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3. Invariant Characteristics of the Dynamics 

Classifying the dynamical systems that one observes is a critical part of the analysis 
of measured signals. When the source of the signals is linear, we are used to the idea of 
identifying the spectral peaks in the Fourier spectrum of the signal. When we see a spec- 
tral peak at some frequency, we know that if we were to stimulate the same system at a 
different time with forcing of a different strength, we would see the spectral peak in the 
same location with possibly a different integrated power under the peak. The Fourier fre- 
quency is an invariant of the system motion. The phase associated with that frequency 
depends on the time at which the measurements begin, and the power under the peak de- 
pends on the strength of the forcing. Since chaotic motion produces continuous, broad- 
band Fourier spectra, we clearly have to replace narrowband Fourier signatures with other 
characteristics of the system for purposes of identification and classification. 

The two major features which have emerged as classifiers are fractal dimensions 
and Lyapunov exponents. Fractal dimensions are characteristic of the geometric figure of 
the attractor and relate to the way points on the attractor are distributed in RE. Lyapunov 
exponents tell how orbits on the attractor move apart (от together) under the evolution of 
the dynamics. Both are invariant under the evolution operator of the system, and thus are 
independent of changes in the initial conditions of the orbit, and both are independent of 
the coordinate system in which the attractor is observed. This means we can evaluate 
them reliably in the reconstructed phase space made out of time delay vectors y(n) as de- 
scribed above; thus, we can evaluate them from experimental data. Each is connected 
with an ergodic theorem [3] which allows them to be seen as statistical quantities char- 
acteristic of a deterministic system. If this seems contradictory, it is only semantic. Once 
one has a distribution of points in R4, as we do on strange attractors, then using the natural 
distribution of these points 

p(x)= lim 1IN туд (x- y(k)), (30) 

we can define statistical quantities with this p(x) acting as a density of probability or, 

better, frequency of occurrence. This p(x) is called the natural distribution or measure 

* Продолжение. Начало см. Изв. вузов «ПНД», 1.3, № 2, 3, 1995 
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since its connection to the number of points in a volume is simple. The number of points 
within a volume V is phase space is 

Jy dex p(x). (31) 

In nonlinear systems without any noise, there are many measures. All of them except this 
one are associated with unstable motions, so this is the only one which survives in any 
real experiment [3]. 

Now using this density we can easily see that any function on the phase space, call 

it f(x) can be used to define an invariant under the evolution y(k)—-F(y(k)) = y(k+1). 
Indeed, just integrate the function with p(x) to form (М — is implicit) 

F=1 dix p(X) = UN ЗЫ A(R) = ММ За fF =1(y(1))). (32) 
Now it is easy to see that if we evaluate the average of f (F(x)), namely the function 
evaluated at the point to which x evolves x — F(x), we find 

J dex p(FF()) =F + UN [fy(N+1)) - Ду), (33) 

which in the limit of № — oo, or many data points in practice, is just f. While an interesting 

observation, this becomes useful only when we select the function f(x) well. We now turn 
to interesting choices of f(x). 

3.1. Fractal Dimensions 

Perhaps the most interesting function f (x) which is considered in looking for 
quantities invariant under the action of the dynamics is one which tells us the way in 
which the number of points within a sphere of radius r scales as the radius shrinks to zero. 
The relevance of this is that the volume occupied by a volume of radius г in dimension 4 
behaves as r4, so we might expect to achieve a sense of dimension by seeing how the 
density of points on an attractor scales when we examine it on small scales in phase 
space. 

