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ANALYSING AND CONTROLLING CHAOS 
IN SPIN-WAVE INSTABILITIES 

H. Benner, R. Henn, Е. Rodelsperger, С. Wiese 

Ferromagnetic samples excited by strong microwave fields show а variety об non- 
lincar phenomena. We report оп magnetic resonance experiments in ylirium iron garnet 
(YIG) probing spin-wave instabilities above the first-order Subl threshold. A variety оЁ dif- 
ferent scenarjos, e.g. period doubling routes, quasiperiodicity. different types of intermitiency 
together with a very complex muliistability have been found and analysed. In е case of 
nonresonant e¢xcitation of the uniform mode the observed chaotic autooscillations correspond 

10 а low-dimensional attractor (D; = 2.1) with а characteristic time scale оё |\5, whereas for 

resonant excitation very high-dimensional atiractors (Dy=7... >15) are obtained. In order 10 

stabilise unstable periodic orbits 1 such а fast system we developed ап analog feedback de- 
vice, which is related 10 the controlling scheme of Ott, Grebogi апа Yorke. We succeeded in 
suppressing the low-dimensional chaos by applying а very small time-dependent feedback 
signal of about 10- 3 the amplitude оё the input microwave field. 

1. Introduction 

Magnetic insulators are very inferesting objects for studying nonlinear dynamics, 
since even their simplest equation of motion 

М(г‚і) = - yM(r 1) х Hey (г,/) + dissipation - (1a) 

contains intrinsically nonlinear terms. Considering non-fluctuating terms only апа ne- ° 
glecting dissipation for a moment, the time evolution of magnetization is described by the 
torque of an effective field 

Нг (r.1) = В + heosor + АМ(г,) + DVZM(r 1) + V{Vfdi*r’ M)/l - 1}, (1b) 

where A - matrix. 

For the systems of interest Нг is composed оё the external ас апа ас magnetic fields, of 
demagnetizing апа single-site anisotropy fields, оГ ап exchange field, and оё а dipolar 
field, depending themselves оп the magnetization апа giving rise 10 nonlinearities. Usu- 
ally, this equation is discussed only for weak excitation (h<<H.AM gtc.) by linearizir. g И5 
rh. side with respect 10 deviations of M(r.f) from thermal equilibrium M,. However, 
even if confining ourselves to uniform magnetization, the exact solution of (1) shows a 
bistability («foldover effecr») at moderate excitation amplitudes [1]. Moreover, the addi- 
tional effect оЁ the non-focal exchange апа dipolar fields may result in more complicated 
threshold phenomena indicating self-induced formation of spatio-temporal structures. 
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Part of these phenomena are well known for several decades from high-power fer- 
romagetic resonance (FMR) experiments [2-5], апа have theoretically been explained by 
Suhl [6] to result from the parametric excitation of spin waves through transverse pump- 
ing of the uniform mode. Suhl considered two cases, where the excitation of spin waves 
should be most efficient: The first-order Suhl instability results from the excitation о$ 
spin waves а! half the pumping frequency, o, =w/2, the second-order instability from 
spm waves аг о, =@. The specific properties оё these instabilities have extensively been 
studied since a long time and have been reviewed in several articles [1,7-9]. 

During the last decade the progress of nonlinear dynamics has stimulated the re- 
examination оё high-power FMR experiments under the more general aspect of de- 
terministic chaos. Experiments, mostly performed on the low-dissipative prototype of a 
ferromagnet, yttrium iron вате? (YIG), have exhibited а variety of nonlinear phenomena, 
e.g. low-frequency auto-oscillations, period doublings, quasiperiodicity, mode-locking, 
intermittency, and chaos [9-18]. The experiments were mainly discussed т terms оЁ. 
models considering only а minimum number (2 ог 3) оё coupled spin-wave modes [17- 
21]. More realistic descriptions have taken into account the full degenerate spin-wave 
manifold [22-24] or are based on the direct integration of the equation of motion for 
M(r,r) [25]. 

Here, in ап exemplary way, we focus оп recent experimental results obtained оп 
YIG spheres at the first-order Suhl instability (Sect.2). Since the complexity of this sys- 
tem can be varied within а wide range by the proper choice оё external parameters (e.g. 
pumping frequency and input power, magnetic field, orientation, and temperature), it 
could be used а5 а (nearly) ideal model system for probing general concepts оё nonlinear 
dynamics which generally work quite well in computer systems ог in tailored mechanical 
or electrical devices, but often fail in real systems, especially in solid state physics. Sev- 
eral new and interesting phenomena have been observed: the оссштепсе оЁ auto- 
oscillations starting directly at the Suhl threshold, a very complex multistability ac- 
companied by sequences of bifurcations, different types of intermittency, including a new 
type of chaos-chaos intermittency апа crises. We try 10 classify the observed pre-chaotic 
behaviour, report оп techniques how 10 characterize е chaotic state, апа present anal- 
yses of our data (Sect.3). A theoretical interpretation of these phenomena, taking into ac- 
count е specific properties of long-wave modes, has been developed by us 1 а series ОЁ 
papers [26-29], but 15 beyond the scope of this article. 

Finally, we consider the topical problem concerning the possibility of chaos sup- 
pression by stabilizing inherent unstable periodic orbits with the help о very weak ex- 
ternal perturbations. By means оё ап analogy feedback device related 10 the controlling 
scheme оЁ ОН, Grebogi, апа Yorke (OGY)[30] уе succeeded in suppressing the observed 
chaotic signal by a small time-dependent perturbation of the applied microwave power 

(Sect.4). To our knowlege, this experiment represents the fastest system controlled 50 far 

by a feedback system which stabilizes the inherent periodic dynamics of a strange at- 

tractor. 

