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Abstract. Purpose. Consider a system of differential equations with delay, which models a fully connected chain of
𝑚+1 neurons with delayed synaptic communication. For this fully connected system, construct periodic solutions
in the form of discrete traveling waves. This means that all components are represented by the same periodic
function 𝑢(𝑡) with a shift that is a multiple of some parameter ∆ (to be found). Methods. To search for the
described solutions, in this work we move from the original system to an equation for an unknown function 𝑢(𝑡),
containing 𝑚 ordered delays, differing with step ∆. It performs an exponential substitution (typical of equations
of the Volterra type) in order to obtain a relay equation of a special form. Results. For the resulting equation,
a parameter range is found in which it is possible to construct a periodic solution with period 𝑇 depending on
the parameter ∆. For the found period formula 𝑇 = 𝑇 (∆), it is possible to prove the solvability of the period
equation, that is, to prove the existence of non-zero parameters — integer 𝑝 and real ∆ — satisfying the equation
(𝑚 + 1)∆ = 𝑝𝑇 (∆). The constructed function 𝑢(𝑡) has a bursting effect. This means that 𝑢(𝑡) has a period of 𝑛
high spikes, followed by a period of low values. Conclusion. The existence of a suitable parameter ∆ ensures the
existence of a periodic solution in the form of a discrete traveling wave for the original system. Due to the choice
of permutation, the coexistence of (𝑚+ 1)! periodic solutions is ensured.
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Introduction

In this paper, we consider a model of a fully coupled neuron network. It is based on the
equation [1–3]

𝑢̇ = λ𝐹 (𝑢(𝑡− 1))𝑢, (1)

which is used to describe the behavior of a single neuron. Here 𝑢(𝑡) > 0 is the normalized
membrane potential of the neuron, λ > 0 characterizes the rate of electrical processes, 𝐹 is a
piecewise constant function,

𝐹 (𝑢) =

{︃
−𝑎, 𝑢 ∈ (0, 1],

1, 𝑢 > 1,

𝑎 = const > 0. Equation (1) is in some sense the limit version of the generalized Hutchinson
equation [4, 5]

𝑢̇ = λ𝑓(𝑢(𝑡− 1))𝑢, (2)
where 𝑓 is a smooth function,

𝑢 = 𝑢(𝑡) > 0; λ≫ 1; 𝑓(0) = 1; lim
𝑢→∞

𝑓(𝑢) = −𝑎 (𝑎 > 0); 𝑓
′
(𝑢), 𝑢𝑓

′′
(𝑢) = 𝑂(𝑢−2), 𝑢 → ∞.

In [4] it was proved that equation (2) admits a stable relaxation cycle 𝑢(𝑡) = 𝑒λ(𝑥0(𝑡)+𝑂(1/λ)) for
λ→ +∞, where

𝑥0(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑡, 𝑡 ∈ [0, 1],

−𝑎(𝑡− 𝑡0), 𝑡 ∈ [1, 𝑡0 + 1],

𝑡− 𝑇0, 𝑡 ∈ [𝑡0 + 1, 𝑇0],

(3)

𝑥0(𝑡+ 𝑇0) = 𝑥0(𝑡), 𝑡0 = (𝑎+ 1)/𝑎, 𝑇0 = (𝑎+ 1)2/𝑎.
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Fig 1. The function 𝑥0(𝑡)

The function 𝑥0(𝑡) is shown in Fig. 1.
Returning to equation (1), we note that it has
an orbitally stable 𝑇0-periodic solution 𝑢(𝑡) =
𝑒λ𝑥0(𝑡).

In this paper, neurons, each of which
is individually modeled by equation (1), are
connected into a fully coupled system with
synaptic one-way interaction.

The method for modeling synaptic
connection is based on the idea of fast
threshold modulation, described, for example,
in [6–8]. It is chosen as a certain limiting
version of the connection used, for example, in the works [9, 10] when modeling ring chains
of neurons. To describe the complete connection, a function that is symmetric with respect to
the permutation of its arguments is used

𝐺(𝑢1, . . . , 𝑢𝑚) =

⎧⎨⎩0, if for ∀𝑖 𝑢𝑖 < 1,

𝑏, if ∃𝑘 𝑢𝑘 > 1,

𝑏 = const > 0. The synaptic connection is assumed to be retarded, so each argument of the
function 𝐺 has a delay ℎ > 0.
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As a model of a fully coupled chain of neurons with a retarded synaptic connection, a system
of differential equations with delay is proposed

𝑢̇𝑗 =
(︁
λ𝐹 (𝑢𝑗(𝑡− 1)) +𝐺(𝑢0(𝑡− ℎ), . . . , 𝑢𝑗−1(𝑡− ℎ), 𝑢𝑗+1(𝑡− ℎ), . . . , 𝑢𝑚(𝑡− ℎ)) · ln 𝑢*

𝑢𝑗

)︁
𝑢𝑗 , (4)

𝑗 = 0, 1, . . . ,𝑚. Here 𝑢𝑗(𝑡) > 0 — normalized membrane potentials of neurons, λ > 0 characterizes
the rate of electrical processes, ℎ > 0 — delay in the communication chain, the terms
𝐺(𝑢0(𝑡−ℎ), . . . , 𝑢𝑗−1(𝑡−ℎ), 𝑢𝑗+1(𝑡−ℎ), . . . , 𝑢𝑚(𝑡−ℎ)) · ln(𝑢*/𝑢𝑗)𝑢𝑗 model synaptic interaction
with a time delay. When describing the jth neuron, the function 𝐺 is multiplied by the logarithm
ln(𝑢*𝑢𝑗), which changes sign when the values of the function 𝑢𝑗 pass the threshold value 𝑢* =

= exp(𝑐λ), 𝑐 = const ∈ R.
Similar (4) systems of equations that describe networks of neurons and are based on the

solitary neuron model (1) or (2) are considered in a number of works [1, 2, 11]. In [11], the so-
called impulse-refractory mode was constructed for a ring chain of neurons with one-way synaptic
interaction. It is understood as a periodic regime in which components with exponentially high
spikes alternate with components with exponentially small values. The works [1, 2] consider the
interaction of two neurons. Results on the multistability of coexisting periodic regimes with a
fixed total number of spikes are proven.

