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Abstract. Purpose. The article presents a new method for numerical simulation of quasi-eigenmode oscillations
in open resonators of gyrotrons — powerful vacuum generators of electromagnetic waves in the millimeter and
submillimeter ranges. The gyrotron cavity has the shape of a weakly inhomogeneous hollow circular metal
waveguide. Methods. The proposed approach uses the inhomogeneous string equation with radiation boundary
conditions to formulate a nonlinear spectral boundary value problem describing oscillations in a resonator,
neglecting the couplings of waves with different radial indices. By linearizing with respect to frequency the
radiation boundary conditions, the boundary value problem is reduced to a linear boundary value problem.
To discretize this boundary value problem, the finite difference method is used and a linear generalized matrix
eigenvalue problem is formulated. This problem is solved by the Arnoldi method with eigenvalues calculation in
a shift-invert mode. An iterative algorithm is proposed that makes it possible to sequentially calculate a given
number of frequencies and quality factors of quasi-eigenmodes of oscillations. Results. The computer program
was developed written in the Wolfram Language and Fortran using the algorithms proposed in the work. The
results of test calculations for real gyrotron resonators are presented, which demonstrate the high accuracy of the
obtained values of frequencies, quality factors and field distributions of quasi-eigenmode oscillations in the studied
resonators. Conclusion. The methods, algorithms and created program proposed in the article can significantly
facilitate the process of developing gyrotrons intended for various practical applications and operating in new
frequency ranges. The method of iterative refinement of boundary conditions can be generalized to the case of
equations of the linear theory of a gyrotron and used to develop new methods for analyzing the starting conditions
for the soft self-excitation in gyrotrons — generators.
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Introduction

The gyrotron is a source of powerful electromagnetic radiation in the microwave, sub-
terahertz and terahertz frequency ranges [1–3]. It is widely used in various fields of science and
technology, such as plasma heating and diagnostics in fusion plants [4, 5], radio spectroscopy
[6–11], medicine [12–15], technological processes [16–19], communication systems [20] and other
applications.

Recently, various applications of gyrotrons have been of particular interest, for which it
is necessary to comply with special requirements imposed on the distribution of the field of the
working mode along the interaction space, which is determined by the shape of the resonator. For
example, in gyrotrons for thermonuclear reactors with a megawatt output power level, resonators
with a small length-to-radius ratio are required, as well as with ultra-small reflections of the
output signal from the output device back to the area of interaction. The fulfillment of these
conditions is achieved due to a multi-stage or superalloy transition from the interaction region
to the output horn with a controlled law of variation of the resonator radius along its axis.

In gyrotrons being developed for spectroscopic installations operating on the effect of
nuclear magnetic resonance with dynamic polarization of nuclei, it should be possible to quickly
adjust the generation frequency in the range of 1-2 GHz [11] and high frequency stability during
tens of hours of continuous operation. One of the ways to adjust the frequency is to change the
magnetic field. At the same time, the conditions of synchronism of the oncoming wave in the
resonator with the cyclotron wave in the electron beam change, and, as a result, the generation
frequency changes. The field distribution along the system is rearranged in such a way that the
interaction mainly occurs with various longitudinal modes of the resonator. The possibility of
excitation of high-order longitudinal modes is provided by choosing a suitable resonator profile.

Finally, another important area of gyrotron development is the creation of sources of
powerful radiation in the terahertz range at frequencies from several hundred GHz to 1.2–
1.5THz [21–25]. To do this, the interaction at the higher harmonics of the cyclotron frequency
(second and third) is used. The main problem in this case is the suppression of parasitic generation
at the fundamental harmonic of the cyclotron frequency. The necessary mode selection is also
achieved by selecting the resonator profile.

In the research and development of modern gyrotrons, computer modeling is the most
important tool, based on which contains a set of theoretical approaches and models of various
levels of complexity — from simple one-dimensional models for calculating the properties of
vibrations in a gyrotron resonator without a beam to direct numerical modeling of the interaction
of the beam with the electromagnetic field of the resonator using a self-consistent solution
of Maxwell’s equations and equations of electron motion in 2.5D or a full three-dimensional
formulation [26–29]. The literature presents both computer codes designed to solve each of these
particular problems, and software packages consisting of modules in which all or most of the
techniques used at different stages of gyrotron design are implemented [30–38].

One of the most important components of such modeling is the calculation of the properties
of a gyrotron resonator without an electron beam. These properties include the oscillation
frequencies in the resonator, their ohmic and diffraction Q-values, as well as the distribution of the
electromagnetic field components along the resonator. The resonator used in the classical gyrotron
design is a weakly homogeneous hollow round metal waveguide, the radius of which varies slightly
along the longitudinal axis. On both sides, a segment of an inhomogeneous waveguide is loaded
onto horns, one of which narrows at the cannon end, and the other expands at the collector end of
the system (see Fig. 1). In general, such a structure is an open electrodynamic resonator [2,39–41],
in which there may be high-frequency electromagnetic oscillations arising due to wave reflections
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from transitions of a homogeneous section of the waveguide into horns. These oscillations in open
electrodynamic structures are called quasi-spatial, or complex [39], since they differ in some of
their properties from their own types of oscillations in closed hollow metal resonators.

When developing gyrotrons, in order to determine the optimal shape of the resonator,
it is necessary to repeatedly solve the problem of calculating the properties of oscillations,
setting various dependences of the radius of the inhomogeneous waveguide on the longitudinal
coordinate. The simplest and at the same time effective model for calculating oscillations in an
open gyrotron cavity is based on the use of the one-dimensional equation of an inhomogeneous
string together with radiation boundary conditions (RBC) at its ends [40]. In this case, the
function 𝐹 (𝑧), with respect to which the boundary value problem is formulated, describes the
distribution of the complex amplitude of the field along the axis of the resonator. For 𝑇𝐸𝑚𝑛

modes, it is the complex amplitude of 𝐻𝑧-components of the electromagnetic field, and for 𝑇𝑀𝑚𝑛-
modes — the complex amplitude of 𝐸𝑧-components of the field. Here 𝑚 and 𝑛 are the transverse
azimuthal and radial mode indices. Classical gyrotrons use 𝑇𝐸𝑚𝑛-types of vibrations, so only
they will be considered further. The simplicity of the model based on the inhomogeneous string
equation is explained by the fact that it does not take into account small connections between
the main mode and modes with other values of the radial index 𝑛.

