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Abstract. Purpose. Studying the possibility of implementing a data classification method based on a spiking
neural network, which has a low number of connections and is trained based on local plasticity rules, such
as Spike-Timing-Dependent Plasticity. Methods. As the basic architecture of a spiking neural network we use
a network included an input layer and layers of excitatory and inhibitory spiking neurons (Leaky Integrate
and Fire). Various options for organizing connections in the selected neural network are explored. We have
proposed a method for organizing connectivity between layers of neurons, in which synaptic connections are
formed with a certain probability, calculated on the basis of the spatial arrangement of neurons in the layers.
In this case, a limited area of connectivity leads to a higher sparseness of connections in the overall network.
We use frequency-based coding of data into spike trains, and logistic regression is used for decoding. Results.
As a result, based on the proposed method of organizing connections, a set of spiking neural network architectures
with different connectivity coefficients for different layers of the original network was implemented. A study of
the resulting spiking network architectures was carried out using the Free Spoken Digits dataset, consisting
of 3000 audio recordings corresponding to 10 classes of digits from 0 to 9. Conclusion. It is shown that the
proposed method of organizing connections for the selected spiking neural network allows reducing the number
of connections by up to 60% compared to a fully connected architecture. At the same time, the accuracy
of solving the classification problem does not deteriorate and is 0.92...0.95 according to the F1 metric. This
matches the accuracy of standard support vector machine, 𝑘-nearest neighbor, and random forest classifiers.
The source code for this article is publicly available: https://github.com/sag111/Sparse-WTA-SNN.
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Introduction

One of the motivations for research on spiking neural networks (SNN) is to explore the
possibility of utilizing the abilities of the brain of living organisms in computer models. This
fundamental direction has recently acquired a more practical form, which is associated with
progress in the creation of neuromorphic chips that allow simulating bioinspired spiking neural
networks on energy-efficient computing devices [1,2]. While many existing approaches are focused
on offline learning of SNN with subsequent transfer to neuromorphic chips, it is promising
to create methods for this class of devices that would allow online learning. These include
learning methods based on local synaptic plasticity, implemented using Spike-Timing-Dependent
Plasticity (STDP), where the change in the weight of a synaptic connection is proportional to
the time interval from the arriving of a presynaptic spike to emitting the postsynaptic spike. The
relevance of STDP is due to the prospective possibility of hardware implementation of SNNs
with STDP. Therein, a synapse with STDP could be implemented on base of a memristor [3–5],
the change in conductivity of which depends on the duration of overlapping presynaptic and
postsynaptic voltage pulses.

Currently, there are several methods for training spiking neural networks with STDP [6–9].
One of the efficient approaches for solving classification problems is the SNN network with STDP
based on a three-layer architecture [10].

This architecture was previously used to classify images of handwritten digits [10, 11],
real-valued vector data and audio information [12]. Despite its efficiency, it is quite resource-
intensive, so the purpose of this paper is to study the possibility of reducing the number of
connections in such an SNN. This formulation of the problem is due to the presence of restrictions
on the number of connections of existing neurochips, which makes it relevant to reduce the
computational complexity of SNN models.

The principles of sparse connectivity between neurons were studied earlier in a number
of works on spiking and other artificial neural networks. For example, a ∼ 70% reduction in
connectivity by zeroing out weights that are below a given threshold in a network [13] consisting
of two convolutional layers that process input data and then pass it on to spiking convolutional
layers allows to reduce power consumption while maintaining the accuracy of image recognition on
video in the IVS 3cls [14] dataset at the level of 71.5%. In [15], limiting the number of connections
per neuron by about 50% is shown to reduce network power consumption and, at the same time,
by training a multilayer convolutional network using the backpropagation method, achieve good
performance on MNIST problems (99.51%), CIFAR-10 (94.10%), N-MNIST (99.53%), DVS-
Gesture (98.20%). An SNN [16] in which connections between neurons are set in a probabilistic
way based on the spatial coordinates of neurons, shows the accuracy of 97.8% on the handwritten
digit and letter classification task from the EMNIST dataset.

