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Abstract. The purpose of this work is development and research of an algorithm for determining the structure
of couplings of an ensemble of chaotic self-oscillating systems. The method is based on the determination of
causality by Granger and the use of direct propagation artificial neural networks trained with regularization.
Results. We have considered a method for recognition structure of couplings of a network of chaotic maps based on
the Granger causality principle and artificial neural networks approach. The algorithm demonstrates its efficiency
on the example of small ensembles of maps with diffusion couplings. In addition to determining the network
topology, it can be used to estimate the magnitue of the couplings. Accuracy of the method essencially depends on
the observed oscillatory regime. It effectively works only in the case of homogeneous space-time chaos. Discussion.
Although the method has shown its effectiveness for simple mathematical models, its applicability for real systems
depends on a number of factors, such as sensitivity to noise, to possible distortion of the waveforms, the presence
of crosstalks and external noise etc. These questions require additional research.
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Introduction

One of the tasks of mathematical modeling is the identification of dynamic systems (DS),
i.e. the reconstruction of equations describing the dynamics of a system based on the signals it
generates [1–6]. The possibility of its solution is based on Takens’ theorem [7]. If the DS is a
network of interacting subsystems, the signals from which are available for observation, then the
identification task will also include determining the structure of network connections. A number
of methods are used to solve it, one of which is based on determining the Granger causality
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(GC) [8,9]. The GC method allows to identify the influence of one system (Aactive) on another
(Recepient) by constructing a time forecast of the behavior of the latter with taking into account
the dynamics of A and without it. Obviously, taking into account A should either improve the
forecast of R, that is, reduce the prediction errors, if A affects R, or leave the forecast accuracy
unchanged otherwise. Thus, to determine the GC, two predictor filters are constructed:

R(𝑛+ 1) = 𝑓 (R(𝑛),A(𝑛)) (1)

R(𝑛+ 1) = 𝑔 (R(𝑛)) .

By introducing the average root-mean-square error 𝜀 =

√︁
|R(𝑛+1)−R(𝑛)|2 as a measure of

prediction quality, we can determine the degree of influence of 𝐴 on 𝑅 as 𝑃𝐼 =
(︁
𝜀2𝑔−𝜀2𝑓

)︁
/𝜀2𝑔 [10].

The GS method and its modifications are used to determine the dependencies between
living and nonliving nature systems [11–17]. Its reliability and application features were tested
on many models of nonlinear dynamics [18–20]. Despite the apparent simplicity of the algorithm,
its practical applicability depends on a number of factors: the noise level of the observed signals,
their sparseness in time, the delay between the generated and observed signals, the presence
of “hidden” sources that simultaneously affect both analyzed subsystems, etc. Such factors as
the dimension of the analyzed system, the complexity of its topology, as well as the choice of
prediction algorithm, can play a significant role.

An artificial neural network (ANN) can be used as a tool for determining the structure of
couplings of an ensemble of chaotic generators. [21, 22]. The ability of a neural network to work
as a filter-predictor of chaotic dynamics is well known [23–25]. Accordingly, ANNs can be used
as functions 𝑓 and 𝑔 in equations (1), thereby implementing the algorithm described above.

An interesting idea was proposed in [26]: taking advantage of the fact that the ANN itself
has a network structure, force it to adjust its own structure of synaptic connections to the
structure of the ensemble couplings during training, thereby identifying the latter. This task can
be considered as a structural optimization problem. In the initial state, an untrained ANN is
fully connected. Such architecture may be redundant for successfully predicting the dynamics of
the analyzed system.

Is it possible to force a neural network to “remove” unnecessary connections during training?
A similar method is known and has long been used for other purposes — preventing overtraining
of the network. It is based on the introduction of a “complexity penalty” that ensures maximum
simplification of the network structure with an acceptable level of its efficiency. This method is
called training with regularization [21]. The regularization method was first proposed by A. N.
Tikhonov [27] and has been widely used in optimization problems.

When using structural optimization that occurs during the training of the ANN to predict
the chaotic dynamics of the ensemble, the intensity of the synaptic coefficients takes the minimum
necessary values, sufficient for a successful prediction. These values, properly normalized, can be
used to assess the presence of couplings between the elements of the ensemble and their intensity.
This method is an alternative to using the standard criterion in the form of a PI factor.