The field distribution 𝐹 (𝑧) in the main part of the resonator has a characteristic standing
wave appearance with a different number of field variations along the system. Depending on the
number of variations, fluctuations occur with different frequencies and Q-values. The number
of variations is denoted by the integer 𝑞, and oscillations with different 𝑞 are called different
longitudinal modes of the open resonator. In general, these modes are designated as 𝑇𝐸𝑚𝑛𝑞.

In the area of the output horn, the field has the form of a wave escaping from the resonator,
which carries away part of the energy of the electromagnetic field into the output path. Due to
this, the oscillations in the resonator have a finite Q-factor even in conditions when the walls of the
resonator are made of an ideally conductive material. In this case, this Q factor is called diffraction
and is denoted by 𝑄𝑑. If losses due to the finite conductivity of the wall material are additionally
taken into account, ohmic losses are added to the diffraction losses, and if both types of losses are
small, the total quality factor is determined using the formula 𝑄𝑡 = (𝑄𝑑𝑄𝑜)/(𝑄𝑑 + 𝑄𝑜), where
𝑄𝑡and 𝑄𝑜 — total and ohmic Q-values of oscillations, respectively.

Despite the apparent simplicity of the approach based on solving the inhomogeneous string
equation, a number of problems arise in its numerical implementation. Although the equation
itself is linear, the numerical solution of the complete boundary value problem describing free
oscillations in the resonator requires the use of iterative methods, since the complex oscillation
frequency, acting in this case as a spectral parameter, enters the RBC in a nonlinear way. To find
all solutions in a given area of the complex frequency plane, it is necessary to involve additional
theoretical or empirical considerations to determine the number of modes and set the initial
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Fig 1. Gyrotron cavity as weakly irregular hollow metallic waveguide
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approximations necessary to start the iteration process.
This problem is especially acute when analyzing resonators with ultra-low diffraction Q-

factor used in high-power gyrotrons of the subterahertz and terahertz ranges, since in this case the
regularity of the arrangement of frequencies of different modes on the complex plane is violated.
When calculating a large number of longitudinal modes in the studied part of the spectrum,
additional non-physical solutions (with low Q-values) may appear, in which the field amplitude
increases sharply in the area of the output horn. The frequencies and Q-values of these modes
turn out to be close to the corresponding values for higher longitudinal modes localized in the
central part of the resonator. In the presence of non-physical modes, it is difficult to set reasonable
initial approximations for a priori reasons and they have to be found practically «manually».

Most often, the [46] targeting method is used to solve the above boundary value problem
[30–38]. In other cases, instead of searching for eigenvalues (ES), the problem of exciting the
resonator with an external harmonic signal is solved, after which the values of frequencies and
Q-values are found from the analysis of the calculated resonance curve [42–45].

In the work [46], a new approach to the search for complex oscillation frequencies in the
gyrotron resonator, called spectral, was proposed. Its essence lies in the fact that differential
equations, together with boundary conditions, are reduced by one of the difference methods
(finite differences or finite elements) to a generalized matrix eigenvalue problem, in which the
normalized detuning of the oscillation frequency from the critical frequency of the operating mode
acts as a spectral parameter. In [46], this technique is used to calculate self-excitation conditions
in the linear mode of operation of a gyrotron, but it is obvious that the same approach in a
simpler version can be used to search for complex oscillation frequencies in a gyrotron resonator
without a beam. However, when using the spectral approach in the form proposed in [46], it turns
out that some elements of the matrices of the generalized matrix problem themselves depend on
the spectral parameter, so in general it turns out to be nonlinear and the same difficulties arise
when solving it as in the targeting method — the need to specify initial approximations for each
from the eigenvalues, the use of an iterative procedure, as well as the task of guaranteed search
for all modes whose frequencies belong to a given domain on the complex frequency plane.

In this paper, a modified spectral approach is proposed for calculating the complex frequen-
cies of modes and the distributions of their fields in an open gyrotron resonator. This approach
is a generalization of the methodology from [46] and is based on the linearization of RBC by
spectral parameter. Due to the peculiarities of the geometry of the open gyrotron resonator, the
developed approach makes it possible to calculate the complex frequency and field distribution
of the main longitudinal type of oscillations with accuracy sufficient for practical applications by
solving the linear matrix eigenvalue problem once without specifying an initial approximation. In
addition, in most cases, one or two additional solutions to the linear matrix eigenvalue problem
are required to calculate each subsequent higher type of oscillation.

The contents of the article are organized as follows. Section 1 presents the basic equations
of the boundary value problem describing oscillations in an open gyrotron cavity. Here we also
outline a technique for linearizing the boundary conditions of radiation, which makes it possible
to reduce the solution of a nonlinear spectral problem to a sequence of solutions to linear spectral
problems. Section 2 describes a method for reducing a boundary value problem in differential
form to a linear generalized matrix eigenvalue problem (GMAEP) using the finite difference
method. Section 3 provides a description of an iterative algorithm that allows one to calculate
a given number of complex frequencies and field distributions of quasi-eigentypes of oscillations
in an open resonator. The section 4 includes examples of calculations of longitudinal types of
oscillations in open gyrotron resonators of various frequency ranges, the parameters of which
are available from the literature. The Conclusion formulates the results obtained and the main
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conclusions.

1. Basic equations and linearization of radiation boundary conditions

The geometry of the gyrotron resonator in the form of a weakly inhomogeneous hollow
metal waveguide is shown in Fig. 1. It is assumed that the radius of the waveguide varies
slowly along its axis. Neglecting the connection between waveguide modes with different radial
indices, the boundary value problem describing the oscillations of the electromagnetic field in
the resonator [40] consists of the inhomogeneous string equation

𝑑2𝐹 (𝑧)

𝑑𝑧2
+ ℎ2(ω, 𝑧)𝐹 (𝑧) = 0, (1)

and radiation boundary conditions, which are set in planes perpendicular to the resonator axis
and located in homogeneous parts of the waveguides to the left and right of the main volume of
the resonator: [︂

𝑑𝐹 (𝑧)

𝑑𝑧
− 𝑗ℎ(ω, 𝑧)𝐹 (𝑧)

]︂
𝑧=𝑧in

= 0 ,[︂
𝑑𝐹 (𝑧)

𝑑𝑧
+ 𝑗ℎ(ω, 𝑧)𝐹 (𝑧)

]︂
𝑧=𝑧out

= 0 .