Due to the possibility of spatial localization of neurons in layers in the chosen SNN
architecture, in this work we have chosen an approach to establish sparse connectivity based
on the probabilistic formation of connections in a given area. For this method, the effectiveness
of using sparse connections between different layers of the original SNN is investigated. According
to experts [17], the greatest effect from the use of SNNs implemented on neurochips is achieved
when analyzing streaming data, an example of which is audio data. Therefore, in this work,
we used the Free Spoken Digit Dataset (FSDD), an open benchmark for audio classification
algorithms, as data for the study.

The main contribution of this article is:

� the effectiveness of the learning method based on local plasticity for the SNN with sparse
connections was evaluated using a set of audio data,
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� the impact of the SNN connectivity level on the accuracy of the audio data classification
problem was assessed,

� the importance of using sparse connections between different layers of a three-layer SNN
was determined.

The article is organized as follows: Section “Data and preprocessing” describes the dataset,
methods for extracting significant features of audio and transforming at spike moments; Section
“Spiking Neural Network” describes the models of neurons and synapses, the architecture of
the spiking network, and the learning algorithm; Section “Experiments” presents the results
of experimental studies of the selected sparse connectivity method for various configurations of
SNN architectures; analysis of the results and comparison with other approaches is presented
in Section “Analysis of results”.

1. Data and preprocessing

1.1. Dataset. The free-spoken-digit-dataset (FSDD) consisting of 3000 audio recordings
of the pronunciation of numbers from 0 to 9 in English is considered as a test classification task
for testing the proposed method. The FSDD dataset contains 10 classes of 300 WAV-format
audio records, up to 1 second long. Examples of audio waveforms for some classes are shown
in Fig. 1.

The dataset was formed as follows: 6 people pronounced the numbers from zero to nine
50 times with different intonations and speed. In order to be able to consistently compare
the accuracy when classifying the dataset by various machine learning methods, the following
splitting of data into test and training samples is recommended by default: the first 5 out of 50
(10%) audio pronunciations by each person in all classes are assigned to the test sample, the
remaining 45 audio (90%) — to the training sample.

Fig. 1. An example of using three Gaussian receptive fields with different µ𝑗 . k is the new vector of the 𝑥𝑖

component of the input vector after GRF processing (color online)

1.2. Feature extraction. To feed data to the spiking neural network, a set of Mel-
frequency cepstral coefficients (MFCC) was obtained for the audio records using the fast Fourier
transform (FFT) and the discrete cosine transform. This is done using the open-source python
package (ISC License) for music and audio analysis — librosa [18]. Further, the average value
of each MFCC coefficients is calculated over audio length. The averaged values are normalized
from 0 to 1. The result is a new vector of 𝐾 = 30 averaged and normalized MFCC coefficients
(other features were set by default from librosa package: the window size for Fourier transform
is 250 ms, the stride is 64 ms).
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1.3. Encoding into spike sequences. To improve classification accuracy when using
SNN, at the preprocessing stage, the resulting feature vector is processed using 𝑀 Gaussian
receptive fields (GRF) (see Eq. (1)). To do this, the interval of values of the averaged and
normalized MFCC coefficients is divided into 𝑀 equal intervals. In each interval 𝑗 = 1, . . . ,𝑀 ,
a Gaussian peak with center µ𝑗 in the middle of the 𝑗-th interval. The value of the component
𝑥𝑖 of the input vector is replaced by a set of values 𝐺𝑗(𝑥𝑖) characterizing the proximity of 𝑥𝑖 to
the center of the 𝑗-th receptive field:

𝐺𝑗(𝑥𝑖) = exp

(︂
(𝑥𝑖 − µ𝑗)2

σ2

)︂
. (1)

