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Abstract. The aim of the paper is to obtain a system of nonlinear evolution equations for two coaxial cylindrical
shells containing viscous fluid between them and in the inner shell, as well as numerical modeling of the propagation
processes for nonlinear solitary longitudinal strain waves in these shells. The case when the stress-strain coupling
law for the shell material has a hardening combined nonlinearity in the form of a function with fractional exponent
and a quadratic function is considered.Methods. To formulate the problem of shell hydroelasticity, the Lagrangian–
Eulerian approach for recording the equations of dynamics and boundary conditions is used. The multiscale
perturbation method is applied to analyze the formulated problem. As a result of asymptotic analysis, a system
of two evolution equations, which are generalized Schamel–Korteweg–de Vries equations, is obtained, and it is
shown that, in general, the system requires numerical investigation. The new difference scheme obtained using the
Gröbner basis technique is proposed to discretize the system of evolution equations. Results. The exact solution
of the system of evolution equations for the special case of no fluid in the inner shell is found. Numerical modeling
has shown that in the absence of fluid in the inner shell, the solitary deformation waves have supersonic velocity.
In addition, for the above case, it was found that the strain waves in the shells retain their velocity and amplitude
after interaction, i.e., they are solitons. On the other hand, calculations have shown that in the presence of a
viscous fluid in the inner shell, attenuation of strain solitons is observed, and their propagation velocity becomes
subsonic.
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Introduction

The studies of the deformation waves’ propagation in elastic structures involve the formula-
tion and solution of wave dynamics problems for such models of elastic elements as a rod, a
plate, and a shell. Now, such problems in the linear formulation are well enough studied [1].
However, modern elastic structures can be made of materials with nonlinear physical properties,
and work beyond the linear theory of elasticity, as well. Therefore, the problems of studying the
evolution of deformation waves for nonlinear computational models of elastic elements and, in
particular, the possibility of the formation of solitary nonlinear waves (solitons) in them that
retain their velocity and shape are relevant [2]. In [3], the Korteweg–de Vries equation for a
nonlinear-elastic rod was derived and the possibility of a solitary longitudinal strain wave (a
strain soliton) in it was first substantiated. Later, the Korteweg–de Vries–Burgers equation for
a viscoelastic rod and a plate describing the evolution of strain solitons in these elastic elements
was obtained in [4]. The reviews of the main papers on theoretical and experimental studies of
the evolution of solitary strain waves in nonlinear rods are given in [5, 6], and in the review [7],
where, in addition, the studies of solitary strain waves in plates and shells are presented. Note
that the studies on nonlinear wave dynamics of shells are much less than for rods and plates,
and we present below a number of studies for shells that were not included in these reviews.
The evolution equation describing the propagation of nonlinear longitudinal strain waves in a
cylindrical Kirchhoff–Love type shell made of a linear viscoelastic material and operating under
the condition of neglecting rotational inertia was obtained in [8]. It is shown that that equation
is the Kadomtsev–Petviashvili–Burgers equation. In [9], the results of full-scale experiments on
excitation, detection, and the study of the propagation of a volumetric strain soliton in a shell
made of polymethyl methacrylate are presented. The authors also proposed an axisymmetric
model of the evolution of volume longitudinal waves in a nonlinear-elastic cylindrical shell made
of Murnaghan material. As a simplification in that model, torsion and bending are neglected. The
numerical simulation of the strain soliton evolution in a nonlinearly elastic cylindrical shell with
varying cross-section and physical properties of the material on the bases of the development of
this model was carried out in [10]. In [11, 12] the evolution of axisymmetric longitudinal strain
waves in a Kirchhoff–Love cylindrical shell surrounded by a generalized nonlinear-elastic medium,
which in particular cases reduces to the Winkler, Pasternak, and Hetenyi models, is investigated.
A nonlinear evolution equation of the sixth order modeling the propagation of these waves is
obtained, and the physical realizability of its partial exact solutions in the form of periodic and
solitary waves is discussed. The study of solitary strain waves in ribbed cylindrical shells made
of incompressible material with physical softening nonlinearity, when the relationship between
stress intensity and strain intensity is given in the form of a power law with a fractional exponent,
is presented in [13,14]. In [13], the authors use the structural anisotropy method to describe the
presence of a system of orthogonal stiffeners rids at the ribreinforced shell, while in [14] they
consider a shell with stiffeners ribs in the form of internal stringers, which are described as beams
in contact with its skin. In the first of these papers [13], the evolutionary equation of longitudinal
deformation waves was obtained for the shell, which is the generalized Schamel equation, and in
the second one [14], an evolutionary equation generalizing the Schamel–Ostrovsky equation was
derived. It is shown that these equations have partial exact solutions in the form of nonlinear
solitary longitudinal deformation waves.

Cylindrical shells are used in various engineering structures, and in particular, in pipeline
systems for transportation of fluids. Therefore, the problems of studying the interaction of shells
with the liquid filling them are relevant and associated with the consideration of hydroelasticity
problems. The first studies of wave processes in elastic shell-fluid systems were carried out in a
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linear formulation. The papers [15,16] should be noted among such investigations. Reference [15],
the axisymmetric wave motion of incompressible fluid in a thin elastic cylindrical tube was
investigated and the propagation velocity of the fluid pressure wave was determined for the
case of considering the inertia of wall motion and the forces of viscous friction of the fluid.
In [16] the wave pulsating motion of viscous incompressible fluid in a thin-walled elastic tube
of circular cross-section was investigated in relation to the study of blood motion in vessels.
The current state of the research in the field of hydroelasticity of cylindrical shells is given
in [17–19]. It should be noted that most of the studies consider an ideal fluid and discuss
problems of linear wave processes in shells. Below we present a number of works in which the
nonlinear questions have been studied. In [20,21] the propagation of nonlinear solitary waves in
a geometrically nonlinear cylindrical shell filled with an ideal incompressible fluid was studied.
The axisymmetric problem of hydroelasticity was formulated, and using its asymptotic analysis
the Korteweg–de Vries equation for the shell deflection was obtained. The numerical examples
of calculations of the evolution of solitary waves in a shell are presented for the following cases:
absence of fluid in it, its complete filling with fluid, and the motion in it of a stationary
fluid flow with constant velocity. In [22], an axisymmetric hydroelastic problem is formulated
for a geometrically nonlinear cylindrical shell with structural damping, filled with a viscous
incompressible fluid and surrounded by a generalized Vlasov–Leontiev medium, in which linear
and cubic reactions to longitudinal displacement are presented. Using the perturbation method
and considering the creeping motion of the fluid in the framework of the hydrodynamic theory
of lubrication, an evolutionary integro-differential equation for longitudinal deformation waves
in the shell generalizing the Korteweg–de Vries equation is obtained. The numerical solution of
this equation was carried out, which allowed to evaluate the effects of fluid, structural damping
and surrounding elastic medium on the evolution of nonlinear solitary strain waves. In [23, 24],
longitudinal solitary strain waves in two coaxial shells with a viscous fluid between them are
investigated. In [23], the inertia of viscous fluid motion in an annular gap is taken into account,
and a system of two generalized modified Korteweg–de Vries–Burgers equations is obtained and
numerically investigated for the shells with structural damping, whose material has a physical
law with cubic nonlinearity and is surrounded by a Winkler elastic medium. In [24], the motion of
a viscous fluid in an annular gap is considered as creeping. The authors obtained and numerically
investigated the system of two generalized Schamel equations for cylindrical shells, the material
of which has a law of dependence of stress on strain and strain intensity with a nonlinear term
having a fractional exponent. This study is further developed in [25] by the case of filling the inner
shell with viscous fluid and considering the inertia of fluid motion in the annular gap between
the shells and the circular channel formed by the inner shell.

The proposed study is aimed at studying the evolution of solitary strain waves in two
coaxial cylindrical shells, which material has a combined nonlinear physical law of stress-strain
coupling, forming annular and circular channels filled with viscous incompressible fluid.