(2)

In the equations (1)–(2) it is assumed that the field depends on time in the form 𝐹 (𝑧) ∼ exp(𝑗ω𝑡)
and the following notation is introduced: 𝐹 (𝑧) — dimensionless complex amplitude of the 𝐻𝑧

component of the electromagnetic field in the resonator; ℎ(ω, 𝑧) — local value of the longitudinal
wavenumber of the 𝑇𝐸𝑚𝑛-mode; the value ℎ(ω, 𝑧) depends on the coordinate 𝑧 due to the change
in the radius of the resonator 𝑅(𝑧) when displaced along its axis.

The boundary conditions (2) contain roots of the complex frequency function ℎ2(ω, 𝑧), so
it is necessary to determine the rules for choosing branches of this function [40]:

Re [ℎ(ω, 𝑧in,out)] > 0, если Re
[︀
ℎ2(ω, 𝑧in,out)

]︀
> 0 ,

Im [ℎ(ω, 𝑧in,out)] < 0, если Re
[︀
ℎ2(ω, 𝑧in,out)

]︀
< 0 .

These conditions are based on the requirement: for any frequencies, solutions to the equation (1)
in homogeneous sections of waveguides lying to the left and right of the region 𝑧in ⩽ 𝑧 ⩽ 𝑧out
must represent waves that transfer energy in the direction from the central part of the resonator.

Taking into account the small ohmic losses in the resonator walls, we can write that
ℎ2(ω, 𝑧) = ℎ2𝑟(ω, 𝑧)− 𝑗ℎ2𝑖 (ω, 𝑧), where

ℎ2𝑟(ω, 𝑧) = ω
2/𝑐2 − ν2𝑚𝑛/𝑅

2(𝑧) ,

ℎ2𝑖 (ω, 𝑧) = (1− 𝑗)δ𝑠
ν2𝑚𝑛

𝑅3(𝑧)

(︂
1 +

𝑚2

ν2𝑚𝑛 −𝑚2

ω2𝑅2(𝑧)

𝑐2ν2𝑚𝑛

)︂
.

(3)

In this formula, ℎ2𝑟(ω, 𝑧) is the square of the wave number of the operating mode 𝑇𝐸𝑚𝑛 in the
case of ideally conducting resonator walls, −𝑗ℎ2𝑖 (ω, 𝑧) — addition to the squared wave number
due to the finite conductivity of the walls, 𝐽 ′

𝑚(𝑥) — derivative of the Bessel function of order
𝑚, ν𝑚𝑛 — 𝑛th root of the equation 𝐽 ′

𝑚(ν𝑚𝑛) = 0, 𝑐 — speed of light, δ𝑠 =
√︀
2/(µ0ωσ) — skin

layer thickness, 𝑠𝑖𝑔𝑚𝑎 — specific conductivity of the resonator wall material, µ0 — magnetic
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constant. The expression for ℎ2𝑖 (ω, 𝑧) is derived by the method developed in [47]; it coincides
with the formulas given in [48,49].

Let us write ℎ2𝑟(ω, 𝑧) as follows:

ℎ2𝑟(ω, 𝑧) = (ω2 − ω20)/𝑐2 + ν2𝑚𝑛/𝑅
2
0

[︀
1−𝑅2

0/𝑅
2(𝑧)

]︀
,

where 𝑅0 is the radius of the waveguide in some characteristic section, ω0 = ν𝑚𝑛𝑐/𝑅0 is the
critical frequency of the operating mode in this section. The value 𝑅0 can be taken, for example,
to be the radius of the homogeneous part of the resonator or the radius in the plane of transition
from the interaction region to the expanding horn if there is no homogeneous part of the resonator.

Let 𝐿0 be the characteristic size of the resonator, which can be taken as the length of
a homogeneous part or its entire length. Assuming ω ≈ ω0, we introduce the dimensionless
frequency parameter Ω = (ω2−ω20)𝐿2

0/𝑐
2 ≈ 2(ν𝑚𝑛𝐿0/𝑅0)

2(ω−ω0)/ω0, dimensionless coordinate
ζ = 𝑧/𝐿0 and functions

δ(ζ) = (ν𝑚𝑛𝐿0/𝑅0)
2

(︂
1− 𝑅2

0

𝑅2(𝑧)

)︂
,

𝑑(ζ) = (1− 𝑗)(ν𝑚𝑛𝐿0/𝑅0)
2 δ𝑠𝑅

2
0

𝑅3(ζ)

(︂
1 +

𝑚2

ν2𝑚𝑛 −𝑚2

ω2𝑅2(ζ)
𝑐2ν2𝑚𝑛

)︂
.

Note that δ(ζ) does not depend on the frequency ω, and 𝑑(ζ) changes very little with frequency,
since this change is determined mainly by the dependence of the skin layer thickness δ𝑠 from
frequency. In the expected range of frequencies of longitudinal modes, this dependence can be
neglected. Therefore, in the formula for 𝑑(ζ) we can put ω = ω0 and assume that this function
also does not depend on frequency.

After all the redesignations, the equations (1)–(2) take the form

𝑑2𝐹 (ζ)
𝑑ζ2

+ [Ω+ δ(ζ)− 𝑗𝑑(ζ)]𝐹 (ζ) = 0 (4)

and [︂
𝑑𝐹 (ζ)
𝑑ζ

− 𝑗
√︀
Ω+ δ(ζ)− 𝑗𝑑(ζ)𝐹 (ζ)

]︂
ζ=ζin

= 0,

[︂
𝑑𝐹 (ζ)
𝑑ζ

+ 𝑗
√︀
Ω+ δ(ζ)− 𝑗𝑑(ζ)𝐹 (ζ)

]︂
ζ=ζout

= 0.

(5)

The (4)–(5) equations are a boundary value problem of the type of the problem Sturm –
Liouville eigenvalue, the solutions of which determine complex modes of oscillations in an open
electrodynamic structure — a gyrotron resonator. The dimensionless frequency parameter Ω acts
as a spectral parameter here. Note that the value Ω enters the boundary conditions (5) in a
non-linear way, therefore, as noted in the Introduction, an iterative approach has to be used to
solve it.