The value of the component 𝑥𝑖 of the input vector is replaced by a set of values𝐺𝑗(𝑥𝑖) characterizing
the proximity of 𝑥𝑖 to the center of the 𝑗-th receptive field. Thus, the dimension of the input
increases by the factor of 𝑀 . Fig. 1 shows an example for three receptive fields. In this research
we used 𝑀 = 7 as found to be optimal in an earlier work with the same dataset [12], σ =
2(max𝑥 −min𝑥)

3(𝑀−2) , µ𝑗 = min𝑥+(max𝑥−min𝑥) · 𝑗
𝑀−1 , where max𝑥 and min𝑥 are maximum and

minimum values of 𝑥𝑖 among all training set vectors.
Frequency coding is used to transform the components of the input vector into sequences

of spikes: each element of the input layer emits spikes with a certain frequency ν during the entire
time 𝑡𝑒 = 350 ms, of processing the current audio:

ν = νmax · 𝑘, (2)

where νmax is the maximum frequency constant, 𝑘 is the value of the input vector component
after preprocessing. After presenting an audio recording, the input are silent for 𝑡𝑝 = 50 ms so
as to allow the neuron potentials relax. The remaining parameters set during the experiments
are presented in the Table 1.

Table 1. Results of the first stage of the research

Type of connection between layers of neurons

From excitatory

to inhibitory

From inhibitory

to excitatory

From input

to excitatory

From input

to inhibitory
νmax, Hz Layer grid F1

Сounter-
partnership

All-to-all* All-to-all
Fixed

Amount(10%)
550 — 0.93

Sparse
(𝑃𝑒𝑥𝑐_𝑖𝑛ℎ = 0.6;
𝑅𝑒𝑥𝑐_𝑖𝑛ℎ = 0.25)

550 Regular 0.93

Sparse
(𝑃𝑒𝑥𝑐_𝑖𝑛ℎ = 0.7;
𝑅𝑒𝑥𝑐_𝑖𝑛ℎ = 0.55)

All-to-all* All-to-all
Fixed

Amount(10%) 550 Irregular 0.93

Sparse
(𝑃𝑖𝑛ℎ_𝑒𝑥𝑐 = 0.4;
𝑅𝑖𝑛ℎ_𝑒𝑥𝑐 = 0.7)

550 Regular 0.94

Сounter-
partnership

Sparse
(𝑃𝑖𝑛ℎ_𝑒𝑥𝑐 = 0.7;
𝑅𝑖𝑛ℎ_𝑒𝑥𝑐 = 0.8)

All-to-all
Fixed

Amount(10%) 850 Irregular 0.93

Сounter-
partnership

All-to-all*
Probabilistic

(𝑃𝑔𝑒𝑛_𝑒𝑥𝑐 = 0.4)
Fixed

Amount(10%)
950 Not applicable 0.94

Сounter-
partnership

All-to-all* All-to-all
Probabilistic

(𝑃𝑔𝑒𝑛_𝑖𝑛ℎ = 0.2)
550 Not applicable 0.62

* means excluding connections between counter-partners
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2. Spiking Neural Network

2.1. Neuron model. The spiking neuron models in this work are Leaky Integrate-and-
Fire (LIF), in which the state variable, membrane potential 𝑉 (𝑡), changes in accordance with
Eq. (3), as if the neuron’s membrane was an electric capacitor with capacitance 𝐶m and with a
leakage that would drive the potential to its resting level 𝑉rest in the characteristic time τm if the
synaptic input 𝐼syn(𝑡) was absent.

𝑑𝑉

𝑑𝑡
= −𝑉 (𝑡)− 𝑉rest

τm
+

𝐼syn(𝑡)

𝐶m
. (3)

The postsynaptic current 𝐼syn(𝑡) is described by the synaptic conductance model (see Eq. (4)):
each incoming synapse 𝑖 has the conductance 𝑔𝑖(𝑡) ·𝑤𝑖(𝑡), through which the neuron’s membrane
is charged by a voltage source with the potential 𝐸rev_exc/inh.