1. Derivation of the shell dynamics equations,

the hydroelasticity problem formulation

Let us consider two cylindrical shells made of the same material and having a common
longitudinal axis of symmetry. It is assumed that the entire space in the inner shell and between
the shells is filled with viscous fluid (see Fig. 1). While studying the wave process in the shells, we
will accept that they are infinitely long, i. e., exclude from consideration the reflection of waves
from the shells’ ends.
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Fig. 1

Along the symmetry axis, we direct the 𝑥-axis of the Cartesian coordinate system 𝑥𝑦𝑧,
the center of which is located at the point 𝑂 of an arbitrary (initial) cross-section. The center
of the cylindrical coordinate system 𝑟θ𝑥 is at the same point. Let us study an axisymmetric
wave process the evolution of which occurs in the positive direction of the 𝑥-axis. The radius of
the inner surface of the outer shell is 𝑅1, and 𝑅2 is the radius of the outer surface of the inner
shell, then in the unperturbed state the gap between the shells is δ = 𝑅1 − 𝑅2. The notation

of thickness for the 𝑖-th shell as ℎ
(𝑖)
0 , and 𝑅(𝑖) for the radius of its middle surface is introduced,

where 𝑖 = 1 corresponds to the outer and 𝑖 = 2 to the inner shell. Next, we will designate as the
upper index 𝑖 the parameters corresponding to the 𝑖-th shell.

Let us assume that the shells satisfy the Kirghoff–Love hypotheses and write the equations
of their dynamics according to [26] considering the load on the shells from the side of the viscous
fluid

𝜕𝑁
(𝑖)
𝑥

𝜕𝑥
= ρ0ℎ

(𝑖)
0

𝜕2𝑈 (𝑖)

𝜕𝑡2
−

(︃
𝑞(𝑖)𝑥 +𝑈 (𝑖)𝜕𝑞

(𝑖)
𝑥

𝜕𝑥
−𝑊 (𝑖)𝜕𝑞

(𝑖)
𝑥

𝜕𝑟
+(𝑖−1)

(︂
𝑞𝑐𝑖𝑟𝑥 +𝑈 (𝑖)𝜕𝑞

𝑐𝑖𝑟
𝑥

𝜕𝑥
−𝑊 (𝑖)𝜕𝑞

𝑐𝑖𝑟
𝑥

𝜕𝑟

)︂)︃⃒⃒⃒⃒
⃒
𝑅(𝑖)

,

𝜕2𝑀
(𝑖)
𝑥

𝜕𝑥2
+

𝜕

𝜕𝑥

(︃
𝜕𝑊 (𝑖)

𝜕𝑥
𝑁 (𝑖)

𝑥

)︃
+

1

𝑅(𝑖)
𝑁

(𝑖)
θ = ρ0ℎ

(𝑖)
0

𝜕2𝑊 (𝑖)

𝜕𝑡2
− (1)

−
(︂
(−1)𝑖−1

(︂
𝑞𝑛 + 𝑈 (𝑖)𝜕𝑞𝑛

𝜕𝑥
−𝑊 (𝑖)𝜕𝑞𝑛

𝜕𝑟

)︂
+ (𝑖− 1)

(︂
𝑞𝑐𝑖𝑟𝑛 + 𝑈 (𝑖)𝜕𝑞

𝑐𝑖𝑟
𝑛

𝜕𝑥
−𝑊 (𝑖)𝜕𝑞

𝑐𝑖𝑟
𝑛

𝜕𝑟

)︂)︂⃒⃒⃒⃒
𝑅(𝑖)

, 𝑖 = 1, 2.

The following notations are adopted in equations (1): 𝑀
(𝑖)
𝑥 is the bending moment in the

middle surface element of the 𝑖-th shell, 𝑁
(𝑖)
𝑥 , 𝑁

(𝑖)
θ are the normal forces, along the corresponding

axes 𝑥 and θ, of the middle surface element of the 𝑖-th shell, 𝑊 (𝑖) is the displacement of the
middle surface element along the normal (deflection) of the 𝑖-th shell, the positive direction of
which is taken to the center of curvature of the shell, 𝑈 (𝑖) — longitudinal displacement of the

middle surface element of the 𝑖-th shell, 𝑞
(𝑖)
𝑥 , 𝑞𝑛 are the tangential and normal stresses of the

viscous fluid between the shells, 𝑞𝑐𝑖𝑟𝑥 , 𝑞𝑐𝑖𝑟𝑛 are the tangential and normal stresses of the viscous
fluid filling the inner shell, 𝑡 is the time, ρ0 is the density of the shell material.
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Moment 𝑀
(𝑖)
𝑥 and normal forces 𝑁

(𝑖)
𝑥 , 𝑁

(θ)
𝑥 are defined as [26]

𝑀 (𝑖)
𝑥 =

∫︁ ℎ
(𝑖)
0 /2

−ℎ
(𝑖)
0 /2
σ(𝑖)𝑥 𝑧𝑑𝑧,𝑁 (𝑖)

𝑥 =

∫︁ ℎ
(𝑖)
0 /2

−ℎ
(𝑖)
0 /2
σ(𝑖)𝑥 𝑑𝑧,𝑁

(𝑖)
θ =

∫︁ ℎ
(𝑖)
0 /2

−ℎ
(𝑖)
0 /2
σ(𝑖)θ 𝑑𝑧, (2)

where σ(𝑖)𝑥 , σ(𝑖)θ are the normal stresses, along the corresponding 𝑥 and θ axes, in the element of
the 𝑖-th shell, 𝑧 is the local coordinate normal to the middle surface of the 𝑖-th shell.

To represent equations (1) in displacements, it is necessary to specify the physical law
relating stresses and deformations in the shell material. In the case of physically nonlinear
material, to approximate experimentally determined diagrams of its deformation, nonlinear power
dependences are used: quadratic, cubic or fraction exponents, as well as their combinations [27].
For example, the case of the physical law with softening fractional exponent or combined softening
quadratic and fractional exponent nonlinearity was studied in [13,14] for synthetic incompressible
materials based on epoxy resins. Such an approximation allows to reflect the fact of limitation of
stress growth with strain growth. In the proposed study, we use an approximation of a physical
law with the hardening combined nonlinearity in the form of sum quadratic and fractional
exponent function. This allows us to reflect the effect of material hardening, i.e. the presence of
nonlinear stress growth with strain growth in stress-strain diagrams. For example, such behavior
is characteristic of biotissues such as skin and blood vessels of animals and human circulatory
systems [28]. According to the above, let us write down the relationship between the components
of the stress tensor σ𝑥, σθ and the components of the strain tensor 𝜀𝑥, 𝜀θ and strain intensity 𝜀𝑢
according to [29] as follows

σ(𝑖)𝑥 =
𝐸

1− µ20

[︁(︁
𝜀(𝑖)𝑥 + µ0𝜀

(𝑖)
θ

)︁{︁
1 +

𝑚

𝐸
𝜀(𝑖)

1/2

𝑢 +
𝑚2

𝐸
𝜀(𝑖)𝑢

}︁]︁
,

σ(𝑖)θ =
𝐸

1− µ20

[︁(︁
µ0𝜀(𝑖)𝑥 + 𝜀

(𝑖)
θ

)︁{︁
1 +

𝑚

𝐸
𝜀(𝑖)

1/2

𝑢 +
𝑚2

𝐸
𝜀(𝑖)𝑢

}︁]︁
,

𝜀(𝑖)𝑢 =

√
3

1 + µ0

[︁
µ1
(︁
𝜀(𝑖)

2

𝑥 + 𝜀
(𝑖)2

θ

)︁
− µ2𝜀(𝑖)𝑥 𝜀

(𝑖)
θ

]︁1/2
,

µ1 =
1

3

[︂
1 +

µ0
(1− µ0)2

]︂
, µ2 =

1

3

[︂
1− 2µ0

(1− µ0)2

]︂
.

(3)

In expressions (3) 𝐸 is Young’s modulus, µ0 is Poisson’s ratio of the shell material; 𝑚, 𝑚2

are considered as positive material constants having the dimension of stresses and determined
from tensile-compression experiments of nonlinear-elastic shell material [30]. The coefficients µ1,
µ2 reflect the fact of compressibility of the material, which is characteristic for biotissues [28].
If we consider incompressible material, for example, synthetic materials based on epoxy resins,
we can put µ0 = 1/2 (in this case µ1 = −µ2 = 1) and 𝑚 < 0, 𝑚2 = 0 or 𝑚 < 0, 𝑚2 < 0
similarly [13,14].