To motivate this a bit more, imagine a set of points in some Euclidean space, 
namely the embedding space constructed from the data y(n); n=1,2, ..., М. Go to some 
point х on or anyway near the attractor and ask how the number of points on the orbit 
within a distance г of х changes as we make г small. Well, not too small, since we have 
only a finite number of data, and soon the radius will be so small that no points fall within 
the sphere. So, small enough that there are a lot of points within the sphere and not so 
large that all the data is within the sphere. The latter would happen if r=R,. Then we ех- 
pect the number of points п (x,) within r at х to scale as 

n(x,r) = pdx), (34) 

for small r. If the attractor were a regular geometric figure of dimension D, then in each 
such ball of radius r around x we would find approximately г? points - times some geo- 
metric factor of no special relevance here. This would have us set d(x)=D for all x. On an 
attractor, which is a geometric figure which is not as regular as a sphere or a torus, we do 
not expect to get the same value for D everywhere, so having d(x) vary with x seems nat- 
ural [34,35]. We might call d(x) a local dimension, but since it refers to some specific 
point on the attractor, we have no particular reason to think it would be the same for all x, 

and thus under the action of the dynamics x—F(x), it would change. It is sensitive to in- 

itial conditions. 
To find something invariant under F(x) we need to define 

n(x) = ММ Zoey (7 - Iy(k) - x1), | (35) 
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where 8(u) is the Heaviside function 

” | 1; Ми > 0, (36) 
@(и) = 

0; и < 0. 

This clearly counts all the points оп the orbit у(А) within a radius of г from the point x 
and normalizes that number by the total number of data points. Now we recognize that 
the density of points on an attractor need not be uniform cn the figure of the attractor, so 
it may be quite revealing to look at the moments of the function n(x,r). We choose for 
our function f (x) =п(х,г)(4-1), and then we define the function C{g,r) of two variables 4 
and г by the mean of f (x) over the attractor weighted with the natural density p(x): 

Clan) = J ddxp(x)n(x,r)te-1), (37) 

UM т TUK 5 (7 = 19(n) - ую). 

This is often called the «correlation function» on the attractor, and while such quantities 
were known in statistics from the work of Renyi [27], the idea to examine this kind of 

quantity to characterize strange attractors is due to Grassberger and Procaccia [28] who 
originally discussed the case g=2. 

Now this function of two variables is an invariant on the attractor, but it has be- 
come conventional to look only at the variation of this quantity when r is small. In that 
limit it is assumed that 

C(gq,r) = ra-1)os, (38) 

defining the fractal dimension D, when it exists. Clearly there is a geometric appeal to 
seeking a single number for each moment of the density of points in the sphere of radius r 
for small г, but we really need not think of this as fundamental. Now we shall see in just a 
moment that D, is defined by a limit, and because of this one can show it is invariant 
under changes in coordinate systems, so it takes on a particularly special geometric 
meaning. However, if one is working in a given coordinate system, defined by the time 
delay vectors y(n) and in a fixed embedding dimension dg, then the whole curve C(g,r) 
becomes of interest. Since this is the situation one imagines when analyzing data from a 
given observed source, it seems wise not to throw away the full information in С(а,г) just 
to focus on the slope of a hoped for linear segment of it when 1g[C(gq,)] is plotted aga 
inst 1gfr]. 

One thinks of the dimension D,, as defined by a limit 

D, = lim 1g[C(q.)1/((g-1)lg[]), (39) 

and from this definition we can see that the normalization doesn’t matter for the evalua- 
tion of D,. Also from this definition we can learn that D, 2D. 

In practice we need to compute C(g,r) for а range of » over which we can imagine 
that the function Ig[C(g,r)] is linear in lg{r] and then pick off the slope over that range. 
This is not as easy as it sounds, and numerous papers have been written on how one does 
this with a finite amount of noisy data and what to do about 720, etc. Essentially all the 
work has concenirated on the quantity D, because its evaluation is numerically rather 
simple and reliable. The papers by Theiler [29], Smith [30], Ruelle [31], and Essex and 
Nerenberg [32] are critical of how one makes these calculations, what one believes about 
these calculations, how much data is required for these calculations, and other issues as 
well. It would be basically out the question to discuss all that has been said on this sub- 
ject, but a flavor of the discussion can be gotten from those papers. One of the interesting 
points is the rule of thumb that, if one is to evaluate D, with some confidence, then a 
decade of dynamic range in Ig[r} is required. This suggests that at least 1002 data points 
are needed to believe a report of a fractal dimension D,. While only a rule of thumb, it is 
a useful one. 
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While as a matter of course I will report some values of О» evaluated by the meth- 
od suggested above, it is well worth examining what one might learn by evaluating D,. 
First of all, since we would have established by now using false nearest neighbours that 
we have a low dimensional system to work with, and we would know from the same 
method what dimension we require to unfold the attractor, we would then be seeking a 
single number to characterize the attractor. If D, is not integer, this is a very interesting 
statement about the dynamics at the source of our observed signal, but certainly not a 
complete characterization. Indeed, at this time no one knows what is a complete set of in- 
variants to characterize an attractor. So, as long as we do not think of this as a way to de- 
termine whether the signal comes from a low dimensional source or whether the signal 
comes from a deterministic source but simply as a characteristic number for that source, 
we will be on stable ground. It is important to ask just what we will have learned about 
the source of the chaotic signal from this single number, especially with the remarkable 
uncertainty that enters its determination from experimental data. 