The method for solving the boundary value problem (4)–(5) is described below. Let us put
in the equations (4)–(5) Ω = Ω0+Ω̃, where Ω0 is a given constant, and Ω̃ is a small quantity in the
sense that will be explained below. Then the square roots in the formulas (5) can be decomposed
into a Taylor series by degrees of Ω̃ and leave only the first two terms in the decomposition:√︁

Ω0 + Ω̃+ δ(ζin,out)− 𝑗𝑑(ζin,out) ≈
√︁
Ω0 + δ(ζin,out)− 𝑗𝑑(ζin,out)+

+
Ω̃

2
√︀
Ω0 + δ(ζin,out)− 𝑗𝑑(ζin,out)

. (6)
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Attenuation in the walls of the resonator is usually very small, so the condition |δ(ζin,out)| ≫
|𝑑(ζin,out)| is satisfied. Considering that the radii of the homogeneous parts of the waveguides in
which the sections ζin,out are located differ significantly (by tens of percent or more) from the
radius of the central part of the resonator, we can assume that |δ(ζin,out)| ∼ (ν𝑚𝑛𝐿0/𝑅0)

2.
For modern gyrotrons, the characteristic resonator dimensions 𝑅0 and 𝐿0, as well as the

operating mode indices 𝑚 and 𝑛 are such that the relative frequency detuning from the critical
one for longitudinal modes is |ω − ω0|/ω0 ⩽ 0.1, and the parameter (ν𝑚𝑛𝐿0/𝑅0)

2 takes values
from 102 to 104. Then, with a large margin, the inequality is true |δ(ζin,out)| ≫ |Ω|. In this case,
you can always choose the parameter Ω0 so that the relation |δ(ζin,out) + Ω0| ≫ |Ω̃|. This is
the condition for the parameter Ω̃ to be small, under which terms of order Ω̃2 and higher can
be ignored in the expansion (6). In particular, to calculate the first few longitudinal modes it is
enough to put Ω0 = 0.

Let us introduce the notation κin,out =
√︀
Ω0 + δ(ζin,out)− 𝑗𝑑(ζin,out) and substitute the

decomposition (6) in (4) and (5), as a result of which we obtain the differential equation of the
boundary value problem in the form

𝑑2𝐹 (ζ)
𝑑ζ2

+ [Ω0 + δ(ζ)− 𝑗𝑑(ζ)]𝐹 (ζ) = −Ω̃𝐹 (ζ) . (7)

and RBC, linearized by the spectral parameter Ω, in the form

𝑑𝐹 (ζ)
𝑑ζ

⃒⃒⃒⃒
ζ=ζin

− 𝑗κin𝐹 (ζin) = Ω̃
𝑗

2κin
𝐹 (ζin) ,

𝑑𝐹 (ζ)
𝑑ζ

⃒⃒⃒⃒
ζ=ζout

+ 𝑗κout𝐹 (ζout) = −Ω̃ 𝑗

2κout
𝐹 (ζout) .

(8)

The new dimensionless frequency parameter Ω̃ enters the equations (7), (8) linearly, therefore,
when discretizing them, a linear GMAEP will be obtained, in which the spectral parameter is Ω̃.

2. Discretization of boundary value problem equations

To obtain algebraic equations from the equations of a boundary value problem written in
differential form, you can use finite element or finite difference methods. The first of them has
the advantages that it can be applied to a non-uniform mesh, which can significantly reduce
memory requirements, and also allows for simple generalization to the case of high-order finite
elements, which improves the accuracy of the results obtained.

On the other hand, the finite difference method on a uniform grid in the case of one
spatial coordinate is extremely simple to understand and implement in software. Therefore, a
discretization method based specifically on the second approach will be described here.

Let us discretize the boundary value problem (7)–(8) by the finite difference method. To
do this, we introduce a uniform grid on the segment 𝑧in ⩽ 𝑧 ⩽ 𝑧out with a step of ∆𝑧 and a
dimensionless step of ∆ζ = ∆𝑧/𝐿0. The number of grid nodes 𝑁 = (𝑧out − 𝑧in)/∆𝑧 + 1, they are
numbered as follows: 𝑧1 = 𝑧in, 𝑧𝑖 = 𝑧1 + (𝑖 − 1)·∆𝑧, 𝑖 = 2, . . . , 𝑁 − 1, 𝑧𝑁 = 𝑧out. Replacing the
second derivative in (7) by its symmetric discrete approximation in the inner nodes of the grid,
we obtain the relations

1

∆ζ2
(−𝐹𝑖−1 + 2𝐹𝑖 − 𝐹𝑖+1)− (Ω0 + δ𝑖 − 𝑗𝑑𝑖)𝐹𝑖 = Ω̃𝐹𝑖, 𝑖 = 2, . . . , 𝑁 − 1. (9)

In the first and last nodes, the boundary conditions (8) must be additionally taken into account.
For the first node, we have an equation similar to (9), c𝑖 = 1, as well as the finite difference form
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of the first of the boundary conditions (8)

1

∆ζ2
(−𝐹2 + 2𝐹1 − 𝐹0)− κ2in𝐹1 = Ω̃𝐹1,

1

2∆ζ
(𝐹2 − 𝐹0)− 𝑗

(︁
κin + Ω̃/(2κin)

)︁
𝐹1 = 0 .

Excluding from these formulas the field 𝐹0 in the dummy node with the number 0, we obtain the
equation (︂

1

∆ζ2
+
κ2in
2

+ 𝑗
κin
∆ζ

)︂
𝐹1 −

1

∆ζ2
𝐹2 = Ω̃

(︂
1

2
− 𝑗

2κin ∆ζ

)︂
𝐹1. (10)

Similarly, the difference equation for the last node with the number is presented 𝑁 :

− 1

∆ζ2
𝐹𝑁−1 +

(︂
1

∆ζ2
+
κ2out
2

+ 𝑗
κout
∆ζ

)︂
𝐹𝑁 = Ω̃

(︂
1

2
− 𝑗

2κout ∆ζ

)︂
𝐹𝑁 . (11)

By collecting the formulas (9)–(11) in the correct order, we obtain a system of linear algebraic
equations with respect to the values of the field at the nodes of the grid, which is written in
matrix form as

[𝐴(Ω0)]{𝐹} = Ω̃[�̂�(Ω0)]{𝐹}. (12)

Here [𝐴(Ω0)] — a tridiagonal symmetric complex matrix of the order 𝑁 × 𝑁 , [�̂�(Ω0)] — a
diagonal complex matrix of the order 𝑁×𝑁 , {𝐹} = [𝐹1, 𝐹2, . . . , 𝐹𝑁 ]𝑇 — column vector of length
𝑁 , symbol 𝑇 — sign of the transpose operation. Expressions for matrix elements [𝐴] and [�̂�]1

are easily obtained from formulas (9)–(11).

