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Abstract. The purpose of this study is to propose an efficient numerical method for solving the inverse nonlinear
problem of the movement of the compressor rotor collar in a fluid film thrust bearing. Methods. A periodic
thermoelastohydrodynamic (PTEHD) mathematical model of hydrodynamic and thermal processes in a bearing
is constructed under the condition of the rotor collar motion. Within the framework of the model, an inverse
nonlinear problem of determining the position of the collar under a given external load is formulated. An iterative
solution method is proposed, which utilizes the solution of the direct problem. To reduce computational costs, a
modified Dekker–Brent method is employed in conjunction with a modified Newton’s method. Results. Numerical
experiments have been conducted, demonstrating the effectiveness of the proposed approaches. The suggested
methods significantly reduce the required computational resources by minimizing the number of calls to the target
function in the optimization problem. A software suite has been developed that allows for the calculation of the
nonlinear system of rotor motion under various physical and geometric parameters. Conclusion. An efficient set
of numerical methods for solving the inverse nonlinear problem of the motion of the rotor collar in the compressor
fluid film thrust bearing is proposed. The method’s effectiveness lies in substantial savings of computational
resources. The method’s efficiency has been demonstrated in numerical experiments.
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Introduction

Traditionally, liquid friction bearings [1,2] are used as a support for the rotor of a compressor
machine with a rotating rotor and force loads acting on it. They are widespread due to their
excellent speed and durability under certain conditions: regular testing of the physical and
chemical properties of the oil, cleanliness of oil filtration, temperature conditions, etc. One of
the main aspects in calculating and designing the internal layout of the compressor casing is
to ensure stable spatial movement of the rotor on the sliding bearings, which is checked at
the stage of mechanical testing of the casing. At the same time, a distinctive feature of the
occurrence of unacceptable vibrations in compressor rotor systems is frequent axial (longitudinal)
oscillations. For a complete analysis and prediction of the vibration state of the rotor system,
many authors [3, 4] point out the need to study its vibrodynamic state taking into account the
hydrodynamic processes in a fluid film thrust bearing.

The investigated fluid film thrust bearing serves to reduce wear and friction between
rotating and stationary parts of the structure, to perceive disturbing forces along the compressor
rotor axis and to fix the rotor relative to the housing in the axial direction, including during
transient compressor modes. Axial forces may arise from the total pressure drop at the working
stages 2 (Fig. 1), from internal non-stationary gas-dynamic processes of the compressed gas in
the flow part of the centrifugal compressor (CC), from the pressure drop of the compressed gas
between the discharge and suction sides of the high-pressure screw compressor (SC) (with a final
pressure of more 10 MPa) and/or from the axial component of the load of the helical gearing,
for example, a multiplier centrifugal compressor [1, 2, 5, 6].

The study of nonlinear dynamic operating modes of the fluid film thrust bearing is not
widely used. This is due to the complex joint solution of the equations of bearing hydrodynamics
and rotor dynamics, despite the higher accuracy of calculating the dynamics of a turbomachine
rotor. As a rule, a linear (linearized) formulation is solved with the derivation of the stiffness and
damping coefficients of the bearing [7,8] lubricant layer. When calculating a thrust bearing, the
perceived axial force is usually taken as constant to simplify the calculation procedure. However,
the axial load largely depends on the variable internal physical parameters of the compressed gas
medium during operation of a centrifugal or screw compressor.

Of particular interest are transient (unsteady) modes of compressor operation. They can
be observed when the compressor is connected to an external network containing inertia and
capacity; when the compressor is disconnected from the network; when the characteristics of
the compressor itself change, for example, when the frequency of rotation of the rotor of the

Fig 1. Scheme of the rotary part of a centrifugal compressor: 1 — shaft; 2 — working stage; 3, 4 — fluid film
journal and thrust bearings; 5 — collar; ℎ2 — working clearance of the thrust bearing
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centrifugal compressor [5,6,9] changes. It is necessary to separately consider the modes that are
dangerous for the strength of the centrifugal compressor structure and are associated with non-
stationary gas-dynamic processes directly in the flow part: stall, rotating stall and surge [6,9,10].

During transient conditions, an additional non-design dynamic component of the axial
force acts on the thrust bearing. This leads to a change in the load in absolute value and, in
some cases, direction. This may result in the failure of the thrust bearing due to possible contact
between the rotor disk and the working surface of the bearing pads.

Theoretical analysis of possible axial displacements of the compressor rotor under the action
of an external load allows, in the process of designing the housing, to evaluate the correctness of
the choice of geometric and operating parameters of the rotor system and to select the optimal
option for its layout taking into account the axial action of the thrust bearing. In this case, the
basis of this analysis is the determination of the axial displacement of the rotor disk with a given
layout and the operating conditions of the thrust bearing while maintaining the requirement for
reliability and durability of its operation.