Now this has been a rather long introduction and absent the fact that so much im- 
portance has been placed on the dimensions D,, especially D,, it would not have been 
warranted. Given the huge effort placed on the evaluation of this single quantity and the 
importance placed on its interpretation, it seems worth making this alert ahead of any nu- 
merical display of its values. Personally I am inclined to place more interest in the entire 
function C(g,r) and its values for a wide range of г. When the assumption that C(g,r) be- 
haves as a power of r fails, the function itself is still quite interesting. 

Just as a side comment the quantity а, which we used as «the» dimension of the 
attractor in discussing the embedding process can now be identified as d,=Dy[7]. 

3.1.1. Lorenz Model. We choose to все 
display the function C(2,) for the Lorenz .1.0f 
model using quite a bit of well sampled, В 
clean data. Each computation used 50.000 26} 
points from the Lorentz systems with 

7,=0.01; in these dimensionless units an ар-  -4.2} 
proximate time to go around the attractor is 
0.5. 50000 points means circulating about ~~ "58 
the attractor nearly 1000 times. This is not yd 

| 
what one would usually find in observed 74} 
data, so this is a departure from the tone of 
this article, but it may be useful to see what 2% 16 008 00 08 (г) 
a clean example would produce. In Figures 
36-38 we display the curves 1g[C(2,)] Figure 36. 1g [C(2,r)] versus lg [7] for x(n) data from 
versus 1g[r] evaluated from each of the the Lorenz attractor. The global embedding dimen- 

‚ sion was taken as both dg=3 and ак=4. Note the re- 
three variables x(n), y(n), and z(n). The gion with a linear look to i 
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Figure 37. lg [C(2,)] versus 1g [1] for y(n) data Figure 38. Ig [C(2,r)] versus Ig [+] for z(n) data from 

from the Lorenz attractor. The global embedding di- the Lorenz attractor. The global embedding dimen- 

mension was taken as both dg=3 and dg=4. Note the sion was taken as both dg=3 and dg=4. Note the re- 

region with a linear look to it gion with a linear look to it 
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Figure 39. The derivative of 1g [C(2,r)] with respect 
to lg[r] made from x(n) data in the Lorenz model 
using three neighboring poins in Figure 36 to es- 
timate the derivative. Note that there is only an ap- 
proximate region where the derivative is constant 
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Figure 41. The derivative of 1g [C(2,r)] with respect 
to 1g[r] made from z(n) data in the Lorenz model 
using three neighboring poins in Figure 38 to es- 
timate the derivative. Note that there is only an ap- 
proximate region where the derivative is constant 
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Figure 40. The derivative of 1g [C(2,r)] with respect 
to lg[r] made from y(n) data in the Lorenz model 
using three neighboring poins in Figure 37 to es- 
timate the derivative. Note that there is only an ap- 
proximate region where the derivative is constant 

curves are shown using vectors in both dz=3 
and dz=4. The normalization of the function 
C(q,r) depends on embedding dimension, 
but, accounting for that, one sees that the 
various curves are the same within numer- 
ical precision. This is as it should be for in- 
variants and emphasizes the utility both of 
the whole function C(g,r) and the strict in- 
variance of its logarithm with respect to 
1g[r]. The Figures 39-41 are a plot of 

dig[C(2.))/dlg[r], (40) 
versus lg[r] for each of the data sets x(n), 
y(n) and z(n) from the Lorenz system. De- 
rivatives are defined as the local average 
over three neighbouring points. While one 
can see a «middle» region in lIg[r] where 
these derivatives are all just above 2, the 
difficulties of establishing a clean unsullied 

value for D, should be clear. With real data it doesn't get better. 

