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Abstract. The purpose of this research is to develop an electrodynamic method for calculating the plasmon
spectrum in a three-dimensional structure with a two-dimensional electron gas excited by an incident electro-
magnetic wave. Methods. The developed method is based on solving integral equations formed with respect
to induced currents in the conducting parts of a three-dimensional structure. Results. The convergence of the
method and the calculation time were studied. The conditions for the convergence of calculations of higher
plasmon resonances in a rectangular structure with a two-dimensional electron gas are determined. The normal
incidence of an arbitrarily polarized electromagnetic wave on a rectangle with a two-dimensional gas is studied.
The spectra of the absorption, extinction, forward and back scattering cross sections of the incident wave are
calculated. Conclusion. It is found that in a rectangular structure containing a two-dimensional electron gas,
the spectrum of plasmon resonances is modified in comparison with established by two-dimensional models of
problem formulation, in which the structure is assumed to be infinite and homogeneous in one of the directions.
It has been established that the incident wave most effectively excites fundamental plasmon modes. Plasmonic
modes exhibit strong charge accumulation at the edges of the rectangle, which significantly affects the resonant
excitation frequencies of plasmonic modes.
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Introduction

Recently, there has been a wide interest in the creation of terahertz (THz) devices using
two-dimensional plasmons for localization and amplification of electromagnetic fields and for
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using the nonlinear properties of plasmons [1]. Traditionally, a two-dimensional electron gas
is formed during the formation of a quantum well in the conduction band of semiconductor
heterostructures. In micron and submicron field-effect transistors with a two-dimensional electron
channel, it is possible to excite two-dimensional plasmons in the terahertz range [2]. Based on
the properties of two-dimensional plasma waves, theoretical studies of THz plasmon effects are
solved in a two-dimensional formulation of the problem, in which the direction perpendicular
to the plasmon propagation is considered infinite and homogeneous [3, 4]. This formulation of
the problem significantly simplifies the solution of dispersion problems and problems of plasmon
excitation by an external electromagnetic wave. A simplified two-dimensional approach can be
applied to plasmonic structures whose size in the direction transverse to the direction of plasmon
propagation exceeds the wavelength of the terahertz plasmon by an order of magnitude or more.
In principle, millimeter sizes are experimentally achievable in plasmonic structures created on
the basis of semiconductor heterostructures. With a typical micron wavelength of the terahertz
plasmon, the sizes of semiconductor heterostructures can reach several millimeters [5].

However, the sizes of the created plasmonic structures are often comparable with the
sizes of short-wave plasmons, and the coupling with a long electromagnetic wave is carried out
using additional antennas. In structures of such sizes, the influence of edge effects of induced
fields on the response becomes significant, and sometimes dominant. Despite the impossibility
of describing edge effects in a two-dimensional approach, new plasmonic physical effects were
described with its help, such as plasmon-plasmon scattering [3, 6], an increase in the effective
wavelength in plasmonic resonators, and radiative damping of plasmons. In this case, to solve the
problem of excitation of plasmonic modes in a resonator of two-dimensional electron systems, it
is necessary to take into account the electromagnetic delay.

The most studied three-dimensional structures are plasmonic structures with a symmetrical
resonator shape of a two-dimensional system in the form of a circular disk (or ring) [7–12]. Much
less work is devoted to the excitation of plasmons in a rectangular two-dimensional electron
resonator [13–15]. A rectangular resonator has reduced symmetry compared to the disk (or ring)
geometry, so the theoretical consideration becomes more complicated. Theoretical approaches
used to study plasmonic excitations in rectangular plasmonic resonators employ commercial
numerical solvers [14–16] or simplifying approximations [13]. Finite element methods face serious
difficulties when applied to problems involving electromagnetic processes of very different scales.
Such difficulties arise in the study of plasmonic structures in which the wavelength of the terahertz
electromagnetic wave and the plasmon wavelength differ by two orders of magnitude.