In contrast to the above-mentioned works, this paper considers a fully coupled system, i.e.
we assume that each neuron is connected to each other. In [12], a fully coupled system of neuro-
oscillators with electrical synaptic connection is introduced, each of the oscillators is described
by equation (2). For the case of a ring system with unidirectional connection, results on buffering
are proved, and for a fully coupled network, where all connections are equal and identical, the
issue of two-cluster synchronization is studied. In [13], the issue of two-cluster synchronization
is also studied, but using van der Pol oscillators as an example. In [14], a fully connected system
of nonlinear oscillators is considered, and the dynamic properties of chimeric solutions arising
during two-cluster synchronization are studied.

Section 1 is devoted to the formulation of the problem. It describes the mechanism for
searching for discrete traveling waves, the transition to an auxiliary relay equation with 𝑚 delays,
and introduces a set of initial functions for it. Section 2 presents the main result in the form of
three theorems. Sections 3 and 4 prove the formulated theorems.

1. Statement of the problem

1.1. Discrete traveling waves. We are interested in the existence of a periodic solution
of the system (4) in the form of a discrete traveling wave. The technique for constructing solutions
of this type for a fully coupled system is the same as, for example, in [15], and is similar to the
technique for a ring chain of generators (see [16]): we assume that all functions 𝑢𝑘 are represented
by the same periodic function 𝑢 with shifts multiple of some parameter ∆:

𝑢𝑘(𝑡) = 𝑢(𝑡+ 𝑗𝑘∆), 𝑘 = 0, 1, . . . ,𝑚, (5)

where 𝑗0, 𝑗1, . . . , 𝑗𝑚 denote some permutation of numbers 0, 1, . . . ,𝑚, and the parameter ∆ is to
be determined.

656
Preobrazhenskii I. E., Preobrazhenskaia M.M.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2024;32(5)



We fix 𝑘. After substituting (5) into the 𝑘-th equation (4) and renormalizing time 𝑡+𝑗𝑘∆ ↦→
𝑡, we obtain

𝑢̇ =
(︁
λ𝐹

(︀
𝑢(𝑡− 1)

)︀
+𝐺

(︀
𝑢(𝑡+ (𝑗0 − 𝑗𝑘)∆− ℎ), . . . , 𝑢(𝑡+ (𝑗𝑘−1 − 𝑗𝑘)∆− ℎ),

𝑢(𝑡+ (𝑗𝑘+1 − 𝑗𝑘)∆− ℎ), . . . , 𝑢(𝑡+ (𝑗𝑚 − 𝑗𝑘)∆− ℎ)
)︀
· ln 𝑢*

𝑢

)︁
𝑢. (6)

Note that the differences 𝑗𝑙− 𝑗𝑘 (𝑙 = 0, 1, . . . , 𝑘−1, 𝑘+1, . . . ,𝑚) take all values from the ordered
set {−𝑗𝑘, . . . ,−1, 1, . . . ,𝑚− 𝑗𝑘}. Let 𝑇 = 𝑇 (∆) denote the period of 𝑢(𝑡). Given the symmetry of
𝐺 with respect to the permutation of its arguments, equation (6) is equivalent to the following:

𝑢̇ =
(︁
λ𝐹

(︀
𝑢(𝑡− 1)

)︀
+𝐺

(︀
𝑢(𝑡− ∆− ℎ), . . . , 𝑢(𝑡− 𝑗𝑘∆− ℎ),

𝑢(𝑡+ (𝑚− 𝑗𝑘)∆− 𝑇 − ℎ), . . . , 𝑢(𝑡+ ∆− 𝑇 − ℎ)
)︀
· ln 𝑢*

𝑢

)︁
𝑢. (7)

Since for each 𝑘 = 0, 1, . . . ,𝑚 the same equation for the function 𝑢(𝑡) must be obtained,
the requirement

𝑢 (𝑡− (𝑗𝑘 + 1)∆− ℎ) ≡ 𝑢 (𝑡+ (𝑚− 𝑗𝑘)∆− 𝑇 − ℎ) ,

is natural, that is, the value (𝑗𝑘 + 1)∆ + (𝑚 − 𝑗𝑘)∆ − 𝑇 must be a multiple of 𝑇 . From this we
obtain that for the periodicity of the solution (𝑢0, 𝑢1, . . . , 𝑢𝑚) of the system (4) it is necessary
that the parameter ∆ and the period 𝑇 = 𝑇 (∆) of the function 𝑢(𝑡) satisfy the period equation

(𝑚+ 1)∆ = 𝑝𝑇 (∆), 𝑝 ∈ Z ∖ {0}, ∆ ∈ R ∖ {0}. (8)

In this case, all equations of the system (7) are transformed into

𝑢̇ =
(︁
λ𝐹

(︀
𝑢(𝑡− 1)

)︀
+𝐺

(︀
𝑢(𝑡+𝑚∆− ℎ), . . . , 𝑢(𝑡+ ∆− ℎ)

)︀
· ln 𝑢*

𝑢

)︁
𝑢. (9)

Thus, the problem of finding periodic solutions of system (4) in the form of discrete traveling
waves (5) has been reduced to finding a periodic function 𝑢(𝑡) satisfying (9) and a parameter ∆
such that the period 𝑇 = 𝑇 (∆) of the function 𝑢(𝑡) satisfies the period equation (5) for some
integer 𝑝.

Note that in the case of the existence of the specified function 𝑢(𝑡) and the parameter ∆,
the choice of permutation ensures the coexistence of (𝑚+1)! periodic solutions of the system (4).