We assume that the deformations and elastic displacements of the 𝑖-th shell are related to
each other as [25]

𝜀(𝑖)𝑥 =
𝜕𝑈 (𝑖)

𝜕𝑥
− 𝑧

𝜕2𝑊 (𝑖)

𝜕𝑥2
, 𝜀

(𝑖)
θ = −𝑊 (𝑖)

𝑅(𝑖)
− 𝑧

𝑊 (𝑖)

𝑅(𝑖)2
, −ℎ

(𝑖)
0 /2 ⩽ 𝑧 ⩽ ℎ

(𝑖)
0 /2. (4)

Let us substitute (3), (4) into (2), and after that into (1), bearing in mind [25], where the
validity of considering the intensity of deformations on the shell’s middle surface, i. e. 𝑧 = 0,
was shown. As a result, we obtain the equations of dynamics of the considered coaxial shells,
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which material has a physical law with combined fractional-quadratic nonlinearity, written in
displacements

𝐸ℎ
(𝑖)
0

1−µ20
𝜕

𝜕𝑥

⟨
𝜕𝑈 (𝑖)

𝜕𝑥
− µ0

𝑊 (𝑖)

𝑅(𝑖)
+

[︃
𝜕𝑈 (𝑖)

𝜕𝑥
− µ0

𝑊 (𝑖)

𝑅(𝑖)

]︃⎧⎨⎩𝑚

𝐸

(︃ √
3

1+µ0

)︃1/2⎡⎣µ1
⎛⎝(︃𝜕𝑈 (𝑖)

𝜕𝑥

)︃2
+

(︃
𝑊 (𝑖)

𝑅(𝑖)

)︃2⎞⎠+

+ µ2
𝜕𝑈 (𝑖)

𝜕𝑥

𝑊 (𝑖)

𝑅(𝑖)

]︃1/4
+

𝑚2

𝐸

√
3

1 + µ0

⎡⎣µ1
⎡⎣(︃𝜕𝑈 (𝑖)

𝜕𝑥

)︃2

+

(︃
𝑊 (𝑖)

𝑅(𝑖)

)︃2
⎤⎦+ µ2

𝜕𝑈 (𝑖)

𝜕𝑥

𝑊 (𝑖)

𝑅(𝑖)

⎤⎦1/2
⎫⎪⎬⎪⎭
⟩

=

= ρ0ℎ
(𝑖)
0

𝜕2𝑈 (𝑖)

𝜕𝑡2
−

(︃
𝑞(𝑖)𝑥 + 𝑈 (𝑖)𝜕𝑞

(𝑖)
𝑥

𝜕𝑥
−𝑊 (𝑖)𝜕𝑞

(𝑖)
𝑥

𝜕𝑟
+ (𝑖− 1)

(︂
𝑞𝑐𝑖𝑟𝑥 + 𝑈 (𝑖)𝜕𝑞

𝑐𝑖𝑟
𝑥

𝜕𝑥
−𝑊 (𝑖)𝜕𝑞

𝑐𝑖𝑟
𝑥

𝜕𝑟

)︂)︃⃒⃒⃒⃒
⃒
𝑅(𝑖)

,

𝐸ℎ
(𝑖)
0

12
(︀
1− µ20

)︀ 𝜕2

𝜕𝑥2

⟨
−ℎ

(𝑖)2
0

12

(︃
𝜕2𝑊 (𝑖)

𝜕𝑥2
+ µ0

𝑊 (𝑖)

𝑅(𝑖)2

)︃⟩
+

𝐸ℎ0
1− µ20

𝜕

𝜕𝑥

⟨
𝜕𝑊 (𝑖)

𝜕𝑥

[︃
𝜕𝑈 (𝑖)

𝜕𝑥
− µ0

𝑊 (𝑖)

𝑅(𝑖)
+

+

[︃
𝜕𝑈 (𝑖)

𝜕𝑥
− µ0

𝑊 (𝑖)

𝑅(𝑖)

]︃⎧⎪⎨⎪⎩𝑚

𝐸

(︃ √
3

1 + µ0

)︃1/2
⎡⎣µ1

⎛⎝(︃𝜕𝑈 (𝑖)

𝜕𝑥

)︃2

+

(︃
𝑊 (𝑖)

𝑅(𝑖)

)︃2
⎞⎠+ µ2

𝜕𝑈 (𝑖)

𝜕𝑥

𝑊 (𝑖)

𝑅(𝑖)

⎤⎦1/4

+

+
𝑚2

𝐸

√
3

1+µ0

⎡⎣µ1
⎡⎣(︃𝜕𝑈 (𝑖)

𝜕𝑥

)︃2
+

(︃
𝑊 (𝑖)

𝑅(𝑖)

)︃2⎤⎦+µ2𝜕𝑈 (𝑖)

𝜕𝑥

𝑊 (𝑖)

𝑅(𝑖)

⎤⎦1/2
⎫⎪⎬⎪⎭
⎤⎥⎦⟩+

𝐸ℎ
(𝑖)
0

1−µ20
1

𝑅(𝑖)

⟨
µ0

𝜕𝑈 (𝑖)

𝜕𝑥
− 𝑊 (𝑖)

𝑅(𝑖)
+

+

[︃
µ0

𝜕𝑈 (𝑖)

𝜕𝑥
− 𝑊 (𝑖)

𝑅(𝑖)

]︃⎧⎪⎨⎪⎩𝑚

𝐸

(︃ √
3

1 + µ0

)︃1/2
⎡⎣µ1

⎛⎝(︃𝜕𝑈 (𝑖)

𝜕𝑥

)︃2

+

(︃
𝑊 (𝑖)

𝑅

)︃2
⎞⎠+ µ2

𝜕𝑈 (𝑖)

𝜕𝑥

𝑊 (𝑖)

𝑅

⎤⎦1/4

+

+
𝑚2

√
3

𝐸(1 + µ0)

⎡⎣µ1
⎡⎣(︃𝜕𝑈 (𝑖)

𝜕𝑥

)︃2

+

(︃
𝑊 (𝑖)

𝑅(𝑖)

)︃2
⎤⎦ +µ2

𝜕𝑈 (𝑖)

𝜕𝑥

𝑊 (𝑖)

𝑅(𝑖)

]︃1/2⎫⎬⎭
⟩

= ρ0ℎ
(𝑖)
0

𝜕2𝑊 (𝑖)

𝜕𝑡2
−

−
(︂
(−1)𝑖−1

(︂
𝑞𝑛 + 𝑈 (𝑖)𝜕𝑞𝑛

𝜕𝑥
−𝑊 (𝑖)𝜕𝑞𝑛

𝜕𝑟

)︂
+ (𝑖− 1)

(︂
𝑞𝑐𝑖𝑟𝑛 + 𝑈 (𝑖)𝜕𝑞

𝑐𝑖𝑟
𝑛

𝜕𝑥
−𝑊 (𝑖)𝜕𝑞

𝑐𝑖𝑟
𝑛

𝜕𝑟

)︂⃒⃒⃒⃒
𝑅(𝑖)

, 𝑖 = 1, 2.

(5)

Note that in (1), (5) the right-hand sides, i. e., the load on the shells, represent the
tangential and normal stresses of a viscous incompressible fluid written in the Lagrangian–
Eulerian approach [31]. The load is carried on the undisturbed middle surfaces of the shells,

as is common in hydroelasticity problems [32]. The expressions for 𝑞
(𝑖)
𝑥 , 𝑞𝑛 and 𝑞𝑐𝑖𝑟𝑥 , 𝑞𝑐𝑖𝑟𝑛 on the

unperturbed middle surfaces of the shells are written in the Euler approach as [25]

𝑞(𝑖)𝑥 = −ρν
(︂
𝜕𝑉𝑥

𝜕𝑟
+

𝜕𝑉𝑟

𝜕𝑥

)︂
at 𝑟 = 𝑅

(𝑖)
ν , 𝑞(𝑖)𝑛 = −𝑝+ 2ρν

𝜕𝑉𝑟

𝜕𝑟
at 𝑟 = 𝑅

(𝑖)
ν . (6)

Here we have in mind that that expressions for 𝑞𝑐𝑖𝑟𝑥 , 𝑞𝑐𝑖𝑟𝑛 coincide with (6) at 𝑖 = 2. In the
case the physical properties of the fluid in the annular gap and the inner shell are different, then
assuming in (6) 𝑖 = 2, we also denote the density and kinematic viscosity of the fluid in the inner
shell as ρ𝑐 and ν𝑐.
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To determine (6) together with (5) it is necessary to consider the equations of dynamics of a
viscous incompressible fluid between the shells and in the inner shell, which for the axisymmetric
case have the form [33]

𝜕𝑉𝑟

𝜕𝑡
+ 𝑉𝑟

𝜕𝑉𝑟

𝜕𝑟
+ 𝑉𝑥

𝜕𝑉𝑟

𝜕𝑥
+

1

ρ
𝜕𝑝

𝜕𝑟
= ν

(︂
𝜕2𝑉𝑟

𝜕𝑟2
+

1

𝑟

𝜕𝑉𝑟

𝜕𝑟
+

𝜕2𝑉𝑟

𝜕𝑥2
− 𝑉𝑟

𝑟2

)︂

𝜕𝑉𝑥

𝜕𝑡
+ 𝑉𝑟

𝜕𝑉𝑥

𝜕𝑟
+ 𝑉𝑥

𝜕𝑉𝑥

𝜕𝑥
+

1

ρ
𝜕𝑝

𝜕𝑥
= ν

(︂
𝜕2𝑉𝑥

𝜕𝑟2
+

1

𝑟

𝜕𝑉𝑥

𝜕𝑟
+

𝜕2𝑉𝑥

𝜕𝑥2

)︂
,

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑉𝑟) +

𝜕𝑉𝑥

𝜕𝑥
= 0.