In this paper, we propose an algorithm for estimating the structure of connections of an
ensemble of chaotic mappings based on the [26] method. The algorithm is tested on several
simple examples — chains of identical one-dimensional mappings with unidirectional and mutual
diffusion connections, for which its performance is demonstrated. The paper also determines the
sensitivity of the method to the choice of the regularization parameter and studies the possibility
of using it to estimate the magnitude of connections.
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1. The ensembles under study

Let a self-oscillating system be defined by a discrete-time map 𝑥(𝑛+ 1) = 𝑓(𝑥(𝑛)), where
𝑥 is a real dynamic variable describing the state of the system at time 𝑛; 𝑓 is a function defining
its change at one step of discrete time. Let us consider an ensemble of 𝑁 identical interacting
systems:

𝑥𝑖(𝑛+ 1) = 𝑓(𝑥𝑖) +

𝑁∑︁
𝑗=1

𝐶𝑖𝑗 (𝑓(𝑥𝑗)− 𝑓(𝑥𝑖)) , 𝑖 = 1, ..., 𝑁. (2)

Here the subscript is the number (identifier) of the ensemble element, and the matrix 𝐶

specifies the topology and intensities of the couplings between the maps. The term in brackets
is a discrete analogue of the operator ∇. Therefore, this type of couplings is called the diffusion
coupling ([28, 29]). To simplify the problem, we will assume that the strengths of all couplings
are the same. In this case, the matrix 𝐶 takes the form γ𝐿̂, where γ is the common coupling
coefficient for all elements, and the adjacency matrix 𝐿̂ specifies their structure: the element 𝐿𝑖𝑗

takes the value 1 if node 𝑗 affects node 𝑖, and the value 0 if there is no such effect.
It is convenient to rewrite the system of equations (2) in matrix-vector form. To do this,

we define a column vector x = [𝑥1, 𝑥2, . . . , 𝑥𝑁 ]𝑇 , where the superscript 𝑇 denotes transposition.
Then we obtain the equation

x(𝑛+ 1) = 𝑀̂ f (x(𝑛)) , (3)

where 𝑁×𝑁 matrix 𝑀̂ is the general matrix of ensemble couplings. It takes into account mutual
influences of oscillators on each other and self-interactions: diagonal elements 𝑀𝑖𝑖 = 1−𝑞γ, where
𝑞 ∈ [0, 𝑁 − 1] is the number of other nodes acting on the 𝑖-th, and off-diagonal 𝑀𝑖𝑗 = γ𝐿𝑖𝑗 .
Determining the matrix 𝑀̂ based on observations of the ensemble dynamics is the task of this
study.

Let us choose as an element of the ensemble (2) the logistic map defined by the equation

𝑥(𝑛+ 1) = α𝑥(𝑛) (1− 𝑥(𝑛)) , (4)

where α ∈ [0 : 4[ is a parameter. The (4) map is one of the basic models of nonlinear dynamics,
whose behavior is well known. Depending on α, it can exhibit various regular and chaotic regimes:
a fixed point (periodic oscillations) with a period of one, oscillations with a period of 2𝑘 (𝑘 =

1, 2, 3, ...), weak (coherent) chaos in the form of multi-band chaotic attractors, and developed
incoherent chaos. The last regime (α = 3.95) is chosen by us as the initial one.

When combining (4) maps into an ensemble, the oscillation regime, in addition to α, is
also determined by the parameter γ and the matrix 𝐿̂. Accordingly, under certain couplings it
can change from chaotic to regular. Such cases will be excluded from consideration.

2. Using ANN to Estimate the Ensemble Link Matrix

Determining the structure of ensemble couplings is closely related to the problem of system
identification, which is solved using multilayer direct propagation neural networks trained with a
teacher [21]. The simplest version of such a network is a two-layer network with a nonlinear and
monotone activation function of the first layer and a linear output layer (Fig. 1), the equation of
which has the form

Y1 = 3
(︁
𝑊̂X+ b1

)︁
, 𝑦 = 𝑈̂Y1 + 𝑏2. (5)

638
Shabunin A.V.

Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2024;32(5)