1.2. Relay equation with 𝑚 delays. Instead of equation (9), consider the equation

𝑢̇ =
(︁
λ𝐹

(︀
𝑢(𝑡− 1)

)︀
+𝐺

(︀
𝑢(𝑡− ℎ1), . . . , 𝑢(𝑡− ℎ𝑚)

)︀
· ln 𝑢*

𝑢

)︁
𝑢 (10)

with ordered delays

ℎ1 < ℎ2 < . . . < ℎ𝑚, ℎ𝑠+1 = ℎ𝑠 + |∆|, 𝑠 = 1, . . . ,𝑚− 1. (11)

1.3. Transition to logarithmic scale. We make an exponential change of variables in
(10): 𝑢 = 𝑒λ𝑥, assuming that 𝑐 = const such that 𝑢* = 𝑒λ𝑐:

𝑥̇ = 𝐹
(︁
𝑒λ𝑥(𝑡−1)

)︁
+ (𝑐− 𝑥)𝐺

(︁
𝑒λ𝑥(𝑡−ℎ1), . . . , 𝑒λ𝑥(𝑡−ℎ𝑚)

)︁
.
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We introduce notations for functions with exponential arguments

𝑅(𝑥) = 𝐹 (𝑒λ𝑥) =

{︃
−𝑎, 𝑥 < 0,

1, 𝑥 > 0,

𝐻(𝑥1, . . . , 𝑥𝑚) = 𝐺(𝑒λ𝑥1 , . . . , 𝑒λ𝑥𝑚) =

{︃
0, if for ∀𝑖 𝑥𝑖 < 0,

𝑏, if ∃𝑘 𝑥𝑘 > 0.

Thus, the new unknown function 𝑥(𝑡) must satisfy the equation

𝑥̇ = 𝑅(𝑥(𝑡− 1)) + (𝑐− 𝑥)𝐻(𝑥(𝑡− ℎ1), . . . , 𝑥(𝑡− ℎ𝑚)). (12)

Fig 2. Representatives of the set of initial functions

1.4. Initial set of functions. As a set
of initial functions for equation (12), we choose
the following:

𝑆 =
{︀
3 ∈ 𝐶[−ℎ𝑚, 0] :

3(𝑡) < 0 for 𝑡 ∈ [−ℎ𝑚, 0), 3(0) = 0
}︀
.

(13)

These are negative functions on the interval of
the length of the largest delay ℎ𝑚, taking the
value zero at zero (see schematic fig. 2).

2. Result

2.1. Solution of the relay equation with respect to the variable 𝑥. We introduce
the notation

𝑦0(𝑥̃, 𝑡) =

⎧⎨⎩
(︂
𝑥̃− 1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡 +

1

𝑏
+ 𝑐, 𝑡 ∈ [0, 𝑡0],

𝑡− 𝑡0 + 𝑦0(𝑥̃, 𝑡0) 𝑡 ∈ [𝑡0, 𝑇0],

𝑦0(𝑥̃, 𝑡+ 𝑇0) = 𝑦0(𝑦0(𝑥̃, 𝑇0), 𝑡). (14)

Fig 3. The function 𝑦0(𝑡)

This function is shown in Fig. 3. It consists
of continuously “glued” alternating parts of the
exponential and linear functions with slope 1. The
quantity 𝑥̃ denotes the value of the function 𝑦0 at
𝑡 = 0. Below, in lemma 2, it will be proved that
the condition

𝑐 < −𝑎− 1

𝑏
− 𝑎+ 1

1− 𝑒−𝑏𝑡0
(15)

guarantees that 𝑦0((𝑘+1)𝑇0) < 𝑦0(𝑘𝑇0). We also
introduce the quantities

𝑥
(1)
0 = 𝑥0(ℎ1),

𝑥
(𝑠+1)
0 = ℎ𝑠+1 − ℎ𝑠 − 𝑡0 − (𝑛− 1)𝑇0 + 𝑦0(𝑥

(𝑠)
0 , 𝑡0 + (𝑛− 1)𝑇0), 𝑠 = 1, . . . ,𝑚− 1,
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Theorem 1. Let us fix a natural number 𝑛. Let

1) parameters 𝑎 > 0, 𝑏 > 0 and 𝑐 satisfy the constraint (15);
2) delays ℎ𝑠 satisfy the inequalities

(𝑛− 1)𝑇0 + 𝑡0 + 1 < ℎ1 < 𝑛𝑇0, (16)

ℎ𝑠+1 − ℎ𝑠 > 𝑡0 + (𝑛− 1)𝑇0, 𝑠 = 1, . . . ,𝑚− 1; (17)

ℎ𝑠+1 − ℎ𝑠 < 𝑛𝑇0 + 𝑎(1− 𝑒−𝑛𝑏𝑡0), 𝑠 = 1, . . . ,𝑚− 1. (18)

Then equation (12) with any initial function from the set (13) has a 𝑇 -periodic solution

𝑥(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥0(𝑡), 𝑡 ∈ [0, ℎ1]

𝑦0(𝑥
(𝑠)
0 , 𝑡− ℎ𝑠), 𝑡 ∈ [ℎ𝑠, ℎ𝑠 + 𝑡0 + (𝑛− 1)𝑇0],

𝑠 = 1, . . . ,𝑚,

𝑡− ℎ𝑠 − 𝑡0 − (𝑛−1)𝑇0 + 𝑦0(𝑥
(𝑠)
0 , 𝑡0 + (𝑛−1)𝑇0), 𝑡 ∈ [ℎ𝑠 + 𝑡0 + (𝑛−1)𝑇0, ℎ𝑠+1],

𝑠 = 1, . . . ,𝑚− 1,

𝑡− ℎ𝑚 − 𝑡0 − (𝑛−1)𝑇0 + 𝑦0(𝑥
(𝑚)
0 , 𝑡0 + (𝑛−1)𝑇0), 𝑡 ∈ [ℎ𝑚 + 𝑡0 + (𝑛− 1)𝑇0, 𝑇 ],

(19)