Thus, the dynamic operating conditions of the fluid film thrust bearing of the centrifugal
compressor and screw compressor and ensuring the stability of the axial movement of the rotor
disk determine the relevance of the research. A nonlinear problem is used to describe the dynamic
behavior of the rotor. This article is devoted to describing the solution to this problem.
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Fig 2. Calculation scheme of the fluid film thrust bearing: a — pad profile with a parallel taper land; b — pad
profile with a taper land; c — section along A-A along the middle radius: 1, 2 — wedge and flat parts of the pad;
3 — collar; 4 — lubricating film; 5 — interpad groove; 6 — boundary layer
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1. Statement of the problem

The fluid film thrust bearing under consideration consists of stationary (fixed) cushions
1, 2 of a solid annular thrust bearing and a rotating thrust disk 3, which are separated from
each other by lubricating layers 4 above the surface of the cushions (Fig. 2). Such separation is
ensured by the occurrence of hydrodynamic pressure in the lubricating layers due to the rotation
of the disk 3, narrowing the confuser gap in the direction of rotation and the supply of lubricant
of the required volume and viscosity. When the disk 3 rotates, the lubricant is drawn by the
surface into the narrowing wedge-shaped gap, as a result of which the pressure in the lubricating
layers 4 of the bearing increases and balances the externally applied load. The space between the
cushions is filled with inter-cushion channels 5 (ICC), through which fresh lubricant is supplied
with a constant pressure of 0.24...0.26 MPa (abs.) from the external lubrication system of the
compressor unit. In the ICC, on the surface of the disk and under the condition of its rotation, a
thin boundary layer of lubricant 6 is formed, participating in the complex heat exchange process
of mixing the lubricant [11]. On the one hand, the boundary layer transfers, during disk rotation,
the lubricant heated by dissipation with a temperature of 𝑡|3=θ𝑝 from the previous cushion to the
next one. On the other hand, it receives fresh lubricant with a lower temperature of 𝑡0 coming
from the ICC, thus forming an important initial temperature 𝑡|3=0 at the entrance to the next
cushion. All bearing pads have a single and unique geometry of the working surface, called a
profile. The paper considers two most frequently used in compressor technology profiles of the
stationary surface of the pad: a bevel parallel to the inter-pad channel (IPC) (see Fig. 2, a) and a
helical surface of the wedge-shaped spike (see Fig. 2, b). The profile, in turn, allows the occurrence
of hydrodynamic pressure with a certain diagram, the integral of which over the working surface
of the pad forms the bearing capacity 𝑃 , which balances the external axial force 𝐹 and provides
a guaranteed gap ℎ2 to prevent the pads from touching the disk, including during the transient
modes of the CC and VK.

The hydrodynamic theory of lubrication describes the operating principle, operating conditi-
ons, and mathematical foundations of plain bearings. The result of its consistent development is
the periodic thermoelastohydrodynamic (PETH) theory [12]. This formulation most fully describes
the jointly occurring hydrodynamic and thermal processes in the lubricant and boundary layers,
thermal processes in the supporting cushion and the rotating element, taking into account the
thermoelastic deformations of the cushion from the temperature difference across the thickness
and direction of rotation of the element. A special feature of this formulation is that for the
internal energy equation describing the accumulation and propagation of heat, periodic thermal
boundary conditions are specified near the inlet edge of the cushion at 3 = 0 [13–15]. This allows
one to directly calculate the previously unknown temperature at the inlet to the cushion 𝑡|3=0

during the calculations and not to perform preliminary temperature calculations by successive
approximations [12]. Such a formulation also allows one to take into account the temperature
fields of the cushion and especially the thrust disk, taking into account heat exchange with the
external environment. As a consequence, due to the combination of factors taken into account,
the flow of lubricant and the spread of heat in the elements of the fluid film thrust bearing, the
PTUGD theory has the greatest convergence in verifying the results of numerical calculations
with physical experiments [16].

When deriving the PTUGD equations of the mathematical model of the operation of a
fluid film thrust bearing with stationary compressor cushions, the following simplifications were
adopted, which made it possible to significantly simplify the original Navier–Stokes equations.

1. The thickness of the lubricant layer is small compared to the radial 𝑟 and circumferential
3 directions. For a thrust bearing, this is the 𝑦 direction, limited by the surface of the disk
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at 𝑦 = 0 and the cushion at 𝑦 = ℎ (see Fig. 2).
2. The pressure gradient across the thickness of the lubricant layer is taken to be zero 𝜕𝑝/𝜕𝑦 =

0 compared to the radial and circumferential pressure gradients and is not taken into
account in the analysis.

3. The inertial forces are insignificant based on the analysis of the order of magnitude of the
Navier–Stokes equations, that is, the substantial derivatives of the velocities 𝐷𝑉𝑟(3,𝑦)/𝑑𝑡 =
0. This also means that the viscosity forces of the lubricant prevail over the inertial forces.

4. The flow in the lubricant layer is assumed to be laminar in the absence of vortex flow and
turbulence inside the layer, which is consistent with negligible inertial forces.