𝐼syn(𝑡) =
∑︁
𝑖

𝑤𝑖(𝑡)𝑔𝑖(𝑡) ·
(︀
𝐸rev_exc/inh − 𝑉 (𝑡)

)︀
. (4)

The synaptic conductance increases by σsyn_exc/inh whenever a spike arrives (let the input spike
times be denoted 𝑡pre), and then relaxes to zero (see Eq. (5)). The trainable strength of the
synapse is modelled by modulating the synaptic conductance with the non-dimensional weight
𝑤𝑖(𝑡) in the range [0; 1].

𝑑𝑔𝑖(𝑡)

𝑑𝑡
= − 𝑔𝑖(𝑡)

τsyn_exc/inh
+ σsyn_exc/inh · δ (𝑡− 𝑡pre) . (5)

As soon as 𝑉 (𝑡) reaches the threshold 𝑉th, the neuron fires an output spike, and 𝑉 (𝑡) is
instantaneously reset to 𝑉reset. After a spike, a refractory period 𝑡ref begins during which the input
spikes have no effect on the neuron. The operation of a LIF neuron is schematically depicted in
Figure 2.

In order to prevent the neurons from firing too many or too few spikes, the threshold
potential is adaptive, increasing by Θ+ whenever a spike is fired and gradually relaxing to Θrest:

𝑑𝑉th

𝑑𝑡
= −𝑉th(𝑡)− Θrest

𝑑𝑡
+ Θ+ ·𝐻(𝑉 (𝑡)− 𝑉th(𝑡)), (6)

where 𝐻 is the Heaviside step function.
The constants of the neuron and synapse models are chosen following prior work on similar

SNN architectures [10,12]. Their values, different for different layers of the network, are in Table 2.
There, the values of the postsynaptic current constants 𝐸rev_exc/inh, σsyn_exc/inh, and τsyn_exc/inh
depend also on whether their synapse 𝑖 is excitatory or inhibitory, and are denoted with subscripts
syn_exc or syn_inh respectively.

Fig. 2. An example of the Leaky Integrate-and-Fire neuron dynamics
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Table 2. Neuron model constants for neurons of excitatory and inhibitory layers

Parameter Exc. neurons Inh. neurons

Refractory period 𝑡ref , ms 4 3
Membrane leakage τm, ms 130 30
Membrane capacitance 𝐶m, pF 100 10
Synaptic conductance increment 𝑞syn, S 1 1
Conductance decay constant for exc. synapses τsyn_exc, ms 1 1
Conductance decay constant for inh. synapses τsyn_inh, ms 2 2
Dynamic threshold resting value Θrest, mV −72 −40
Dynamic threshold increment Θ+, mV 0.05 0
Membrane potential resting value 𝑉rest, mV −65 −45
Initial threshold 𝑉th(𝑡 = 0), mV −52 −40
Reversal potential for excitatory synapses 𝐸rev_exc, mV 0 0
Reversal potential for inhibitory synapses 𝐸rev_exc, mV −160 −160

2.2. Connections between neurons. Synaptic connections in SNNs ensure the transfer
of information between neurons via spikes. Connections between neurons can be with static
or dynamic weights. The weight of the connection, multiplied by the spike passing through
it, determines the contribution of the spike to the change in the membrane potential of the
postsynaptic neuron.