(7)

where 𝑉𝑥, 𝑉𝑟 are the projections of the fluid velocity on the axes of the cylindrical coordinate
system, 𝑝 is the pressure in the fluid, ρ is the fluid density, ν is the kinematic viscosity coefficient.

Let us supplement (7) with boundary no-slip conditions at the shell’s surfaces for the fluid
between the shells (annular cross-section channel) and in the inner shell (circular cross-section
channel). For the channel of annular cross-section, these conditions have the following form

𝑉𝑥 + 𝑈 (𝑖)𝜕𝑉𝑥

𝜕𝑥
−𝑊 (𝑖)𝜕𝑉𝑥

𝜕𝑟
=

𝜕𝑈 (𝑖)

𝜕𝑡
,

𝑉𝑟 + 𝑈 (𝑖)𝜕𝑉𝑟

𝜕𝑥
−𝑊 (𝑖)𝜕𝑉𝑟

𝜕𝑟
= −𝜕𝑊 (𝑖)

𝜕𝑡
at 𝑟 = 𝑅𝑖 −𝑊 (𝑖), 𝑖 = 1, 2.

(8)

For the channel of circular cross-section, we use (8) at 𝑟 =
(︁
𝑅𝑖 − ℎ

(𝑖)
0

)︁
−𝑊 (𝑖) and 𝑖 = 2.

In addition, we use the conditions for the velocity components at the symmetry axis of the
viscous fluid in the inner shell, which are justified and formulated in [25] by Mogilevich L. I. in
the following form

𝑟𝑉𝑟 = 0, 𝑟
𝜕𝑉𝑥

𝜕𝑟
= 0 at 𝑟 = 0. (9)

2. Asymptotic analysis of the hydroelasticity problem,

system of evolution equations

Considering the wave process in shells, we assume that the following relations take place

ℎ
(𝑖)
0

𝑅(𝑖)
= 𝜀 ≪ 1,

𝑅(𝑖)2

𝑙2
= 𝑂

(︁
𝜀1/2

)︁
,

𝑤𝑚

ℎ
(𝑖)
0

= 𝑂(1),

𝑢𝑚
𝑙

𝑅(𝑖)

ℎ
(𝑖)
0

= 𝑂(1),
𝑚

𝐸
= 𝑂(1),

𝑚2

𝐸
= 𝑂

(︁
𝜀−1/2

)︁
,

(10)

and use dimensionless variables

𝑊 (𝑖) = 𝑤𝑚𝑢
(𝑖)
3 , 𝑈 (𝑖) = 𝑢𝑚𝑢

(𝑖)
1 , 𝑥* = 𝑥/𝑙, 𝑡* = 𝑡𝑐0/𝑙, 𝑟* = 𝑟/𝑅(𝑖), (11)

where 𝑐0 =
√︁

𝐸
⧸︀
(ρ0(1− µ20)) is the sound speed in the shell material, 𝑙 is the wavelength taken

as a characteristic linear scale, u𝑚, 𝑤𝑚 are characteristic scales of elastic displacements of shells,
𝜀 is a small parameter of the problem.
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Let us analyze equations (5) by perturbation method [34] considering asymptotic expansions
of elastic displacement functions of shells

𝑢
(𝑖)
1 = 𝑢

(𝑖)
10 + 𝜀1/2𝑢

(𝑖)
11 + . . . , 𝑢

(𝑖)
3 = 𝑢

(𝑖)
30 + 𝜀1/2𝑢

(𝑖)
31 + . . . (12)

and introducing new independent variables ξ and τ

ξ = 𝑥* −
√︁

1− µ20𝑡
*, τ = 𝜀1/2𝑡*. (13)

Writing (5) in dimensionless form taking into account (10)–(13) and restricting to the first
term in (12) we have the system (zero approximation by 𝜀)

𝜕

𝜕ξ

⟨
𝜕𝑢

(𝑖)
10

𝜕ξ
− µ0𝑢30

⟩
=
(︀
1− µ20

)︀ 𝜕2𝑢
(𝑖)
10

𝜕ξ2
, µ0

𝜕𝑢
(𝑖)
10

𝜕ξ
= 𝑢

(𝑖)
30 , 𝑖 = 1, 2 (14)

and restricting by the first two terms in (12) and bearing in mind the second equation (14), we
obtain the system (first approximation by 𝜀)

𝜕

𝜕ξ

⟨
µ0

(︃
µ0

𝜕𝑢
(𝑖)
11

𝜕ξ
− 𝑢

(𝑖)
31

)︃
+

𝑚

𝐸

(︃ √
3

1 + µ0

)︃1/2 (︀
1− µ20

)︀ (︀
µ1 + µ2µ0 + µ1µ20

)︀1/4(︃𝜕𝑢
(𝑖)
10

𝜕ξ

)︃3/2

+

+
𝑚2

𝐸
𝜀1/2

√
3

1 + µ0

(︀
1− µ20

)︀ (︀
µ1 + µ2µ0 + µ1µ20

)︀1/2(︃𝜕𝑢
(𝑖)
10

𝜕ξ

)︃2⟩
+ 2
√︁

1− µ20
𝜕2𝑢

(𝑖)
10

𝜕ξ𝜕τ
=

= − 𝑙

𝜀3/2ρ0ℎ
(𝑖)
0 𝑐20

(︁
𝑞(𝑖)𝑥 + (𝑖− 1)𝑞𝑐𝑖𝑟𝑥

)︁⃒⃒⃒⃒⃒
𝑅(𝑖)

, (15)

µ0
𝜕𝑢

(𝑖)
11

𝜕ξ
− 𝑢

(𝑖)
31 − µ0

(︀
1− µ20

)︀ 1

𝜀1/2

(︃
𝑅(𝑖)

𝑙

)︃2
𝜕3𝑢

(𝑖)
10

𝜕ξ3
=

= − 𝑅(𝑖)

𝜀3/2ρ0ℎ
(𝑖)
0 𝑐20

(︁
(−1)𝑖−1𝑞(𝑖)𝑛 + (𝑖− 1)𝑞𝑐𝑖𝑟𝑛

)︁⃒⃒⃒⃒⃒
𝑅(𝑖)

, 𝑖 = 1, 2.

Let us consider the system (14) and substitute the deflection from the second equation
into the first one, resulting in the identity. Hence, the longitudinal displacement is an arbitrary
function. In addition, we note that the first term of the expansion (12) corresponds to a linear
wave process evolving at the sound speed in the shell material. The consideration of the second
term allows to obtain the additive due to a nonlinear wave process.

Considering the system (15) we exclude from it 𝑢11, 𝑢31 as a result we obtain

𝜕2𝑢
(𝑖)
10

𝜕ξ𝜕τ
+

𝑚

𝐸

(︃ √
3

1 + µ0

)︃1/2
3

4

√︁
1− µ20

(︀
µ1 + µ2µ0 + µ1µ20

)︀1/4 ⃒⃒⃒⃒⃒𝜕𝑢(𝑖)10

𝜕ξ

⃒⃒⃒⃒
⃒
1/2

𝜕2𝑢
(𝑖)
10

𝜕ξ2
+

+
𝑚2

𝐸
𝜀1/2

√
3

1 + µ0

√︁
1− µ20

(︀
µ1 + µ2µ0 + µ1µ20

)︀1/2 𝜕𝑢(𝑖)10

𝜕ξ
𝜕2𝑢

(𝑖)
10

𝜕ξ2
+
µ20
√︀
1− µ20
2

𝜕4𝑢
(𝑖)
10

𝜕ξ4
=

= − 1

2
√︀

1−µ20

𝑙

𝜀3/2ρ0ℎ
(𝑖)
0 𝑐20

[︃
𝑞(𝑖)𝑥 + (𝑖−1)𝑞𝑐𝑖𝑟𝑥 − µ0𝜀1/4

𝜕
(︀
(−1)𝑖−1𝑞𝑛 + (𝑖−1)𝑞𝑐𝑖𝑟𝑛

)︀
𝜕ξ

]︃
𝑅(𝑖)

, 𝑖 = 1, 2.