5. The lubricant layer is not affected by mass forces (centrifugal, gravitational, etc.).
6. At the boundary with the surface of solid bearing elements, i.e. the disk at 𝑦 = 0 and the

cushion at 𝑦 = ℎ, the lubricant is stationary or moves with the velocity of this surface (the
condition of lubricant adhesion).

7. An analysis of the order of magnitude of the velocities in the Navier–Stokes equation
showed the dominant effect of the velocity gradients across the thickness of the lubricant
layer 𝜕𝑉𝑟/𝜕𝑦 and 𝜕𝑉3/𝜕𝑦 over the others.

8. The lubricant is Newtonian and isotropic, i.e. the physical properties at each of its points
are the same in all directions.

Further, the PTUGD mathematical model is presented in dimensionless form through
relative (dimensionless) quantities, related to characteristic dimensions (the «–» sign above the
quantity). The main defining equations with the corresponding boundary conditions are:

1. Reynolds equation describing the two-dimensional pressure distribution in the lubricating
layer of the region �̄�1

(︀
−1 ⩽ 𝑟 ⩽ 1, 0 ⩽ 3̄ ⩽ θ̄𝑝, 0 ⩽ 𝑦 ⩽ 1

)︀
and is the fundamental equation

of bearing hydrodynamics. The equation is derived with a minimum of restrictive assumpti-
ons, in which the density and viscosity of the lubricant are functions of all three coordinates.
In the dimensionless non-stationary form, the equation takes the following form:

− λ2 𝜕

𝜕𝑟

[︂
(σ𝑟 + 1)ℎ̄3𝑓0

𝜕𝑝

𝜕𝑟

]︂
− 𝜕

𝜕3̄

[︂
ℎ̄3

σ𝑟 + 1
𝑓0

𝜕𝑝

𝜕3̄

]︂
=

= −Reψσλ2
𝜕(ℎ̄3𝑓1)

𝜕𝑟
+ ω̄(σ𝑟 + 1)

𝜕(ℎ̄𝑓2)

𝜕3̄
+ 𝑆ℎ(σ𝑟 + 1)𝐴, (1)

where 𝑟, 3̄, 𝑦 are dimensionless coordinates; 𝑝 = 𝑝ℎ220/
(︀
µ0ω*𝑅2

𝑐𝑝θ
)︀

is local dimensionless

pressure; 𝐴 = 𝜕
𝜕τ̄

(︁
ℎ̄
∫︀ 1
0 ρ̄𝑑𝑦

)︁
− ρ̄𝑦=1

𝜕ℎ̄
𝜕τ̄ is non-stationary multiplier; 𝑓0, 𝑓1, 𝑓2 are functions

that take into account the variability of lubricant viscosity across the layer thickness; λ, σ are
relative length and width of the cushion; ψ = ℎ20/(𝑅𝑐𝑝θ) is relative thickness; θ is angular
extent of the cushion with the MPC; ω̄,ω* are current dimensionless and characteristic
(usually maximum) angular velocities of the disk; 𝑅𝑐𝑝 is average radius of the cushion; ℎ20
is characteristic thickness of the bearing lubricant layer; µ0 is viscosity at the lubricant
supply temperature 𝑡0 in the MPC; τ̄ = τ/τ* is dimensionless time.

2. The internal energy balance equation describing the three-dimensional temperature distribu-
tion in the lubricating and boundary layers of the region �̄�2(−1 ⩽ 𝑟 ⩽ 1, 0 ⩽ 3̄ ⩽ θ̄𝑝, θ̄𝑝 ⩽
3̄ ⩽ θ̄, 0 ⩽ 𝑦 ⩽ 1). In the divergent dimensional non-stationary form, the energy equation
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takes the following form:

𝑐𝑝

(︂
ρ
𝜕𝑡

𝜕τ
+ 𝑡

𝜕ρ
𝜕τ

)︂
+

1

𝑟

𝜕

𝜕𝑟
(𝑐𝑝ρ𝑟𝑉𝑟𝑡) +

𝜕

𝜕3

(︂
𝑐𝑝ρ
𝑟

𝑉3𝑡−
λ𝑜
𝑟2

𝜕𝑡

𝜕3

)︂
+

+
𝜕

𝜕𝑦

(︂
𝑐𝑝ρ𝑉𝑦𝑡− λ𝑜

𝜕𝑡

𝜕𝑦

)︂
= µ

[︃(︂
𝜕𝑉3
𝜕𝑦

)︂2

+

(︂
𝜕𝑉𝑟

𝜕𝑦

)︂2
]︃
, (2)

where 𝑡 is local temperature, 𝑐𝑝, λ𝑜 are isobaric heat capacity and thermal conductivity of
the lubricant, ρ is local density of the lubricant. The transformation into a dimensionless
form of the equation (2) is performed at the stage of numerical implementation using
the dimensionless temperature 𝑡 = 𝑐𝑝0ρ0ℎ220(𝑡− 𝑡0)/µ0ω*𝑅2

𝑐𝑝θ and preserving the divergent
form. The right-hand side of the equation (2) describes the dissipation of mechanical energy
and its conversion into thermal energy.