Synapses with constant weights do not change their value when simulating an SNN.
Dynamic weights change according to the law of plasticity. Spike Timing Dependent Plasticity
(STDP) [19] is used as a plasticity model in this paper. In this approach, the weight of the
synapse is adjusted depending on the relative arrival time of the pre- and post- synaptic spikes
within a short time interval (tens of milliseconds). If the presynaptic neuron emits a spike just
before the postsynaptic neuron sends its own, then the weight of the connection will increase.
In the opposite case, if the presynaptic neuron emitted a spike already after the postsynaptic
neuron, then the weight of this synapse will decrease. Thus, the change in weight is described
by the following formulas: [19] according to Eq. (7) each time an input spike arrives at 𝑡pre or a
postsynaptic spike occurs at 𝑡post:

∆𝑤 =

⎧⎪⎨⎪⎩
−𝐴− · exp

(︁
𝑡post−𝑡pre
τ−

)︁
if 𝑡post > 𝑡pre;

𝐴+ · exp
(︁
− 𝑡pre−𝑡post

τ+

)︁
if 𝑡post < 𝑡pre.

(7)

If 𝑡post = 𝑡pre, such pair of spikes is by convention excluded from consideration and does not
cause any weight change.

2.3. SNN architecture. The SNN considered in this study (see Fig. 3) is a modification
of an SNN [10] consisting of three layers, input, excitatory and inhibitory. The input layer consists
of𝐾 ·𝑀 spike emitters, one for each component of the preprocessed input vector, that emit spikes
with the mean rate depending on the values of the corresponding input vector components, as
described in Section “Encoding into spike sequences”. Spikes emitted by the input layer arrive at
synapses that connect the input layer to the excitatory and inhibitory layers. These layers contain
The excitatory layer processes incoming spike sequences from the input layer. The connections
from the input spike emitters to the excitatory neurons (the topology of which is described in
more detail in Section “Sparse connectivity”) are excitatory, and have their weights changed by
Spike-Timing-Dependent Plasticity (STDP). The inhibitory layer is used to create competition
between neurons in the excitatory layer. For each excitatory neuron, there exists one associated
inhibitory neuron, which receives spikes from it via an excitatory synapse with a fixed weight
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Fig. 3. Three-layer SNN architecture

𝑤exc−inh > 0 (marked with a black arrow in Fig. 3). This inhibitory neuron is connected to all
other neurons of the excitatory layer, except the one it gets spikes from, by static inhibitory
connections with a fixed weight 𝑤inh−exc < 0 (in Fig. 3 indicated by the area between the
inhibitory and excitatory layers). Additionally, for greater activity of neurons in the inhibitory
layer, static connections are introduced from the input layer with weights 𝑤input−inh > 0.

2.4. Sparse connectivity. In the spiking neural network used, the layers of excitatory
and inhibitory neurons are two-dimensional square areas, located mirror-symmetrically relative
to each other. Neurons in layers can be located inside a square layer either randomly (irregular
grid) or structured at the nodes of a regular square grid. The formation of sparse connections
between the layers of excitatory and inhibitory neurons occurs as follows:

1. The presynaptic neuron (from which connections will begin) is projected onto the square
area of the postsynaptic neurons layer (with which the connection is established).

2. The projection of the presynaptic neuron will be the center of a circle of a certain radius
on the postsynaptic layer. Only those neurons of the postsynaptic layer that fell into the
region of the circle can, with some probability, establish a connection with the presynaptic
neuron.

This process is shown in Figure 4 and is carried out for all neurons of the presynaptic layer.

Fig. 4. An example of the sparse connectivity method
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Thus, the sparse connectivity method is characterized by the following parameters:

� probability 𝑃 of the formation of a connection between neurons of different layers falling
into the specified areas;

� the radius 𝑅 of the area for connections;
� the regularity or irregularity of the network of neurons in the layer to which the connection

is established.

In this work, this method is used to organize connections between the following layers of
neurons:

� From the layer of excitatory neurons to the layer of inhibitory ones. For synapses with
static positive weights (𝑊𝑒𝑥𝑐_𝑖𝑛ℎ > 0), the following configuration parameters are selected:
connection formation probability (𝑃𝑒𝑥𝑐_𝑖𝑛ℎ), connection region radius (𝑅𝑒𝑥𝑐_𝑖𝑛ℎ) and the
grid regularity of the layer of inhibitory neurons.