X Y1

y
W, b1
^ U, b2

^

�

Fig 1. The scheme of a two-layer neural network

Here 𝑦 is a scalar signal at the network output, X = [𝑋1, 𝑋2, ..., 𝑋𝑁 ]𝑇 is an 𝑁 -dimensional vector
of the input signal, Y1 = [𝑌1, 𝑌2, ..., 𝑌𝑀 ]𝑇 is an 𝑀 -dimensional vector of the first layer output
signal, 𝑊̂ and 𝑈̂ are 𝑀 × 𝑁 and 1 × 𝑀 matrices of weight coefficients (synaptic weights) of
neurons of the first and second layers, respectively, and 𝑀 × 1 vector b1 and 𝑏2 are their biases;
3(x) = [31 (x) ,32 (x) , . . . ,3𝑀 (x)]𝑇 — vector sigmoid activation function of the first layer in
the form of hyperbolic tangent, acting elementwise on each component of its argument according
to the rule 3𝑖(x) = tanh (𝑥𝑖). Since the ANN is used as a predictor filter for the system (2),
its input dimension (𝑁) should be equal to the dimension of the ensemble. The intermediate
dimension (𝑀) can be chosen arbitrarily and is determined by the complexity of the problem
and the accuracy of the approximation. In this study, the value 𝑀 = 10 is used.

To identify the system (2, 4), we will use the supervised learning method, where the vector
x(𝑛) at the current time is taken as the input signal, and the scalar signal from the 𝑖-th node
𝑥𝑖(𝑛 + 1) is taken as the target value. Thus, the goal of learning is to predict the dynamics of
the 𝑖-th mapping one step ahead. The essence of learning is to optimize the network parameters
that minimize the target function Φ

(︁
𝑊̂ ,b1, 𝑈̂ , 𝑏2

)︁
. As a rule, the mean square of the prediction

errors is chosen as the latter 𝜀(𝑛) = 𝑦(𝑛)− 𝑥𝑖(𝑛+ 1):

Φerr =
1

𝐾

𝐾∑︁
𝑛=1

𝜀2(𝑛), (6)

where 𝐾 ≫ 1 is the number of training vectors, i.e. the duration of observation of the ensemble
dynamics.

If the learning is successful, i.e. Φerr ≃ 0, the neural network correctly predicts the dynamics
of the corresponding (𝑖-th) map of the ensemble based on the previous data obtained from all
maps. Does this mean that the structure of connections within neural layers follows the structure
of couplings between oscillators in the ensemble? As will be shown below, no such correspondence
is observed.

The reason is that the target function (6) used during training only estimates the accuracy
of the system approximation (2, 4), but is in no way related to the structure of the neural network
itself. In order for the ANN to adapt to the ensemble structure during training, in addition to the
existing training aim — reducing prediction errors — it is necessary to also require a simultaneous
simplification of the structure of the neural network itself, that is, removing from it (“zeroing”)
synaptic coefficients that are unnecessary for successful approximation. To solve this problem,
following the recommendations of [26], we add to the target function (6) a “complexity penalty”,
which is the sum of the squares of the synaptic coefficients of the entire network:

Φcp =
2∑︁

𝑘=1

∑︁
𝑖𝑗

𝑊 2
𝑖𝑗,𝑘, (7)
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where 𝑘 is the layer number, 𝑖, 𝑗 are the row and column numbers of the corresponding matrices.
The new objective function will be a weighted sum (6) and (7):

Φ = Φer + 𝑟Φcp, (8)

where the weighting coefficient 𝑟 ⩾ 0 is called the regularization coefficient (RC). RC defines the
relationship between the two learning goals: the ability to predict the ensemble dynamics and
the reduction of the required synaptic coefficients of the ANN.

Thus, the method for diagnosing the structure of couplings of an ensemble of maps is as
follows:

1. An ANN is created, the structure of which is shown in Fig. 1, with an input dimension
equal to the number of ensemble elements 𝑁 , and the number of neurons in the hidden
layer 𝑀 = 10.

2. The network coefficients are initialized with random values uniformly selected from the
interval [−1, 1].

3. To train the ANN, a training set of 𝐾 = 5000 vectors
{︀
X(𝑛)

}︀𝐾−1

𝑛=0
is formed, each of which

represents a map of the entire ensemble at the 𝑛-th moment in time: X(𝑛) = x(𝑛).

4. A set of target values
{︁
𝑦
(𝑛)
𝑖

}︁𝐾−1

𝑛=0
is formed, i.e. 𝑦(𝑛)𝑖 = 𝑥𝑖(𝑛+ 1).

