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NONLINEAR PROBLEMS OF MOLECULAR PHYSICS

A. Chetverikov, W. Ebeling

A survey on investigations of some nonlinear problems of molecular physics carried
out by molecular dynamics simulations is given. Among them there are problems of
elementary excitations in fluids, the dynamics of chemical reactions in solutions, dynamical
properties of dilute plasma, dynamic phenomena in phase transitions in mesoscopic systems,
structural properties of chains of nonlinear oscillators. Several new results about the
distribution of clusters and of a method of identification of clusters are presented.

1. Introduction

The paper reviews some recent results of investigations of modern nonlinear
problems concerning molecular physics, physics of condensed matter, plasma physics and
others. All of them use the same method of the study - computer simulation based on the
molecular dynamics method (molecular dynamics simulation, MDS) [1-3]. The paper
does not claim for complete coverage of all problems of mentioned fields of science, the
selection is restricted mainly to subjects of the researches performed within a
collaboration between groups in Berlin-Moscow-Saratov. The purpose of the survey is to
give an insight into modern problems of studies of nonlinear phenomena, observed, for
example, in elementary excitations, in phase transformations of matter, in chemical
reactions, in plasma processes. The main subject is preceded by brief explanation of the
basic principles of intermolecular interactions and the molecular dynamics simulation
method.

2. Interaction of molecules and molecular dynamics simulations

Let us first consider a problem: what is the minimal number N of particles of a
substance necessary to explore its physical, chemical, thermodynamic etc. properties? On
the first sight, billions and billions of molecules or atoms are required. However, there is
a number of phenomena when ensembles of only a few thousand or even hundreds of
particles exhibit almost the same properties as large volumes of a substance. Besides,
study of processes in ensembles of rather small number of particles (clusters, mesoscopic
systems (see, for example, [4])) and the observation of evolution of their propertics with
increasing number of a particles often yield a key to understanding of what happens in
real volumes of substances - macroscopic systems. These observations allow to offer a



method of the theoretical analysis based on
the direct numerical simulation of a motion
of particles in rather small ensembles and
calculation of different macrocharacteristics
by means of statistical treatment [1-3].

The important feature of molecular
dynamics simulations is the application of
periodic boundary conditions in studies of
macroscopic  systems.The influence of
boundary conditions (requirements on a
surface) should be minimal. Let us first
consider a molecular system consisting of N
particles in a one-dimensional (1D) space.
In this case periodic boundary conditions
are equivalent to placing the particles on a
ring (Fig. 1). Let us discuss now the
interaction of 2 particles at a distance r. If
the average distance is o (which plays the role of the specific volume) the simplest
interaction model is a linear spring described by the parabolic potential (Fig. 2)

Ve (r) =thmod(r- o)?,

Fig. 1. A molecular system in a one-dimensional
space with periodic boundary conditions

(6]

where standard notations are used. A standard model for a description of nonlinear
interactions is the Toda model (Fig. 2)

VI (r) = (ab)[e? - 1] + a(r - o) (2)

with constant parameters a and b. In higher dimensions the process is supposed to take
place in a parallepiped of sizes L , L, L, in 3D model or L, L in 2D one, accordmgly,
and the space outside its hmlts is supposed to be fllled "with its precise c0p1es
immediately adjacent to each other (Fig. 3). Each particle has infinitely many copies in
the space located on distances L, L , L in the relevant directions. If a particle abandons
the field considered in a numencal modeling by crossing any boundary of the
parallepiped, its copy enters the field through an opposite boundary. In calculations of
forces of particles interaction taking place in the vicinity of boundaries, the interaction
with particles located outside of the field is taken into account if they are apart smaller
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Fig. 2. Several models of the interaction potential Fig. 3. A molecular system in a two-dimensional
V(r): (1) - Toda potential, (2) - Lennard-Jones po- space with periodic boundary conditions

tential, (3) - harmonic oscillator potential and &) -
Morse potential



than some effective radius (see below). The periodic boundary conditions allow formally
to assume N—oo already for N~2°-2'°. In investigations of mesoscopic systems with
limited number N the interaction space is considered as unbounded.