3. The method of calculating eigenvalues with iterative refinement of the boundary
conditions of radiation

The equation (12) is an GMAEP for a pair of matrices ([𝐴], [�̂�]) [50–52], and Ω̃ is an
eigenvalue (eigenvalue) for this problem. Note that the elements of the matrices [𝐴] and [�̂�] do
not depend on Ω̃, therefore this spectral problem is linear and standard methods of computational
linear algebra can be used to solve it. In particular, to run the algorithm for searching for
eigenvalues and eigenvectors of this problem, no special selection of any initial approximations is
required. In most programs used for the numerical solution of linear GMAEP, the initial ones are
not approximations for the ES, but approximations for eigenvectors, the components of which
are randomly selected.

The order of the matrix problem (12) in the case of a large 𝑁 can reach several thousand,
respectively, it has the same number of ES, but of them only a small number of the smallest
modulo ES corresponding to the lowest longitudinal modes are of practical interest. When
calculating complex types of vibrations in a gyrotron resonator, their number most often does
not exceed ten or, in rare cases, twenty. In this case, the solution of the (12) problem can be
effectively carried out by the Arnoldi [51,52] method implemented in the ARPACK [53] library.
The procedures for solving linear GMAEP included in this library allow you to calculate the
required number of eigenvalues lying in a given part of the spectrum, for example, those closest
to zero on the complex plane or having the smallest positive values of the real part, etc. Using this

1Next, for brevity, we will omit the notation of the dependencies of these matrices on Ω0.
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property, as well as the procedure for reverse shifting eigenvalues, allows you to build an iterative
algorithm for calculating a given the number of eigenvalues of a nonlinear problem (4)–(5).

The procedure for the reverse shift of the ES for the equation (12) is as follows. Let’s put
Ω̃ = Ω𝑠 + 1/λ in it, move the term proportional to Ω𝑠 to the left side and multiply the resulting
equation on the left by ([𝐴]−Ω𝑠[�̂�])−1. As a result, instead of (12) we get(︁

[𝐴]−Ω𝑠[�̂�]
)︁−1

[�̂�]{𝐹} = λ{𝐹}, (13)

where λ = 1/(Ω̃ − Ω𝑠). The ratio (13) is no longer a generalized, but a standard eigenvalue
problem for the matrix ([𝐴] − Ω𝑠[�̂�])−1[�̂�], which stands on the left side of this equation. If
λ𝑖, 𝑖 = 1, 2, . . . , 𝑛 — the eigenvalues of the problem (13) having the largest positive real parts
and arranged in decreasing order, then Ω̃𝑖 = Ω𝑠 + 1/λ𝑖, 𝑖 = 1, 2, . . . , 𝑛 will be 𝑛 eigenvalues of
GMAEP(12) satisfying the condition Re Ω̃𝑖 > ReΩ𝑠 and ordered as the values increase Re Ω̃𝑖.

Note that in the algorithm implemented in the ARPACK package to solve the standard
matrix problem in the form of (13), it is not required to explicitly calculate the matrix on the left
in this equation. Instead, it is enough to have two procedures, one of which calculates the result
of multiplying an arbitrary vector of length 𝑁 by the matrix [�̂�], and the second returns the
vector {𝑋} — the result of solving the linear equation ([𝐴]−Ω𝑠[�̂�]){𝑋} = {𝑌 } for an arbitrary
vector {𝑌 } of length 𝑁 .

Thus, by choosing the value of the shift Ω𝑠, you can calculate the required number of
eigenvalues of GMAEP(12) in the desired part of the spectrum. Note that the choice of Ω𝑠 does
not affect the values of the resulting ES, but only determines which ES for a pair of matrices
([𝐴], [�̂�]) will be calculated.

In practice, when modeling vibrations in a gyrotron resonator, depending on specific
applications, two problem statements arise. In the first case, this is the calculation of the complex
frequency and the corresponding field distribution in the resonator only for the main longitudinal
mode of oscillations. Knowledge of these parameters allows, using the formulas of the linear
theory of the gyrotron in the approximation of the fixed structure of the field [2, 54–56], to
quickly calculate the position of the oscillation zone for the main mode on the plane of the
parameters 𝐵0, 𝐼st (here 𝐵0 — magnetic field, 𝐼st — the starting current of the soft occurrence
of vibrations), as well as the minimum value of the starting current. In the second case, it is
necessary to accurately calculate the complex frequencies and field distributions for several lower
longitudinal modes. Such a need arises, for example, when developing gyrotrons with frequency
tuning due to changes in the magnetic field (see, for example, [6–8]).

For each of these cases, two different algorithms can be used to solve GMAEP with RBC
linearization by spectral parameter. In the first variant, it is enough to simply put the parameter
Ω0 = 0 in the equation (12) and find one eigenvalue of this problem with the smallest real part. As
the tests conducted for a large number of resonators show, the oscillation parameters calculated
with great accuracy (on the order of 6-8 significant digits for frequency and 4-6 significant digits
for Q-factor) coincide with the results of solving the boundary value problem by other methods,
in particular, the targeting method. Examples of such calculations are given in the next section.

In the second variant, to find several longitudinal modes, you can use an iterative procedure
that allows you to sequentially calculate a given number of ES, starting with the main mode. In
this case, the complex frequency of the first mode is found using the algorithm from the previous
paragraph, and the initial approximations for the complex frequencies of the mode with the
number 𝑖 > 1 will be calculated automatically during the iterations performed when calculating
the mode with the number 𝑖− 1.