5. The network is trained with regularization based on the target function (8). Training can
be performed using the backpropagation method using gradient methods. In this work, the
quasi-Newton algorithm, which is a second-order method, was used for faster convergence.
The following values of the algorithm’s operating parameters were chosen: the minimum
value of the target function Φmin = 10−6; the minimum value of the objective function
gradient modulus |∇Φ|min = 10−6; the maximum number of training epochs was 3000.

6. To identify couplings, the matrix of synaptic coefficients of the first layer 𝑊̂ is used,
the columns of which correspond to the numbers of network inputs (i.e., the numbers
of ensemble oscillators). To quantitatively determine the degree of influence of the 𝑗-th
oscillator on the prediction of the dynamics of the 𝑖-th, the root-mean-square value of the
coefficients of the 𝑗-th column is calculated

𝑤𝑖𝑗 =
1

𝑀

⎯⎸⎸⎷ 𝑀∑︁
𝑘=1

𝑊 2
𝑘𝑗 ,

which is then normalized to the sum of such values for all columns:

𝑆𝑖𝑗 =
𝑤𝑖𝑗∑︀𝑁
𝑙=1𝑤𝑖𝑙

. (9)

The obtained values 𝑆𝑖𝑗 will be called influence coefficients of the 𝑗-th node on the 𝑖-th, and
the matrix 𝑆 composed of them will be called the influence matrix. The latter will be used to
identify the structure of the ensemble’s couplings.

3. Definition of the structure of couplings of the ensemble of logistic maps

Using the algorithm described in the previous section, we will estimate the structure of
couplings in the ensemble (4), gradually complicating the task.
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3.1. Two maps with unidirectional coupling. Let us first consider the simplest case
— two maps with a unidirectional coupling

𝑥1(𝑛+ 1) = 𝑓 (𝑥1(𝑛))

𝑥2(𝑛+ 1) = 𝑓 (𝑥2(𝑛)) + γ (𝑓 (𝑥1(𝑛))− 𝑓 (𝑥2(𝑛))) . (10)

The coupling matrix for (10) is

𝑀̂ =

[︂
1 0

γ 1− γ

]︂
. (11)

At the selected parameter α = 3.95 the ensemble demonstrates the regime of developed chaos
in the entire considered interval 0 ⩽ γ ⩽ 0.5. This is confirmed by the values of the Lyapunov
exponents (Fig. 2, a). At the same time, in the region 0 ⩽ γ < 0.33 (marked in light gray) the
hyperchaos regime is observed, and at γ > 0.436 — the regime of complete chaotic synchronization
(marked in gray).

We choose the value γ = 0.12, corresponding to the asynchronous chaotic regime, the
phase portrait of which is shown in Fig. 2, b, and train the ANN to predict the dynamics of the
first oscillator. First, we train without regularization, that is, at 𝑟 = 0. The network is trained
successfully, as evidenced by the smallness of the mean square error Φerr < 10−6. The values of
the synaptic coefficients of the first and second layers of the ANN obtained as a result of training
are displayed in Table 1a.

To analyze connectivity, we will use the matrix of coefficients of the first layer, that is,
the vectors W1 and W2. It is clear from Table 1a that they do not correspond to the matrix
of connections (11), since the values of the coefficients of the second column (W2), determining
the influence of the second network input on the output signal, are by no means small, but are
comparable in magnitude with the coefficients of the first column (W1): the mean square values
of the coefficients for both inputs are 3.12 and 2.36, respectively. Similar results are obtained
when training the ANN to predict the dynamics of the second mapping (Table 1b). In this case,
the mean square values of the coefficients for both inputs are almost equal: 2.68 and 2.62. Thus,
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0           0.1         0.2         0.3         0.4         0.5

�

γ b

Fig 2. System dynamics (10) at α = 3.95: a — plots of Lyapunov exponents in dependence of γ; b — phase
portrait at γ = 0.12 (color online)

Shabunin A.V.
Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics. 2024;32(5) 641



Table 1. Matrices of synaptic coefficients of the first (W1, W2) and
second (U(𝑇 )