3.2. Global Lyapunov Exponents 

The stability of an observed orbit y(k) of the dynamical system y(k)->F(y(k))= 

=y(k+1) to small perturbations A(k) is revealed by looking at 

y(k+1) + A(k+1) = F(y(k) + AK) = DF(y(k))-A(k) + F(y(k)), 
or 

A(k+1) =DF(y(k))-A(k), 

(41) 

(42) 

as long as A(+) remains small. In this the Jacobian matrix 

DF(X) 4 = OF (x)/0x, (43) 
enters. The stability of the orbit is determined by the fate of A(k) as the number of evolu- 

tion steps from the starting time «К» grows large. Suppose we move ahead from time 4 to 

time k+L using the linearized evolution for A(k). Then we find 
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A(k+L) = DF (y(k+L -1))-DF (y(K+L-2))--DF(y(k)-A(k)) = DFL(y(k))-A(k)), (44) 
defining the composition of L Jacobians ЮЕС(х). Now in an intuitive sense we see that if 
the eigenvalues of DFL(y(k)) behave as exp[LA] with A>0, then the orbit y(k) at which the 

Jacobians are evaluated is unstable. This is the generalization from the study we all un- 
dertook in school of the linear stability under small perturbations of a fixed point (y(%) is 
independent of time). 

There 15 a theorem associated with this problem which is due to the Russian math- 
ematician Oseledec [33]. It is called the multiplicative ergodic theorem and states that if 
we look at the length of the perturbation A(k+L), then the essential quantity determining 
this scalar is 

[DFL(x)]"DFL(x), (45) 

where the superscript Т means transpose. The length of A(k+L) is 

IA(k+L)12=AT(k)[DFL(x)]” DFL(x)A(k). (46) 

The multiplicative ergodic theorem states that if we form the Oseledec matrix 

OSL(x.L) = (ОЕ) ОЕС(х)) г, (47) 

then the limit of this as L — со exists and is independent of x for all x (well, for almost all 

x) in the basin of attraction of the attractor to which the orbit belongs. The logarithm of 

the eigenvalues of this orthogonal matrix when L — со are denoted A12A,2....2%, and the 

notion indicates we order them as shown. The A, are the global Lyapunov exponents of 

the dynamical system x—F(x). If one or more of the A,>0, then we have chaos. The sum 

of the Lyapunov exponents A+M+....+A,<0 by the dissipative nature of the systems we 
consider. 

The A, are unchanged under smooth changes of coordinate system, so one may 

evaluate them in any coordinate system one chooses. In particular, the value for the A, as 
evaluated in the original coordinates for the system or in the coordinates provided by time 
delays of any measured quantity are the same. The A, are also unchanged under the dy- 

namics x—F(x) when the vector field F(s) is smooth, as this is essentially a change of 
coordinates. 

The determination of the eigenvalues A, of the Oseledec matrix is not numerically 

trivial even though the dimension of the matrix may be small. The point is that [DFL(x)]7. 
DFL(x) is quite ill conditioned ав L becomes large. The condition number is ap- 
proximately е!(- 1, The evaluation if the eigenvalues rests on the idea of a recursive 
QR decomposition which was described by Eckmann, et а! [36] and works for large L. 

To find the Lyapunov exponents from observed scalar data we need some method 
for accurately determining the Jacobian matrix DF(y(k)) at locations on the attractor 
which are visited by the orbit y(k). For this we require some way to acquire a sense of the 
variation of the dynamics y(k+1)=F(y(k)) in the neighborhood of the observed orbit. The 
main idea on how we can do this [36,37] is to recognize that attractors are compact ob- 
jects in their phase space and that any orbit will come back into the neighborhood of any 
given point on the attractor given a long enough orbit. Thus from one orbit we can ac- 
quire information about the phase space behavior of quantities such as F(+) by looking at 
the phase space neighbors of y(k). 