� From the layer of inhibitory neurons to excitatory ones. For synapses with static negative
weights (𝑊𝑖𝑛ℎ_𝑒𝑥𝑐 < 0), the following configuration parameters are selected: connection
formation probability (𝑃𝑖𝑛ℎ_𝑒𝑥𝑐), connection region radius (𝑅𝑖𝑛ℎ_𝑒𝑥𝑐) and regularity of the
excitatory neurons layer grid.

The size of the 2D areas for layers of excitatory and inhibitory neurons was initially set to
select the 𝑅 coefficient in the conducted experiments (1 mm× 1 mm). The size can be set to any
size; what is important is the ratio of size and radius, which characterizes the sparse connectivity.

For the input layer, consisting of spike emitters, a clear position in space is not specified
since when establishing connections from emittors, only the probability of its formation is used,
and the projection of the neuron on the postsynaptic layer is not built. In this case, 𝑃𝑔𝑒𝑛_𝑖𝑛ℎ and
𝑃𝑔𝑒𝑛_𝑒𝑥𝑐 are adjustable hyperparameters, and values found for them will be presented below,
in Table 1.

2.5. SNN learning. The process of adjusting the weights during training in the layer
with STDP (from input to excitatory neurons) is performed using Algorithm.

Algorithm. SNN learning process

Input: training data matrix 𝑋𝑡𝑟𝑎𝑖𝑛 of preprocessed input vectors x𝑖 of each audio in dataset,
neuron parameters, plasticity parameters, synapse parameters, initial weight distribution
Optimized parameters: 𝑁𝑒𝑝𝑜𝑐ℎ, ν𝑚𝑎𝑥, 𝑃𝑒𝑥𝑐_𝑖𝑛ℎ, 𝑃𝑖𝑛ℎ_𝑒𝑥𝑐, 𝑃𝑔𝑒𝑛_𝑒𝑥𝑐, 𝑃𝑔𝑒𝑛_𝑖𝑛ℎ, 𝑅𝑒𝑥𝑐_𝑖𝑛ℎ,
𝑅𝑖𝑛ℎ_𝑒𝑥𝑐

Constant network parameters: Table 3
Output data: SNN model, vector of neuron activity frequencies in the excitatory layer for
each example of the training set v𝑖.
1: Neural network initialization: neurons, synapses and initial weights.
2: for k in 𝑁𝑒𝑝𝑜𝑐ℎ do

3: for each x𝑖 in 𝑋𝑡𝑟𝑎𝑖𝑛 do

4: for each 𝑘𝑖_𝑗 in x𝑖 do

5: Generating spikes sequences x𝑠𝑒𝑞
𝑖_𝑗 with length 𝑡𝑒 and frequency ν𝑖_𝑗 .

6: end for

7: Simulating SNN during 𝑡𝑒 time steps using spikes sequences array x𝑠𝑒𝑞
𝑖 .

8: Simulating SNN without inpus signal during 𝑡𝑝 time steps for membrane potential resting
to initial value.

9: end for

10: end for

11: Stop changing weights.
12: Collecting and saving frequencies vector of excitatory neuron layer activities v𝑖 during presenting

samples of input data.
13: Return SNN model, vector of neuronal activities frequencies v𝑖.
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Table 3. Network and synapse parameters

Parameter Value Description

𝑤exc−inh 13 Static synaptic weights from exc to inh neurons

𝑤inh−exc −12 Static synaptic weights from inh to exc neurons

𝑡𝑝 50 ms Intervector pause

𝑡𝑒 350 ms Spike train length

𝑁 400 Number of neurons in every layer

𝐴− 0.55 STDP weight depression amplitude

𝐴+ 1.0 STDP weight potentiation amplitude

τ− 20 ms STDP depression time window constant

τ+ 20 ms STDP depression time window constant

After obtaining the trained SNN, the general process of classifying an audio recording
consists of the following steps:

1) preprocessing of audio test samples using MFCC and GRF methods,
2) conversion of the received values into spike sequences,
3) simulation of the SNN and calculation of the excitatory neuron activity frequency vectors,
4) defining audio sample class from frequency vector.