1 ) ANN layers trained to predict the dynamics of the first
(a) and the second maps (b); the regularization parameter 𝑟 = 0

a

W1 W2

−2.0798 0.0027

2.4799 −3.4474

−0.8994 4.3298

2.6254 0.0041

−3.8335 −1.8255

−4.4584 0.0720

−4.2626 −1.1638

−2.8823 −3.3587

3.5911 −2.4527

2.3295 −1.7919

U
(𝑇 )
1

2.1324

0.2769

−0.2313

0.9538

−0.0099

−1.2758

−0.1892

−0.0315

0.0782

−2.4551

b

W1 W2

0.1227 −2.1740

2.3330 1.0260

−3.3696 −1.4181

−0.6316 4.2700

0.1671 −2.4699

−2.8242 −3.2945

−3.025 −2.0144

4.197 1.4731

3.9470 1.9978

2.0082 3.9453

U
(𝑇 )
1

1.6062

−0.2417

−0.0895

−2.6671

−1.1406

−0.5918

−0.7058

−0.0585

0.1933

0.4832

in the absence of regularization, we do not see a significant difference between the values of the
coefficients W1 and W2. This means that the ANN does not adjust its own connection structure
to the ensemble structure and cannot be used to estimate the latter.

Let us now consider training an ANN with regularization. We choose a sufficiently small
value of the regularization coefficient, 𝑟 = 10−4, and train the network again. The new values
of the synaptic coefficients of the trained ANN for the first and second maps are presented in
tables 2a and 2b, respectively. Let us consider table 2a. Here the coefficients of the first and
second columns differ by two orders of magnitude: for the first layer, the mean square of the
coefficients is 0.99, and for the second, only 0.009. Based on the values of the coefficients W2,

Table 2. Matrices of synaptic coefficients of the first (W1, W2) and
second (U(𝑇 )

1 ) ANN layers trained to predict the dynamics of the first
(a) and the second map (b); the regularization parameter 𝑟 = 0.0001

a

W1 W2

0.0285 −0.0023

0.0298 0.0097

2.1769 −0.0007

0.0065 −0.0068

−0.0279 0.0041

−2.2665 −0.0008

−0.0241 −0.0096

−0.0218 0.0190

−0.0323 −0.0087

0.0299 0.0099

U
(𝑇 )
1

−0.3762

−0.1169

−1.8684

−0.3424

0.2610

−1.6906

0.3830

0.3879

0.4603

−0.4659

b

W1 W2

0.2392 0.0040

−0.2426 0.0160

0.2493 −0.0322

0.0018 −2.0389

0.0029 −2.1686

−0.2423 0.0182

−0.2463 0.0208

1.3376 0.0094

0.2419 −0.0103

0.2449 −0.0157

U
(𝑇 )
1

−0.5196

0.5004

−0.6014

1.7979

−1.4956

0.5939

0.4664

0.8936

−0.4914

−0.4937
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Fig 3. The dependence of the influence coefficients 𝑆𝑖𝑗 on the number of the training attempt 𝑛 (a) and on the
regularization parameter (b) (color online)

we can conclude that the influence of the second map on the dynamics of the first is either very
small or absent altogether. When training an ANN to predict the dynamics of the second map,
the difference in the values of the coefficients W1 and W2, as can be seen from Table 2b, is not
so significant. The obtained results are also reproduced during repeated training, as evidenced
by the series of coefficients 𝑆𝑖𝑗 presented in Fig. 3, a, obtained from twenty separate trainings.
During each test, the neural network was reinitialized, after which it was retrained on the same
training set. From the graphs it is clear that (a) the results are repeated with an accuracy of
about one percent; (b) the influence of the second oscillator on the dynamics of the first (𝑆12)
in all cases remains around one percent, while the influence of the first on the second (𝑆21) is
around 34%.

Let us estimate the influence of the regularization coefficient on the values of 𝑆𝑖𝑗 . To do
this, we will train the ANN for different values of 𝑟 and plot the graphs of the dependencies
𝑆𝑖𝑗(𝑟). The calculation results are shown in Fig. 3, b in a logarithmic scale along the ordinate
axis. It is more convenient to analyze them using the example of 𝑆12, since the exact value
for it is zero. From the calculations performed, it follows that for 𝑟 ∈ [0.0001, 0.001] the value
of the coefficient 𝑆12 does not exceed one percent. The dependence 𝑆12(𝑟) reaches a minimum
at 𝑟 ≃ 0.00045, amounting here to about 0.5 percent. The values of the remaining influence
coefficients at 𝑟 > 0.000025 remain almost unchanged and in the considered range take the
values 𝑆11 ≃ 1, 𝑆22 ≃ 0.64, 𝑆21 ≃ 0.36. Based on the analysis, we can conclude that any values of
the KR in the range from 0.0001 to 0.001 are acceptable for calculating the influence coefficients.
For further calculations, we will use 𝑟 = 0.0003.