The pseudocode of the algorithm for searching for multiple eigenvalues is shown in Fig. 2
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function OmegaResult = GyrCavIteration[n, Omega0 , tol , alpha]
% Input parameter:
%
% Omega0 - lower bound for searching eigenvalues;
% n - number of eigenvalues;
% tol - convergence criterion;
% alpha - parameter for settings the shift for the matrix
% eigenvalue problem , 0 < alpha < 1;
%
% Result:
% Complex eigenvalues in array OmegaResult(i), i=1,...n

% initial settings

OmegaNew = Omega0;
i = 0;

% cycle for eigenvalues searching
while i<= n

% cycle for iterative clarification of the eigenvalue
while true

% Calculation of matrices A and B for a given value OmegaNew
...............................................
OmegaShift = OmegaNew - (1-alpha )*real(OmegaNew );

% Solving the generalized matrix eigenvalue problem (13)
% and finding two eigenvalues lambda(k), k = 1,2 with
% the largest real(lambda), such that real(lambda (1)) >
% real(lambda (2);

..............................................
OmegaPrev = OmegaNew;
OmegaNew = OmegaNew + OmegaShift + 1/ lambda (1);
OmegaNext = OmegaNew + OmegaShift + 1/ lambda (2);

% convergence test
if abs(OmegaNew -OmegaPrev) < tol*max(abs(OmegaNew), ...

abs(OmegaPrev ))
break;

end
%

end % end internal while
% convergence achieved

OmegaResult(i) = OmegaNew;
% initial value for the next eigenvalue

OmegaNew = OmegaNext;
i = i + 1;

end % end external while
end % end module

Fig 2. Pseudocode of the function for eigenvalues searching by iterative clarification of the linearized radiation
boundary conditions. The dot lines must contain code that implements the operations described in the previous
comment
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and consists of the following. Let the eigenvalues of the matrix problem (12) be arranged
in ascending order of their real parts, 𝑖 − 1 of the first ES is found, and there is an initial
approximation Ω𝑖0 for the ES with the number 𝑖. If we form the matrices [𝐴(Ω𝑖0)] and [�̂�(Ω𝑖0)]
and shift Ω𝑠 set so that the condition Re (Ω𝑖−1) < Re (Ω𝑠) < Re (Ω𝑖0) is satisfied, then using
the reverse shift procedure to solve the matrix problem as the first calculated NW will give an
improved approximation for the 𝑖th NW. When repeating this process, the value of Ω𝑖0 converges
to the desired eigenvalue of Ω𝑖, while at each iteration the value of |Ω𝑖0 − Ω𝑖| becomes smaller
and smaller, rapidly tending to zero. Therefore, the solution for the mode with the number 𝑖
of the linear GMAEP(12) obtained by discretizing the boundary value problem with linearized
radiation boundary conditions(7)–(8) tends to solve a nonlinear spectral boundary value problem
(4)–(5).

It remains to determine how, after calculating the ES with the number 𝑖, to set the initial
approximation for searching for the next ES. Here it can be taken into account that when solving
GMAEP using the Arnoldi method, even if only one ES is calculated, several of them are always
calculated, therefore, at each iteration of the process described in the previous paragraph, except
for the exact value of the 𝑖-th eigenvalue2, Naturally, a good enough approximation is found to
run iterations of the search for the next ES.

Note that in the considered procedure, at each iteration of the internal cycle of the
algorithm (see Fig. 2) a new, more appropriate value is calculated for the value Ω0, near which
RBC linearization occurs when deriving the equations (7)–(8). At the same time, linearized RBC
models radiation processes more and more precisely for the mode that is calculated at this step of
the external cycle of the eigenmode spectrum search procedure. Therefore, the proposed approach
can be called a method for calculating resonator modes with iterative refinement of the radiation
boundary conditions.

The vast majority of the time spent solving GMAEP in the ARPACK code is spent
calculating eigenvalues; it takes much less time to calculate eigenvectors, therefore, each time
the procedure is called from the ARPACK library, the need for simultaneous calculation of both
eigenvalues and eigenvectors of the problem is established. As a result, at the output of the entire
iterative process, we get a given number of ES and eigenvectors. The components of the latter
are the values of the complex amplitude of the field of the calculated modes at the nodes of the
grid.

Practical calculations show that for the internal convergence of the solution for the main
mode, 3 iterations of the internal cycle of the algorithm are required (see Fig. 2), and for
each subsequent mode there are 2 iterations, while in each case the last iteration is needed
to check convergence. In general, to calculate 𝑛 eigenmodes, it is necessary to solve the GMAEP
approximately 2𝑛 + 1 times. For 𝑛 < 10, this value is disproportionately less than the required
number of solutions to the Cauchy problem for the differential equation (1) in the targeting
method.

A Certificate of state registration of the computer program [57] was obtained for the
program in which this technique is implemented. The program is written in the programming
languages Wolfram Mathematica (interface) and Fortran (calculation module) and runs on
Windows 10 or Windows 11 OC. Without any changes, the program can be recompiled for
Linux OS.

2The term «exact value of the ES» is used here in the sense that it is the value of the ES of a nonlinear
boundary value problem, found taking into account the error of its discretization, the convergence criterion of the
iterative procedure and the convergence criterion of the Arnoldi method in the ARPACK library.
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4. Test examples of resonators calculation

This section contains the results of test calculations of resonators of several gyrotrons
operating in various ranges — from the long-wavelength part of the millimeter to the submillimeter
wavelength range. For the convenience of references, the resonators for various test cases are
indicated by a number in the Table 1 and the following data are given for each of them: range,
type of operating mode, conductivity of the cavity walls used in calculations, reference to the
source. In these links you can find complete data on the geometry of the resonators and other
necessary parameters. For all examples, the results of modeling the main or several longitudinal
modes in other ways are also given, which allows us to draw conclusions about the accuracy of
the proposed method.

Schematic images of the resonators modeled in the tests, as well as the values or designations
of their geometric dimensions are shown in Fig. 3. For resonators from tests 2–5, the dimensions
are shown in Table 2.