In this paper, an algorithm for calculating and investigating the features of the spectra
of plasmons excited by a normally incident electromagnetic wave in a rectangle with a two-
dimensional electron gas is developed.

1. Method

The excitation of two-dimensional currents in a rectangle with a two-dimensional electron
gas, onto whose plane an electromagnetic wave of arbitrary polarization is normally incident, is
investigated. The length of the rectangle in the 𝑂𝑋 direction is denoted as w, the width in the
𝑂𝑌 direction is l, and the wave is incident on the rectangle in the 𝑂𝑍 direction from medium 1
to medium 2. The 𝑂𝑋𝑌 plane separates two half-spaces with different permittivities.

The developed method consists of the following stages. At the first stage, the electric and
magnetic fields of the scattered waves are expanded into a double spatial Fourier integral in the
𝑂𝑋 and 𝑂𝑌 directions, and the dependence of the Fourier components on the 𝑧 coordinate is
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considered exponential. The 𝐸𝑥 component of the electric field is shown as an example

𝐸(1,2)
𝑥 (𝑥, 𝑦, 𝑧, 𝑡) = exp (−𝑖ω𝑡)

+∞∫︁
−∞

+∞∫︁
−∞

𝐸(1,2)
𝑥,𝑞𝑥,𝑞𝑦 exp

(︁
𝑖𝑘(1,2)𝑧,𝑞𝑥,𝑞𝑦𝑧

)︁
exp (𝑖𝑞𝑦𝑦) exp (𝑖𝑞𝑥𝑥) 𝑑𝑞𝑥𝑑𝑞𝑦, (1)

where 𝑞𝑥 and 𝑞𝑦 are the components of the wave vectors of the Fourier harmonics in the plane of
the rectangle, 𝑘(1,2)𝑧,𝑞𝑥,𝑞𝑦 are the transverse components of the wave vectors of the Fourier harmonics
in the media, and ω is the circular frequency of the wave. Maxwell’s equations are solved in semi-
infinite dielectric media surrounding a rectangle with a two-dimensional electron gas. To stitch
the solutions in dielectric media, boundary conditions are used for the components of the electric
and magnetic fields in the plane of the two-dimensional gas. Using Ohm’s law, in which the
two-dimensional electron gas is described by the Drude conductivity σ [3], integral equations are
formed for the currents 𝑗𝑥 and 𝑗𝑦 in the two-dimensional gas:

𝑗𝑥(𝑥, 𝑦) = σ

𝑙/2∫︁
−𝑙/2

𝑤/2∫︁
−𝑤/2

𝑗𝑥
(︀
𝑥′, 𝑦′

)︀
𝐺𝑥𝑥

𝑞𝑥,𝑞𝑦(𝑥, 𝑥
′, 𝑦, 𝑦′)𝑑𝑥′𝑑𝑦′ +

+ σ

𝑙/2∫︁
−𝑙/2

𝑤/2∫︁
−𝑤/2

𝑗𝑦
(︀
𝑥′, 𝑦′

)︀
𝐺𝑥𝑦

𝑞𝑥,𝑞𝑦(𝑥, 𝑥
′, 𝑦, 𝑦′)𝑑𝑥′𝑑𝑦′ + σ𝑍0𝑥𝐸𝑖𝑛,𝑥,

(2)