(16)
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The equations of system (16) are the generalizations of the Schamel–Korteweg–de Vries

equation for longitudinal deformation 𝜕𝑢
(𝑖)
10/𝜕ξ. Note that the exclusion of the fluid between the

shells and in the inner shell is equivalent to assuming 𝑞
(𝑖)
𝑥 = 𝑞𝑛 = 𝑞𝑐𝑖𝑟𝑥 = 𝑞𝑐𝑖𝑟𝑛 = 0. In this case,

the system (16) decomposes into two independent Schamel–Korteweg–de Vries equations for the
outer and inner shells.

To determine 𝑞𝑖𝑥, 𝑞𝑛, 𝑞
𝑐𝑖𝑟
𝑥 , 𝑞𝑐𝑖𝑟𝑛 , we analyze asymptotically the equations of fluid dynamics

(7)–(9) between the shells and in the inner shell similarly [25]. For this purpose, for the fluid
between the shells (annular channel) we introduce dimensionless variables of the following form

𝑉𝑟 = ℎ
(𝑖)
0

𝑐0
𝑙
𝑣𝑟, 𝑉𝑥 = ℎ

(𝑖)
0

𝑐0
δ
𝑣𝑥, 𝑟* =

𝑟 −𝑅(2)

δ
, 𝑡* =

𝑐0
𝑙
𝑡, 𝑥* =

𝑥

𝑙
, 𝑝 =

ρν𝑐0𝑙ℎ
(𝑖)
0

δ3
𝑃, (17)

and for the fluid in the inner shell (circular channel) we use the following dimensionless variables

𝑉𝑟 = ℎ
(𝑖)
0

𝑐0
𝑙
𝑣𝑟, 𝑉𝑥 = ℎ

(𝑖)
0

𝑐0

𝑅(2)
𝑣𝑥, 𝑟* =

𝑟

𝑅(2)
, 𝑡* =

𝑐0
𝑙
𝑡, 𝑥* =

1

𝑙
𝑥, 𝑝 =

ρ𝑐ν𝑐𝑐0𝑙ℎ
(𝑖)
0

𝑅(2)3
𝑃.

(18)
We assume that in the considered formulation for the annular channel the following relations

take place

ψ =
δ

𝑅(2)
= 𝜀1/2, λ =

ℎ
(𝑖)
0

δ
= 𝜀1/2,

ℎ
(𝑖)
0

𝑅(𝑖)
= 𝜀,

ℎ
(𝑖)
0

𝑙
= 𝜀5/4,

δ
𝑙
= 𝜀3/4, (19)

and for the channel of circular cross-section we suppose

𝑅(2)

𝑙
= ψ𝑐 = 𝑂

(︁
𝜀1/4

)︁
, λ𝑐 =

ℎ
(𝑖)
0

𝑅(2)
= 𝜀. (20)

Then passing in (6)–(9) to dimensionless variables (17) or (18) taking into account (19)
or (20), for channels of the corresponding cross-section, we consider the following asymptotic
expansions

𝑃 = 𝑃 0 + 𝜀1/2𝑃 1 + ..., 𝑣𝑟 = 𝑣0𝑟 + 𝜀1/2𝑣1𝑟 + ..., 𝑣𝑥 = 𝑣0𝑥 + 𝜀1/2𝑣1𝑥 + .... (21)

Restricting in (21) by the first term, we obtain linearized problems of viscous fluid dynamics
in the corresponding channel.

For the channel of annular cross-section, the hydrodynamic equations will take the form of

𝜕𝑃 0

𝜕𝑟*
= 0,

δ
𝑙

δ𝑐0
ν

𝜕𝑣0𝑥
𝜕𝑡*

+
𝜕𝑃 0

𝜕𝑥*
=

𝜕2𝑣0𝑥
𝜕𝑟*2

,
𝜕𝑣0𝑟
𝜕𝑟*

+
𝜕𝑣0𝑥
𝜕𝑥*

= 0, (22)

with boundary conditions

𝑣0𝑟 = −𝜕𝑢
(1)
3

𝜕𝑡*
, 𝑣0𝑥 = 0 at 𝑟* = 1, 𝑣0𝑟 = −𝜕𝑢

(2)
3

𝜕𝑡*
, 𝑣0𝑥 = 0 at 𝑟* = 0. (23)

For the channel of circular cross-section the hydrodynamic equations will be written as

𝜕𝑃 0

𝜕𝑟*
= 0, ψ𝑐

𝑅3𝑐0
ν𝑐

𝜕𝑣0𝑥
𝜕𝑡*

+
𝜕𝑃 0

𝜕𝑥*
=

1

𝑟*
𝜕

𝜕𝑟*

(︂
𝑟*

𝜕𝑣0𝑥
𝜕𝑟*

)︂
,

1

𝑟*
𝜕

𝜕𝑟*
(︀
𝑟*𝑣0𝑟

)︀
+

𝜕𝑣0𝑥
𝜕𝑥*

= 0, (24)

with boundary conditions

𝑟*𝑣0𝑟 = 𝑟*
𝜕𝑣0𝑥
𝜕𝑟*

= 0 at 𝑟* = 0, 𝑣0𝑟 = −𝜕𝑢
(2)
3

𝜕𝑡*
, 𝑣0𝑥 =

𝜕𝑢
(2)
1

𝜕𝑡*
at 𝑟* = 1. (25)
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The expressions for 𝑞
(𝑖)
𝑥 , 𝑞𝑛, 𝑞

𝑐𝑖𝑟
𝑥 , 𝑞𝑐𝑖𝑟𝑛 will be written as

𝑞(𝑖)𝑥 = −ρνℎ
(𝑖)
0 𝑐0
δ2

𝜕𝑣0𝑥
𝜕𝑟*

,

𝑞𝑛 = −ρν𝑐0𝑙ℎ
(𝑖)
0

δ3
𝑃 0 at 𝑟* = 1 (for 𝑖 = 1 ) or (for 𝑖 = 2 ) at 𝑟* = 0,

(26)

𝑞𝑐𝑖𝑟𝑥 = −λ𝑐
ν𝑐

𝑅(2)𝑐0
ρ𝑐𝑐20

𝜕𝑣0𝑥
𝜕𝑟*

, 𝑞𝑐𝑖𝑟𝑛 = − λ𝑐
ψ𝑐

ν𝑐
𝑅(2)𝑐0

ρ𝑐𝑐20𝑃
0 at 𝑟* = 1. (27)

The solution of problems (22)–(25) by the iteration method was carried out in [25] and the
pressure 𝑃 0 and velocity gradients 𝜕𝑣0𝑥/𝜕𝑟

* were determined. The expressions for these quantities
in the annular channel are as follows

𝑃 0 =

∫︁ [︃
12
√︁
1− µ20

(︁
𝑢
(1)
30 − 𝑢

(2)
30

)︁
− 6

5
Re
(︀
1− µ20

)︀(︃𝜕𝑢
(1)
30

𝜕ξ
− 𝜕𝑢

(2)
30

𝜕ξ

)︃]︃
𝑑ξ,

𝜕𝑣0𝑥
𝜕𝑟*

= (2𝑟* − 1)

[︃
6
√︁
1− µ20

(︁
𝑢
(1)
30 − 𝑢

(2)
30

)︁
− Re

10

(︀
1− µ20

)︀(︃𝜕𝑢
(1)
30

𝜕ξ
− 𝜕𝑢

(2)
30

𝜕ξ

)︃]︃
, Re =

δ
𝑙

δ𝑐0
ν
(28)

consequently

𝜕𝑃 0

𝜕ξ
=

[︃
12
√︁
1− µ20

(︁
𝑢
(1)
30 − 𝑢

(2)
30

)︁
− 6

5
Re
(︀
1− µ20

)︀(︃𝜕𝑢
(1)
30

𝜕ξ
− 𝜕𝑢

(2)
30

𝜕ξ

)︃]︃
,

𝜕𝑣0𝑥
𝜕𝑟*

⃒⃒⃒⃒
𝑟*=1

= 6
√︁
1− µ20

(︁
𝑢
(1)
30 − 𝑢

(2)
30

)︁
− Re

10

(︀
1− µ20

)︀(︃𝜕𝑢
(1)
30

𝜕ξ
− 𝜕𝑢

(2)
30

𝜕ξ

)︃
,

𝜕𝑣0𝑥
𝜕𝑟*

⃒⃒⃒⃒
𝑟*=0

= − 𝜕𝑣0𝑥
𝜕𝑟*

⃒⃒⃒⃒
𝑟*=1

.