Suppose we look at this point y(k) and find its Nj nearest neighbors: y()(k); 

r=1,2..., Ng. Then each of these neighbors evolves into a known point y)(k)—y(r.k+1) 
which is in the neighborhood of y(k+1). The point of the notation is that y(rk+1) may 
not be the r# nearest neighbor of y(k+1). If we make a local map from neighborhood to 
neighborhood: 
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УСН) = Tos с(т0 (у? (8), (48) 
where the functions ф„(х) are some basis set we choose a priori, and the ¢(m,k) are local 
coefficients we will determine in a moment, then the components of the Jacobian matrix 
evaluated at v(k) are 

DF po (y(K)) = Zot Calm k)0,(X)/0%p cyt (49) 
If the local functions are polynomials [38,39], then the linear term in the mapping de- 
termines DF(v(k)). and the rest of the terms make the local mapping accurate. If there are 
inaccuracies in the evaluation of DF(y(k)), they tend to be exponentially magnified by 
the ill conditioned nature of the numerical problem here. Polynomials are only one choice 
[24.2]. The coefficients ¢(m,k) are determined by requiring the residuals 

E0 y(rk+1) - Easy e(mR)an(y OR), (50) 
to be minimized. 

We will look at applying this to data after we say a few words about local Lya- 
рипоу exponents. 

3.3. Local Lyapunov Exponents 

The global Lyapunov exponents we have just discussed tell us how a perturbation 
to an orbit y(k) will behave over a long time averaged over the whole attractor. This may 
not be particularly relevant information for an engineering approach to this subject since 
what happens as time gets very large may be of no importance to what happens in the 
next few nanoseconds. Predicting weather five days from now is certainly more inter- 
esting than 105 days (274 years) from now. 

The eigenvalues of the Oseledec matrix OSL(x,L), which we call el2x2D), tell us 
how rapidly (elt(xL)]) perturbations to the orbit at point x in phase space grow or shrink 
in L time steps away from the time of the perturbation. These 2,(x,L) are called local 

Lyapunov exponents [40,41]. They certainly satisfy 

ho(X,L) — №, (51) 

as L—oo, The variations around the limit or global Lyapunov exponent are also of im- 

portance. The A,(x,L) vary quite significantly with the location x on the attractor, es- 

pecially for small L which is the main interest. The moments of A, (x,L)- М, with mo- 
ments defined by integrals with the natural density p(x), are invariants of the dynamics. 
The mean 

Ao(L) =I p(R)[Ma(X.L) - №] (52) 
satisfies 

ML) = М + КИ + KIL, (53) 

where K,, К, and v,<1 are constants. The last term comes from the geometric de- 

pendence of the A,(x,L) on the coordinate system in which it is evaluated. Other moments 
behave similarly. 

There is quite a bit of information in these local exponents. First of all they tell us 

on the average around the attractor how well we can predict the evolution of the system L 
steps ahead of wherever we are. If the second and higher moments are substantial, then 
this predictability will vary substantially as we move about the attractor. Second, if we 

are observing data from a flow, that is, a set of differential equations, then one of the A,



must be zero [3]. The reason is simple since if we choose to make a perturbation to an 
orbit exactly along the direction the orbit is going, then that perturbation will be another 
orbit point and move precisely along the same orbit. Thus the divergence of the new orbit 
from the old will be absent; this gives A,=0 for that particular direction. In the case of a 
mapping underlying our data, there is no flow direction. So if we observe an average local 

Lyapunov exponent A,(L) going to zero, we can be confident that we have a flow. Third, 

the values of the AL) are each dynamical invariants characterizing the source of the 

measurements. Their limit, the Aas also are invariant under changes in the coordinate sys- 

tem, these having been seen to contribute a term of order 1/L to the (1). 