2. Experiments in YIG Spheres 

2.1. Subsidiary abserption and coincidence regime. The first-order Subl in- 

stability is characterized by the decay of the externally driven uniform mode шо two spin 

waves оЁ half the pumping frequency @, =@,/2 and opposite wave vectors (К, —.1‹) ас- 

cording to the conservation of energy and quasi-momentum. This instability can either be 

observed оЁЁ resonance (i.e. with the pumping frequency @, Гаг away from the usual fer- 

romagnetic resonance @)) а5 а subsidiary absorption, or directly on resonance (mf,zcoo) 

within the coincidence regime. Profiting from the 1‘esonance.amplificatmn оё the uniform 

mode, experiments in the coincidence require much less microwave power to reach the 

threshold (for pure YIG three orders оё magnitude less). ы ‘ 

For spherical samples the eigenfrequency оЁ the uniform mode @), which describes 

the uniform precession of the spins around the external magnetic field Hllz", is given by



0= Н + H,). (1) 
Н, describes е influence оё weak cubic crystal field (cf. Tablel) which depends оп 
sample orientation and can generally be neglected. The uniform mode is driven by a 
transverse homogeneous microwave field /icos(w, )х^ at а pumping frequency @,. The 
dispersion relation @, ОЁ plane spin waves with а wave vector К апа а propagation angle 

6; = (К, H) reads [1] 

о2 =v2(H; + DK2)(H; + ОВ + АпМ, sin?9,), (2) 

where y=gl/f denotes the gyromagnetic ratio, D the stiffness constant and М; the sat- 

uration magnetization. The internal magnetic field Н, = Н + Н, - 4nMs/3 includes the de- 

magnetizing field оЁ the sphere. The dependence оп @, reflects the anisotropy оЁ the di- 
polar interaction and gives rise to a band of spin waves, the lower edge corresponding to 
spin waves which propagate parallel to H and the upper edge to those which propagate in 
perpendicular direction. 

The first-order instability only occurs if w,/2 exceeds the bottom of the spin-wave 

band, which is the case for 

@, 2 Н, (3) 

Normally this condition can only be fulfilled for off-resonance excitation оЁ the uniform 
mode. In this case subsidiary absorption shows up in a field scan as a broad structure be- 
low the main ЕМЕ line, which was the standard situation ш previous experiments. Only 

1а low fields it is possible to observe the instability оп resonance (®, =20,;=0)). The cor- 
responding field range оЁ this so-called coincidence regine is limited by [6] 

УзлуМ ¢ < W, < ЗУзт/М . (4) 

The upper limit follows from (1) апа (3), the lower limit from the vanishing оё the FMR 
signal due 10 the formation of magnetic domains for H;<0. For pure YIG samples аг room 
temperature this regime occurs for pumping frequencies w,/2r between 1.7 апа 3.3 GHz, 
corresponding to external magnetic fields between about 700 and 1300 Oe for Hil (100). 

In order to determine the critical modes which are the first to become unstable аг 
the threshold one has to minimize the critical amplitude 5y of the uniform mode for ex- 

citing а pair оЁ eigenmodes at @, = @,/2. In the case оЁ plane spin waves (К, -k) this 
critiical amplitude is given by [1] 

| bO,cri[_l = T]/\/l pkk’|7 | pkk" = 47tyMSsin6k со50, ((Dk + ’Y[’[, + 'YD/CZ) 6k,-k/0~)k 5 (5) 

where п, denotes the spin-wave damping апа py- е dipolar coupling coefficient. As- 

suming the spin-wave damping 1, 10 be constant, @е minimum threshold is obtained for 

@, =45° а5 long ав ®,/2 meets the 45°-branch оЁ the spin-wave band. Then уе have 
k>>d-1 (inverse sample diameter), and the plane-wave approximation can be applied. If 
w,/2 is below the 45°-branch, one expects е excitation оё longwave modes with £—0 
(Fig.1), which are not adequately described by the plane-wave approximation. Hence, 
the analysis of our data has to be based on a generalized type of eigenmodes including the 
boundary conditions of the sample as proposed by Wiese [28]. In practice, this means that 
(5) has to be adapted to this more appropriate type of eigenmodes. A detailed analysis of 
the critical modes, which is based on the experimental observation of a distinct fine 
structure occurring at the threshold, has been presented recently [28,29]. 
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Fig. 1. Parametric excitation оё non-uniform modes at the first-order Suhl instability ( @, = сор/2). 

а) Excitation оЁ spin waves (k, = 104 - 105 cm-1 апа @; = 45°) in low magnetic field. b) Excitation of 

long-wavelength modes (k,— 0 апа В, <45°) in higher magnetic field 

‚ Table. Properties оЁ spherical YIG samples 

T=300K T=42K 

saluration magnetization 4яМ $ 1780 Ое 2440 Ое 

gyromagnetic ratio у/2л 2.798 MHzOe"1 2.798 МНгОе 1 
stiffness constant D 4.48х10-9 Oe cm? 4.24х10° 9 Ое ст? 
anisotropy field H,, Hll<100> + 90 Ое + 260 Ое 

Hll<111> - 50 Ое -140 Ое 

coincidence regime ©p/21 1.66 - 3.32 GHz 2.28 - 4.56 GHz 

2.2. Experimental Set-up. A prototype ferromagnet used most often for the in- 
vestigation of nonlinear spin dynamics is yttrium iron garnet Y;FesOy, [31]. Its important 
advantages are а rather strong magnetization even аё room temperature and extremely 

narrow resonance lines оё both the uniform mode (AH,= 2 ny/y <1 Ое) апа оё the spin 

waves (AH, = 2n/y= 0.3 Oe) resulting ш а very low threshold for spin-wave instabilities. 