Thus, the procedure of training the ANN with regularization allows us to obtain the matrix
of influence coefficients presented in table 3, which qualitatively corresponds to the matrix of
ensemble connections (11). As for the quantitative correspondence, it will be discussed further.

Table 3. The matrix 𝑆 for system (10), obtained from the results of
training the ANN with the regularization parameter 𝑟 = 0.0003

0.996 0.004

0.36 0.64
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4. Comparison of the PCA Array with the Mean Field Model

4.1. An ensemble of six maps. Let us now consider a system similar in structure, but
of greater dimension — an ensemble of six unidirectionally coupled maps:

𝑥1(𝑛+ 1) = 𝑓 (𝑥1(𝑛)) ,

𝑥𝑖(𝑛+ 1) = 𝑓 (𝑥𝑖(𝑛)) + γ (𝑓 (𝑥𝑖−1(𝑛))− 𝑓 (𝑥𝑖(𝑛))) , (12)

𝑖 = 2 . . . 6

with a matrix of couplings

𝑀̂ =

⎡⎢⎢⎣
1 0 . . . 0

γ 1− γ . . . 0

. . .

0 0 γ 1− γ

⎤⎥⎥⎦ . (13)

The dynamics of this ensemble is similar to the dynamics of the two maps. With the chosen α,
it exhibits a regime of developed temporal chaos, which becomes synchronous with γ ⩾ 0.436.
This is confirmed by the graphs of the Lyapunov characteristic exponents shown in Fig. 4.

From their comparison with the graphs in Fig. 2, a, the similarity in the behavior of both
systems is clearly visible.

Let us choose the same value of the coupling parameter γ = 0.12 as for the system (10)
and train the ANN at 𝑟 = 0.0003. The influence coefficients 𝑆𝑖𝑗 obtained as a result of training
are given in the table 4 and are presented as a map in Fig. 5, a. As can be seen from the
figure, the structure of the matrix 𝑆 for the ensemble (12), as well as for the simpler system (10),
qualitatively corresponds to the matrix 𝑀̂ . Thus, the white cells on the map 5, a correspond
to zero, the black ones to one, and the gray ones to the remaining coefficients of the matrix
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Fig 4. Dependence of Lyapunov exponents on γ for system (12) (color online)
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Table 4. Matrix 𝑆 for system (12), obtained from the
results of training the ANN with the regularization

parameter 𝑟 = 0.0003

0.9617 0.0090 0.0067 0.0073 0.0079 0.0073
0.3256 0.6264 0.0117 0.0102 0.0154 0.0108
0.0055 0.3350 0.6245 0.0097 0.014 0.0113
0.0053 0.0068 0.3426 0.6283 0.0083 0.0087
0.0077 0.0096 0.0081 0.3423 0.6251 0.0071
0.0080 0.0083 0.0124 0.0074 0.3404 0.6235
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Fig 5. Visual representation of 𝑆 influence matrix as a map for ensemble (12) (a) and ensemble (14) (b)

(13). Thus, increasing the ensemble dimension did not lead to deterioration of the method’s
performance, which still confidently recognizes the structure of the system’s connections.

4.2. Ensemble with symmetrical couplings. Let us now turn to the case where an
ensemble element can have several connections. One such system is a ring of six oscillators with
symmetric couplings:

𝑥𝑖(𝑛+ 1) = 𝑓 (𝑥𝑖(𝑛)) + γ (𝑓 (𝑥𝑖−1(𝑛)) + 𝑓 (𝑥𝑖+1(𝑛))− 2𝑓 (𝑥𝑖(𝑛))) (14)

𝑖 = 1 . . . 6.

The matrix of the cyclic couplings is

𝑀̂ =

⎡⎢⎢⎣
1− 2γ γ . . . γ
γ 1− 2γ . . . 0

. . .