The kind of a theoretical model for an analysis is determined by physical properties
of an explored system, and the type of forces of intermolecular interaction is principal
among them. In this paper we consider only simple models with classical dynamics. The
force of interaction between any two molecules is supposed to be depended only on the
their distance ». The interaction potential in various models may be different (Fig. 2), but
the methods of its calculation are not a subject of the analysis of this article. The models
in which interaction of molecules takes place due to Van der Waals forces are defined by
the Lennard-Jones potential

VH(r) = 4e[(olr)? - (olr)] (3)

or its modification, more suitable for computer modeling, the finite-range Lennard-Jones
potential
VA6 (r) = A[(olr)' - 1]exp|[(rfo - 32)"] if r< (l)o,

VAG() =0 if r=(Ch)o (4)

are examined here (Fig. 2). Here ¢ is a well depth in minimum of the potential well V(r),
and V(r=0)=0. Also the models with particles interacting via conservative Morse forces
described by the Morse potential

VM (1) = (@2b)(er - 1)? - (al2b) (5)

are considered. In the models we study here parameters ¢, o, and a mass of interacting
particles also are used as umits of the relevant quantities, which are figured as
dimensionless in the models. Note, the nonlinear potentials are «short-range» and V(r) is
close to zero at r21.5. It allows to introduce an effective radius r,,~1.50 so interaction of
particles located more than ., from each other can be neglected. Therefore in calcula-
tions of, for example, complete potential energy of the system

U=, V(1) (6)

only those potenuals of two-particle interactions, for which r <r . should be taken into
account. Here r . is a distance between partu:les numberi and nmger J-

An mmaf position of particles and sizes L, Ly L. as yet depend on a type of a
problem. If the system with random structure (gas plasma) is studied, the sizes of the
interaction space are chosen based on density at given number of particles p=N/(L L L. )s
and it is usually L =L =L . If the initial structure is a crystal lattice, for example
quantities L , L , L must match each other, depending on the type of symmetry of a
lattice. Let us d1scuss now the problem how thermodynamic equlllbnurn for the system
can be realized. The velccity distribution of the particles ensemble in a study of processes
which proceed should be Maxwellian so that the average kinetic energy of particles
defines temperature and is uniformly distributed among all coordinates, and the velocity
distribution function of particles is Gaussian. Additional requirements to the problem are
also possible. For example, for processes in a crystal lattice the average potential energy
and the kinetic one should be the same at small temperature. To satisfy these
requirements in computer experiments, the calculations of the «equilibrium» perfor-
mances of the system are preceded by modeling of a nonequilibrium stage (stage of «hea-
ting» ), when the trajectory of a motion of each particle obeys a Langevin equation (n=1)

=drjdt, dv,/dt=-0U(r,)/dr, - yv, + (2D)2L (7). _ (7



& =0 &AL e)=283(-1).

Here i is equal tox, y, z in 3D case, v _and r_ _are the velocities and coordinates of a
particle, y is a friction coefficient, D it a dlffuswn constant, Z;(t) is a random function
modeling a white noise. In order to bring the system to thermodynamic equilibrium at
temperature 7, the Einstein relation

D=k,gT | 8)

should be satisfied. Here &, is the Boltzman constant. After reaching the given tempe-
rature, external sources are «sw;tche.d off» and modeling of an equilibrium stage starts. It
is possible to estimate precision of calculations at this stage based on precision of
satisfaction of a conservation law of a total energy of a system E=T+U, where T is kinetic
energy. In further, speaking about energies, we shall mean energy per one particle, if it is
not stipulated other. Let us consider now specific applications of molecular dynamics
simulations.

3. Elementary excitations in fluids

In fluids the typical dynamical phenomena are collective excitations in ensembles
of particles. It is common to suppose that phonons and solitons are most important among
them. Suitable model for investigation of their properties is the one-dimensional lattice
(chain) of oscillators, in particular, of nonlinear Toda oscillators [5]. The Toda chain is
chosen as one of basic models because many macroscopic characteristics can be
calculated analytically due to unique properties of defined in section 1 Toda potential
despite of the nonlinearity of the underlying processes [6]. In addition, such data can be
served as a fine test instrument in computer simulations of processes in nonlinear chains.