𝑗𝑦(𝑥, 𝑦) = σ

𝑙/2∫︁
−𝑙/2

𝑤/2∫︁
−𝑤/2

𝑗𝑥
(︀
𝑥′, 𝑦′

)︀
𝐺𝑦𝑥

𝑞𝑥,𝑞𝑦(𝑥, 𝑥
′, 𝑦, 𝑦′)𝑑𝑥′𝑑𝑦′ +

+ σ

𝑙/2∫︁
−𝑙/2

𝑤/2∫︁
−𝑤/2

𝑗𝑦
(︀
𝑥′, 𝑦′

)︀
𝐺𝑦𝑦

𝑞𝑥,𝑞𝑦(𝑥, 𝑥
′, 𝑦, 𝑦′)𝑑𝑥′𝑑𝑦′ + σ𝑍0𝑦𝐸𝑖𝑛,𝑦,

where 𝐺𝑚𝑛
𝑞𝑥,𝑞𝑦(𝑥, 𝑥

′, 𝑦, 𝑦′) are the kernels of the integral equations, 𝑚,𝑛 = 𝑥, 𝑦 , 𝑍0𝑥 and 𝑍0𝑦 are
the coefficients of coupling with the incident wave, 𝐸𝑖𝑛,𝑥 and 𝐸𝑖𝑛,𝑦 are the components of the
amplitude of the electric field of the incident wave. The system of integral equations (2) is solved
by the Galerkin method by expanding the unknown currents 𝑗𝑥 and 𝑗𝑦 into series in Legendre
polynomials in the directions 𝑥 and 𝑦. This allows us to transform the system of integral equations
into an infinite system of algebraic equations with respect to the coefficients of the expansion of
the currents. Taking into account the convergence, the expansion of the unknown currents into
a double series in Legendre polynomials is truncated to a polynomial of order 𝑁

𝑗𝑥
(︀
χ′𝑥, ξ′𝑦

)︀
=

𝑁∑︁
𝑛,𝑛1=0

β(𝑥)𝑛,𝑛1
𝑃𝑛1

(︀
ξ′𝑦

)︀
𝑃𝑛

(︀
χ′𝑥

)︀
,

𝑗𝑦
(︀
χ′𝑥, ξ′𝑦

)︀
=

𝑁∑︁
𝑛,𝑛1=0

β(𝑦)𝑛,𝑛1
𝑃𝑛1

(︀
ξ′𝑦

)︀
𝑃𝑛

(︀
χ′𝑥

)︀
,

(3)

where 𝑃𝑛 (χ′𝑥) are the Legendre polynomials, β(𝑥,𝑦)𝑛,𝑛1 are the coefficients of the current expansion,
(χ′𝑥, ξ′𝑦) are the spatial coordinates (𝑥, 𝑦) reduced to the interval [−1, 1]. Each term on the
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right-hand side of the equation with an unknown current (2) creates 𝑁2 algebraic equations and,
accordingly, 𝑁2 unknown expansion coefficients. The matrix of the algebraic system consists of
elements of the form

𝑀𝑛1,𝑟1,𝑛,𝑟 = σ
𝑙𝑤

4π2
𝑖𝑟1+𝑟𝑖𝑛+𝑛1(−1)𝑛+𝑛1𝑊𝑛1,𝑟1,𝑛,𝑟 −

δ𝑛𝑟
2𝑟 + 1

δ𝑛1𝑟1

2𝑟1 + 1
, (4)

where

𝑊𝑛1,𝑟1,𝑛,𝑟 =

+∞∫︁
−∞

𝐽 (s)
𝑛1

(︁
𝑞𝑦

𝑎

2

)︁
𝐽 (s)
𝑟1

(︁
𝑞𝑦

𝑎

2

)︁ +∞∫︁
−∞

𝑍(𝑞𝑥, 𝑞𝑦)𝐽
(s)
𝑛

(︁
𝑞𝑥

𝑤

2

)︁
𝐽 (s)
𝑟

(︁
𝑞𝑥

𝑤

2

)︁
𝑑𝑞𝑥𝑑𝑞𝑦, (5)

where 𝑍(𝑞𝑥, 𝑞𝑦) – the admittances of the system calculated from Maxwell’s equations; 𝐽 (s)
𝑛

(︀
𝑞𝑥

𝑤
2

)︀
– the spherical Bessel functions; (𝑞𝑥, 𝑞𝑦) – the wave vectors in the Fourier representation; 𝑛, 𝑛1

– the row indices of the matrix elements, 𝑟, 𝑟1 – the column indices of the matrix elements (the
indices 𝑛, 𝑛1, 𝑟, 𝑟1 take values from 0 to 𝑁). The total size of the square matrix 𝑀 of the system
of equations is 2𝑁2.