3. Three-dimensional temperature distribution in the cushion regions �̄�3(−1 ⩽ 𝑟 ⩽ 1, 0 ⩽
3̄⩽ θ̄𝑝, 0 ⩽ 𝑦𝑝 ⩽ 1) and thrust disk �̄�4(−1 ⩽ 𝑟 ⩽ 1, 0 ⩽ 3̄ ⩽ 1, 0 ⩽ 𝑦𝑝 ⩽ 1) is described
by proper heat conduction equations with the corresponding boundary conditions: at the
outer boundaries, heat exchange is taken into account by the Newton–Richmann boundary
conditions; between the lubricating layer and the cushion, as well as between the lubricating
and boundary layers and the disk, the conditions of continuity of temperatures and heat
flows (conjugation condition) are set.
In the mathematical model developed by PTUGD, the boundary condition for the energy

equation (2) at the entrance to the lubricating layer is expressed in a periodic form, which
implies equality of temperatures and heat flows of the lubricant (due to convection and thermal
conductivity). In dimensional form, in the absence of skew of the cushions and runout of the
disk, the condition takes the following form:

𝑡|3=0 = 𝑡|3=θ,
(︂
𝑐𝑝ρ
𝑟

𝑉3𝑡−
λ𝑜
𝑟2

𝜕𝑡

𝜕3

)︂⃒⃒⃒⃒
3=0

=

(︂
𝑐𝑝ρ
𝑟

𝑉3𝑡−
λ𝑜
𝑟2

𝜕𝑡

𝜕3

)︂⃒⃒⃒⃒
3=θ

.

The radial and circumferential velocities of the lubricant 𝑉𝑟 and 𝑉3 of the mathematical
model are derived from the truncated Navier–Stokes equations after estimating the dimensionless
quantities using the method of N.A. Slezkin and taking into account the condition of equality to
zero of the pressure gradient along the gap height ℎ̄. The transverse velocity 𝑉𝑦 is obtained by
solving the truncated Navier–Stokes equation along the [17] axis.

The shape of the gap of the flat-wedge surface of the stationary pad of the fluid film thrust
bearing in the absence of distortions in dimensionless form looks like this:

• in the case of a parallel MPC bevel (see fig. 2, a)

ℎ̄ =
ℎ

ℎ20
= 1− 𝑦 + 𝜀0

[︂
1− (σ𝑟 + 1)

η̄𝑘
sin (σλ3̄)

]︂
δ𝑘+

+ α*𝑝χ
Ψ𝑝

ψ

1∫︁
0

[︀
𝑇𝑝(θ̄𝑝, 𝑦𝑝)− 𝑇𝑝(3̄, 𝑦𝑝)

]︀
𝑑𝑦𝑝, (3)

δ𝑘 =

{︃
1, 0 ⩽ 3̄ ⩽ 3̄𝑘,

0, 3̄𝑘 < 3̄ ⩽ θ̄𝑘,
where 3̄𝑘 =

1

σλ
arcsin

η̄𝑘
σ𝑟 + 1

;
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• in the case of a helical surface of a wedge bevel (see fig. 2, b)

ℎ̄ =
ℎ

ℎ20
= 1− 𝑦 + 𝜀0

[︂
1− 3̄
θ̄𝑘θ̄𝑝

]︂
δ𝑘 + α

*
𝑝χ

Ψ𝑝

ψ

1∫︁
0

[︀
𝑇𝑝(θ̄𝑝, 𝑦𝑝)− 𝑇𝑝(3̄, 𝑦𝑝)

]︀
𝑑𝑦𝑝, (4)

δ𝑘 =

{︃
1, 0 ⩽ 3̄ ⩽ θ̄𝑘θ𝑝,

0, θ̄𝑘θ𝑝 < 3̄ ⩽ θ̄𝑝,

where 𝑦 = 𝑦/ℎ20 is dimensionless coordinate of disk position; 𝜀0 = ∆ℎ/ℎ20 is relative
wedge shape of the cushion; η̄𝑘 = η𝑘/𝑅𝑐𝑝 is relative width of the wedge bevel; α*𝑝 = α𝑝/β;
α𝑝 is coefficient of linear expansion of the cushion material; β is temperature coefficient of
lubricant viscosity; δ𝑘 is unit function.
The fourth term on the right of the gap shape equations (3), (4) takes into account the

thermal deformations of the fixed cushion due to free thermal expansion, described by the formula
of A. I. Golubev for mechanical seals [18]. The 𝑦 coordinate is determined either by direct
substitution into the gap shape equation (statement of the direct problem), or is calculated based
on the equation of compressor rotor dynamics (statement of the inverse nonlinear problem).