γ 0 γ 1− 2γ

⎤⎥⎥⎦ . (15)

The system (14) demonstrates a much greater diversity of modes than ensembles with
unidirectional connections. In particular, for the chosen α, both chaotic and regular modes can
be observed here, depending on the intensity of the couplings. This is confirmed by the graphs of
the two highest Lyapunov exponents (Fig. 6), which were calculated for α = 3.95. The previously
chosen value γ = 0.12 here also corresponds to the mode of chaotic oscillations, so it can be used in
the analysis of connectivity. For small γ, the ensemble (14) demonstrates multistability, so when
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Fig 6. The dependence of the two largest Lyapunov exponents from γ in system (14) (color online)

conducting studies, in addition to the parameters, it is necessary to control the initial conditions.
The latter were chosen in a small neighborhood of the symmetric subspace: x0 = 0.1 + 0.001ξ,
where ξ is a random vector of unit length.

Let us calculate the influence coefficients using the same method as before. As a result,
we obtained the coefficients 𝑆𝑖𝑗 , which are displayed in the table 5, and are also presented in
Fig. 5, b as a map. From the comparison of the obtained matrix 𝑆 with the matrix of connections
𝑀̂ (15), their qualitative correspondence is clearly visible.

Thus, ANNs trained to predict the dynamics of an ensemble of chaotic maps adjust, under
regularization, the values of synaptic coefficients to the structure of the ensemble’s connections,
thereby allowing the latter to be determined. The method works for small ensembles with both
unidirectional and mutual couplings.

Table 5. Matrix 𝑆 for system (14), obtained from the
ANN training with the regularization parameter

𝑟 = 0.0003

0.4628 0.2506 0.0123 0.0085 0.0150 0.2509
0.2488 0.4654 0.2494 0.0118 0.0093 0.0152
0.0182 0.2437 0.4644 0.2447 0.0166 0.0124
0.0088 0.0133 0.2509 0.4645 0.2495 0.0130
0.0176 0.0099 0.0165 0.2486 0.4595 0.2480
0.2497 0.0164 0.0090 0.0152 0.2464 0.4633
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5. Estimation of the values of the coupling coefficient

The previous sections considered the issue of determining the network topology. Can the
proposed method also be used to estimate the magnitude of the coupling coefficient? To answer
this question, we will calculate the influence coefficients depending on the coupling parameter γ
and analyze the obtained dependencies.

Let us first consider the simplest case — a system of two maps (10) — and calculate the
graphs 𝑆𝑖𝑗(γ) for it. The results of the calculations are presented in Fig. 7, a. Let us analyze the
obtained dependencies. We see that in the entire interval from γ ≃ 0, up to the value γ ≃ 0.436,
the values of the coefficients 𝑆11 and 𝑆12 are close to the values one and zero, respectively. Thus,
in this interval 𝑆11 ≃ 𝑀11 and 𝑆12 ≃ 𝑀12. At γ ≃ 0.436, the system (10) transits to the mode of
complete synchronization of chaos, simultaneously with which the influence coefficients, as can
be seen from the graphs, abruptly change their values up to 𝑆11 ≃ 𝑆12 ≃ 0.5. Accordingly, upon
transition to the zone of chaotic synchronization, which is in Fig. 7, a is marked in gray, the
algorithm stops working.

Let us now turn to the two remaining coefficients. Since they are related by the relation
𝑆21 + 𝑆22 = 1, we will limit ourselves to analyzing one of them — 𝑆21. It is clearly seen from
Fig. 7, a that in the region of asynchronous chaos 𝑆21(γ) is a smooth monotonically increasing
coupling function, the shape of which resembles the power dependence 𝑆21 ∼ 𝐴γ𝑝 for 𝑝 < 1. To
test this hypothesis, we will plot 𝑆21(γ) on a logarithmic scale (Fig. 7, b), in which the power
functions look like straight lines. Indeed, from the graph’s appearance, it can be concluded that
in the range 0.01 < γ < 0.436 the dependence 𝑆21(γ) is close to a power function. The selection
of the coefficients 𝐴 and 𝑝, carried out using the least squares method, leads to the relation

𝑆21 ≃ 0.57 4
√
γ, (16)

This is shown in Fig. 7, a and 7, b by the dotted line. The presence of an unambiguous relationship
between 𝑆21 and γ seems quite trivial. However, its simple form seems to be an interesting result,
the reasons for which are not entirely clear at the moment. Nevertheless, for the system under
consideration, the expression (16) allows us to estimate the coupling coefficient based on the
values of the synaptic coefficients of the trained neural network.