Table 1. Gyrotron cavities for test calculations

Test
number

Frequency, GHz Operating mode Wall
conductivity,

S/m

Link to the
source

1 391 𝑇𝐸85 3·107 [58]
2 140 𝑇𝐸03 ∞ [37]
3 42 𝑇𝐸03 ∞ [37]
4 140 𝑇𝐸10,4 ∞ [37]
5 170 𝑇𝐸34,10 3·107 [59]

Table 2. Geometry parameters of the cavities 2–5 with profile shown in fig. 1, b

Operating frequency, operating mode
Parameter

140 GHz, 𝑇𝐸03 42 GHz, 𝑇𝐸03 42 GHz, 𝑇𝐸10,4 170 GHz, 𝑇𝐸34,10

𝐿1, mm 18.9 30.0 10.0 8
𝐿2, mm 10.0 44.0 11.0 13
𝐿3, mm 10.1 46.0 12.0 16
θ1, ∘ 0.5 2.0 5.0 2.8
θ2, ∘ 3.0 3.0 3.0 3.5

𝑅0, mm 3.47 11.57 8.11 20.95

4.1. Modeling of the main oscillation modes in resonators from tests 1-5. First,
let’s consider the results of calculations of the main types of vibrations for each resonator
presented in Table 1. In this subsection, the calculation of the main mode was carried out
using a simplified method, when a single ES of the linear GMAEP (12) with the smallest value
Re (Ω̃), while Ω0 = 0.0 was assumed. Thus, for each of the 1–5 resonators, the matrix problem
was solved only once. The values of frequencies and Q-values of the main modes calculated in
this way are shown in Table 3. For comparison, in the same table, the last two columns show
the corresponding values calculated by the targeting method using the [34] program. It can be
seen that for all resonators, the frequency values calculated in two ways differ by no more than
2 units in the eighth sign, and the Q-values — by no more than 3 units in the fourth sign. These
results confirm the remark from the section 3 that in the case of calculating only the main mode,
it is sufficient to use a simplified technique, while the results obtained for the mode parameters
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Fig 3. Cavities profiles considered in the tests: a — cavity for continuous frequency tunable gyrotron for
spectroscopy studies [58]; b — profile of the cavities for tests from [37, 59]. All dimensions on the figure 3, а
are given in mm

demonstrate very high accuracy.
The distributions of the fields of the main modes calculated in this way in all cases coincide

graphically with the images of the fields obtained by solving a nonlinear spectral problem using
an iterative technique. For some resonators, examples of these distributions will be given below.

Table 3. Frequencies and quality factors of the fundamental modes for the gyrotron cavities
from tests 1–5

Resonator number
Spectral approach

with RBC linearization
Method of targeting

Frequency, GHz Diffraction
Q-factor

Frequency, GHz Diffraction
Q-factor

1 391.47013 16631.3 391.47013 16630.8
2 140.22593 849.3 140.22592 849.0
3 42.03745 1115.2 42.03745 1115.2
4 140.12867 585.5 140.12869 585.7
5 170.00732 1394.2 170.00731 1394.09

4.2. A gyrotron on the 𝑇𝐸85 mode with an operating frequency of 391 GHz.
As a further example, the gyrotron resonator from [58] is considered, which operates on a second
cyclotron harmonic with an operating frequency of 391 GHz and with continuous frequency
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tuning in the range of about 2 GHz. The working mode of the gyrotron is 𝑇𝐸8.5. The device
is intended for use in spectroscopic nuclear magnetic resonance installations using the effect of
dynamic polarization of nuclei. The necessary frequency tuning is provided by the interaction
of the electron beam with the fields of the oncoming components of the 𝑇𝐸85𝑞 modes when the
magnetic field changes. Here, the longitudinal fashion index 𝑞 varies in the range 𝑞 = 1...6. The
dependence of the resonator radius on the longitudinal coordinate, shown in Fig. 3, a, taken
from [58]. The radius and length of the homogeneous part of the resonator are 𝑅0 = 2.997 mm
and 𝐿0 = 35 mm. The calculated conductivity of the cavity walls is σ = 3× 107 Cm/m.

Note that in order to ensure frequency tuning due to the interaction of the beam with
various longitudinal types of oscillations, high-order modes must have a relatively high Q factor
in order to reduce the inrush current for them. Therefore, the resonator in Fig. 3, a has a large
ratio of 𝐿0/𝑅0 ≈ 11.7 and a relatively large opening angle of the expanding horn at the right
end of the resonator. This provides significant reflections of the wave in the waveguide from the
transition of the homogeneous part of the resonator into the expanding horn.

The values of frequencies and Q-values of longitudinal modes calculated for this resonator
for 𝑞 = 1...6 are shown in the Table 4. The second and third columns of the table show the
frequencies and Q-values obtained using the method developed in this article; the last two
columns contain the same values calculated by the targeting method using the same program
as in the previous example. The frequencies calculated by the two methods differ by no more
than 2 units in the 8th significant digit, and the Q-factor - by 1-2 units in the fourth significant
digit. Taking into account the different numerical approaches used in these techniques, it can be
assumed that the results obtained with their help are practically the same.

In Fig. 4 shows the field distributions of complex modes in this resonator. The modules
of complex field amplitudes are displayed in solid black lines, and their arguments are shown in
orange lines. The dotted line corresponds to the resonator profile in arbitrary units. The fields
calculated by both methods (spectral approach and targeting method) for all modes coincide
with graphical accuracy.

4.3. Gyrotron resonators with frequencies of 42 GHz and 140 Hz [37]. The
work [37] describes a set of GYROCOMPASS programs for computer simulation of gyrotron
operation in different modes, including for calculating the parameters of a hollow resonator
without a beam. The three gyrotrons shown in Table 1 are taken as test examples numbered
2–4. Calculations of these resonators were carried out and the results were compared with the
data from the article [37]. The results of the comparison are summarized in the Table 5. It
contains the values of frequencies and Q-values of the main longitudinal mode for three resonators,

Table 4. Frequеncies and quality factors of the axial modes of the gyrotron cavity
with operating mode 𝑇𝐸85 [58]

𝑞
Spectral approach

with RBC linearization
Method of targeting

Frequency, GHz Quality factor Frequency, GHz Quality factor
1 391.47013 16631.3 391.47013 16630.8
2 391.53397 13143.0 391.53397 13141.6
3 391.64034 9742.4 391.64034 9740.3
4 391.78919 7156.4 391.78919 7154.2
5 391.98044 5340.3 391.98045 5338.5
6 392.21399 4080.6 392.21401 4079.5
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obtained in two ways: using the COAXIAL code developed earlier by O. Dumbrice, and using the
GYROCOMPU code, as well as the values of the same values calculated using the methodology
developed in this article.