The resulting system of algebraic equations for the unknown coefficients of the expansion
of currents β(𝑥,𝑦)𝑛,𝑛1 is solved by the Gaussian elimination method by reducing the system matrix
to a triangular form. The calculated induced currents (3) allow us to determine the resonant
electrodynamic properties of a rectangle with a two-dimensional electron gas.

To calculate the energy characteristics of the interaction of an electromagnetic wave and a
rectangle of two-dimensional gas, it is necessary to represent the fields of scattered waves forward
and backward as the sum of the fields reflected from a homogeneous interface between the media
and the scattered field. For example, the component of the electric field in the 1st medium is
written

𝐸𝑥 (𝑥, 𝑦, 𝑧) = 𝐸𝑥,𝑅 exp
(︁
𝑖𝑘

(1)
𝑧,0,0𝑧

)︁
+

+∞∫︁
−∞

+∞∫︁
−∞

�̃�𝑥,𝑞𝑥,𝑞𝑦 exp
(︁
𝑖𝑘(1)𝑧,𝑞𝑥,𝑞𝑦𝑧

)︁
exp (𝑖𝑞𝑦𝑦) 𝑑𝑞𝑦 exp (𝑖𝑞𝑥𝑥) 𝑑𝑞𝑥,

(6)
where 𝐸𝑥,𝑅 is the electric field of the wave reflected from a homogeneous interface between the
media, and �̃�𝑥,𝑞𝑥,𝑞𝑦 is the amplitude of the Fourier components of the electric field of the wave
scattered backwards. The average Umov-Poynting power flux will describe the outgoing waves
scattered by the rectangle

𝑃𝑧𝑅,𝑇 = 2π2
∫︁∫︁

±ω√𝜀1𝜀0µ0

(︁
�̃�𝑥,𝑞𝑥,𝑞𝑦�̃�

*
𝑦,𝑞𝑥,𝑞𝑦 − �̃�𝑦,𝑞𝑥,𝑞𝑦�̃�

*
𝑥,𝑞𝑥,𝑞𝑦

)︁
𝑑𝑞𝑦𝑑𝑞𝑥. (7)

We exclude the flows of waves reflected and transmitted through the interface between the
media, and, using Maxwell’s equations, we write the flows of scattered radiation by the rectangle
backwards 𝑃𝑧𝑅 and forwards 𝑃𝑧𝑇 as

𝑃𝑧𝑅,𝑇 = 2π2
∫︁∫︁

±ω√𝜀1𝜀0µ0

⃒⃒⃒
�̃�𝑥,𝑞𝑥,𝑞𝑦

⃒⃒⃒2 (︀
𝜀0𝜀1,2µ0ω2 − 𝑞𝑦

2
)︀
+
⃒⃒⃒
�̃�𝑦,𝑞𝑥,𝑞𝑦

⃒⃒⃒2 (︀
𝜀0𝜀1,2µ0ω2 − 𝑞𝑥

2
)︀

𝑘*𝑧1,2µ0ω
𝑑𝑞𝑦𝑑𝑞𝑥+

+2π2
∫︁∫︁

±ω√𝜀1𝜀0µ0

2Re
(︁
�̃�𝑥,𝑞𝑥,𝑞𝑦 �̃�

*
𝑦,𝑞𝑥,𝑞𝑦

)︁
𝑞𝑦𝑞𝑥

𝑘*𝑧1,2µ0ω
𝑑𝑞𝑦𝑑𝑞𝑥.