The dimensionless form of the main defining equations of the PTUGD mathematical model
is necessary for the transformation of the considered dimensional curvilinear region 𝐿2 (𝑅1 ⩽
𝑟 ⩽ 𝑅2, 0 ⩽ 3 ⩽ θ𝑝, θ𝑝 ⩽ 3 ⩽ θ, 0 ⩽ 𝑦 ⩽ ℎ) into a rectangular form �̄�2 (−1 ⩽ 𝑟 ⩽ 1, 0 ⩽
3̄ ⩽ θ̄𝑝, θ̄𝑝 ⩽ 3̄ ⩽ θ̄, 0 ⩽ 𝑦 ⩽ 1) (see fig. 2) at the stage of numerical implementation with
the obligatory condition of preserving the divergent form of the equations. The dimensionless
form is necessary to reduce the time of numerical calculations and to reduce the total number of
parameters under study when conducting subsequent parametric analysis of the thrust bearing
characteristics.

The differential equations of the mathematical model in the PTUGD formulation and
their boundary conditions are related through such physical properties of the working lubricant
as viscosity, density, heat capacity and thermal conductivity, as well as through the shape of the
gap, including the geometric profile of the working surface of the cushion, and some operating
parameters. The mathematical model developed by the authors of PTUGD and its subsequent
numerical implementation led to writing the calculation program 𝑆𝑚2𝑃𝑥3𝑇𝑥τ [19]. The program,
taking into account the modern trend of intensification of thermal processes and the three-
dimensional distribution of heat in the bearing elements, allows study the static and dynamic
operating modes of a one-way fluid film thrust bearing with fixed pads of a centrifugal or screw
compressor. The static (integral) characteristics include the bearing capacity, friction power
losses, lubricant consumption, heat flows, etc. Features of constructing a mathematical model,
a description of the main defining Reynolds equations (area 𝐿1), internal energy (area 𝐿2) and
the thermal conductivity of the pad (area 𝐿3) and thrust disk (area 𝐿4) and their boundary
conditions (see Fig. 2), non-dimensionalization and the specifics of numerical implementation
can be found in the articles [13–17,20,21].

Under the action of a variable external load during transient operating modes of a centrifugal
or screw compressor, the thrust disk moves along the rotor axis. The deviation of the disk from
an arbitrary predetermined point is determined by the formula

𝑦 = 𝑦𝑠𝑡 + 𝑦𝑑,

where 𝑦𝑠𝑡, 𝑦𝑑 are the static and dynamic components of the disk position. The initial position of
the disk, characterized by a gap of ℎ20, is set before the bearing starts operating. The dynamic
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component 𝑦𝑑 determines the displacement of the disk relative to the static position of the disk
𝑦𝑠𝑡.

The mathematical model developed by PTUGD assumes two formulations depending on
the definition of the dynamic component 𝑦𝑑:

1) direct, in which the trajectory of the disk movement is specified and, based on it, the
bearing characteristics are determined. The solution to the direct problem is described in
article [22];

2) inverse nonlinear, in which the change in the external load is specified and the position of
the disk and the bearing characteristics corresponding to this position are determined.
This paper considers an inverse nonlinear problem, which is based on the joint numerical

integration of the equations of rotor dynamics and thrust bearing hydrodynamics. The shape of
the thrust disk displacement near the point of the static position on the curve of the bearing’s
dynamic equilibrium is the geometric locus of points defining at a specific moment in time the
position of the disk center moving under the action of an external disturbing force and the
reaction of the thrust bearing. This formulation allows us to study the influence of the nonlinear
reaction of the thrust bearing and to simulate the real dynamic behavior of the rotor at any axial
eccentricities 𝑒𝑝 [23,24]. The stability of the rotor’s axial motion under the action of an external
force can be judged by analyzing the amplitude and frequency of the rotor disk displacement
and the possibility of contact between the moving and fixed parts of the bearing.

The rotor is represented as a concentrated mass, which is acted upon by an external force
from the compressor 𝐹 and the reaction of the thrust bearing 𝑃 . The relationship between the
disk position, the load-bearing capacity, and the external axial force is expressed through the
rotor dynamics equation

𝑚𝑝
𝑑2𝑦

𝑑τ2
= 𝑃 − 𝐹, (5)

where 𝑚𝑝 = const is rotor mass, 𝑦 is disk displacement coordinate along the rotor axis, τ is time,
𝑃 = 𝑃 (τ, 𝑦) is one-way bearing load-bearing capacity, 𝐹 = 𝐹 (τ, 𝑦) is axial force. The external
axial force is represented as the sum of the static and dynamic components 𝐹 = 𝐹𝑠𝑡 + 𝐹𝑑. The
dynamic component of the force can be specified according to the harmonic law, describing soft
surge of the CC, or in the form of piecewise continuous functions in the case of hard surge of the
CC [6,13]. To solve the equation (5), the initial condition the disk position is determined based
on the solution of the stationary problem: at τ = 0 the position 𝑦 = 𝑦𝑠𝑡.