Finally, the A, give us a sense of dimension [34,42]. When we have a chaotic sys- 
tem, there is at least one positive Lyapunov exponent. This is the signal of the intrinsic 
instability we call chaos. The largest of the exponents A; determines how line segments 
grow under the dynamics. Areas grow according to elL(u+22)], Three dimensional volumes 
according to е!-(м+12+2а)], etc. The sum of all exponents is negative, so somewhere there 
must be a combination of exponents which can be associated with a volume is phase 
space which neither grows nor shrinks. Kaplan and Yorke [42] suggested that this be used 
to define a Lyapunov dimension 

р, = К + ЗАМ, (54) 

where хАм>0 and 3.5%, <0. This dimension has been associated with the information 
dimension D;, as defined above, but no general connection seems to have been made to 

the satisfaction of mathematicians. This is not a big problem since D, is generally about 
the same size as most of the D, we discussed earlier. 

3.3.1. Lorenz Model. We take our usual data set from the variable х(п) and form a 
three dimensional state space. From this we evaluate the local Jacobians as indicated 
above and using the recursive QR decomposition of the required product of Jacobians we 

have computed the three A,(L) for the Lorenz system. These are displayed in Figure 42. It 
is clear that one of the exponents is zero, one is positive, and the third is negative. The 

values we read off the Figure are М=1.51, М=0, and %;=-19.0. With these values the 

Lyapunov dimension is found to be D;=2.08. In Figure 43 we examine these results in an 
expanded format. In the calculations just shown we used dz=4 for unfolding the attractor 
and а local dimension d;=3 for the dynamics. If we had used dz=3 there would have been 
little change. In Figure 44 we look at another aspect of local Lyapunov exponents by 
evaluating the exponents in dz=4 and d;=4. In the Figure is shown both the four forward 
exponents and minus the four backward exponents. True exponents of the dynamics will 
change sign because of time reversal; however, false exponents associated with our hav- 
ing chosen too large a dynamical dimension 4; will behave otherwise. Indeed, we clearly 
see that three exponents change under reversing the way we read the data in time, and one 
does not. Unfortunately this way of determining а, is not robust against contamination. 

3.3.2. Chaotic Lakes. Here we take the data from the Great Salt Lake volume and 
using the procedure just described arrive at the results shown in Figure 45. We see that 
there is again a single zero exponent indicating that we have a differential equation de- 
scribing the dynamics. The Lyapunov dimension is determined by the values of the A: 

№=0.17, ,=0.0, №=-0.14 and A4=-0.65 in inverse units of t=15 days. This yields 

D,;=3.05. Since the predictability time is about 1/4; this means that models for the pro- 
cesses producing fluctuations in the volume of the Great Salt Lake should allow pre- 
diction for about three months from any given time before the intrinsic instabilities of the 
system mask any such ability. 

113



nL) 

20.0} Lo 
10.0- м | 

-10.0° 
| 

200+ Lo I | 
-30.0 ‚ ° | 
0 а а аб 7 вор 

Figure 42. Average Lyzpunov exponents for the Lo- 
renz attractor. Data comes from the х(п) variable of 
the Lorenz model. 50,000 data points were used and 
cubic neighborhood to neighborhood maps were 
made with the linear term giving the required local 
Jacobian to use in the Oseledec matrix. An em- 
bedding dimension dg=4 was used in the calcula- 
tions with a local dimension d;=3 as determined by 
local false nearest neighbors. Using ар=3 would 
change little. There is one positive exponent, one 
zero exponent - indicating the data comes from a 
flow instead of a mapping - and one negative ex- 
ponent. The Lyapunov dimension of the system is 
2.08 
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Figure 43. An enlargement of the previous graph 
showing how the local Lyapunov exponents ap- 

proach their global values as L — со 
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Figure 46. Average lccal Lyapunov exponents for 
the hysteretic circuit using data from Via(n). 
dg=d;=3 as indicated by local false nearest neigh- 
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Figure 44. Average Lyapunov exponents for the Lo- 
renz attractor. Data comes from the x(n) variable of 
the Lorenz model. 50.000 data points were used and 
cubic neighborhood to neighborhood maps were 
made with the linear term giving the required local 
Jacobian to use in the Oseledec matrix. An em- 
bedding dimension dg=4 was used in the calcula- 

tions with a local dimension d;=4. Four Lyapunov 

exponents are 2valuated both forward and then 
backward in time. True exponents change sign under 
this operation, and we see that three exponents are 