𝑇 = ℎ𝑚 + 𝑡0 + (𝑛− 1)𝑇0 −
(︂
𝑥
(𝑚)
𝑛−1 −

1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 − 1

𝑏
− 𝑐. (20)

The quantities 𝑥
(𝑠)
0 denote the values of the solution 𝑥(𝑡) at the points ℎ𝑠. The schematic graph

of the function 𝑥(𝑡) is shown in Fig. 4.
A detailed proof of the theorem 1 is presented in section 3. Here we restrict ourselves to

describing the meaning of the conditions on the parameters given in the theorem.
The double inequality (16) means that the time moment 𝑡 = ℎ1 falls on the 𝑛-th period of

the function 𝑥0(𝑡), and on the segment where 𝑥0(𝑡) increases and is negative (see Fig. 1).
The constraint (17) means that the lengths of the segments [ℎ𝑠, ℎ𝑠+1] are greater than the

length of the interval on which the solution 𝑥(𝑡) coincides with the function 𝑥0(𝑡) and changes
sign (up to the last point of positivity on the period).

Inequalities (18) ensure that the quantities 𝑥
(𝑠)
0 are negative for 𝑠 = 1, . . . ,𝑚. This will be

proved in lemma 6.

Fig 4. The function 𝑥(𝑡) for 𝑛 = 2, 𝑚 = 3
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2.2. Solvability of the period equation. For the period 𝑇 described by the formula
(20), it is possible to prove the statement on the solvability of the period equation (8).

Theorem 2. We fix natural numbers 𝑚 ⩾ 2 and 𝑛. Let

1) parameters 𝑎 > 0, 𝑏 > 0;
2) the value of 𝑐 satisfies the constraints (15) and

𝑐 > −2𝑎− 1

𝑏
− 𝑎+ 1

1− 𝑒−𝑏𝑡0
; (21)

3) the delays ℎ𝑠 satisfy (16) and (11).

Then there exist ∆ ∈ R ∖ {0} and 𝑝 ∈ Z ∖ {0} satisfying equation (8), and

𝑡0 + (𝑛− 1)𝑇0 < |∆| < 𝑛𝑇0 + 𝑎(1− 𝑒−𝑛𝑏𝑡0). (22)

The inequality (22) means that for ℎ𝑠+1 − ℎ𝑠 = |∆| the conditions are satisfied (17) and (18) of
the theorem 1. The proof of the theorem is given in section 4.

2.3. Periodic solution of the original system. The presence of a suitable parameter
∆ ensures the existence of a periodic solution of the original system in the form of a discrete
traveling wave. Thus, the following result follows from theorems 1 and 2.

Theorem 3. Let

1) 𝑛 is a fixed natural number,
2) parameters 𝑎, 𝑏, 𝑐, ℎ𝑠 (𝑠 = 1, . . . ,𝑚) satisfy the conditions of the theorem 1,
3) λ > 0,
4) ∆ ̸= 0 satisfies the period equation (8) for some integer 𝑝 ̸= 0, then there exists ℎ such that

the system (4) has (𝑚+ 1)! coexisting solutions of the form

𝑢𝑘 = 𝑒λ𝑥(𝑡+𝑗𝑘∆), (23)

where 𝑥(𝑡) is described by the formula (19), 𝑗0, 𝑗1, . . . , 𝑗𝑚 represent some permutation of the
numbers 0, 1, . . . ,𝑚. In this case, each component has «high-amplitude» (of the order of 𝑒λ)
bursts on the period 𝑛, after which there follows an interval with «small» (of the order of 𝑒−λ)
values of the function 𝑢𝑘(𝑡). The value (𝑚+ 1)∆ is a multiple of the period of this solution.

u

t

Fig 5. A function 𝑢(𝑡) with a bursting effect, containing
𝑛 = 2 bursts per period

The behavior of the solution components
described in the theorem can naturally be
called the bursting effect (see Fig. 5).

Taking into account (5) and the
exponential replacement 𝑢 = 𝑒λ𝑥, the validity
of the theorem 3 follows from the theorem 1
and the theorem 2. Note the method of
choosing the parameter ℎ. If ℎ1 > ∆, then
ℎ = ℎ1 − ∆. If ℎ1 < ∆, then we can take
ℎ = ∆− ℎ1.
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3. Proof of the theorem 1

On the interval [0, ℎ1] the function 𝐻(𝑥(𝑡− ℎ1), . . . , 𝑥(𝑡− ℎ𝑚)) is equal to 0, therefore, on
the current interval 𝑥(𝑡) is found from the initial Cauchy problem⎧⎨⎩𝑥̇ = 𝑅(𝑥(𝑡− 1)),

𝑥(𝑡)|𝑡∈[−ℎ𝑚,0] = 3(𝑡).
(24)

The solution to problem (24) is a periodic function 𝑥0(𝑡) described by formulas (3). This
function is shown in Fig. 1. It vanishes at the points

𝑘𝑇0, 𝑡0 + 𝑘𝑇0, 𝑘 = 0, 1, . . . (25)

and breaks at the points
1 + 𝑘𝑇0, 𝑡0 + 1 + 𝑘𝑇0, 𝑘 = 0, 1, . . . . (26)

By the condition of the theorem 1, the value ℎ1 falls on the 𝑛-th period of the function 𝑥0(𝑡).
More precisely: the constraint (16) guarantees that ℎ1 falls on the segment of the period of the
function 𝑥0(𝑡) where it increases and is negative.

Equation (12) on the interval [ℎ1, ℎ2] takes the form

𝑥̇ = 1 + (𝑐− 𝑥)𝐻(𝑥0(𝑡− ℎ1),3(𝑡− ℎ2) . . . ,3(𝑡− ℎ𝑚)).