Let us now consider the case of a higher-dimensional ensemble (13), plotting the same
graphs as in the previous case. The calculation results are shown in Fig. 8, a, where the graphs
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Fig 7. The dependence of the coefficients of influence on γ for the system (10) in linear (a) and logarithmic (b)
scales (color online)
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for a two-dimensional system are shown by dashed lines for comparison. As can be seen from the
comparison, there is a significant similarity between the 𝑆𝑖𝑗(γ) dependencies, along with some
minor differences. Thus, for γ ≲ 0.13, the 𝑆21(γ) graph almost coincides with the approximating
curve (16) in the range 0.15 ≲ γ < 0.436 and lags behind it by ∼ 0.1. The reason for this difference
is not entirely clear. One can only assume that it is related to the change in the structure of the
chaotic attractor, which occurs at γ ≃ 0.15; the latter can be seen from the sharp decrease in the
magnitude of the transversal Lyapunov exponents (Fig. 4). If this hypothesis is correct, it means
that the accuracy of the estimate of the magnitude of the connections should be related to the
degree of chaos in the dynamics of the subsystems and deteriorate in cases where the oscillations
of the maps become more regular.

Let us now turn to the estimation of the coupling coefficients for an ensemble with
symmetric couplings (14), which is significantly more difficult. In addition to the larger number
of couplings, the main obstacle is the richness of the system dynamics, consisting in the diversity
of oscillatory modes that replace each other when γ changes, multistability, and the existence of
dissipative structures [30].

Let us measure 𝑆𝑖𝑗(γ) with the same α = 3.95. Since the system (14) has translational
symmetry, all rows of the matrix 𝑀̂ differ only by a cyclic shift. Therefore, it is sufficient to limit
ourselves to measuring the coefficients of only the first row. The graphs 𝑆1𝑖(γ) (𝑖 = 1, . . . , 6)
obtained as a result of the calculations are shown in Fig. 8, b. Their appearance indicates a
significant heterogeneity of the dependencies, qualitatively different in different ranges of the
coupling parameter.

Let us analyze the graphs in Fig. 8, b. First of all, we divide the interval into zones with
chaotic and regular behavior. For this, we use the Lyapunov characteristic exponents (Fig. 6).
The intervals of regular dynamics identified in this way are marked in gray in Fig. 8, b (II,
IV, VII, and IX). Obviously, it is impossible to measure the directionality in these zones using
the method used. However, even in chaotic regions, the qualitative correspondence between the
coefficients of the matrices 𝑆 and 𝑀̂ is not observed everywhere. The smallness of the “zero”
coefficients 𝑆13, 𝑆14, and 𝑆15 can serve as a criterion here. According to it, good correspondence
is observed in zones I and III, where the value of these coefficients does not exceed 1–2 percent,
and somewhat worse — in interval V, where these coefficients “grow” up to ∼ 5 percent. In
the remaining chaotic zones (marked with hatching), there is no correspondence between the
influence coefficients and the coupling matrix 𝑀̂ at all. Obviously, the method does not work
in these intervals. The reason for this probably lies in the peculiarity of the system’s dynamics,
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namely, in the spatial heterogeneity of chaotic oscillations and intermittency observed at large
values of symmetric diffusion coupling, which was noted in the work [30]. Verification of this
hypothesis requires additional research.

Conclusion

The article considers a method for identifying the structure of connections in a network
of chaotic maps using the apparatus of artificial neural networks proposed earlier in the article
[26]. It consists of training an ANN to predict the dynamics of an ensemble with simultaneous
regularization, during which the neural network adjusts its own structure of synaptic couplings
to the structure of couplings of the ensemble. Based on this approach, an algorithm has been
developed that allows one to estimate the influence of individual network nodes on its dynamics
as a whole, which has been tested on examples of small ensembles of one-dimensional chaotic
maps, for which it has demonstrated its effectiveness. In addition to determining the network
topology, this approach also allows one to estimate the magnitude of the coupling coefficient.

The conducted studies have shown that the applicability of the method critically depends
on the observed oscillatory mode. It works well for the mode of developed spatially homogeneous
chaos, is not applicable for regular oscillations and the mode of chaos synchronization, as well as
when forming spatial structures in an ensemble.

The effectiveness of the proposed algorithm for analyzing connections between real systems
requires additional research. It is determined by such factors as its sensitivity to noise, distortion
of the signal shape, the presence of crosstalk, external influences, non-stationarity, etc.
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