In chains each particle interacts with two adjacent only, executing oscillations in a
potential well formed due to interaction. The equation of motion (7) in combination with
the Einstein relation (8) becomes

(dz.fdlz)’ (v (";+1) 2V ’(r‘,) +V'(r )]+ ©)
+ Y2 [(2kTIm )2 (1) - yV*(dr, /dt)].

At small oscillation amplitudes (small temperature) the potential is parabolic

V(r) = ab[(172)(r - 0)3]. (10)

In this case each particle executes simple harmonic motions, and the collective
excitations of a chain are phonons. The frequencies and wave numbers of them obey the
dispersion equation

o = 20sin(ka/2). (11)

In the other limiting case, at high temperature, interaction of particles is mostly
repelling, and the collective excitations are soliton-like. As a result the transformation of
the thermodynamic properties of a lattice is observed in heating up. Most characteristics
(the mean specific volume, the pressure, the specific internal energy, the mean potential
energy et al.) can be calculated for an unlimited Toda chain analytically [5]. In particular,
the specific heat per molecular at constant volume ¢, as the function of temperature is
represented in a Fig. 4. It shows that ¢, varies from the value k,, relevant to the ideal
phonon gas, up to 0.5k,, relevant to the ideal soliton gas. There is the transition region
near the temperature T, , defined by a relation ¢, (T, )=0.75k, (¢,(T,) is equal to average
value of two limiting values), where a set of interesting properties initiated by interaction



of nonlinear collective excitations is cvlkp
observed. Some of them are explored by a |}
molecular dynamics simulations in ring
chains with quite small number (N=10-20) 09
of particles. i
If N is even, N/2-1 of waves L
(phonons), running on the right, and the 7} !
same, running on the left, are excited in the !
ring at small temperature. Also, the phonon 0.6 f .'
with frequency equal to an upper frequency 5 , P .

10° 10" kgl

Fig. 4. Specific heat per moleculare,, at constant lenth
of the Toda chain. In the region around the transition

of a ring as a_whple, are excited. So the temperature T (defined by c, (T, )=(3/d)k,) we
frequency distribution of non-zero phonons observe the most interesting physi‘f:al Etfects dus to the
modes contains N/2 discrete peaks. When interaction between solitary waves. For chosen
temperature increases and nonlinear effects parameters v=0 and b=100/c, we obtain T, ~0.16 ¢
are developed, the phonons begin to interact with each other, and then to transform to
nonlinear (cnoidal) waves, also interacting with each other. The wave length of cnoidal
waves on a ring is restricted by its length, and only at increasing number of particles they
will differ ever less from solitons in a boundless chain.

The interaction of nonlinear excitations is most strong near to the transition
temperature. In particular, it follows from the spectrum (FF) , defined as the Fourier
transform of the time correlation function (ACF) of the force acting on a particle. The
ACF is calculated from molecular dynamic simulations in order to identify thermally
activated soliton-like excitations in the spectrum (Fig. 5). We can observe a noisy range
of the spectrum near to a region containing frequencies of phonons, and also a broadband
coloured noise of a 1/f type at low frequencies. The last implies a hierarchy of beatings
where periods with more energetic compression pulses are more probable to appear at
longer time intervals. Its appearance is associated also with diffusion processes in the
system and testifies an opportunity of transformation of white noise of a surrounding
medium to coloured noise.

Some details of the process of inte-

of a phonon band and «a zero phonon» 10" 1o° Tk 10°
with a frequency and a wave number close

to zero, corresponding to very slow rotation

0.

raction of nonlinear excitations are cla- S 1
rified by the analysis of a dynamic structure &
factor (DSF) of a chain [7]. It is defined as % 10
follows [8] E
@ ] 10-2

S(0k) = V@) e ok O (12) &

Here k and w are a wave vector and a = 1073+ — : ey . s
frequency, p is density of a particles 103 102 10" 10° 10' 102

ensemble, the angular brackets mean the
operation of an average on a set of time
series, DSF allows to judge time behaviour
of spatial (collective) structures of specific
scales, generated on a ring. Setting quantity
k, defining a frequency composition §(w,k)
and estimating breadth of spectrum lines, it
is possible to judge a stability of structures
(nonlinear waves) and velocity of their
motion on a ring. In particular, in a ring