The first argument of the function 𝐻 changes sign, and the arguments from the 2nd to the 𝑚-th
are negative. This means that the value of the function 𝐻 here is determined by the sign of
its first argument 𝑥0(𝑡− ℎ1). On the segments [ℎ1 + 𝑘𝑇0, ℎ1 + 𝑡0 + 𝑘𝑇0], 𝑘 = 0, 1, . . . , 𝑛− 1 the
function 𝑥0(𝑡−ℎ1) is positive, and on the segments [ℎ1+𝑡0+𝑘𝑇0, ℎ1+𝑡0+(𝑘+1)𝑇0] it is negative.
We denote the value of the function 𝑥 at the points ℎ1 + 𝑘𝑇0 by 𝑥

(1)
𝑘 ; these quantities are to be

determined. Thus, depending on the sign of 𝑥0(𝑡− ℎ1) on the interval [ℎ1, ℎ1 + 𝑡0 + (𝑛− 1)𝑇0],
we obtain one of two possible Cauchy problems.

1. For 𝑡 ∈ [ℎ1 + 𝑘𝑇0, ℎ1 + 𝑡0 + 𝑘𝑇0], 𝑘 = 0, 1, . . . , 𝑛− 1,⎧⎨⎩𝑥̇ = 1 + (𝑐− 𝑥)𝑏,

𝑥|𝑡=ℎ1+𝑘𝑇0 = 𝑥
(1)
𝑘 ,

(27)

from where
𝑥(𝑡) =

(︂
𝑥
(1)
𝑘 − 1

𝑏
− 𝑐

)︂
𝑒−𝑏(𝑡−ℎ1−𝑘𝑇0) +

1

𝑏
+ 𝑐. (28)

2. For 𝑡 ∈ [ℎ1 + 𝑡0 + 𝑘𝑇0, ℎ1 + (𝑘 + 1)𝑇0], 𝑘 = 0, 1, . . . , 𝑛− 2,⎧⎨⎩𝑥̇ = 1,

𝑥|ℎ1+𝑡0+𝑘𝑇0 =

(︂
𝑥
(1)
𝑘 − 1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 +

1

𝑏
+ 𝑐.

(29)

Here the initial value is determined by formula (28). The solution of the Cauchy problem (29)
has the form

𝑥(𝑡) = 𝑡− ℎ1 − 𝑡0 − 𝑘𝑇0 +

(︂
𝑥
(1)
𝑘 − 1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 +

1

𝑏
+ 𝑐 (30)
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Thus, it is proved that on the interval [ℎ,ℎ1 + 𝑡0 + 𝑘𝑇0] the solution 𝑥(𝑡) of equation (12)
coincides with the function 𝑦0(𝑥

(1)
0 , 𝑡− ℎ1) described by the formula (14), 𝑥(1)0 = 𝑥0(ℎ1). In this

case,
𝑥
(1)
𝑘 = 𝑦0(𝑥

(1)
0 , 𝑘𝑇0).

Next, we prove two lemmas describing the behavior of the sequence 𝑥
(1)
𝑘 .

Lemma 1. The sequence 𝑥
(1)
𝑘 is given by the formula

𝑥
(1)
𝑘 = (𝑎+ 1)

1− 𝑒−𝑘𝑏𝑡0

1− 𝑒−𝑏𝑡0
+

(︂
𝑥
(1)
0 − 1

𝑏
− 𝑐

)︂
𝑒−𝑘𝑏𝑡0 +

1

𝑏
+ 𝑐. (31)

Proof. Given the recurrent form of 𝑦0 and the fact that 𝑇0 − 𝑡0 = 𝑎+ 1, we obtain a recurrent
sequence for 𝑥

(1)
𝑘 :

𝑥
(1)
𝑘+1 = 𝑎+ 1 +

(︂
𝑥
(1)
𝑘 − 1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 +

1

𝑏
+ 𝑐. (32)

From here, summing the corresponding geometric progression, accumulating in the coefficient at
(𝑎+ 1), we find an explicit formula for calculating 𝑥

(1)
𝑘 :

𝑥
(1)
𝑘 = (𝑎+ 1)

1− 𝑒−𝑘𝑏𝑡0

1− 𝑒𝑏𝑡0
+

(︂
𝑥
(1)
0 − 1

𝑏
− 𝑐

)︂
𝑒−𝑘𝑏𝑡0 +

1

𝑏
+ 𝑐.

The lemma 1 is proved.
Let us prove the lemma on the monotonicity of the sequence 𝑥

(1)
𝑘 .

Lemma 2. Let the parameters 𝑎, 𝑏, 𝑐 satisfy the inequality (15). Then the sequence 𝑥(1)𝑘 described
by the formula (31) is decreasing.

Proof. We will prove that
𝑥
(1)
𝑘+1 < 𝑥

(1)
𝑘 .

This inequality, taking into account (31), is equivalent to the following inequality:

(𝑎+ 1)
1− 𝑒−(𝑘+1)𝑏𝑡0

1− 𝑒−𝑏𝑡0
+

(︂
𝑥
(1)
0 − 1

𝑏
− 𝑐

)︂
𝑒−(𝑘+1)𝑏𝑡0 < (𝑎+ 1)

1− 𝑒−𝑘𝑏𝑡0

1− 𝑒−𝑏𝑡0
+

(︂
𝑥
(1)
0 − 1

𝑏
− 𝑐

)︂
𝑒−𝑘𝑏𝑡0 ,

whence follows
𝑐 < 𝑥

(1)
0 − 1

𝑏
− 𝑎+ 1

1− 𝑒−𝑏𝑡0
.

The last inequality is true, since 𝑥
(1)
0 = 𝑥0(ℎ1) > 𝑥0(𝑡0 + 1 + (𝑛− 1)𝑇0) = −𝑎, and by condition

(15) is satisfied.
Under the assumption (16), 𝑥(1)0 = 𝑥0(ℎ1) = ℎ1 − 𝑛𝑇0 < 0 is valid, therefore, lemma 2 and

the decrease of the exponent in the function 𝑦0 ensure the negativeness of the solution on the
interval [ℎ1, ℎ1 + 𝑡0 + (𝑛− 1)𝑇0].