3. Experiments

The experiments were carried out in two stages. At the first stage, the feasibility of using
sparse connectivity in different layers of the chosen SNN architecture was investigated.

To do this, sparse connectivity was applied in turn to the links between different layers.
Based on the results of the experiments, layers were selected the use of sparse connectivity in
which led to the best results. At the second stage of the experiments, we studied the application
of sparse connectivity to several layers of the network at once. All experiments were carried out
in the mode with automatic selection of hyperparameters based on the open-source HyperOpt
library [20].

Measuring accuracy was performed using the micro-averaged F1-score metric which is

calculated from the precision and recall of predicting that class (Eq. 8), where the precision is,

for each class 𝐿, the number True Positive (TP𝐿) of samples from the class 𝐿 predicted correctly

as belonging to 𝐿, divided by the total number of samples predicted as belonging to 𝐿, including

the False Positive (FP𝐿) samples that do not actually belong to 𝐿 but were misattributed to

it by the network. Recall is the number of true positive samples divided by the number of all

samples belonging to 𝐿, including the False Negative (FP𝐿) samples that belong to 𝐿 but were

not identified as such by the network.

Precision =

∑︀
𝐿 𝑇𝑃𝐿∑︀

𝐿 𝑇𝑃𝐿 +
∑︀

𝐿 𝐹𝑃𝐿
,

Recall =

∑︀
𝐿 𝑇𝑃𝐿∑︀

𝐿 𝑇𝑃𝐿 +
∑︀

𝐿 𝐹𝑁𝐿
,

F1 =
2 · Precision ·Recall
Precision+Recall

.

(8)

The results of the first stage of experiments are presented in the Table 1.
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Baseline for comparison is the accuracy of the original SNN architecture, which was 0.93

F1 with the network parameters specified in the Table 3 and the maximum spike frequency

νmax = 550 Hz.

As can be seen from the Table 1, when replacing the initial connections with a fixed number

(10% of all-to-all connections) between the input and inhibitory layers with sparse ones there

is a significant decrease in the accuracy of audio classification (the best result on HyperOpt is

0.62 F1 at 𝑃𝑔𝑒𝑛_𝑖𝑛ℎ = 0.2. In this regard, in the experiments at the second stage, only the initial

connection was used between the input and inhibitory layers, which is also discharged with the

probability of connection formation 𝑃𝑔𝑒𝑛_𝑖𝑛ℎ = 0.1. It is also worth noting that the regularity or

irregularity of the network of excitatory and inhibitory neurons does not significantly affect the

classification accuracy, so the variation of this parameter can be neglected.

Thus, after the first stage of the study, the following intermediate conclusions were made:

� The sparse connectivity method works successfully in all connectivity areas of neuron layers,

except for the area of connections between the input and inhibitory layers.

� The regularity or irregularity of the network of neurons in the layer has no significant

differences.

The results of the second stage are presented in the Table 4. The best classification accuracy

was achieved by architectures 3 and 4, in which sparse connectivity was simultaneously used to

connect the following layers: a) input and excitatory; b) inhibitory and excitatory. In both areas,

in the original architecture, the layers are connected in an all-to-all manner. Thus, the use of the

sparse connectivity method can significantly reduce the number of connections between layers

without sacrificing accuracy. Also, according to the results of the study at both stages, it is

possible to obtain the overall average value of the probability of the formation of a connection

between the input and excitatory layers at the level 𝑃𝑔𝑒𝑛_𝑒𝑥𝑐 = 0.4.