/g,

Fig. 5. Spectra (FF)  of single-particle forces F in
uniform rings of N=10 (solid) and N=20 (dashed)
Toda oscillators with oscillation frequency w, and
stiffness b=100/c in thermal equilibrium with a bath
in the transition-temperature region (,7=0.26e
corresponds to ¢,(T, .)=0.73k, ). The friction para-
meter is 7:10'3{110. The spectra were obtained by
Fourier transformation of the auto-corrclation
function. We observe broad peaks around the
second-phonon frequencies as well as 1/f tails at the
low end of the spectra



100 100
100 ¢ 10!
g 3
- 9 l'_‘[‘a
8 10~ 8 10-2
= P
A 107 R 103}
10* . 10* A : .
10? 10 10° 10! 107 102 10" 10° 10!
(O] [O]
a b

Fig. 6. The dynamic structure factorS(w, k) /max S(w, &) versus frequency w for a Hamiltonian ring chain
(N=10, y=0) for the wave number k=ky =2n/N: a) at low temperature, the particles interactions
correspond to the cubic weak nonlinear (Fermi-Pasta-Ulam type) potential; b) in the transition-
temperature region at T=Trr'

with N=10 it is possible to observe transformation of dynamics when reaching a
stationary temperature and «switching-off» of an external environment by calculating a
dynamic structure factor at different temperatures using MMS [9, 10]. It has been seen
(Fig. 6, a), that at small temperature, when the nonlinearity is week, S(w) at a wave
number corresponding to the resonant structure of the largest scale - to the first phonon-
contains combination frequency components in addition to the first phonon frequency o,.
They arise due to interaction of five phonons with frequencies w,, i=1,5 on quadratic
nonlinearity and have frequencies o =0, -0, j=1,4. With increasing temperature the first
phonon (and then others) transforms to a crioidal wave with velocity more than velocity
of a sound. In particular, at transition temperature it is approximately twice higher (Fig. 6,
b). The nonlinear wave in this temperature range strongly interacts with other waves, but
remains rather stable, as far as it is possible to judge from a spectrum S(w), consisting of
a small number of narrow discrete peaks. This tendency is specific under further
temperature increase also, when the spectrum displaces to the right as a whole because of
109 : . a velocity rise of nonlinear waves, and the

| \ region of combination waves is rared as the

107! | waves begin to resemble solitons more and
g

g more and their interactions weaken.
k& 107 If the ring is not switched-off from
. ' external environment after reaching
g 10 equilibrium temperature, the dynamic
i structure factor also indicates excitation of
10 1/f of noise at low frequencies for small
1078 values of a wave number k (Fig. 7).
102 102 10°! 10° 1ot However it is necessary to note, that the
» details of processes corresponding to 1/f

Fig. 7. The dynamic structure factorS(wk)/max S(wk) noise in the model described are still not
versus frequency @ for a ring chain in thermal equi- .
librium (N=10.'y=10'3w0) for the small wave number Sl€ar and a more complete understanding
k=0.1 in the transition-temperature region at 7=7,  of the matter calls for further study [5].

4. Dynamic structure factor of plasma

The problems of structure evolution arise, as a rule, in studies of phase transitions
in gas-fluid, fluid-solid, gas-plasma and have many aspects. The distribution function,



certainly, is not the unique characteristic of such states. In particular, the use of the
dynamic structure factor mentioned above (8) is effective in researches of spatial
structures and their time behaviour both in plasma and fluid. An important advantage of
DSF is that it can be defined experimentally and it is associated with several regular
characteristics which on many occasions can be determinated only as by means DSF. For
example, having known DSF, one may find the plasma electric inductivity and
dispersion, including the case of such density when it is very difficult to calculate these
characteristics by other methods. Now let us discuss features of simulation of particles
behaviour in plasma before we analyze results of DSF calculating.