Note (аг the threshold amplitude т е coincidence regime only amounts 10 Ла = 

АН,АНИВлМ < 1mOe, corresponding 10 ап irradiated power оё some 50 pW. 
In view of such small thresholds, «high power» FMR experiments, т principle, can 

be performed with а conventional ESR spectrometer. We studied the subsidiary absorp- 
tion, for example, at 9.3 GHz by means of a bimodal transmission type cavity of quality 
factor 3000. For our experiments in the coincidence regime we preferred а broad-band 
(1 - 4 GHz) transmission-type set-up (Fig.2). For the transverse excitation and de- 
tection of the uniform mode, instead of a microwave cavity, we used two microcoils with 
perpendicular orientation in order to minimize mutual disturbations by crosstalk. The 
squared amplitude оё е driving field Л а{ sample position was proportional 10 the input 
power P;, supplied by the microwave source. The signal transmitted to the pick-up coil 
was amplified and detected by а diode. Within the quadratic regime of the diode, the 
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Fig. 2. Experimental set-up. The driving coil (1 - 
4 GHz) is directly fed by a very stable microwave 
generator. The signal transmitted to the pick-up coil 
is amplified, rectificd, and recorded by a digital os- 
cilloscope 
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Fig. 3. Shape of the FMR line below and above the 
Suh! threshold (denoted by «О dB»). Frequency 

scale: + 10 MHz-2w. The asymmetric breaks show 

hysteresis effects and time-dependent oscillations 

rectified signal was proportional to the 
squared amplitude 152 оё the uniform 
mode, i.e. 10 the transmitted power P,. By 
means of a digital oscilloscope and an in- 
tegrating voltmeter we recorded both the 
time dependence оЁ P,(f) and its average 
value P, - with respect to the input power P;,. 

The presented data were obtained at 
room temperature on a highly polished 
sphere of pure YIG with 0.71 mm diameter. 
We generally used the orientations 
HII(100),HII(111), ог the «30° orientation», 
where the crystal 15 rotated by 31.7° from 

the (100) to the (111) direction. For the 
latter orientation М, 18 exactly zero. 

2.3. Observed Phenomena. While in 
conventional off-resonance FMR experi- 

ments (w,=2w#w;) the first-order Suhl 
threshold occurs as a broad «subsidiary» 
absorption structure in lower field [2], the 
threshold within the coincidence regime 

(0,=2w=w,) shows пр even more pro- 

nounced ав а sharp апа asymmeitric break at 
the top of the line. This break becomes 
broader with increasing input power and 
shows «noisy» oscillations (Fig.3). The co- 
incidence condition means that @, and H 
are locked 1o resonance and only varied si- 
multaneously. 

The coincidence regime of the in- 
vestigated YIG sphere was found 10 range 
from 1.8 to 3.4 GHz (680 - 1280 Oe for 
Н! (100)). Below 680 Ое the ЕМЕ signal 
vanishes due to the occurrence of magnetic 
domains. Above 1280 Ое а drastic increase . 
of the threshold takes place, indicating the 
changeover from the first- 10 the second- 
order Suhl instability. The intermediate 
field range may be divided into three re- 
gimes (Fig.4) differing by their characteis- 
tic behaviours: 

(1) Regime A (680-760 Oe): Up to 
the Suhl threshold P,- increases linearly 

with P;,, indicating that only е uniform 
mode 18 excited. Above the threshold Рг 

remains constant for a range of nearly 
10 dB. No oscillations are observed, until 
finally а sudden jump of P,- occurs, ac- 
companied by a transition from constant to 
chaotic time dependence оЁ P,(7) and by а 
weak hysteresis. 

(ii) Regime В (760-1030 Ое) is 
characterized by а variety оЁ sudden jumps оЁ P,- starting directly above threshold, ac- 
companied by the occurrence of a complicated multistability. If Р, is again decreased af- 
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Fig. 4. Average transmitted ЕМЕ signal Р,„г vs. input power P;, оп variation of the magnetic field. Re- 

gime В 15 characterized by а variety оё jumps апа multistable behaviour which is connected with rather 
complex time dependences. A and С @ег from B by their constant and time independent behaviour 
above threshold 

ter а jump, the system remains оп the new level. Variation оЁ Р,„ yields а number оЁ new 
levels, i.e. for the same input power there exist several stable states, sometimes пр 10 ten. 
Simultaneously, the system shows very complex types of time dependence. We observed 
constant behaviour, periodic and quasiperiodic oscillations, intermittency and chaos. 
Generally, the oscillation amplitudes are less than 10% оЁ P,-, апа frequencies occur be- 
tween 10 апа 600 kHz, most often between 30 апа 200 kHz, apart from higher harmon- 
ics. The sudden jumps оё P,- are always accompanied by ап abrupt change оё the ob- 
served time dependénce. As long а5 P,- remains оп the same level, P, () shows only 
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continuous variations of the oscillations or bifurcations without any hysteresis (e.g. tran- 
sitions from constant to periodic, from periodic to quasiperiodic, locking phenomena, pe- 
riod doublings). About 5 - 10 dB above threshold the system becomes chaotic, showing 
various kinds оё irregularity а{ higher input power, e.g. multiple chaotic attractors, high- 
dimensional intermittency and crises. Moreover, the corresponding chaotic levels some- 
times appear already at lower power within the regime of regular behaviour. The experi- 
ment turns out (0 be very sensitive (0 the control parameters @ and H; а detuning of Н by 

only 0.2 Oe was already sufficient to change the level structure. Nevertheless, the levels 
could be reproduced even after several weeks. 

(ii1) Regime С (1030-1280 Oe): Qualitatively, the behaviour resembles very much 
(аг of regime А. P,- remains constant above the threshold, and oscillations occur only аг 
higher excitation. The transition to chaos also occurs at higher input power (20 - 30 dB 
above the Suhl threshold). 

For other sample orientations (H parallel to the (110) ог (111) directions) we 
found very similar behaviour, but the three regimes were shifted in field (by - 100 Oe 
and - 140 Oe, respectively). 

We interpret these different regimes 10 be related 10 the different types оГ par- 
ametrically excited modes. It 15 obvious 10 identify A with the regime оЁ spin waves with 
k=104-105cm-1 and 6,= 45°, whereas in В and С Suhl’s theory predicts the excitation 
оЁ long-wavelenght modes (k—0). Apparently, the observed discontinuities ш В are re- 
lated to the discreteness of these modes. The different behaviour of C, however, cannot 
1[96 understood in terms of the conventional theory, but requires a more detailed discussion 
26,29]. 

]2.4. Scenarios. Experimentally, one cannot exclude a very fine-graduated locking 
10 rational frequency ratios similar to а devil’s staircase, but this would be rather unlikely. 