(8)
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The absorbed electromagnetic power in a rectangle by oscillating currents can be calculated as

𝐴 = Re

(︂
1

σ(ω)

)︂ 𝑤/2∫︁
−𝑤/2

𝑙/2∫︁
−𝑙/2

(︁
|𝑗𝑥(𝑥, 𝑦)|

2 +
⃒⃒
𝑗𝑦(𝑥, 𝑦)

⃒⃒2)︁
𝑑𝑥𝑑𝑦, (9)

and the power flux density of the incident wave is determined by the expression

𝑃𝑖𝑛 =

√︂
𝜀0𝜀1
µ0

(︁
|𝐸𝑖𝑛,𝑥|2 + |𝐸𝑖𝑛,𝑦|2

)︁
. (10)

The obtained energy characteristics allow us to calculate the absorption cross section αCS =
= 𝐴/𝑃𝑖𝑛, the forward scattering cross section αT = 𝑃𝑧𝑇 /𝑃𝑖𝑛, the backward scattering cross
section α𝑅 = 𝑃𝑧𝑅/𝑃𝑖𝑛 and the extinction cross section αCS = (𝐴+ |𝑃𝑧𝑇 |+ |𝑃𝑧𝑅|) /𝑃𝑖𝑛.

The convergence of the results of calculating the resonance characteristics is determined
by comparing the calculated inductive currents obtained with a successive increase in the size
of the system matrix. A separate necessary condition is the convergence of the calculation of
the matrix elements, each of which is a double integration in the space of wave vectors in the
directions of 𝑞𝑥 and 𝑞𝑦. Numerical integration of each coefficient is performed taking into account
the convergence and with the division of the integral in the wave space into two - inside the light
cone at 𝑞𝑥, 𝑞𝑦 ⩽ ω

𝑐

√
𝜀 and outside the light cone at 𝑞𝑥, 𝑞𝑦 > ω

𝑐

√
𝜀, where 𝜀 – the largest permittivity

of the surrounding media. Such a division is necessary because in subwave structures the emitted
and decaying induced fields have spatial scales that differ by an order of magnitude or more.

The main difference between the developed method and the method used in two-dimensional
problems is a significant slowdown in calculations due to the increase in the size of the matrix
𝑁2 with an increase in the number of Legendre polynomials compared to the size of the matrix
𝑁 in two-dimensional problems. Double integration in the momentum space when calculating

F
re

qu
en

cy
, T

H
z

�

�

�

�������������������������������������������������������������
Angle, degree

Extinction area, m��

�����

�����

�����

�����

Fig 1. Dependence of the extinction cross-sectional area spectrum on the polarization angle of the electric field of
a normally incident wave in a rectangle with dimensions 𝑤 = 1 µm, 𝑙 = 2 µm. A two-dimensional gas is described
by Drude conductivity with the following parameters: electron momentum relaxation time 1 ps, electron density
2 · 1011 cm−2 and effective electron mass 0.067𝑚𝑒 (color online)
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matrix elements also leads to a significant slowdown in calculations compared to one-dimensional
integration when solving two-dimensional problems. In this regard, the calculation time for each
matrix element of a three-dimensional problem also grows quadratically compared to a two-
dimensional problem.

The calculated extinction area of a rectangle with a two-dimensional gas (Fig. 1) was
obtained by performing the optical theorem with an error of 0.1%. The search for convergence of
the solution showed the need to take into account 12 Legendre polynomials in the expansion of
currents to study the first four plasmon resonances to achieve an error of 0.1%. A program in the
Fortran programming language was created to perform the calculations. The calculations were
performed on a personal computer with a 10-core processor. This made it possible to calculate
the properties of the system at a given frequency in 15 seconds.

2. Results and discussion

Using the developed electrodynamic approach, the induced fields and currents in the
structure were calculated, the spectra of the forward and backscattering cross-sections (Fig. 2),
the absorption cross-section and the extinction cross-section (Fig. 2) were calculated for a
rectangle of two-dimensional gas based on the AlGaAs heterostructure with dimensions 𝑤 = 1µm,
𝑙 = 2µm (typical experimental structures are demonstrated in the works [5, 17]).