Usually what is implied when one speaks about plasma, is the dense plasma. It is
more similar to fluid than to gas by a number of properties. Really, Coulomb potential is
more «long-range», than, for example, Lennard-Johnes potential, therefore in dense
plasma each particle simultaneously interacts with several others particles, i.e. the
interaction is collective. The definitions «isotropic», «homogeneous» «ideal» and so on
are used for namely this kind of plasma. Its behaviour is oscillatory or wave, as a rule,
and is studied within the framework of hydrodynamic or electrodynamic models. On the
other hand, the density in dilute plasma is small and particles interact pairwise, as in gas.
Therefore the dynamics can be investigated using models developed for studies of gas
properties. However collective phenomena are exhibited more and more in dynamics of
such plasma under increasing density (it can not be called dilute already). The application
of MDS is most effective for study specifically these phenomena, evolution of their
properties, changes in dynamics taking place when density grows. Moreover, there are
situations, when MDS is the unique effective method of the analysis of behaviour of a
plasma system.

Two stages can be identified in studies using MDS in the general case: the stage of
determination of a potential share for each particular case of particles interaction and the
stage of determination of the dynamics of the particles ensemble given by this interaction.
First of them is not a subject of the present paper, we will not discuss that here. Note
only, that a model of interaction of particles in plasma is developed as a rule based on
concepts of a quantum mechanics. At the second stage the computer simulation of the
particles interaction is carried out and the results obtained are used for determination of
the different performances of a system. Usually a classical Coulomb potential is used for
presentation of charged particles interaction in the theory. The point is that very high
accelerations are developed when opposite-charged particles are coming together in the
numerical model with the classical potential and calculations become illconditioned. As a
matter of fact, the quantum phenomena come into force when particles close to each other
at a distance exceeding that comparable an atomic scale, and they lead to a little bit other
behaviour in compprison with «Coulomb» one. But the quantum models are very
complicated and it is not efficiently to apply them to simulation of phenomena, in which
«quantum» interactions take only a small part of a total duration of the process. That is
why quasi-classical models are developed, in which the classical motion obeying the
Coulomb potential force takes place, and only when particles are getting to close the
specific shapes of a potential defined on the basis of quantum mechanics laws are applied
[8]. We do not discuss details of those models, but the results obtained by a MDS in the
frame of quasi-classical models, are very interesting.

In a Fig. 8 the data of calculation [8] of a certain coefficient R (k,w), proportional
S(k,w), for plasma within the framework of a quasi-classical model developed in that
work are represented. (The difference between R and S is not basic for our consideration,
see the details in [8]). The cases of both moderate coupling (I'=1), when the
autocorrelation function (ACF) falls monotonically to zero, and strong coupling (I'=100),
when ACF shows oscillations with a frequency close to the plasma frequency W, have
been explored. Here I' is the coupling strength parameter. The results are given as



dependencies R as a function of dimen-
tionless frequency w for different wave-
vectors g=ka, where a is a characteristic
space scale of the system. As we see the
peak at w = w_(plasmon) is observed only
for smallest ¢ value (defined by the size of
simulation space). The effect is not
unexpected, as just the particles clusters of
size comparable with big enough scale,
corresponding to small values g, have an
o sufficient effect on motion of a individual
0.0 05 10 . 1s partcle at small coupling. Therefore the

® plasmon does not manifest itself really at
small coupling in this case. However with
increasing I' (density) the plasmon peak
rises although does not reach the same
magnitude as at small k. The peak is close to ®_, but under change in a wave number it is
shifted distinctly. It allows to determine the dispersion that may be both positive and
negative. The peak is identified even in the region of the strong Landau attenuation,
where it is impossible in fact to determine dispersion by ordinary technique.
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Fig. 8. The loss functionR(g,w) versus frequency m!'u)
for different wavevectors ¢ at '=100