Table 4. Results of the second stage of the research

Type of connection between layers of neurons

From excitatory

to inhibitory

From inhibitory

to excitatory

From input

to excitatory

From input

to inhibitory
νmax, Hz

Fraction

of

remaining

connections

F1

Sparse
(𝑃𝑒𝑥𝑐_𝑖𝑛ℎ = 0.9;
𝑅𝑒𝑥𝑐_𝑖𝑛ℎ = 0.8)

Sparse
(𝑃𝑖𝑛ℎ_𝑒𝑥𝑐 = 0.2;
𝑅𝑖𝑛ℎ_𝑒𝑥𝑐 = 0.8)

All-to-all
Fixed

Amount(10%)
950 0.95 0.94

Sparse
(𝑃𝑒𝑥𝑐_𝑖𝑛ℎ = 0.9;
𝑅𝑒𝑥𝑐_𝑖𝑛ℎ = 0.8)

All-to-all*
Probabilistic

(𝑃𝑔𝑒𝑛_𝑒𝑥𝑐 = 0.4)
Fixed

Amount(10%)
950 128.21 0.94

Сounter-
Partnership

Sparse
(𝑃𝑖𝑛ℎ_𝑒𝑥𝑐 = 0.4;
𝑅𝑖𝑛ℎ_𝑒𝑥𝑐 = 0.9)

Probabilistic
(𝑃𝑔𝑒𝑛_𝑒𝑥𝑐 = 0.4)

Fixed
Amount(10%)

950 40.31 0.96

Sparse
(𝑃𝑒𝑥𝑐_𝑖𝑛ℎ = 0.85;
𝑅𝑒𝑥𝑐_𝑖𝑛ℎ = 0.3)

Sparse
(𝑃𝑖𝑛ℎ_𝑒𝑥𝑐 = 0.25;
𝑅𝑖𝑛ℎ_𝑒𝑥𝑐 = 0.95)

Probabilistic
(𝑃𝑔𝑒𝑛_𝑒𝑥𝑐 = 0.45)

Fixed
Amount(10%)

550 45.09 0.95

* - excluding connections between counter-partners

4. Analysis of results

According to the results of the study, carried out in two stages, it was found that the

sparse connectivity method can be successfully applied to the connections between layers, initially

organized according to the all-to-all principle, significantly reducing the number of connections in
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the SNN. The best result in reducing the number of connections was achieved on an architecture

in which sparse connectivity was implemented between a) input and excitatory, b) inhibitory

and excitatory layers, and amounted to 40.3% of the original number (reduction from 252400

Table 5. Comparison of various
machine learning methods on the

FSDD dataset using MFCC

Machine learning method F1

SNN with all-to-all connectivity 0.93

SNN with sparse connectivity 0.90

Random Forest 0.96

𝑘-Nearest Neighbors 0.97

Support Vector Machine 0.95

Multilayer Perceptron 0.90

connections to 101746) without losing accuracy

on the audio classification problem compared

to the original SNN architecture. Table 5

presents the results of comparing the accuracy

of various machine learning methods on the

problem of classifying audio recordings from

the FSDD set converted to 30 MFCC. It is

shown that the accuracy (by the F1-score

metric according to Eq. (8)) of classification

of audio data by means of SNN is comparable

to the results of classification by classical

methods of machine learning.

Conclusion

In the present work, we evaluated the efficiency of using the sparse connectivity method

in a three-layer spiking neural network consisting of input, excitatory, and inhibitory layers for

a little-studied problem of classifying an audio recording with SNN based on local plasticity.

The connections between layers of neurons are established within a limited area of neurons using

a given probability. Testing this method on an audio classification problem showed that the

number of connections in an SNN can be reduced by 60%. In this case, the accuracy of solving the

classification problem is also achieved at the level of conventional machine learning classification

methods. Thus, the prospects for using this method to reduce the computational complexity of

spiking neural networks can be explored in relation to various classification problems.
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