Under the aspect of nonlinear dynamics the most interesting phenomena were ob- 
served а{ coincidence т regime В. To get а тоге systematic impression of the observed 
oscillations, а large number оё time series оЁ P,(r) - пр 10 16000 data points each - was 
recorded оп variation of Р, ог some other control parameter. The corresponding power 
spectra were obtained by Fourier transformation, and their strongest spectral components 
were plotted versus the parameter under variation. This way, one obtains а number of 
«maps» visualizing the dependence of the oscillation frequencies оп various control pa- 
rameters. Such maps аге useful for classifying the observed routes 10 chaos. 

As а general result, we found that а global correspondence 10 one оЁ the well- 
known scenarios оЁ Feigenbaum, Ruelle-Takens-Newhouse от Pomeau-Manneville |32] 
does not оссиг, but a varicty of parts from аП оЁ them. This obviously corresponds 10 the 
fact that the nonlinearities of our real system are more complicated and based on a larger 
number оё internal degrees оЁ freedom Шап represented by the simple maps where these 
standard routes have been derived from. The physical meaning of these degrees of free- 
dom is probably that оГ specific eigenmodes ог а collective motion оЁ several of them. 
Thus, а jump from one level 10 the other might correspond 10 а sudden change оё the 
number of degrees оГ Пеейот induced by the coupling ог decoupling оЁ сепат modes. 

Often quasiperiodicity was observed with ир 10 three fundamental frequencies. A 
typical example, suggesting ап interpretation in terms of the Ruelle-Takens Scenario, is 
shown т Fig.5. Уегу close above threshold (denoted by «О dB») the system starts os- 
cillating аг about 130 kHz, that means, а first Hopf bifurcation changes the fixed point 
mnto а ИпИ cycle. At 2.5 dB а second fundamental frequency оЁ 40 kHz occurs - cor- 
responding to a second Hopf bifurcation - together with several sum and difference fre- 
quencies of harmonics. Note Фаг no jump 18 observed in P,-. With increasing microwave 
power both oscillation frequencies seem 10 vary independently!, indicating that the at- 
tractor 18 а 2-rorus. This quasiperiodic oscillation remains stable for about 1dB. Tlen, 
according 10 Ruelle and Takens, one would expect а third Hopf bifurcation and the im- 
mediate break оЁ the arising unstable 3-70rus 10 chaos. The different behaviour observed 

I Experimentally. one cannot exclude а very fine-graduated locking 10 rational frequency ratios sim- 

Паг ю а devil's staircase. bul this would be rather unlikely. 
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Fig. 5. Power spectra of auto-oscillations in Regime В with respect ю P;, (input power 15 scaled to the 

Suhl threshold). a) Three-dimensional «landscape» of spectral components. b) «Map» of oscillation fre- 

quencies; the corresponding level оЁ P-,,. 18 presented in the r.h.s. diagram. The system shows quas- 

iperiodic behaviour and mode-locking 

in our experiment can be interpreted by the spin system switching over to a coexisting 
stable attractor. Nevertheless, we also found experimental examples where a third funda- 
mental frequency occurred for ап extended parameter range. There аге other levels where 
the different frequencies tend to lock. At 5 dB, for instance, instead of quasiperiodicity a 
period-5 (P5) oscillation takes place. Low-period oscillations, such ав P2, P3, P4 ог P6 
were observed rather often, but sometimes also higher periods of 11 or even 25. The 
changeover 10 chaos 15 generally accompanied by а jump оё P,-. Since ш most cases this 
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changeover does not start from a 2-torus, it cannot be related to the third bifurcation of a 
Ruelle-Takens scenario. We rather suppose thdt the chaotic behaviour results from а 
sudden increase of the number of coupled modes, which is related to some global sym- 
metry-breaking bifurcation [33], and does not follow one оё the standard routes. 

A period-doubling route, as reported previously from both transverse and parallel 
pumping experiments [10,12], was observed пр 10 period 8 but occurred rather seldom. 
More often, only а single period doubling occurred, remaining stable for ап extended 
range оё P;, and then changing directly over 10 chaos. Though the Feigenbaum route 15 
known to be very sensitive to noise which might suppress the subsequent period dou- 
blings, we rather interpret the observed behaviour to present an independent route. We 
also observed а sequence оё period triplings (not to confuse with а period-3 window!) ир 
{о period 9. 

By intermittency we mean the occurrence оЁ а signal which randomly alternates 
between two (or more) different types of time behaviour, e.g. laminar phases and ir- 
regular bursts (Fig.6). Three universal types оё intermittency (I - IIT) have been derived 
by Pomeau and Manneville [34] corresponding to the basically different ways how а 
fixed point of a 1D map can lose its stability. Often these types can already be dis- 
tinguished from their characteristic time behaviour, but also {rom а reconstruction оё the 
generating тар апа {rom the distribution and scaling behaviour оё the laminar lengths 
[32]. Intermittency, 50 far, has been found rather seldom in magnetic systems, and only 
the ‘observation of the Pomeau - Manneville type Ш has been reported in literature [35]. 
Both in the coincidence regime and for subsidiary absorption we observed various kinds 
оё intermittency starting from а fixed point, а limit cycle, а 2-torus, от even alternating 
between different chaotic states (Fig.6e,f). From analyzing the distribution апа scaling 
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behaviour оё е ‘laminar’ lengths, с observed signals could clearly be attributed 10 
cach оЁ the universal types I, П ог Ш ог 10 crises [33,36]. It 18 interesting 10 note that the 
Ротеац - Manneville types are generally observed т parameter regimes where the Sys- 
tem remains low-dimensional (see next section), whereas chaos-chaos intermittency oc- 
curs а{ higher dimension, especially т the coincidence regime. We found that in miost 
cases chaos-chaos intermittency scaled like the Pomeau - Manneville type Щ [36] which 
is not consistent with the common interpretation оё arising from а crisis [37]. Very ге- 
cently this specific behaviour was inferpreted in terms of a global symmetry-breaking bi- 
furcation which seems to be related 10 the excitation of an additional spin-wave mode [33]. 