(29)

For a channel of circular cross-section in [25] it is defined that

𝜕𝑃 0

𝜕ξ
=
√︁
1− µ20

[︃
8

(︃
2𝑢

(2)
30 − 𝜕𝑢

(2)
10

𝜕ξ

)︃
− 1

3
ψ𝑐

𝑅(2)𝑐0
ν𝑐

(︃
8
𝜕𝑢

(2)
30

𝜕ξ
− 𝜕2𝑢

(2)
10

𝜕ξ2

)︃√︁
1− µ20

]︃
,

𝜕𝑣𝑥
𝜕𝑟*

⃒⃒⃒⃒
𝑟*=1

=
√︁
1− µ20

[︃
4

(︃
2𝑢

(2)
30 − 𝜕𝑢

(2)
10

𝜕ξ

)︃
− 1

6
ψ𝑐

𝑅(2)𝑐0
ν𝑐

(︃
2
𝜕𝑢

(2)
30

𝜕ξ
− 𝜕2𝑢

(2)
10

𝜕ξ2

)︃√︁
1− µ20

]︃
.

(30)

Then, using 𝑢
(𝑖)
30 = µ0𝜕𝑢

(𝑖)
10/𝜕ξ (the second equation of (14)), (26)–(30), considering the

smallness of parameters ψ, λ, ψс, λс and assuming 𝑅(1) = 𝑅(2) ≈ 𝑅, ℎ
(1)
0 = ℎ

(2)
0 ≈ ℎ0,we
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determine the right parts of the equations system (16) and obtain the system of evolutionary
equations of the following form

𝜕2𝑢
(1)
10

𝜕ξ𝜕τ
+

𝑚

𝐸

3

4

√︁
1− µ20

(︃ √
3

1 + µ0

)︃1/2 (︀
µ1 + µ2µ0 + µ1µ20

)︀1/4 ⃒⃒⃒⃒⃒𝜕𝑢(1)10

𝜕ξ

⃒⃒⃒⃒
⃒
1/2

𝜕2𝑢
(1)
10

𝜕ξ2
+

+
𝑚2

√
3

𝐸(1 + µ0)
𝜀1/2

√︁
1− µ20

(︀
µ1 + µ2µ0 + µ1µ20

)︀1/2 𝜕𝑢(1)10

𝜕ξ
𝜕2𝑢

(1)
10

𝜕ξ2
+
µ20
√︀

1− µ20
2

𝜕4𝑢
(1)
10

𝜕ξ4
=

= −6µ20
ρ𝑙
ρ0ℎ0

ν
𝑅𝑐0𝜀1/2

(︂
𝑅

δ

)︂3
[︃(︃

𝜕𝑢
(1)
10

𝜕ξ
− 𝜕𝑢

(2)
10

𝜕ξ

)︃(︂
1− 1

2

δ
µ0𝑅

)︂
−

− 1

10
Re
√︁
1− µ20

(︃
𝜕2𝑢

(1)
10

𝜕ξ2
− 𝜕2𝑢

(2)
10

𝜕ξ2

)︃(︂
1− 1

12

δ
µ0𝑅

)︂]︃
.

(31)
𝜕2𝑢

(2)
10

𝜕ξ𝜕τ
+

𝑚

𝐸

3

4

√︁
1− µ20

(︃ √
3

1 + µ0

)︃1/2 (︀
µ1 + µ2µ0 + µ1µ20

)︀1/4 ⃒⃒⃒⃒⃒𝜕𝑢(2)10

𝜕ξ

⃒⃒⃒⃒
⃒
1/2

𝜕2𝑢
(2)
10

𝜕ξ2
+

+
𝑚2

√
3

𝐸(1 + µ0)
𝜀1/2

√︁
1− µ20

(︀
µ1 + µ2µ0 + µ1µ20

)︀1/2 𝜕𝑢(2)10

𝜕ξ
𝜕2𝑢

(2)
10

𝜕ξ2
+
µ20
√︀

1− µ20
2

𝜕4𝑢
(2)
10

𝜕ξ4
=

= −6µ20
ρ𝑙
ρ0ℎ0

ν
𝑅𝑐0𝜀1/2

(︂
𝑅

δ

)︂3
[︃(︃

𝜕𝑢
(2)
10

𝜕ξ
− 𝜕𝑢

(1)
10

𝜕ξ

)︃(︂
1− 1

2

δ
µ0𝑅

)︂
−

− 1

10
Re
√︁
1− µ20

(︃
𝜕2𝑢

(2)
10

𝜕ξ2
− 𝜕2𝑢

(1)
10

𝜕ξ2

)︃(︂
1− 1

12

δ
µ0𝑅

)︂]︃
−

− 1

2
√︀
1− µ20

𝑙

𝜀1/2ρ0ℎ0𝑐20

{︃
ν𝑐
𝑅𝑐0
ρ𝑐𝑐204

√︁
1− µ20 [1− 2µ0]

2 𝜕𝑢
(2)
10

𝜕ξ
−

−𝑅

𝑙
ρ𝑐𝑐20

1

6

(︀
1− µ20

)︀ [︁
(1− 2µ0)

2 + 12µ20
]︁ 𝜕2𝑢

(2)
10

𝜕ξ2

}︃
.

Note that the obtained system, in the case of exclusion of the fluid from consideration, i. e.,
when the right-hand sides are equal to zero, and when 𝑚2 = 0, decomposes into two independent
Schamel equations. These equations for the case of incompressible material, when µ0 = 1/2, а
µ1 = −µ2 = 1, and 𝑚 < 0 coincide with the equation obtained in [14], for the shell with internal
stringers and skin made of incompressible material with softening fractional physical nonlinearity,
with the height of stringers equal to zero.

3. Numerical modeling of the solitary strain waves evolution in coaxial shells

Let us represent the system of evolution equations (31) in the form of

3(1)𝑡 + 6α0
⃒⃒⃒
3(1)

⃒⃒⃒1/2
3(1)η + 6α13(1)3

(1)
η + 3(1)ηηη + σ0

(︁
3(1) − 3(2)

)︁
− σ1

(︁
3(1)η − 3(2)η

)︁
= 0,

3(2)𝑡 + 6α0
⃒⃒⃒
3(2)

⃒⃒⃒1/2
3(2)η + 6α13(2)32η + 3

(2)
ηηη + (32)

+σ0
(︁
3(2) − 3(1)

)︁
− σ1

(︁
3(2)η − 3(1)η

)︁
+ σ23(2) − σ33(2)η = 0
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by introducing the following notations

𝜕𝑢
(1)
10

𝜕ξ
= 𝑐33(1),

𝜕𝑢
(2)
10

𝜕ξ
= 𝑐33(2), η = 𝑐1ξ, 𝑡 = 𝑐2τ, σ0 = 6µ20

ρ𝑙
ρ0ℎ0

(︂
𝑅

δ

)︂2 ν
δ𝑐0

1

𝜀1/2

(︂
1− δ

2µ0𝑅

)︂
1

𝑐2
,

σ1 = 6µ20
ρδ
ρ0ℎ0

(︂
𝑅

δ

)︂2 1

𝜀1/2

√︀
1− µ20
10

(︂
1− δ

12µ0𝑅

)︂
𝑐1
𝑐2
, σ2 =

ρ𝑐𝑙
ρ0ℎ0

ν𝑐
𝜀1/2𝑅𝑐0

2 (1− 2µ0)
2 1

𝑐2
,

σ3 =
ρ𝑐𝑅
ρ0ℎ0

1

𝜀1/2

√︀
1− µ20
12

[︁
(1− 2µ0)

2 + 12µ20
]︁ 𝑐1
𝑐2

(33)
where

𝑐3 =

[︃
3

4

𝑚

𝑚2𝜀1/2
1(︀√

3/(1 + µ0)
)︀1/2 (︀

µ1 + µ2µ0 + µ1µ20
)︀1/4

]︃2
,

𝑐1 =

[︃
𝑐3
3µ20

𝑚2

𝐸
𝜀1/2

√
3

1 + µ0

(︀
µ1 + µ2µ0 + µ1µ20

)︀1/2]︃1/2
,

𝑐2 =

[︃
𝑐3𝑐1
6

𝑚2

𝐸
𝜀1/2

√︁
1− µ20

√
3

1 + µ0

(︀
µ1 + µ2µ0 + µ1µ20

)︀1/2]︃
.