Using the following dependencies: coordinate 𝑦 = ℎ20𝑦, time τ = τ0τ̄, bearing capacity
𝑃 (τ̄, 𝑦) = 𝐶𝑝𝑓𝑃 (τ̄, 𝑦), force 𝐹 (τ̄, 𝑦) = 𝐶𝑝𝑓𝐹 (τ̄, 𝑦), 𝐶𝑝𝑓 =

µ0ω*𝑅3
𝑐𝑝θ

2(𝑅2−𝑅1)

ℎ2
20

. The equation (5) takes
the following dimensionless form:

Λ
𝜕2𝑦

𝜕τ̄2
= 𝑃 − 𝐹 ,

where Λ =
𝑚𝑝ℎ3

20

τ20µ0ω*𝑅
3
𝑐𝑝θ2(𝑅2−𝑅1)

=
𝑚𝑝ψ3𝑆ℎ

τ0µ0(𝑅2−𝑅1)
is reduced mass characterizing the inertial properties

of the rotor; τ0 = 2π/ω is dimensionless time (the characteristic time is taken to be the time of
one disk revolution); 𝑆ℎ = θ/(ω*τ0) is strouhal number; ψ = ℎ20/(𝑅𝑐𝑝θ) is relative thickness; ℎ20
is characteristic thickness of the bearing layer; µ0 is viscosity at the lubricant feed temperature
𝑡0 in the MPC; 𝑅1, 𝑅2, 𝑅𝑐𝑝 are inner, outer and average radii; θ𝑝, θ are angular extents of the
cushion and the periodicity element; ω* is characteristic (usually maximum) angular velocity of
the disk.

The hydrodynamics of the thrust bearing, in turn, is represented by the load-bearing
capacity of the 𝑖-th bearing cushion. In the absence of thrust disc runout and skew of the
common surface of the thrust bearing cushions, the load-bearing capacity is 𝑃 = 𝑧𝑃𝑖, where 𝑧
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— the number of cushions. The bearing capacity of the 𝑖–th cushion is calculated by integrating
the pressure fields [15]:

𝑃𝑖 =

θ𝑝∫︁
0

𝑅2∫︁
𝑅1

𝑝𝑖𝑟𝑑3𝑑𝑟, (6)

where 𝑝𝑖 = 𝑝𝑖(τ, 𝑦) is pressure distribution in the lubricating layer of the 𝑖–th cushion. It is
determined on the basis of the solution of the Reynolds equation of the periodicity element
(see equation (1)) on the surface of the cushion at 𝑅1 ⩽ 𝑟 ⩽ 𝑅2, 0 ⩽ 3 ⩽ θ𝑝 (see Fig. 2)
taking into account the distribution of temperatures and the viscosity formed in the volume of
lubricant [12,13].

The dimensionless form of the main governing equations of the PTUGD mathematical
model is necessary to transform the considered dimensional curvilinear region 𝐿2(𝑅1 ⩽ 𝑟 ⩽
𝑅2, 0 ⩽ 3 ⩽ θ𝑝, θ𝑝 ⩽ 3 ⩽ θ, 0 ⩽ 𝑦 ⩽ ℎ) into a rectangular form �̄�2(−1 ⩽ 𝑟 ⩽ 1, 0 ⩽
3̄ ⩽ θ̄𝑝, θ𝑝 ⩽ 3̄ ⩽ 1, 0 ⩽ 𝑦 ⩽ 1) (see Fig. 2) at the stage of numerical implementation with
the mandatory condition of preserving the divergent form equations. The dimensionless form is
necessary for the correct evaluation of the values of the variables and reducing the total number
of parameters under study when conducting subsequent parametric analysis of the thrust bearing
characteristics.

2. Methodology

Considering the type of equation (5), the problem can be divided into two parts: stationary,
associated with the static force 𝐹𝑠𝑡, and non-stationary, taking into account the dynamic change
of 𝐹𝑑.

In the case of a stationary problem, the equation (5) will have the following form:

0 = 𝑃 − 𝐹𝑠𝑡. (7)

Therefore, it is necessary to balance the stationary force 𝐹𝑠𝑡 by finding a certain position of
the disk 𝑦 and calculating the bearing capacity 𝑃 . The above can be reduced to an optimization
problem

𝑦 : min |𝑃 − 𝐹𝑠𝑡|. (8)

The position of the disk naturally affects the thickness of the lubricating layer, on which
the system parameters depend. If the thickness of the lubricating layer decreases to zero, this
will mean that the disk and the pads touch, which, as was said, will lead to failure of the thrust
bearing. Therefore, the condition max