5. Distribution function of clusters and phase transitions

The big number of problems of molecular dynamics is associated with
investigations of properties of clusters. In molecular dynamics the term cluster is used for
designation of an aggregation of particles located close enough to each other and bound
by forces of an intermolecular interaction, in particular, of the Lennard-Jones or Morse
type. For example, clusters are formed in rings of particles interacting via Morse forces if
density of particles is small [11]. The clusters are stable enough, i.e. their lifetime is long
so that events in which clusters take part could be detected by spectroscopic methods, for
example [4]. What the stability of a cluster depends on? Let’s consider, for example,
conditions at which two particles (the neutral molecules) will form a cluster. Apparently,
this couple will be stable if its summary kinetic energy is less than the potential energy -
they are in a potential well and can not overcome the potential barrier in the absence of an
external excitation. It is likely that the cluster will be stable if the total energy of the
system is negative: E=T+U<0. Therefore, the clusters are produced in processes when
kinetic energy of particles decreases. For example, if to open the cock of a vessel
containing hot gaseous carbon, clusters will be formed in jet discharged owing to abrupt
cooling of the gas. The proportion of clusters containing given number n of particles
(monomers, dimers etc.), is characterized by a distribution function f{n) (cluster size
distributions, CSD [12]). Experimentally found f(n) for carbon, for example, under
conditions mentioned above is given in Fig. 9 [13]. Note, the function characterizes a
stationary, steady state. But there is a specific interest in evolution of clusters in processes
of forming, dislocation, deformation, i.e. in the function f(n,f). Let us now consider the
procedure for theoretical calculatmn of the function, based on the geometric-energy
approach.

For the conﬁguratlon of the ensemble of particles obtained during MD-simulation
at some instant «geometrical» clusters are determined first on the basis of the agreement
that the particle is considered belonging to a certain cluster, if it is at a distance from any
particle not exceeding the distance R=1.20. The latter is taken as a characteristic size of a
particle. Then, after each of particles has been identified as belonging to any cluster and
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Fig. 9. Mass-spectrum of the carbon clusters [13],
i.e. relative intensity as a function of 2 number of . 100 1 60
carbon atoms in the cluster

the number of clusters has been counted,
the total energy of each cluster is
calculated. If it is subzero, the cluster is
regarded to be stable (though, of course, it
can be abandoned by some particles later
on). If it is not, the fastest of particles is
«extracted» numerically from the cluster
until the energy of the stayed aggregation
does not become negative. If the number of
the particles discarded is small (it is less,
say, 10) it may be considered as a stable
one, i.e. it is a safe assumption that it does
not break down. But if the number of them
is big, we deal with a non-stationary phase
- the phase of shaping or active deformation of clusters.

As an example of calculation of CSD in MD-simulation we will consider a
problem about «spreading» of a «drop» of a fluid (big cluster (Fig. 10)) owing to such
change of surroundings, that the drop energy became close to zero at some instant.
Because of that the particles with high kinetic energy turned out to be a part of the cluster,
and then they start leaving it. There is every indication that the result will depend
critically on friction in the system. In Fig. 11 the plots f{n,) for three cases of different
values of a friction coefficient are represented. It is shown that at small friction the cluster
in fact entirely collapses (Fig. 11, a) reaching fast the steady-state of big number of
monomers, some dimers and insignificant number of clucters of big number of particles
(Fig. 10). If the friction is appreciable (Fig. 11, b), the initial «big» cluster stays stable
due to fast cooling (only some monomers and one-two clusters of a small number of
particles break off). A steady state is established fast enough in this case also. And it is
not a success to reach a steady state during carrying out of the computer experiment in the
intermediate case (Fig. 11, ¢) - fragments of the cluster collapsed have not ceased to
deform.

The phenomenon of transitions of matter from some phase to another one is
associated also with the problems of clusters. A number of theoretical and experimental
studies has been devoted to this problem having a great deal of aspects and items. Not
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Fig. 10. Locations of interacting particles: @) at an initial moment («drop» of a fluid) and b) at stationary
state at small friction
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Fig. 11. Distribution function of clustersf(n,t) for three cases of different values of a friction coefficient:
) small friction, b) appreciable friction, ¢) intermediate case

seeking to perform a complete overview and analysis of them, we will restrict ourselves
to the discussion of only those of them, which are effectively explored by molecular
dynamics simulation. In particular, this is a phenomenon that may be called as a problem
about «fusion» of molecular clusters under heating. The difficulties of the analysis of
phase transitions in real volumes of matter are accounted mainly by enormous number of
particles taking part in the process and practical impossibility to analyze all created
patterns of a uninterruptedly varying potential surface. However phase transitions of
small enough (mesoscopic) objects - clusters - can be studied in detail. This problem is
mteresting by itself, as it appears, the phase transitions in clusters of a small particles
number do not run as in extended volumes of matter. And on the other hand, increasing a
number of particles, it is possible to trace evolution of properties in the transition from a
«cluster» state of matter to a «volume» state. Note, mesoscopic systems take up an
intermediate position between the macroscopic and microscopic of them. To investigate
phase transitions in clusters the analysis of the shape of a potential surface established by
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Fig. 12. Representative (quenched) structures of the coexisting phases in Args: a) solid icosahedral,
b) surface melted with one floater and ¢) homogeneously melted. The core atoms and the floaters are
represented by dark spheres, the outer shell atoms by light one