The calculated absorption cross section has a resonant character. This corresponds to the
excitation of various plasmon modes in the structure. To identify excited plasmon modes, one
can use a resonator model with ideally reflecting boundaries. In such a model, the wave vector of
the plasmon mode will have discrete values 𝑞 =

√︁
𝑞2𝑥 + 𝑞2𝑦 , where 𝑞𝑥 = π

𝑤𝑝 — in the 𝑥 direction
and 𝑞𝑦 = π

𝑙 𝑝1 – in the 𝑦 direction, 𝑝 and 𝑝1 are integers. Therefore, each plasmon mode in the
rectangle can be assigned two indices (𝑝, 𝑝1).
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Fig 2. Spectra of the absorption cross section (red curve), extinction cross section (blue dots), backscattering
cross section (black curve) and forward scattering cross section (green curve) for a rectangle with dimensions
𝑤 = 1 µm, 𝑙 = 2 µm. A two-dimensional gas is described by Drude conductivity with the following parameters:
electron momentum relaxation time 1 ps, electron concentration 2 · 1011 cm−2 and effective electron mass 0.067.
The electric field vector of the incident wave is directed at an angle of 45 degrees relative to the OX axis (color
online)

352
Fateev D.V., Mashinsky K.V.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2024;32(3)



To identify the modes, instantaneous distributions of the charge density oscillating in a
rectangle with a two-dimensional gas are constructed. For this purpose, the linear charge density
distribution for plasmon resonance in a rectangle with a two-dimensional gas is calculated using
the continuity equation:

ρ = − 𝑖

ω

(︂
𝜕𝑗𝑥
𝜕𝑥

+
𝜕𝑗𝑦
𝜕𝑦

)︂
. (11)

The charge density distributions at the plasmon resonance frequencies of 0.4009 THz,
0.7342 THz, 0.9675 THz and 1.551 THz (Fig. 3) are constructed, which allow us to draw
conclusions about the structure of plasmon modes and identify them using the wavenumber
discretization model. The plasmon at the frequency of 0.4009 THz corresponds to indices (0,1),
at the frequency of 0.7342 THz — (1,0), at the frequency of 0.9675 THz — (2,1), and at the
frequency of 1.551 THz — (1,2). The logarithmic plot of the extinction and absorption spectra
shows that fundamental plasmon modes with indices (0,1) and (1,0) are most effectively excited

Fig 3. Charge density distribution in the plane of a rectangle with a two-dimensional electron gas in plasmon
resonances corresponding to resonances in Fig. 1 at frequencies of 0.4009 THz (a), 0.7342 THz (b), 0.9675 THz (c)
and 1.551 THz (d) (color online)
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in the rectangle. However, for higher plasmon resonances the extinction cross section drops by
an order of magnitude or more.

In Fig. 3 one can see a strong charge accumulation at the edges of the rectangle. This
significantly affects the resonant frequencies of the plasmon modes compared to the frequencies
predicted by simplified models. Such charge accumulation is associated with an increase in the
electric field at the boundaries of the rectangle with a two-dimensional electron gas, leads to a
significant field extension beyond the rectangle boundaries and reduces the resonant excitation
frequencies of the plasmon modes.

The developed algorithm allows more accurate prediction of electromagnetic properties of
a rectangle with a two-dimensional electron gas compared to commercial programs based on
the finite element method, since it does not require placing the studied system in the solution
domain. In this case, the modes of the solution domain are not mixed with the true solutions
of the system under consideration. The proposed algorithm allows studying multilayer three-
dimensional structures and solving problems with spatial dispersion in a two-dimensional electron
gas that cannot be solved by finite element methods.

Conclusion

Thus, in this paper, an algorithm for calculating currents induced by an electromagnetic
wave in a rectangle with a two-dimensional electron gas has been developed. The conditions for
the convergence of the algorithm have been found and its performance has been compared with
a similar algorithm for calculating plasmon properties in a two-dimensional problem statement.
The absorption and extinction cross sections, as well as the spatial distributions of the charge
density in plasmon resonances, have been calculated. It has been found that the incident wave
excites fundamental plasmon modes with indices (0.1) and (1.0) most effectively. Plasmon modes
demonstrate strong charge accumulation at the edges of the rectangle. This significantly affects
the resonant excitation frequencies of plasmon modes.
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