For the coincidence regime it & impossible, because оЁ the very complex mult- 
1stability, to present а global diagram showing the dependence оЁ these various scenarios 
оп e.g. magnetic field and microwave input power. For subsidiary absorption, we have 
systematically analysed the dynamic behaviour of the parametric excitation signal ob- 
served аг room temperature аг а fixed pumping frequency о 9.26 GHz. Typical scenarios 
and the respective bifurcation lines in a two dimensional control parameter space, 
spanned by the magnetic field Н апа фе applied microwave power Р,„ are represented in 
Fig.7. The lower line shows the dependence of the Suhl threshold (the so-called butterfly 
сигуе) оп H. The broad bumps аг 1.6 апа 1.9 кОе have been attributed to the excitation of 
discrete magnetostatic modes [38]. The steep increase of Ше threshold а! 2.2 КОе cor- 

responds 10 the fact that w,/2 falls below the spin-wave band. The bifurcation line above 
indicates the onset of autooscillations. The local scenarios occuring at higher P;, show 
similarities with the behaviour observed at the coincidence regime: again we have three 
regimes with essentially different behaviours. Especially in B we have areas of period 
doublings, quasiperiodicity, intemmittency, and chaos т very close vicinity, and the ob- 
served behaviour depends very much on the chosen variation of parameters. We observed 
several codimension-2 bifurcations, e.g. at 1650 Oe/11dB where a supercritical Hopf bi- 
furcation meets а subcritical one, giving rise to intermittency оё Pomeau - Manneville 
type П. Intermittency of type Ш was observed а{ 1990 Oe/10 dB characterizing е tran- 
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Al Croen & paviad 2 accillation inta chaos. At higher power we also observed both ho- 
moclinic crises апа пи ltistability, which in subsidiary absorption plays only а minor role. 

3. Characterization of chaos from experimental data 

The chaotic behaviour of a dissipative system can be attributed to е existence of a 
strange айгастог describing И5 asymiptotic long-time behaviour (without transients) т 
phase space. The ргорелу which makes the аигастог strange 15 its sensitive dependence 
on the initial conditions: despite the contraction in phase space volume, lengths need not 
simultaneously shrink ш ай directions, апа points, which are infinitesimally close at the 
beginning, become exponentially separated for sufficiently long times. Specific tech- 
niques have been developed to determine the characieristic properties оЁ а strange at- 
tractor, e.g. its topological structure or the time scales of exponential separation. For de- 
tails see e.g. the textbooks by Schuster [32] or Bergé et al. [39]. 

3.1. Lyapunov exponents, entropies, dimensions. In order 10 quantify specific 
properties of strange attractors - e.g. its topological structure ог the strength оЁ chaos - а 
special notation has been developed and appropriate methods to probe them. 

The distortion of a d-dimensional volume element in phasc space is characterized 

by а set оЁ Lyapunov exponenis М ‚ i=1, . . ,d, describing the evolution оЁ distances бх; 

along the local eigendirections оё distortion а{а given point х(7р): 

6; (1) = ем (- 1)8x;(1p). 
R 

Necessary and sufficient for the occurrence of chaos is the condition that at least one of 
these exponents has to be positive, giving rise to the exponential divergence of neigh- 
bouring trajectories. 

The Ко!товогоу entropy K is the sum of all positive Lyapunov exponents aver- 
aged over the whole attractor [40] and, thus, а measure how fast information оп the 
present state оЁ motion gets lost. И5 reciprocal value gives the time scale where the be- 
haviour of a chaotic system is still predictable. For example, a regular system (no positive 
Lyapunov exponent!), which can be predicted for infinite times, has the entropy К=0. 

Noise, аз а purely stochastic and unpredictable process, is characterized by K—ee. Chaot- 

ic behaviour is somewhere ш between, and, again, К>0 is а necessary and sufficient cri- 
terion for the occurrence of deterministic chaos. 

Another interesting quantitative characterization of chaotic behaviour is given by а 
set оЁ generalized fracial dimensions D, characterizing the topological structure of the 
attractor: 

M(e) 1 
т 10е (2 ря) / loge , (7) 

=0 
Р, = и 

Е—0 
9 

д is ап integer classification index, М(е) is the number оЁ phase space cells оЁ 517е e vi- 
sited by the attractor and p; 18 (he probability (0 visit the /-th cell. The D, are gener- 
alizations of the usual Euclidean dimensions allowing the characterization of self-similar 
geometrical objects. The D, @ег by the weight of е local probabilities which 18 inter- 
esting for inhomogeneous attractors. Dy 18 the well-known Hausdor(f - Besicovich di- 
mension, Dy 18 called the information dimension апа D, the correlation dimension. 

АП strange attractors investigated 50 far show {racial, i.c. noninteger, dimensions, 
50 the fractal property is censidered ав ап additional signature of chaos. The physical im- 
portance of analyzing the dimension is to get some idea of the minimum number of de- 
grees of freedom necessary for modelling the system. 

3.2. Reconstruction оЁ №с phase space. One оГ the basic problems when an- 
alyzing experimental data concerns the reconstruction оГ rhe underlying chaotic atiractor 
from а time series оЁ experimental data representing only а single component U(1). Every 
reconstruction of phase space is based on the implicit assumption that each observable 
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J‘eflects suffic:‘cnfly well the overall behaviour ой the sysiem 1o permit в complote anals— 
sis. Different methods can be used to define the vectors of the reconstructed space: 

(i) The components оё а d-dimensional vector x(f) оЁ the new phase space are 
built up by е signal U(r) successively shifted in time by а certain delay 1: 

x(1) = {U(1), U(t+1), . .., U(t+(d-1)7)}. (8) 

Because оё its simplicity this method of time delay coordinates [41] 15 widely used for the 
analysis of both experimental data апа numerical simulations. 

(ii) Instead о! using delayed coordinates we can also treat U(¢) апа its time de- 
rivatives as independent components of a substitute vector 

х(р = {U(), U, (), . .. UD(r)). (9) 
For data acquisition, generally the second method is more laborious to apply, but it can be 
of advantage, when the derivative signals are obtained by an analog technique. 

The reconstruction does not yield ап attractor identical with that т the original 
phase space, but merely retains general topological properties, which may be sufficient 
for studying its essentials, such as dimensions, exponents or entropies. 