Table 5. Comparison of frequencies and diffraction quality factors of the fundamental axial modes
of the cavities with data from [37]

GYROCOMPU COAXIAL Spectral approach
with RBC linearizationТип

колебаний Frequency,
GHz

Diffraction
Q-factor

Frequency,
GHz

Diffraction
Q-factor

Frequency,
GHz

Diffraction
Q-factor

𝑇𝐸031 140.223 857.1 140.226 849.0 140.226 849.3
𝑇𝐸031 42.037 1136.6 42.037 1115.0 42.037 1115.2
𝑇𝐸10,4,1 140.129 588.0 140.129 586.0 140.129 585.7

As follows from the Table 5, the frequency values of the main modes obtained using all three
codes are practically the same. The diffraction Q-values calculated using the COAXIAL code and
the proposed method also coincide, and the GYROCOMPU program gives values for Q-values
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Fig 4. Field distributions of the first six hight order axial modes of a gyrotron cavity with an operating mode
of 𝑇𝐸85 and a frequency 391 GHz. Fig. a–f correspond to modes with axial indices 𝑞 = 1...6. Solid black lines
are the modules of the complex amplitude of the field in arbitrary units, orange lines — phases of the complex
amplitude, blue dotted line — cavities profile (color online)
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Fig 5. Fields distributions of four cavity axial modes for gyrotron with operating mode 𝑇𝐸03𝑞 and frequency
42 GHz. Figures a–d correspond to modes with axial indexes 𝑞 = 1...4. Solid curves — modules of the complex
field amplitude (arbitrary units), orange curves — phases of the complex field amplitude, blue dashed line —
cavities profile (color online)

exceeding the results of the other two programs by 5-10%. In the article [37], this difference is
explained by the difference in numerical techniques used in the COAXIAL and GYROCOMPU
programs, and not by a defect in any of them.

Using a spectral approach with iterative refinement of the RBC, calculations of frequencies,
Q-values and spatial distributions for higher longitudinal modes in resonators from tests 2-4
were also performed, and the results obtained were compared with the results of the targeting
method [34]. For all resonators and for all calculated longitudinal modes, the same complete
agreement of these results with each other is observed as for the resonator from test 1. For
example, in Fig. 5 shows the field patterns of the first four modes in the resonator from test 3.
The colors and outlines of the various curves in this figure are similar to the curve parameters
taken in Fig. 4.

4.4. Test case 5. Gyrotron resonator for plasma heating [59]. The gyrotron
described in [59] is designed as a prototype gyrotron for plasma heating. According to the
projected output parameters stated in this article, it should generate power in excess of 1 MW
at a frequency of 170 GHz with an electronic efficiency exceeding 35The voltage and current are
78...82 kV and 40 A, respectively. The working mode of the resonator𝑇𝐸34,10,1.

The extreme parameters of this gyrotron require careful design of the resonator. High
thermal loads lead to the need to maximize the reduction of the diffraction Q-factor of the
working mode of vibrations while maintaining a high value of the ohmic Q-factor. The effective
length of the working mode, defined in [60] by the formula

𝐿eff =
π√︀

(2π𝑓/𝑐)2 − (ν𝑚𝑛/𝑅0)2
,

at the generation frequency of 𝑓 =170 GHz is 𝐿eff ≈ 18.8mm, with the ratio 𝐿eff/𝑅0 ≈ 0.9
is extremely small. The high azimuthal and radial indices of the working mode and the large
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radius of the resonator determine the high value of the ohmic quality factor, which, if evaluated
according to the well-known formula [2], is𝑄ohm ≈ 74420.

With such resonator parameters, the complex frequency of the main mode 𝑇𝐸34,10,1 appears
on the complex plane significantly separated from the frequencies of modes with higher longitudinal
indices. This has a beneficial effect on increasing the starting currents for these modes and,
consequently, on the stability of oscillations in the main mode.

If the targeting method is used to calculate the oscillation spectrum, this separation of
complex frequencies leads to difficulty in finding initial approximations for each of these modes.
At the same time, as calculations show, the modified spectral approach proposed here easily
copes with this task and calculates the required number of complex frequencies one by one using
the iterative algorithm described in the section3.

In the Table 6 the results of calculations of the frequencies and Q-values of the oscillations
of the first four longitudinal modes of the resonator in question are presented. The coincidence
of the results for the two lower modes obtained by the proposed method and the run-through
method can be considered good, but as the mode number increases, this coincidence worsens.
It can be assumed that this deterioration is due to the fact that this resonator has a significant
narrowing of the waveguide at the cannon end of the resonator and at this point the wave in the
waveguide becomes highly supercritical. Under these conditions, the equation (4) acquires the
properties of a rigid differential equation [61], as a result of which the accuracy of solving the
Cauchy problem in the run-through method decreases. However, this assumption needs additional
verification. The distributions of the fields of the calculated modes look similar to the fields in
Fig. 5 and are not listed here.

Table 6. Frequencies and diffraction quality factors of HOAM for gyrotron cavity
with operating frequency 170 GHz [59]

𝑞

Spectral approach
with RBC linearization

Method of targeting

Frequency, GHz Diffraction
Q-factor

Frequency, GHz Diffraction
Q-factor

1 170.00732 1393.5 170.00731 1394.1
2 170.56715 356.5 170.56692 356.0
3 171.46104 210.9 170.46182 211.6
4 172.41215 154.3 172.40427 152.8

Conclusion

The article describes a spectral approach with iterative refinement of the radiation boundary
conditions for solving a boundary value problem describing quasi-spatial oscillations in an open
gyrotron resonator. The method allows us to calculate the spectrum of longitudinal quasi-spatial
modes, which implies the calculation of their frequencies, Q-values (diffraction, ohmic and total),
as well as distributions of complex amplitudes of the mode fields.

The main feature of the method is that when using it, there is no need to specify initial
approximations to search for complex mode frequencies, which is the main problem when using
other iterative methods to solve this problem, for example, the targeting method. Moreover, if it
is necessary to calculate the parameters of only the main oscillation mode of an open resonator,
then this technique allows us to obtain them after a single solution of the generalized matrix
eigenvalue problem, without additional iterations.
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The developed technique can be generalized to the case of equations of the linear theory
of the gyrotron and used to develop new methods for analyzing conditions of soft self-excitation
in gyrotron generators.
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