cluster particles can be used as the very perspective approach [4]. The main item is the
definition of location of local minimums of the potential and a depth of potential wells
being in process of computer modeling by MD-method. The existence of a few phase
states of a cluster may be regarded as the most interesting effect discovered recently.
Three distinct phase states - microcrystalline (solid), homogeneously melted and solid
kern with a melted shell - have been found by computer modeling [4] of isothermal
dynamics of a three-dimensional cluster. At specific temperatures they can occur at the
same time with a sense of such state is a little another, than in macroscopic systems. It has
been revealed the certain, precisely distinguishable level of the potential energy
corresponds to each phase. The simultaneous existence of several phases of a cluster
means that it periodically goes from one state to another, and the residence time of each
phase depends on a well depth and a width of transition between adjacent local
minimums. In Fig. 12 the different states Ary (a - solid icosahedron (micro-crystal), b -
with a melted surface consis-ting one «floater», ¢ - with a homogeneons melted surface)
and in Fig. 13 a time dependence of energy of a cluster are shown at different
temperatures. There is no doubt that in a temperature range between T=30K,
corresponding to a microcrystal, and T=40K, corresponding to melted matter, the states
are established when there is periodic «switching» from one phase to another. Having
determined levels of energy of each phase and their residences, one can calculate by
means of statistical processing the probability distribution functions for different
quantities, a diffusion constant for each phase, the entropy etc. Purposeful searching of
states with given properties and methods of control in them may be carried out with help
of characteristics mentioned. The field of phase transitions of mesoscopic systems are
under active study now and discoveries of many interesting properties of such systems
may be anticipated in future.

6. Transition processes and reactions

The model presented above is not sufficient for explanation of processes in several
important and interesting cases. Let us consider, in particular, the problem about reaction

13



=7
-1.62:10" —~ =1.5410" I ,‘3K
— £ 2 -
g S _ "
= = . . LT
3 3 o L
& -1.64-107 < 1807 |, AR RN AR
2 E s kel
=] ~ n3 ‘,_. AT
s 3 & %
S -166-10” v o-le210 BES L o
500 1000 500 1000
a time steps b time steps
__ .4010° o L4010 —— B K
E 2 Sionan XL ]
Ll BhEE
-‘-% -1.50-10° Eé .1.50-10” ‘:. LS 3 :'lf!.
2 ’ X -1
n Lo: A L s 3 -* g
S ﬁl 5 M s
T 100" . vVo.1.6010° - L :
0 500 1000 0 500 1000
c time steps d time steps
-125'10"

A3SI00E B s e

oy <Epor> g0 (a.ufatom)

time steps

Fig. 13. The short-time averaged internal energy(E! o-') . of A, for the temperatures T=30K (a), 33K Gb).
35K [(c) and (d)], and 40K (e). Each point represents an average overt=18000 time steps of 3107 S's
each. The solid lines in (d) correspond to the energy limits used in the simulations to distinguish between

energy regions of the different phases, I denoting the solid phase, II the surface-melted phase, and III the
homogeneously melted phase (¢)

rates at different temperatures. As it is known, the rate of many chemical reactions is
defined by the Arrhenius law