The subscript letters in the system (32) denotes the corresponding partial derivative, and
the system describes the evolution of longitudinal nonlinear deformation waves in the considered
shells. If we put α0 = 0, we pass to the system of generalized Korteweg–de Vries equations, at
α1 = 0 we obtain the system of generalized Schamel equations, and at α0 = α1 = 1 we obtain
the system of generalized Schamel–Korteweg–de Vries equations.

In the general case, system (32) has no exact solution and requires numerical solution.
However, we note that in the special case when the fluid in the inner shell is excluded from
consideration, i. e., when σ2 = σ3 = 0, the system of equations (32) has an exact solution in the
form of a solitary wave

3(1)(𝑡, η) = 3(2)(𝑡, η) =
25

4
𝑘4

(︃
α0 +

√︂
α20 +

25

8
𝑘2α1ch(𝑘(η− 4𝑘2𝑡))

)︃−2

. (34)

In this solution, k is the wave number, which is arbitrary. The above exact solution can be
used as an initial condition in the numerical solution of the system of evolution equations (32)
by assuming 𝑡 = 0 in (34) and taking α0 = α1 = 1. In this approach, the following options can
be considered:

– at the initial moment of time, the solitary wave with the same wave number is excited in
each of the shells

3(1)(0, η) = 3(2)(0, η) =
25

4
𝑘4

(︃
1 +

√︂
1 +

25

8
𝑘2ch(𝑘η)

)︃−2

; (35)

– at the initial moment of time the solitary wave is excited only in the outer shell

3(1)(0, η) =
25

4
𝑘4

(︃
1 +

√︂
1 +

25

8
𝑘2ch(𝑘η)

)︃−2

, 3(2)(0, η) = 0. (36)
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In addition, we can consider the excitation at the initial time moment of two waves with

different wave numbers, i.e., with different velocities and amplitudes, in each of the shells. In this

case, the initial conditions for the first solitary wave in the outer and inner shells are given as

3(1)(0, η) = 3(2)(0, η) =
25

4
𝑘41

(︃
1 +

√︂
1 +

25

8
𝑘21ch(𝑘1η)

)︃−2

, (37)

and for the second wave in the outer and inner shells we set in the form

3(1)(0, η) = 3(2)(0, η) =
25

4
𝑘42

(︃
1 +

√︂
1 +

25

8
𝑘22ch(𝑘2η)

)︃−2

. (38)

Here 𝑘1, 𝑘2 are the wave numbers corresponding to the first and second solitary waves excited

in each of the shells.

To realize the numerical solution for the system of nonlinear evolution equations (32), we

used the approach of generating new difference schemes for discretization of partial derivative

equations using the Gröbner basis technique [35, 36]. The sequence of obtaining the difference

scheme, checking its adequacy and stability is similar to [25], and the obtained new difference

scheme for the system of generalized Schamel–Korteweg–de Vries equations (32), i. e., when

α0 = α1 = 1, has the following form

𝑢
(1)𝑛+1

𝑗 − 𝑢
(1)𝑛

𝑗

τ
+ 4

(𝑢
(1)3/2

𝑛+1

𝑗+1 − 𝑢
(1)3/2

𝑛+1

𝑗−1 ) + (𝑢
(1)3/2

𝑛

𝑗+1 − 𝑢
(1)3/2

𝑛

𝑗−1 )

4ℎ
+

+ 3
(𝑢

(1)2
𝑛+1

𝑗+1 − 𝑢
(1)2

𝑛+1

𝑗−1 ) + (𝑢
(1)2

𝑛

𝑗+1 − 𝑢
(1)2

𝑛

𝑗−1)

4ℎ
+

(𝑢
(1)𝑛+1

𝑗+2 − 2𝑢
(1)𝑛+1

𝑗+1 + 2𝑢
(1)𝑛+1

𝑗−1 − 𝑢
(1)𝑛+1

𝑗−2)

4ℎ3
+

+
(𝑢

(1)𝑛

𝑗+2 − 2𝑢
(1)𝑛

𝑗+1 + 2𝑢
(1)𝑛

𝑗−1 − 𝑢
(1)𝑛

𝑗−2)

4ℎ3
+ σ0

⎛⎝𝑢
(1)𝑛+1

𝑗 + 𝑢
(1)𝑛

𝑗

2
−

𝑢
(2)𝑛+1

𝑗 + 𝑢
(2)𝑛

𝑗

2

⎞⎠−

− σ1

⎛⎝(𝑢
(1)𝑛+1

𝑗+1− 𝑢
(1)𝑛+1

𝑗−1) + (𝑢
(1)𝑛

𝑗+1− 𝑢
(1)𝑛

𝑗−1)

4ℎ
−

(𝑢
(2)𝑛+1

𝑗+1− 𝑢
(2)𝑛+1

𝑗−1) + (𝑢
(2)𝑛

𝑗+1− 𝑢
(2)𝑛

𝑗−1)

4ℎ

⎞⎠= 0,

(39)

𝑢
(2)𝑛+1

𝑗 − 𝑢
(2)𝑛

𝑗

τ
+ 4

(𝑢
(2)3/2

𝑛+1

𝑗+1 − 𝑢
(2)3/2

𝑛+1

𝑗−1 ) + (𝑢
(2)3/2

𝑛

𝑗+1 − 𝑢
(2)3/2

𝑛

𝑗−1 )

4ℎ
+

+ 3
(𝑢

(2)2
𝑛+1

𝑗+1 − 𝑢
(2)2

𝑛+1

𝑗−1 ) + (𝑢
(2)2

𝑛

𝑗+1 − 𝑢
(2)2

𝑛

𝑗−1)

4ℎ
+

(𝑢
(2)𝑛+1

𝑗+2 − 2𝑢
(2)𝑛+1

𝑗+1 + 2𝑢
(2)𝑛+1

𝑗−1 − 𝑢
(2)𝑛+1

𝑗−2)

4ℎ3
+

+
(𝑢

(2)𝑛

𝑗+2 − 2𝑢
(2)𝑛

𝑗+1 + 2𝑢
(2)𝑛

𝑗−1 − 𝑢
(2)𝑛

𝑗−2)

4ℎ3
+ σ0

⎛⎝𝑢
(2)𝑛+1

𝑗 + 𝑢
(2)𝑛

𝑗

2
−

𝑢
(1)𝑛+1

𝑗 + 𝑢
(1)𝑛

𝑗

2

⎞⎠−

− σ1

⎛⎝(𝑢
(2)𝑛+1

𝑗+1 − 𝑢
(2)𝑛+1

𝑗−1) + (𝑢
(2)𝑛

𝑗+1 − 𝑢
(2)𝑛

𝑗−1)

4ℎ
−

(𝑢
(1)𝑛+1

𝑗+1 − 𝑢
(1)𝑛+1

𝑗−1) + (𝑢
(1)𝑛

𝑗+1 − 𝑢
(1)𝑛

𝑗−1)

4ℎ

⎞⎠+

+ σ2
𝑢
(2)𝑛+1

𝑗 + 𝑢
(2)𝑛

𝑗

2
− σ3

(𝑢
(2)𝑛+1

𝑗+1 − 𝑢
(2)𝑛+1

𝑗−1) + (𝑢
(2)𝑛

𝑗+1 − 𝑢
(2)𝑛

𝑗−1)

4ℎ
= 0.
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Here we denote the grid mesh steps by τ = 𝑡𝑛+1 − 𝑡𝑛, ℎ = η𝑗+1 − η𝑗 and introduce the grid

functions 𝑢
(1)𝑛

𝑗 = 3(1) (𝑡𝑛, η𝑗) , 𝑢
(2)𝑛

𝑗 = 3(2) (𝑡𝑛, η𝑗), where 3(1) (𝑡𝑛, η𝑗) ,3(2) (𝑡𝑛, η𝑗) are the grid

values of the functions 3(1)(𝑡, η),3(2)(𝑡, η).
The software implementation of the difference scheme (39) requires linearization of the

nonlinear grid power functions with exponent 3/2 and 2 for the next time layer. To implement

this procedure, the following computational relations are proposed

ν3/2𝑘+1 = ν
3/2
𝑘+1 − ν

3/2
𝑘 + ν3/2𝑘 =

(︁
ν1/2𝑘+1 − ν

1/2
𝑘

)︁(︁
ν𝑘+1 + ν

1/2
𝑘+1ν

1/2
𝑘 + ν𝑘

)︁
+ ν3/2𝑘 =

=
(︁
ν1/2𝑘+1 − ν

1/2
𝑘

)︁(︁
ν1/2𝑘+1 + ν

1/2
𝑘

)︁ (︁ν𝑘+1 + ν
1/2
𝑘+1ν

1/2
𝑘 + ν𝑘

)︁
ν1/2𝑘+1 + ν

1/2
𝑘

+ ν3/2𝑘 ≈

≈ (ν𝑘+1 − ν𝑘)
3

2
ν1/2𝑘 + ν3/2𝑘 =

3

2
ν1/2𝑘 ν𝑘+1 −

1

2
ν3/2𝑘 ,

ν2𝑘+1 = ν
2
𝑘+1−ν2𝑘+ν2𝑘 = (ν𝑘+1 − ν𝑘) (ν𝑘+1 + ν𝑘)+ν

2
𝑘 ≈ (ν𝑘+1 − ν𝑘) 2ν𝑘+ν2𝑘 = 2ν𝑘ν𝑘+1−ν2𝑘. (40)

