝑓𝑖(𝑥)𝑑𝑥, (57)
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as a result, the result (55) is rewritten as (25).
A strict formulation of the approximation (57) requires specification of the properties of

the functions included in the expressions. For example, as shown in [3, p. 5 Applications], if on
some interval 𝑥 ∈ [𝑎𝑖, 𝑏𝑖] the functions 𝑤+(𝑥) and 𝑓𝑖(𝑥) are integrable, and for 𝑤+(𝑥) the estimate
𝑤+(𝑥) ∈ [𝑤+

𝑖 , 𝑤
+
𝑖 ], and for 𝑓𝑖(𝑥) we have 𝑓𝑖(𝑥) > 0 on the interval 𝑥 ∈ (𝑎𝑖, 𝑏𝑖), and 𝑓𝑖(𝑥) = 0 for

𝑥 /∈ (𝑎𝑖, 𝑏𝑖) (which holds for the family of functions 𝑓𝑖(𝑥) given by the expressions (37a), (37b),
if we put 𝑎𝑖 = 𝑥𝑖−1, 𝑏𝑖 = 𝑥𝑖+1 ), then the interval estimate is valid

𝑤+
𝑖 · µ

∫︁
𝑓𝑖(𝑥)𝑑𝑥 ⩽ ⟨𝜀+⟩ ⩽ 𝑤+

𝑖 · µ
∫︁

𝑓𝑖(𝑥)𝑑𝑥, (58)

which (together with a similar estimate for ⟨𝜀−⟩) is a rigorous formulation of the approximation
(57). The corresponding relations, similar to (26), (27), but based on the formulation of the
approximation (58) instead of (57), can be obtained from (55) and are written in the form

𝑘𝑖

{︂
>
<

}︂
𝑘+ + 𝑘−

2
at

{︃
𝑤+

𝑖 < 𝑤−
𝑖 ,

𝑤+
𝑖 > 𝑤−

𝑖 ,
(59)

𝑛eq
𝑖

{︃
< Θ at 𝑤+

𝑖 < 𝑤−
𝑖 ,

> Θ at 𝑤+
𝑖 > 𝑤−

𝑖 .
(60)

Let us now write the equation for the variances in the mapping (46) taking into account
(50), also factoring the mathematical expectations taking into account the independence of 𝑘α
from 𝑘0α and 𝜀α; For brevity, we discard the index α inside the mathematical expectations that
do not depend on it:

𝐷[𝑘α+1] = ⟨𝑘2α+1⟩ − ⟨𝑘α+1⟩2 =
= ⟨(𝑘α(1− 𝜀α) + 𝑘0α𝜀α)

2⟩ − (⟨𝑘α⟩(1− ⟨𝜀⟩) + ⟨𝑘0𝜀⟩)2 =
= ⟨𝑘2α⟩⟨(1− 𝜀)2⟩+ 2⟨𝑘α⟩⟨(1− 𝜀)𝑘0𝜀⟩+ ⟨(𝑘0𝜀)2⟩−

− ⟨𝑘α⟩2(1− ⟨𝜀⟩)2 − 2⟨𝑘α⟩(1− ⟨𝜀⟩)⟨𝑘0𝜀⟩ − ⟨𝑘0𝜀⟩2. (61)

Bringing similar terms taking into account the definition of dispersion and relation

⟨(1− 𝜀)2⟩ = (1− ⟨𝜀⟩)2 +𝐷[𝜀], (62)

we get

𝐷[𝑘α+1] = 𝐷[𝑘α](1− ⟨𝜀⟩)2 + ⟨𝑘2α⟩𝐷[𝜀]− 2⟨𝑘α⟩(⟨𝑘0𝜀2⟩ − ⟨𝑘0𝜀⟩⟨𝜀⟩) +𝐷[𝑘0𝜀]. (63)

In the limit µ → 0 we have the smallness relation 𝜀 = 𝑂(µ) (49), which implies 𝐷[𝜀] =
𝑂(µ2), 𝐷[𝑘0𝜀] = 𝑂(µ2), and

𝐷[𝑘α+1] = 𝐷[𝑘α](1− 2⟨𝜀⟩) +𝑂(µ2), (64)

then for the stationary value of the variance 𝐷[𝑘]𝑠 = 𝐷[𝑘α+1] = 𝐷[𝑘α] we find

𝐷[𝑘]𝑠 =
𝑂(µ2)
2⟨𝜀⟩

= 𝑂(µ) −−−→
µ→0

0. (65)
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