𝑥∈𝐿2

ℎ(𝑥, 𝑦) > 0 must be imposed on the parameter 𝑦, where ℎ

is the thickness of the lubricating layer.
The bearing capacity 𝑃 is an integral characteristic, the calculation of which requires

knowledge of the temperature and pressure distribution in the thrust bearing. In turn, temperature
and pressure depend on each other through such physical properties of the liquid as viscosity and
density of the lubricant, and are determined through a system of three-dimensional nonlinear
differential equations of the second order. It is worth noting that the energy equation (2) for
calculating the temperature in the lubricant has dominant convective terms [12,13]. This imposes
special requirements on the methods used, the accuracy of the calculation and, therefore, requires
computational resources. To solve the optimization problem (8), it is necessary to choose an
iterative method. Since the optimal position of the disk 𝑦 is sought, at each iteration of the
method, some 𝑦𝑘+1 will be selected, for which it will be necessary to calculate the bearing
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capacity 𝑃 and, therefore, to perform a complete calculation of the direct stationary problem.
This is an expensive process.

After solving the stationary problem (7), the system reaches equilibrium, and the thrust
bearing perceives the magnitude of the stationary force 𝐹𝑠𝑡. Based on this solution, further
calculations related to the dynamics can be performed. To solve the equation (5) we construct a
three-layer time iterative process.

𝑚𝑝
𝑦ℎ − 2𝑦ℎ + 𝑦ℎ

ℎ2τ
= 𝑃 (𝑦ℎ)− 𝐹, (9)

here 𝑦ℎ is grid approximation of disk displacement 𝑦, 𝑦ℎ is disk displacement on the previous
time layer, 𝑦ℎ is on the next one, ℎτ is time step.

The entry 𝑃 (𝑦ℎ) additionally emphasizes the dependence of the bearing capacity 𝑃 on the
disk position, namely on the value of the disk displacement on the next time layer.

The equation (9) can be reduced to a similar optimization problem (8)

𝑦ℎ : min

⃒⃒⃒⃒(︂
𝑚

𝑦ℎ
ℎ2τ
− 𝑃 (𝑦ℎ)

)︂
−
(︂
2𝑦ℎ − 𝑦ℎ

ℎ2τ
− 𝐹

)︂⃒⃒⃒⃒
. (10)

As in the case of (8), with some iterative method, at each iteration at a fixed disk position, it
is necessary to solve the direct problem, which is also an extremely costly process. Accordingly,
the implicit scheme is preferable.

For comparison, in works [23,24] for plain bearings, the authors solved the derived system
of differential equations of rotor motion by the explicit Adams–Bashforth method, which has the
fourth order of accuracy. Due to the impossibility of self-starting, the first three or four points
of the motion curve were calculated by the Euler method.

3. Results

To solve the presented optimization problems, due to their computational complexity, it is
necessary to select a minimization method that will require recalculating the coefficients of the
equation (8) and (10) as few times as possible. If we consider the target functions of the given
optimization problems, it turns out that their behavior is affected by the physical and geometric
parameters of the bearing. The only thing that can be said with certainty is the monotonicity
of the target function. Therefore, the method must take into account nonlinearity and be able
to find a solution for functions of various types. Below is a table of the number of calls to the
target function depending on its type.

The table compares several optimization methods, including those from the MatLab package
for finding the zero of a function. Let us describe the parameters of the experiments: zeroin
implements the Dekker–Brent algorithm [25] (the accuracy of 10−15 is selected); fzero — the
Dekker algorithm (accuracy of 10−15); fminsearch — the Nelder–Mead algorithm (accuracy of
10−4); fminbnd — the golden section algorithm with parabolic interpolation (accuracy of 10−4);
newton — the Newton algorithm with derivatives calculated by the difference method (accuracy
of 10−4). The zeroin method is presented modified; additional checks have been added, which in
some cases reduce the number of calls to the objective function. The main method recommended
by MatLab is the fzero method. Since some methods required a large number of calls to the
target function, the accuracy for them was reduced.

The results of the experiments showed that the modified zeroin algorithm significantly
outperforms the methods proposed by MatLab. However, zeroin requires knowing the localization
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Table. Number of target function calls depending on its form. → —
the solution is located at the right boundary of the localization

region, ≫ — the solution is shifted to the left from the boundary

Objective function zeroin fzero fminsearch fminbnd newton
const ̸= 0 1 1 29 22 200
𝑥− const 3 27 36 16 4
𝑥2 − const→ 2 32 52 20 18
𝑥2 − const← 1 1 22 20 2
𝑥2 − const≪→ 10 32 52 15 138
𝑥2 − const≫← 10 24 30 15 18
cos(𝑥), [0,π] 4 33 52 12 8
cos(𝑥), [−π, 0] 4 27 34 12 8
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Fig 3. Distribution at the optimal collar position: a — temperature along the 𝑦 axis, b — pressure along the
angular coordinate 3

domain of the function zero. A method based on Newton’s method was created to find the
localization domain. It is formulated as follows. Let [𝑎, 𝑏] be a certain segment in the domain of
definition of the function 𝑓 . If 𝑓(𝑎) * 𝑓(𝑏) < 0, then [𝑎, 𝑏] is the localization domain and does
not require clarification. Otherwise, it is necessary to perform a shift, the localization domain,
in this case, will be [α, β], where

α = (𝑎+ ∆𝑐)σ+
(︂
𝑏+ 𝑎

2
+ ∆𝑐

)︂
(1− σ),

β = (𝑏+ ∆𝑐)σ+

(︂
𝑏+ 𝑎

2
+ ∆𝑐

)︂
(1− σ).