The next interval of construction starts at the point ℎ1+ 𝑡0+(𝑛−1)𝑇0 and will last either
to the point ℎ2 or to the next root increased by 1. Here the problem takes the form⎧⎨⎩𝑥̇ = 1,

𝑥|𝑡=ℎ1+𝑡0+(𝑛−1)𝑇0
=

(︂
𝑥
(1)
𝑛−1 −

1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 +

1

𝑏
+ 𝑐,
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from where

𝑥(𝑡) = 𝑡− ℎ1 − 𝑡0 − (𝑛− 1)𝑇0 +

(︂
𝑥
(1)
𝑛−1 −

1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 +

1

𝑏
+ 𝑐. (33)

Substituting ℎ2 into formula (33), using (31), inequalities (18), (15) and the negativeness of 𝑥(1)0 ,
we see that 𝑥(ℎ2) < 0. This means that ℎ2 is less than the next root of function 𝑥(𝑡). Thus, the
current construction interval is [ℎ1 + 𝑡0 + (𝑛− 1)𝑇0, ℎ2], and the formula (33) is valid on it.

Then the solution is constructed in the same way as it was done on the interval [ℎ1, ℎ2].

Lemma 3. For 𝑡 ∈ [ℎ𝑠, ℎ𝑠 + 𝑡0 + (𝑛 − 1)𝑇0], 𝑠 = 1, . . . ,𝑚, the function 𝐻 has one argument
with alternating sign (this is 𝑥(𝑡 − ℎ𝑠)), and the other arguments are negative. On the intervals
[ℎ𝑠 + 𝑡0 + (𝑛− 1)𝑇0, ℎ𝑠+1], 𝑠 = 1, . . . ,𝑚− 1, all arguments of the function 𝐻 are negative.

The proof of the lemma is carried out by the method of mathematical induction and includes
several lemmas on the behavior of the quantities 𝑥

(𝑠)
𝑘 .

On each of the intervals [ℎ𝑠, ℎ𝑠+𝑡0+(𝑛−1)𝑇0], when solving the equation, Cauchy problems
arise similar to problems (27) and (29).

1. For 𝑡 ∈ [ℎ𝑠 + 𝑘𝑇0, ℎ𝑠 + 𝑡0 + 𝑘𝑇0], 𝑘 = 0, 1, . . . , 𝑛− 1, 𝑠 = 1, . . . ,𝑚⎧⎨⎩𝑥̇ = 1 + (𝑐− 𝑥)𝑏,

𝑥|𝑡=ℎ𝑠+𝑘𝑇0 = 𝑥
(𝑠)
𝑘 .

(34)

The sequence 𝑥
(𝑠)
𝑘 is equal to the values of the function 𝑥(𝑡) at the points ℎ𝑠+ 𝑘𝑇0. They will be

described by recurrence relations below. From (34) we find

𝑥(𝑡) =

(︂
𝑥
(𝑠)
𝑘 − 1

𝑏
− 𝑐

)︂
𝑒−𝑏(𝑡−ℎ𝑠−𝑘𝑇0) +

1

𝑏
+ 𝑐. (35)

Substituting 𝑡 = ℎ𝑠+ 𝑡0+ 𝑘𝑇0 into (35), we obtain the initial value for the next Cauchy problem
by number.

2. For 𝑡 ∈ [ℎ𝑠 + 𝑡0 + 𝑘𝑇0, ℎ𝑠 + (𝑘 + 1)𝑇0], 𝑘 = 0, 1, . . . , 𝑛− 2, 𝑠 = 1, . . . ,𝑚⎧⎪⎨⎪⎩
𝑥̇ = 1,

𝑥|ℎ𝑠+𝑡0+𝑘𝑇0 =

(︂
𝑥
(𝑠)
𝑘 − 1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 +

1

𝑏
+ 𝑐,

from
𝑥(𝑡) = 𝑡− ℎ𝑠 − 𝑡0 − 𝑘𝑇0 +

(︂
𝑥
(𝑠)
𝑘 − 1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 +

1

𝑏
+ 𝑐. (36)

3. For 𝑡 ∈ [ℎ𝑠 + 𝑡0 + (𝑛− 1)𝑇0, ℎ𝑠+1], 𝑠 = 1, . . . ,𝑚− 1⎧⎪⎨⎪⎩
𝑥̇ = 1,

𝑥|ℎ𝑠+𝑡0+(𝑛−1)𝑇0
=

(︂
𝑥
(𝑠)
𝑛−1 −

1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 +

1

𝑏
+ 𝑐,

from
𝑥(𝑡) = 𝑡− ℎ𝑠 − 𝑡0 − (𝑛− 1)𝑇0 +

(︂
𝑥
(𝑠)
𝑛−1 −

1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 +

1

𝑏
+ 𝑐. (37)

To complete the proof, we formulate 3 more lemmas.
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Lemma 4. The sequences 𝑥
(𝑠)
𝑘 for 𝑠 = 1, . . . ,𝑚, 𝑘 = 0, . . . , 𝑛− 1 are defined by the formulas

𝑥
(1)
0 = 𝑥0(ℎ1), 𝑥

(𝑠+1)
𝑘 = (|∆| − 𝑛𝑇0)

1− 𝑒−𝑠𝑛𝑏𝑡0

1− 𝑒−𝑛𝑏𝑡0
𝑒−𝑘𝑏𝑡0 + (𝑎+ 1)

1− 𝑒−(𝑠𝑛+𝑘)𝑏𝑡0

1− 𝑒−𝑏𝑡0
+

+

(︂
𝑥
(1)
0 − 1

𝑏
− 𝑐

)︂
𝑒−(𝑠𝑛+𝑘)𝑏𝑡0 +

1

𝑏
+ 𝑐. (38)

Proof. Similarly to how formula (31) was obtained, we find

𝑥
(𝑠)
𝑘 = (𝑎+ 1)

1− 𝑒−𝑘𝑏𝑡0

1− 𝑒−𝑏𝑡0
+

(︂
𝑥
(𝑠)
0 − 1

𝑏
− 𝑐

)︂
𝑒−𝑘𝑏𝑡0 +

1

𝑏
+ 𝑐. (39)