3.3, Analysis оЁ time series data. Following the work оё Grassberger and Pro- 
caccia [42] we confine ourselves 10 estimates оё D, апа K . 
As ап example, we present the analysis оё correlation dimension апа entropy by means о 
the well-known method of Grassberger and Procaccia [42], applied to the chaotic signals 
of our experiment. 

In а first step, we reconstruct the new phase space vectors x=x(z;) оё the attractor 
by means of the time delay method, ав described 10 the preceding section. 

In а second step, from N of such vectors х; е correlation integral? 

cny=tim— % 5Й ер -И - x] (10) () = Н0 — — / - Xi - Х; 

ы N—ee M =1 Nj=1 ) 

‚ 15 calculated, where N denotes the total number of data points, M the number of reference 
points, ©(x) the Heaviside function, /а distance parameter and |х!! some arbitrary norm, 
e.g. Buclidian norm. The correlation integral C (/) counts е number оЁ pairs of @- 
dimensional vectors with а distance || х; - x;/| smaller than а given value /. Grassberger 
and Procaccia [36] have shown that for sufficiently large embedding dimensions the cor- 
relation integral scales like /D, and, therefore, can be used 10 estimate the correlation di- 
mension: 

log С( 
D, = lim lim -Щ . 

[-0d—e logl 
(11) 

To this end, logC,(/) is plotted vs. log/ (Fig.8). In practice, since the limit /—0 cannot be 
reached, the slope оЁ the curve is taken instead. The limit d—ee 15 not essential and is tak- 
еп only 10 guarantee а proper embedding. In addition, the correlation entropy K, can be 
obtained from the vertical distance оё two neighbouring curves logC,(1) апа logC д1(Г) at 
fixed 1 [42]: ‘ 

K, = - lim lim lim 15(08 Сан? (1) - 1ogCA(])). (12) 
750 1>0 d—ee 

Here, е limit d—soo results from the original definition of K, [32] апа 15 necessary to ob- 

tain the correct asymptotic behaviour. 
In order to get some idea of the minimum number of relevant degrees of freedom 

involved in the evolution, we have systematically analysed the correlation dimension of 
очг data. To this end we have évaluated а large number оЁ time series оЁ P,(f), пр 10 

2 Following the work оЁ Grassberger and Procaccia [42] ме сопНпе ourselves to estimates оЁ D, 

апа K7, 
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Fig. 8. Grassberger - Procaccia analysis of a chaotic signal. a) Log-log plot of the correlation function 
vs. distance parameter /. b) Attractor Jdimension D5 ав а function оЁ the embedding dimension. The 

chaotic signal investigated was observed т subsidiary absorption аг @/21=9.26 GHz, H=1.83 КОс апа 

P;, =7.5 @В (see Р12.7) 

16000 points each. taken from the whole investigated parameter range. For regular sig- 
nals we found values of D, close to 1 or 2, in some cases even close to 3, as expected 

from the power spectra. A typical signal observed at subsidiary absorption is presented т 
Fig.8. Our analysis yields а correlation dimension оЁ 2.1+0.1, indicating very weak 
(«margingl») chaos, апа а correlation entropy of about 0.04(us)- 1. 

In the coincidence regime chaotic signals, in general, showed higher dimensions 
ranging from 5 10 larger than 15. We already mentioned that multistability also occurs in 
the chaotic regime, indicating the coexistence of several strange attractors (Fig.9). At 
10 dB e.g. there occur two separate levels of chaotic oscillations differing markedly in 
amplitude, but also in fractal dimension. We even obhserved а different tendency оЁ vari- 
ation with respect. 10 the control parameter; while оп the lower level D, was found 10 in- 
crease with Py, it was decreasing оп the upper one. 

In total, this analysis supports опг earlier impression that jumps оЁ P, are related 
to discontinuous changes of relevant degrees of freedom. As long as the system remains 
оп the same level, only slight апа continuous changes оГ D, occur оп variation оГ Р, 

whereas D, changes drastically at every jump. It is obvious to ascribe such behaviour to 
some nonlinear mechanism «switching certain modes оп ог off» with respect 10 the con- 
trol parameters ап 10 the previous state оЁ the system. This idea is supported by the 
model developed by Wiese [26-28], which is based оп а novel indirect coupling via de- 
generate magnetostatic modes. 

4. Controlling chaos 

This choice of coordinates, 11 addition, avoids а possible instability оГ the con- 
trolling algorithm which may occur in the case of time-delay coordinates [47). A general 
problem оё current interest concerns the possibility of controlling the chaotic behaviour 
оЁ nonlinear systems, which means 10 change the irregular into а regular behaviour, with- 
out drastically affecting the system parameters. The practical use of such a control would 
be 10 suppress undesired irregularity and 10 select among а large number оё possible reg- 
шаг oscillations by just applying rather small controlling power. 

Different strategies have been proposed how 10 achicve such а control: 
(i) Мойшаноп methods are either based оп the synchronization 10 ап external pe- 
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Fig. 9. Correlation dimensions estimated by №е method of Grassberger and Procaccia (coincidence те- 
gime B, Н=839 Ое). Two chaotic levels occur above 7 @В, differing in amplitude and dimension 

riodic force with а frequency close 10 ап intrinsic system {requency [43] ог оп the change 
оЁ stability induced by а fast modulation оЁ some system parameter 844]. А prominent 
example of the latter method 15 represented by е well-known Кариха pendulum [45]. 
These simple non-feedback methods generally require rather large control power. 

(ii) More sophisticated feedback control methods апп at the stabilization оё ex- 
isting, system inherent unstable periodic orbits. This can be achieved by a simple time- 
delayed feedback [46] or by calculated time-dependent corrections on one of the system 
parameters as proposed by OGY [30]. Since these techniques are making use of the in- 
trinsic properties оЁ the undeilying chaotic attractor they can, 10 principle, be run with 
very small controlling power. 