Here ∆𝑐 = ∆𝑏−∆𝑎
2 , ∆𝑎 = −𝑓(𝑎)/𝑓 ′, ∆𝑏 = −𝑓(𝑏)/𝑓 ′, 𝑓 ′ = (𝑓(𝑏) − 𝑓(𝑎))/(𝑏 − 𝑎), σ is compression

parameter that determines the correspondence between the sizes of the initial and final regions.
Below are graphs of the results of calculations using this technique.
To calculate the temperature and pressure, the authors of the article PTUGD used the

bearing model and the 𝑆𝑚2𝑃𝑥3𝑇𝑥τ software package. The geometric dimensions of the thrust
plain bearing of a centrifugal compressor, located in the laboratory of the Department of «Compre-
ssor Machines and Installations» of the Federal State Budgetary Educational Institution of Higher
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Fig 4. raphs demonstrating the relationship of the force 𝐹 acting on the rotor. a — The region of equilibrium
localization between the load-bearing capacity 𝑃 and the force 𝐹 , b — the relationship between temperature (blue
line) and the trajectory of the collar movement (red line) (color online)

Education «KNITU» [13–15, 17, 20, 21], were adopted as the initial data for the program in
numerical experiments.

Fig. 3 shows the graphs of the distribution of temperature along the 𝑦 axis in the center of
the computational domain and pressure 𝑝 along the angular coordinate 3 at the optimal position
of the disk. As can be seen, the temperature reaches its maximum value near the cushion surface
due to braking by a stationary surface, but does not exceed the limit value of 110∘C [1,2]. Some
increase in temperature 𝑡 is observed near the disk surface due to the transfer of heated layers
of grease from the previous cushion due to viscous shear. In the body of the disk and cushion,
the temperature decreases slightly due to heat exchange with the environment. The previously
selected flat-wedge profile of the working surface of the cushion (see Fig. 2, a, b) determines
the shape of the pressure distribution curve 𝑝 and its value. In this case, the maximum of the
distribution is shifted towards disk rotation. The integral over the working surface allows us to
calculate the bearing capacity of the thrust bearing 𝑃 , balancing the external axial force 𝐹 (see
equation (6)).

Fig. 4 shows two graphs demonstrating the operation of the algorithms proposed above.
The graph in Fig. 4, a shows the behavior of the load-bearing capacity depending on the disk
position 𝑦 in blue. The graph also shows the force 𝐹 acting on the rotor at a fixed point in time.
The vertical lines show the region of localization of the equilibrium state between the load-bearing
capacity 𝑃 and the force 𝐹 . The graph in Fig. 4, b shows the relationship between the temperature
in the center of the calculation region (blue) and the trajectory of the disk movement in time (red,
in dimensionless form on the graph). For demonstration, soft surge was chosen as the simplest.
As can be seen from the graph, the curves practically coincide with a single cyclic frequency
without time inertia. In future articles, the issues of changing the integral characteristics of the
compressor thrust bearing when solving direct and inverse nonlinear problems, surge intensity
and disk rotation frequency will be considered separately.
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Conclusion

Based on the proposed methods, a software package 𝑆𝑚2𝑃𝑥3𝑇𝑥τ has been developed,
allowing to solve direct and inverse nonlinear problems of a one-sided dynamically loaded fluid
film thrust bearing with fixed pads under various geometric, physical and operating parameters.
The program can be used to study the rotor stability taking into account the impact of the thrust
bearing under various loading conditions, which is of great practical importance in the design of
various compressor machines. The advantages of the mathematical model applied by PTUGD
are the ability to fully take into account the temperature field in the thrust bearing, including
heat transfer between adjacent pads and fresh lubricant supply. With a nonlinear formulation,
the equations of rotor motion and thrust bearing hydrodynamics are integrated together, which
allows for the nonlinear behavior of the bearing reaction to be taken into account and the actual
dynamic behavior of the rotor to be modeled. ПIn the numerical implementation, an iterative
solution method is proposed using the solution of the direct problem. To reduce computational
costs, a modified Dekker-Brent method is used together with a modified Newton method. The
solution of the inverse problem will optimize the geometric dimensions of the thrust bearing to
achieve increased load-bearing capacity and stability of the rotor motion. However, it should be
noted that solving the inverse problem using the PTUGD mathematical model can be complex
and require significant computational resources. Thus, the development of effective numerical
methods and algorithms for solving this problem remains a relevant area of research in engineering
science.
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