Formula (37) for 𝑡 = ℎ𝑠+1 gives the value for 𝑥
(𝑠+1)
0 :

𝑥
(𝑠+1)
0 = ℎ𝑠+1 − ℎ𝑠 − 𝑡0 − (𝑛− 1)𝑇0 +

(︂
𝑥
(𝑠)
𝑛−1 −

1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 +

1

𝑏
+ 𝑐, (40)

Substituting formula (39) into (40) for 𝑘 = 𝑛− 1 and taking into account the equality 𝑇0 − 𝑡0 =

= 𝑎+ 1, we obtain the recurrent dependence of 𝑥(𝑠+1)
0 on 𝑥

(𝑠)
0 :

𝑥
(𝑠+1)
0 = ℎ𝑠+1 − ℎ𝑠 − 𝑛𝑇0 + (𝑎+ 1)

1− 𝑒−𝑛𝑏𝑡0

1− 𝑒−𝑏𝑡0
+

(︂
𝑥
(𝑠)
0 − 1

𝑏
− 𝑐

)︂
𝑒−𝑛𝑏𝑡0 +

1

𝑏
+ 𝑐. (41)

Hence, summing up the geometric progression and taking into account that ℎ𝑠+1 − ℎ𝑠 = |∆|, we
obtain

𝑥
(𝑠+1)
0 = (|∆| − 𝑛𝑇0)

1− 𝑒−𝑠𝑛𝑏𝑡0

1− 𝑒−𝑛𝑏𝑡0
+ (𝑎+ 1)

1− 𝑒−𝑠𝑛𝑏𝑡0

1− 𝑒−𝑏𝑡0
+

(︂
𝑥
(1)
0 − 1

𝑏
− 𝑐

)︂
𝑒−𝑠𝑛𝑏𝑡0 +

1

𝑏
+ 𝑐. (42)

From formulas (39) and (42) follows (38).

Lemma 5. Let parameters 𝑎, 𝑏, 𝑐 satisfy inequality (15). Then sequences 𝑥
(𝑠)
𝑘 , 𝑠 = 1, . . . ,𝑚,

described by formulas (38), decrease in 𝑘 for fixed 𝑠.

This lemma is proved similarly to lemma 2.
The following lemma guarantees that the values of the function 𝑥 at the points ℎ𝑠 are

negative.

Lemma 6. Let the parameters 𝑎, 𝑏, 𝑐, ℎ𝑠 (𝑠 = 1, . . . ,𝑚) satisfy conditions (18) and (15), then
the values 𝑥

(𝑠)
0 < 0 for 𝑠 = 1, . . . ,𝑚.

Proof. We prove the statement by mathematical induction. It follows from condition (16) that
𝑥
(1)
0 = 𝑥0(ℎ1) = ℎ1 − 𝑛𝑇0 < 0. This means that the induction base is satisfied. Suppose that

𝑥
(𝑠)
0 < 0, then, applying to (41) the inequalities (18) and 𝑐 + 1

𝑏 < −𝑎 − 𝑎+1
1−𝑒−𝑏𝑡0

, which follows
from (15), we obtain

𝑥
(𝑠+1)
0 = ℎ𝑠+1−ℎ𝑠−𝑛𝑇0+(𝑎+1)

1− 𝑒−𝑛𝑏𝑡0

1− 𝑒−𝑏𝑡0
+𝑥

(𝑠)
0 𝑒−𝑛𝑏𝑡0+

(︂
1

𝑏
+ 𝑐

)︂
(1−𝑒−𝑛𝑏𝑡0) < 𝑥

(𝑠)
0 𝑒−𝑛𝑏𝑡0 < 0.

The lemma 6 is proved.
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The lemmas 2 and 6 guarantee the negative values of the solution 𝑥(𝑡) for 𝑡 ∈ [ℎ𝑠, ℎ𝑠+1],
thus justifying the induction step of the proof of the lemma 3.

At the final stage of constructing the solution, we obtain the Cauchy problem⎧⎪⎨⎪⎩
𝑥̇ = 1,

𝑥|𝑡=ℎ𝑚+𝑡0+(𝑛−1)𝑇0
=

(︂
𝑥
(𝑚)
𝑛−1 −

1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 +

1

𝑏
+ 𝑐,

from where

𝑥(𝑡) = 𝑡− ℎ𝑚 − 𝑡0 − (𝑛− 1)𝑇0 +

(︂
𝑥
(𝑚)
𝑛−1 −

1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 +

1

𝑏
+ 𝑐. (43)

The right-hand side of equation (12) turns out to be equal to 1, since all arguments of 𝐻 are
negative after 𝑡 = ℎ𝑚 + 𝑡0 + (𝑛 − 1)𝑇0. This situation will persist on the interval [ℎ𝑚 + 𝑡0 +

(𝑛− 1)𝑇0, 𝑇 ], where 𝑇 denotes the first zero of the function 𝑥(𝑡) greater than (𝑛− 1)𝑇0+ 𝑡0 (the
positive root with number 2𝑛). From formula (43) follows (20).

Lemma 7. Let 𝑥(𝑡) be a solution of equation (12) constructed on the interval [0, 𝑇 ] and described
by the formulas (3) for 𝑡 ∈ [0, ℎ1], (35), (36) and (37) for 𝑡 ∈ [ℎ1, ℎ𝑚 + 𝑡0 + (𝑛− 1)𝑇0], (43) for
𝑡 ∈ [ℎ𝑚 + 𝑡0 + (𝑛− 1)𝑇0, 𝑇 ]. Then the function 𝑥(𝑡+ 𝑇 ) for 𝑡 ∈ [−ℎ𝑚, 0] belongs to the set (13).