4.1. Method of OGY. The algorithm of OGY 15 based оп the idea that chaotic at- 
tractors are generally embedded in an infinite number of unstable periodic orbits. If the 
trajectory comes into the vicinity оЁ such а hyperbolic orbit, it approaches the orbit а5 
long ав the distance vector is located close to the stable manifold, апа leaves it again in 
the direction of the unstable manifold (Fig.10). Since these processes evolve ex- 
ponentially in time, they are rather slow in the vicinity of the orbit and can be affected by 
weak external perturbations. Unstable periodic orbits сап be detected by means of the re- 
currence time method. In order 10 stabilise one оЁ these orbits, one first has to calculate 
the evolution of a trajectory in its neighbourhood. Technically, this is achieved by re- 
constructing е trajectory (of e.g. а 3D flow) from а time scries by means оё time- 
delayed coordinates [41]. The problem is simplified by applying a Poincaré section per- 
pendicular to the unstable periodic orbit, thus converting the 3D flow to a 2D discrete 
map (Fig.10). This way, the unstable periodic orbit is mapped to a hyperbolic fixed point 

Ек(но) the stability of which has to be analysed. From the evolution оё previous inter- 

section points the stable and unstable eigenvalues ), and A, and the respective ei- 
gendirections e, ап e, are determined. Such analysis yields а lincarized prediction of the - 

system dynamics т the neighbourhood оЁ &x(11y) where the evolution matrix can be ex- 
pressed in terms оё the stable апа unstable eigenvalues (e¢,, and e, ,* denote the covariant 

апа contravariant eigenvectors, respectively): 

§,z+1(¥10) т &Ё(Р—О) = (057\.:@:* + eu)\'uen* [&11(“0) - &F(ufl)] (13) 

Next, one considers а small change оЁ the control parameter у апа calculates the cor- 

responding shift g of this fixed point: 

g = 9Er(1)/Oply, = [Er(1) - Er(1o) /(- Мо). (14) 
The basic Иса оЁ OGY 15 10 shift the fixed point апа the corresponding cvolution Гог а 
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attractor 

N> Poincaré section 

Fig. 10. Controlling scheme of OGY. а) Poincaré section and unstable periodic orbit. b) Neighbourhood 

оЁ the fixed point £ with stable and unstable manifolds W- апа W+; dashed lines indicate shift оЁ inter- 

section points after one cycle. ¢) Effect оЁ а small change оЁ the control parameter у (see text) 

short time ш such а way that after one cycle the system - described by &,.:(u#1,) - ends 

ир оп the stable manifold of the original fixed point &x(L), апа then to switch the per- 

turbation off again. This way the following intersection points &,.2(1g), &..a(1o),... exact- 
ly approach the fixed point without being repelled, i.e. after а well-targetted perturbation 
the intrinsic dynamics оЁ the system is used for stabilizing the trajectory а{ the unstable 
periodic orbit. The value оё this perturbation is obtained by combining egs. (13), (14), 
апа the condition that &,,,(it) be orthogonal to the unstable manifold: 

7"u (Е.›Г(ЦО) - &F(“())) С„* 
Ар = . 15 

" 7\‘11_1 gcu* ( ) 

Опсе the system has approached the orbit, the still necessary corrections (due to linear- 
ization error and noise) can be maintained by very small perturbations. Though originally 
developed for discrete maps, this concept can also be applied in low-dimensional con- 
tinuous flows, but in practice is limited to only one unstable direction. 

10 contrast 10 our device Hunt is using а stroboscopic mapping for the Poincaré 
section and only one window, so his device is limited to non-autonomic, periodically 
driven systems. 

4.2, Control by analog feedback device, Although the OGY method should apply 
to real experimental systems а$ well, in practice its application is restricted for the fol- 
lowing reasons: 

(i) Experimental systems often show high-dimensional chaos (iyperchaos), i.e. 
there is more than one unstable direction. 

(ii) The measured signal is disturbed by noise; this may either prevent the control 
to work аё ай, if п the casc оЁ strong noise the system is pushed away from е neigh- 
bourhood оЁ the fixed point, ог а{ least reduces the sensitivity оГ the feedback in the case 
of weak noise. 

(iii) The characteristic time scale of real systems сап be too fast. For the magnetic 
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system investigated typical cycle times are in the order of ps (!), whereas the numerical 
calculation of the feedback signal requires а{ least some ms. 

_ The first problem might be overcome by selecting only chaotic signals of cuf 
{iciently low dimensionality. Our Grassberger - Procaccia analyses showed that this 15 
nearly impossible for the coincidence regime but rather easy 10 obtain in the case of non- 
resonant subsidiary absorption. Letter «C» м Fig.7 marks the corresponding range оЁ 
control parameters where weak (marginal) chaos was observed. The chaotic signal to be 
controlled (Fig.12) was of the same type 2s analysed in Fig.8, which means characterized 
by D, =2.1+0.1, only one positive Lyapunov exponent A,=0.04(ps)-1, and а mean cycle 
time of about 2 |15. 

Since it was impossible to make numerical real-time predictions for а time scale оЁ 
и5 we had 10 modify @е OGY algorithm ш а way to be processed by ап intelligent analog 
feedback device: For reconstructing the attractor we used analog time derivatives instead 
оё time delay coordinates3. The Poincaré plane and the location of intersection points ° 
were determined by analog window discriminators for the signal and its first and second 
time derivatives triggering а track-and-hold amplifier (Fig.11a). The amplitude of the 
control signal was not determined from а preceding stability analysis of the periodic orbit. 
Instead, we used а feedback signal which is proportional 10 the deviation of е mo- 
mentary signal U(z,) from the set-point (the «U-coordinate» of the phase space window 
to be adjusted to the position of the unstable orbit) 

Umntr (Г„) = A[U(I,,) - Uref] (16) 

microwsre 
generator 

Uref v 4] (ln) 

(Urer=U(L,))d 

Ц) 
resonstar 

static 
wgoelic 

НГВ 

dateatar 

track & hold 
amplifier 

ТТ 

сош- - u(t) 
U 

window = I bl в/& fl 
generator u 4/dt ADBA4AN 

b) 

Fig. 11. Analog feedback device for controlling the chaotic FMR signal. а) Experimental set-up. b) Re- 

construction of the phase space by means of analog derivatives. The small probe volume can be moved 

around by variating the settings of the window generator 

3 This choice оЁ coordinates, т addition, avoids а possible instability оё the controlling algorithm 

which may occur in the case of time-delay coordinates [47]. 
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and variate the phase space coordinates in order to meet the neighbourhood of some un- 
stable periodic orhit where the given feedback results in а proper control. A similar tech- 
niquet was applied by Hunt [48] for controlling а diode-capacity resonator who called it 
occasional proportional feedback. There is complete correspondence оЁ Ед.(16) 10 the orig- 
а! result оЁ OGY, Eq.(15), identifying the amplification factor A with М0 - 1)-1(ge,)- 
and the deviation U(1,) - у with (§,(i) - &())e,. 