Using the difference scheme (39) with linearization by (40) the algorithm of numerical

solution in Python programming language with the help of SciPy package (htt://scipy.org) has

been implemented. The computational experiments on modeling the processes of propagation

of solitary waves in the considered shells under the initial conditions of the form (35)–(38) was

carried out. In the course of modeling, the following cases were considered: filling with fluid only

the annular channel between the shells (equivalent to assuming σ2 = σ3 = 0); filling with viscous

fluid the annular channel between the shells and the inner shell. In addition, we considered the

case of incompressible shells material when the inner shell and the annular channel between the

shells are filled with viscous fluid. To do this, in (33) we took µ0 = 1/2 and obtained, σ2 = 0,

and also assumed that σ3 = 0.4.

The results of the calculations are shown in Figs. 2–7, namely:

– the evolution of solitary strain waves in the shells for the case σ0 = 1, σ1 = 0.2, σ2 = σ3 = 0

(absence of fluid in the inner shell) when a wave of the form (35) with 𝑘 = 0.2 is excited

at the initial moment of time in each of the shells (see Fig. 2);

– the evolution of solitary strain waves in the shells for the case σ0 = 1, σ1 = 0.2, σ2 = σ3 = 0

(absence of fluid in the inner shell) when a wave of the form (36) with 𝑘 = 0.2 is excited

at the initial moment of time in the outer shell (see Fig. 3);
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Fig. 2. The results of numerical solution of the system (32) at σ0 = 1, σ1 = 0.2, σ2 = σ3 = 0 with initial conditions

(35) with wave number 𝑘 = 0.2 (color online)
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Fig. 3. The results of numerical solution of the system (32) at σ0 = 1, σ1 = 0.2, σ2 = σ3 = 0 with initial conditions

(36) with wave number 𝑘 = 0.2 (color online)
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Fig. 4. The results of numerical solution of the system (32) at σ0 = 1, σ1 = 0.2, σ2 = σ3 = 0 with initial conditions

of the form (37), (38): condition (37) with wave number 𝑘 = 0.225 and initial value η = −50, condition (38) with

wave number 𝑘 = 0.2 and initial value η = 0 (color online)

Fig. 5. The results of numerical solution of the system (32) at σ0 = 1, σ1 = 0.2, σ2 = 0.2, σ3 = 0.4 with initial

conditions (35) with wave number 𝑘 = 0.2 (color online)

– the evolution of solitary deformation waves with different amplitudes and velocities in each

shell for the case σ0 = 1, σ1 = 0.2, σ2 = σ3 = 0 (no fluid in the inner shell) when two

waves of the form (37), (38) are excited at the initial moment of time in each shell, (the

first wave (37) with 𝑘1 = 0.225 and initial value of the spatial variable η = −50, and the

second wave (38) with 𝑘2 = 0.2 and initial η = 0) (see Fig. 4);

– the evolution of solitary strain waves in the shells for the case σ0 = 1, σ1 = 0.2, σ2 = 0.2,

σ3 = 0.4 (presence of viscous fluid in the annular gap and in the inner shell) when a wave
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Fig. 6. The results of numerical solution of the system (32) at σ0 = 1, σ1 = 0.2, σ2 = 0.2, σ3 = 0.4 with initial

conditions (36) with wave number 𝑘 = 0.2 (color online)

Fig. 7. The results of numerical solution of the system (32) at σ0 = 1, σ1 = 0.2, σ2 = 0, σ3 = 0.4 with initial

conditions (35) with wave number 𝑘 = 0.2 (color online)

of the form (35) with 𝑘 = 0.2 is excited at the initial moment of time in each of the shells

(see Fig. 5);

– the evolution of solitary deformation waves in the shells for the case σ0 = 1, σ1 = 0.2,

σ2 = 0.2, σ3 = 0.4 (presence of viscous fluid in the annular gap and in the inner shell),

when a wave of the form (36) with 𝑘 = 0.2 is excited at the initial moment of time in the

outer shell (see Fig. 6);

– the evolution of solitary strain waves in the shells for the case σ0 = 1, σ1 = 0.2, σ2 = 0,

σ3 = 0.4 (shells of incompressible material, presence of viscous fluid in the annular gap

and in the inner shell) when a wave of the form (35) with 𝑘 = 0.2 is excited at the initial

moment of time in each of the shells (see Fig. 7).

Summary and Conclusion

The calculations presented in Fig. 2–Fig. 4 show that for the cases when there is no fluid

in the inner shell, the waves move to the right, i. e., the next term in (12), corresponding to

the nonlinear wave process, is positive. Consequently, the propagation of solitary waves occurs

at supersonic speed. The analysis of the curves in Fig. 2 indicates that the evolution of solitary

strain waves in the shells occurs with constant velocity and amplitude. The calculations presented

in Fig. 3 demonstrate that when a solitary strain wave is excited at the initial moment of time

only in the outer shell, the wave is excited in the inner shell with the passage of time. At the
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initial stage, this process is accompanied by the drop in the amplitude of the solitary wave in

the outer shell and the increase in the amplitude of the excited solitary wave in the inner shell.

In the course of time, two waves of practically the same amplitude and velocity are observed in

the shells. This indicates the energy transfer from the outer shell to the inner one through the

viscous fluid filling the annular channel. The results of calculations in Fig. 4 allow us to conclude

that two solitary waves with different speed and amplitude excited at the initial moment of time

in each of the shells interact with each other during evolution. After the interaction, the waves

keep their shape and speed, i.e., they interact as particles. This behavior indicates that in the

considered cases, the solitary strain waves in the shells are supersonic solitons.

The calculations presented in Fig. 5 and Fig. 6 show that the presence of fluid in the

inner shell significantly changes the evolution of the wave process, namely, there is a change

in the direction of motion of solitary strain waves — they move to the left. This direction of

motion indicates that the propagation of nonlinear strain waves occurs with subsonic velocity.

In addition, in the considered cases, the drop in amplitude and velocity of solitary strain waves

in the shells within a short time interval is observed compared to the calculations presented in

Fig. 2–4. The evolution of the wave process at initial excitation of the solitary strain wave with

the same wave number in each of the shells (Fig. 5) is accompanied by the intense drop in the

amplitude and velocity of the waves and, eventually, by a rapid collapse of the strain solitons. For

the case when at the initial time instant a solitary wave is excited only in the outer shell (Fig. 6),

at the initial time step the excitation of a solitary wave in the inner shell is observed. This process

is accompanied by the drop in the amplitude of the wave in the outer shell and the increase in the

amplitude of the wave in the inner shell.If the shell material is incompressible (Fig. 7), then the

movement of deformation waves to the left is observed. Consequently, the propagation of solitary

waves occurs at subsonic speed. However, the attenuation of the deformation solitons persists,

since the amplitude of the solitons in the shells decreases over time. This indicates energy transfer

from the outer shell to the inner one through the viscous fluid in the annular channel. However,

then, there is an intense drop in the amplitude of the deformation wave in both the outer and inner

shells with subsequent collapse of the strain solitons in them. The results obtained suggest that

the presence of viscous fluid in the inner shell leads to attenuation of strain solitons in the shells.

Summarizing the presented study, we note that in this paper we formulated the problem

of hydroelasticity of two coaxial cylindrical shells made of material with the hardening combined

quadratic-fractional nonlinearity. The system of evolution equations including two generalized

Schamel–Korteweg–de Vries equations describing the nonlinear wave process in the shells is

obtained on the bases on the asymptotic analysis of this issue. The new difference scheme using

the Gröbner basis technique is derived to discretize the obtained system. The computational

experiments allowed to evaluate the influence of viscous incompressible fluid between the shells

and in the inner one on the evolution of nonlinear solitary strain waves in the shells. The results

obtained in this work can be used as a fundamental basis for further development of methods of

wave diagnostics of the state of pipelines filled with viscous fluid or vessels of the blood system

of animals and humans.
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