Proof. Let us prove that the interval ((𝑛−1)𝑇0+ 𝑡0, 𝑇 ), on which 𝑥(𝑡) < 0, has a length greater
than ℎ𝑚. Indeed,

𝑇 − (𝑛− 1)𝑇0 − 𝑡0 = ℎ𝑚−
(︂
𝑥
(𝑚)
𝑛−1 −

1

𝑏
− 𝑐

)︂
𝑒−𝑏𝑡0 − 1

𝑏
− 𝑐⏟  ⏞  

=−𝑥(ℎ𝑠)>0

> ℎ𝑠.

Then the interval [𝑇 − ℎ𝑚, 𝑇 ) is embedded in ((𝑛− 1)𝑇0 + 𝑡0, 𝑇 ), and 𝑥(𝑇 ) = 0.
Lemma 7 ensures the 𝑇 -periodicity of the constructed solution 𝑥(𝑡).
Theorem 1 is completely proved.

4. Proof of Theorem 2

Note that in the period equation (8), due to the positivity of 𝑇 and 𝑚+ 1, the quantities
∆ and 𝑝 have the same sign, so we can write

𝑇 =
(𝑚+ 1)|∆|

|𝑝|
. (44)

We give an explicit formula for calculating the period 𝑇 . Substituting (38) into (20), and
also taking into account that ℎ𝑚 = ℎ1 + (𝑚− 1)|∆| and 𝑥

(1)
0 = ℎ1 − 𝑛𝑇0, we get

𝑇 = |∆|
(︁
𝑚− 1− 𝑒−𝑚𝑛𝑏𝑡0

1− 𝑒−𝑛𝑏𝑡0

)︁
+ ℎ1(1− 𝑒−𝑚𝑛𝑏𝑡0) + 𝑛𝑇0

1− 𝑒−(𝑚+1)𝑛𝑏𝑡0

1− 𝑒−𝑛𝑏𝑡0
−

− (𝑎+ 1)
1− 𝑒−𝑚𝑛𝑏𝑡0

1− 𝑒−𝑏𝑡0
− 1

𝑏
− 𝑐. (45)
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From (44) and (45) it follows

(
𝑚+ 1

|𝑝|
−𝑚+

1− 𝑒−𝑚𝑛𝑏𝑡0

1− 𝑒−𝑛𝑏𝑡0
)|∆| =

= ℎ1(1− 𝑒−𝑚𝑛𝑏𝑡0) + 𝑛𝑇0
1− 𝑒−(𝑚+1)𝑛𝑏𝑡0

1− 𝑒−𝑛𝑏𝑡0
− (𝑎+ 1)

1− 𝑒−𝑚𝑛𝑏𝑡0

1− 𝑒−𝑏𝑡0
− 1

𝑏
− 𝑐. (46)

Here the coefficient of |∆| is positive, since 𝑚+1
|𝑝| > 𝑚 and the exponent with a negative exponent

is less than 1. The right-hand side is positive due to the inequality (15), which implies

−(𝑎+ 1)
1− 𝑒−𝑚𝑛𝑏𝑡0

1− 𝑒−𝑏𝑡0
− 1

𝑏
− 𝑐 > −(𝑎+ 1)

1− 𝑒−𝑚𝑛𝑏𝑡0

1− 𝑒−𝑏𝑡0
+ 𝑎+

𝑎+ 1

1− 𝑒−𝑏𝑡0
=

(𝑎+ 1)𝑒−𝑚𝑛𝑏𝑡0

1− 𝑒−𝑏𝑡0
+ 𝑎 > 0.

Thus, we have verified the correctness of finding ∆ from equation (46) and can write

|∆| =
ℎ1(1− 𝑒−𝑚𝑛𝑏𝑡0) + 𝑛𝑇0

1− 𝑒−(𝑚+1)𝑛𝑏𝑡0

1− 𝑒−𝑛𝑏𝑡0
− (𝑎+ 1)

1− 𝑒−𝑚𝑛𝑏𝑡0

1− 𝑒−𝑏𝑡0
− 1

𝑏
− 𝑐

𝑚+ 1

|𝑝|
−𝑚+

1− 𝑒−𝑚𝑛𝑏𝑡0

1− 𝑒−𝑛𝑏𝑡0

.

Now it remains to check the validity of the constraints (22). Let |𝑝| = 1, then 𝑚+1
|𝑝| −𝑚 = 1.

Applying inequalities (15), (21) and (16), we obtain the required.
Theorem 2 is proved.

Conclusion

We have introduced a system (4) that models a fully connected chain of 𝑚 + 1 neurons
with a synaptic delay connection. For it, the theorem 3 on the coexistence of (𝑚 + 1)! periodic
solutions in the form of discrete traveling waves with a bursting effect is proved. To this end, for
the auxiliary equation (12) with 𝑚 ordered delays ℎ1, . . . , ℎ𝑚, the theorem 1 on the existence of a
special periodic regime is proved. After that, theorem 2 on the solvability of the period equation
is proved.

Note that the constraint (16) in the theorem 1 is artificial. The value ℎ1 falls on a certain
period of the function 𝑥0(𝑡), the number of which is designated by 𝑛. In this case, four cases of
mutual arrangement of points (25), (26) and ℎ1 are possible:

(I) (𝑛− 1)𝑇0 < ℎ1 < (𝑛− 1)𝑇0 + 1;
(II) (𝑛− 1)𝑇0 + 1 < ℎ1 < (𝑛− 1)𝑇0 + 𝑡0;

(III) (𝑛− 1)𝑇0 + 𝑡0 < ℎ1 < (𝑛− 1)𝑇0 + 𝑡0 + 1;
(IV) (𝑛− 1)𝑇0 + 𝑡0 + 1 < ℎ1 < 𝑛𝑇0.

For definiteness, we have considered in detail the case (IV), for which the theorem 1 is
proved. In other cases, similar statements can be proved, in which the form of the solution is
slightly different from (19), but the general idea of alternating intervals with positive and negative
values is preserved, which ensures the presence of a bursting effect in the function 𝑢(𝑡). Thus,
the bursting effect can be preserved when ℎ1 varies over a wider range.
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