In our experiment the position of the unstable periodic orbit was selected by setting 
windows for the observed signal U(7) and its {irst апа second time derivative by means оЁ 
analogy window comparators. The corresponding signal was held by ап ultrafast track- 
and-hold amplifier. The deviation оЁ this value from а given set-point is fed back to 
change the microwave pumping power. By careful adjustment оё the windows and vari- 
ation of the set-point we succeeded in suppressing the chaotic oscillations and stabilizing 

‚ periodic urbits by means of a perturbation which 18 less than 10 -3 оЁ the actual pumping 
power P;,. The effect of control is illustrated by Fig. 12, where уе have compared the 
chaotic signal before апа after switching оп the feedback. The controlled signal shows а 
very regular oscillation, апа the corresponding phase space trajectoty, 10 fact, consists of 
a single orbit slightly smeared out by noise. To our knowledge this is the first and fastest 

ж \д т\ | WW 
0 100 

Fig. 12. Result оЁ the feedback control. а 
шп}юш control. b) Control 51 
switched оп the control 

) Chaotic time signal, spectrum and reconsiructed altractor 
gnal, regular oscillations, spectrum and stabilized orbit after having 

. + 1а contrast to опг device Hurnt 15 using а stroboscapic mapping for the Poincaré section апа only one 
window, 50 his device 15 imited ю non-autonom, periodically driven systems. 
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experimental control of chaos in spin-wave turbulence using a feedback system which 
stabilizes the inherent periodic dynamics of a strange attractor. 

5. Conclusions 

The experimental results presented in this article indicate that transverse-pumped 
YIG spheres at the first-order Suhl instability аге оё particular interest for studying con- 
cepts of nonlinear dynamics in real solids. The experimental conditions differ from the 
more often investigated second-order Suhl instability ог from paralfel pumping by the 
variety and complexity of the observed phenomena, and also by more complicated non- 
lmear_mechamsr_ns. Mo_st_of the effects reported in previous investigations, such as period 
doublings, quasiperiodicity, от mode-lecking, have been observed in this system, but 
also new phenomena were found: sudden jumps in the transmitted FMR signal and a well 
reproducible multistability. We have tried 10 classify the observed bifurcation scenarios, 
10 characterize the chaotic state, and to draw physical conclusions from this information. 
For a quantitative theoretical interpretation of these phenomena based on three-magnon 
processes and a novel indirect coupling mechanism via degenerate modes, which was 
found 10 be much stronger in the coincidence regime than conventional four-magnon 
processes, we refer to the literature [26-29]. Finally, as a first possible application of 
nonlinear dynamics, we have considered the problem of chaos suppression effected by 
very weak external forces. By means оё ап analog feedback device related to the con- 
trolling scheme of Ott, Grebogi, апа Yorke we succeeded т stabilizing inherent unstable 
periodic orbits with the help of very weak external time-dependent perturbations. 

Altogether, we have seen that the investigation of spin systems represents a very 
interesting topic both from the viewpoint of solid-state physics and of nonlinear 
dynamics. The reasons are manifold: 

(i) They represent intrinsically nonlinear systems with nonlinearities originating 
from well-known interactions. 

(ii) Their nonlinearities can partly be controlled by external fields - ав in the 
present example. 

(1Н) Their nonlocal couplings allow the formation of spatio-temporal patterns. 
Nevertheless, in experiment one meets е problem that most of the interesting phe- 
nomena in spin systems occur оп rather inconvenient time апа length scales. While е 
time scale оё auto-oscillations - typically one microsecond - remains accessible by 
modem electronics, it has been impossible 50 far 10 resolve dynamic magnetic patterns of 
micrometer size. Conventional magnetic resonance only probes the uniform mode, op- 
tical scattering experiments, @ general, suffer from 100 low resolution. Very recently, 
new techniques for recording the local magnetization have been developed [49,50]. If 
they could be improved to probe standing spin waves, then again the coincidence regime 
would offer favourite conditions, because of the long-wavelength modes involved. Such 

investigations could be оё crucial importance for confuming ог modifying our present 

understanding of the underlying nonlinear mechanisms. 
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АНАЛИЗ И НАБЛЮДЕНИЕ ХАОСА 
ПРИ СПИН-ВОЛНОВОЙ JIECTAGHILIIOCTI 

Ы 

Г. Беннер, P. Хенн, Ф. Редельшпергер, Г. В'и;е': 
Н 

Ферромагнитные — образпы, возбуждаемые® сильным — высокочастотным — полем, 
демонстрируют разнообразные нелинейные явления. Описываются эксперименты по 
ферромагнитному — резонансу в  образцах — жёлезо-иттриевого — граната — (ЖИГ) 
обнаруживающие спин-волновую нестабильность при сигналах выше порогового уровня 
первого порядка по Сулу. Выявлено и проанализировано множество различных спенариев, а 
именно: удвоение периода, квазипериодичность, различные типы перемежаемости COBMECTHO 

с очень сложными явлениями мультистабильности. В случае нерезонансного возбуждения 
однородной моды исследуемые хаотические колебания относятся к низко-размерному 
аттрактору (D;~2.1) с характерным временным маспттабом погядка LIS, в то время как для 

зонансного возбуждения получаются очень высокоразмерные аттракторы (D=7 ... >15). 
Ёдепя стабилизации неустойчивых циклов в такой быстрой системы разработано устройство с 
обратной связью, относящееся к управляющей схеме Ott, Grebogi и Yorke. Подавление 
низко-размерного хаоса осуществлялось введением малого (зависимого от времени) сигнала 
обратной связи порядка 103 амплитудь! входного Ввысокочастотного поля. 
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