true 

5 7 во, 

Figure 45. Average local Lyapunov exponents for 
data from the Great Salt Lake volume. 3463 data 
points were used and dg=d;=4 as indicated by local 

false nearest neighbors. The Lyapunov dimension of 
the attractor is I; =3.05 

3.3.3. Chaotic Circuits. In analyzing 
the local Lyapunov exponents from this data 
source we have our choice of two measured 
quantities. If we use И, we must working in 
a global embedding space dz=5 and make 
local three dimensional mappings from 
neighbourhood to neighbourhood. This 
works, but not as accurately as using У, and 
making these same mappings with a global 
three dimensional phase space. Basically 
when we have any contamination on our 
data the evaluation of Lyapunov exponents 
can be difficult. If our attractor has d,=3 and 
can be embedded in dz=3, then we do not 

3 4 6 2 1 
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populate the other two dimensions with contamination and can more accurately determine 
each of the required local jacobians. One can demonstrate with simulated data where as 
much uncontaminated data can be made available, that working in dgz>d; can give а, ac- 
curate exponents. 

So we use data from Vj confident that the same numerical values would be 
achieved by using d;=5 and d;=3 for У, data. The local Lyapunov exponents which re- 
sults are displayed in Figure 46. The appearance of a zero exponent tells us we have dif- 
ferential equations underlying this data, and that is what we expect. The positive exponent 
is №=0.26 and the third exponent is A,=-0.56. From these values we determine a Lya- 
punov dimension D;=2.51. The units of these exponents is about 10 per millisecond, so 
we should be able to predict this circuit forward in time about 0.4 ms. 

3.4. A Few Remarks About Lyapunov Exponents 

As classifiers of the source of a chaotic signal Lyapunov exponents carry a sub- 
stantial advantage over the use of fractal dimensions. Lyapunov exponents, especially 
local exponents, as their limit for a large number of time steps gives the global exponents 
as well, bring not only a set of numbers for classifying the system but also tells us the 
limits to predictability of the chaotic system and through the Lyapunov dimension, which 
is conjectured to be D; among the many D, fractal dimensions, also gives one a sense of 
dimension which corresponds accurately to other fractal dimension estimates. It seems 
that the combination of fractal dimensions, when they can be accurately estimated, or 
better whole curves of the correlation functions C(g,r) nicely compliment the Lyapunov 
exponents as classifiers for the dynamics. 

Estimating all d; Lyapunov exponents for a system is quite time consuming if the 
local exponents are desired as well, but this is a limitation which is likely to be overcome 
by parallelizing the computations. The point is that doing these computations in serial 
mode is not natural. Really one wants to estimate the local Jacobian matrices DF(y(k)) 
which enter the Oseledec matrix, and this can be done at many phase space locations at 
the same time. One can expect a speed up in this kind of computation which is linear in 
the number of processors. In the near future one should be able to handle large data sets 
and large а, with this kind of improvement. Indeed, the reason we have not reported on 
the Lyapunov exponents for the chaotic boundary layer flow or the laser intensity fluc- 
tuations is not that we cannot do the computations, but that with the large а; required (di- 
mension eight to ten) we would have had to use an amount of data which is presently 
prohibitive to have confidence enough in the answers. The methods described here and in 
the literature are quite adequate for the task. 

A part of this general subject which is of some importance in applications and re- 
quires additional attention is the description of local exponents A,(x,L) as a function of 
phase space location x and a nice means for locating those regions where all the A,(x,L) 
are negative. Such regions stand out as the phase space places to which one might want to 
control a system because the local stability is so marked. Another important topic is that 
of exploring the idea of regional Lyapunov exponents which involve averaging over real 
space locations in the underlying system. We saw the role these might play when we 
looked at data from the Great Salt Lake and from the boundary layer chaos. In each case 
we are seeing data with small scale motions suppressed yet very interesting dynamics on 
the larger scales sensed in the observations. How the Lyapunov exponents of a system 
vary with spatial averaging is the issue. Another application area of some engineering in- 
terest is the behavior of continuum systems such as elastic beams when the high fre- 
quency structural modes are suppressed by the sensor. 
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