K = K, exp(-AU/k,T), (13)

where K is a reaction rate at T—>e, AU is the activation energy equal to a depth of a
potential barrier, which should be overcome to split a bond, &, is the Boltzmann constant.
Arrhenius behaviour was marked for the first time more than hundred years ago and has
been under an experimental test in different kinds of reactions. In 1940 Kramers
developed the theoretical model becoming in the further the prototype of a statistical
reaction theory. The Kramers-theory of reaction rates is based on a Fokker-Planck
equation for the reactive molecule or on the corresponding Langevin equation with white
noise sources (see [14, 15]). One of implications of this theory is the Arrhenius law.
However recently it was clarified, that the Arrhenius-law is not always fulfilled precisely.
Besides, it was revealed, that some other experimental data do not always correspond to
behaviours following from the Kramers-theory [14, 15]. The search for the reason has
lead to a presumption that one of basic assumptions of the Kramers-theory about lack of
correlation of elementary exposure acts to other particles is disturbed in mentioned above
cases. Indeed, it was shown in [16, 17] that if a noise source in the Langevin equation is
assumed to be colored, it results in consequences leading to Arrhenius behaviour
violation, in particular. But what is the reason for occurrence of preferred scales in the
source? It has been hypothesized that it takes place due to specific exhibition of nonlinear
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(and dispersive, to some degree) properties of systems of particles distributed in space
[14]. We will leave the Arrhenius law for now and shall consider processes in solutions in
more details.

As it is known, the solution is a mixture of particles of two sorts at least - a solvent
and an impurity. The solvent concentration is much higher, for example, one molecule of
the impurity is per 30 molecules of the solvent. It was found that the Arrhenius law is
disturbed in such system if molecules of the solvent are «hard», and the others are «soft»
[14]. It is implied that the interaction of «hard» molecules between themselves is much
more restoring, than that of «hard» and «soft» molecules, and proceeds much faster. It has
been supposed [14], that so-called local energy spots are formed in such system. They are
located on soft particles and hard particles acquire the high potential energy. To verify
this hypothesis the simple one-dimensional model of a solution in the form of a Toda
chain has been considered [18]. As mentioned above, soliton-like local excitations of a
density can exist in a homogeneous Toda chain (when the parameters a, b, o are identical
for all sites of a chain, see (2)). In the general case they arise, as known, under a certain
relation of nonlinear and dispersion properties of a system. In a nonlinear chain soliton-
like structures are excited for specific values of nonlinear potential parameters specifying
both nonlinear and dispersion properties. If in a chain the small part of molecules are
«soft», the soliton-like excitations formed by hard molecules can «stick» at the soft sites
during some time, transferring coherently appreciable amount of energy to them. Indeed,
the times of the interaction of the soliton with the «hard» and «soft» molecules are as
v/t,=blb,, where the index 0 refers «soft» molecules. Moreover it is supposed, that the
dynamics of «soft» molecules also obeys the potential of the same form (6), but with
other parameter values. In particular, b,<<b, so during relaxation the «soft» molecule can
accumulate energy even more than that of one soliton. As a result the probability of
overcoming of a potential barrier appreciably increases, and the reaction rate rises. It
leads to a consequence that the fraction of high-energy soft molecules of the distribution
as a function of the potential energy of the soft molecules increases, shifted to higher
values and acquires longer tails. This conclusion is confirmed by the analytical
calculations in [14]. But for systems with other kinds of a potential, furthermore for two-
dimensional and three-dimensional systems, it is impossible to obtain the analytical
results. That is why in [14] the molecular dynamics method has been used for calculation
of the distribution functions.

The interaction of 32 particles, one of them was soft, was considered in 1D-, 2D-
and 3D-models with the modified Lennard-Jones potential (4) which at A=28, n=8 well
approximates the real Lennard-Jones potential, but is much more suitable for numerical
calculations. It is shown in a Fig. 14, a that the maximum of the distribution function f{U)
for a 2D-case for soft molecules is really shifted to the range of high energy events
relatively the maximum of the function for hard molecules and the fraction of high-
energy molecules («a high-energy tail») is by an order of magnitude greater (fig. 14, b).
Besides the average potential energy of soft molecules can be several times higher
exceeding (fig. 15) average kinetic energy. (Note, at small temperatures, when interaction
of molecules is in fact linear, these quantities are equal.) Results are the same for 1D- and
3D-models, and they do not change when the number particles is increasing. Taking into
account this effect of formation of the energy spots, we shall return now to the Arrhenius
law and consider specific systems, in which it is violated.

We shall consider the model of the dissociation of diatomic molecules [15]. The
atoms in such molecule are bound by potential force arising from the Kramers bistable
potential

VE(xy,2) = e -x(xf - 20%) +e, Y +e 22 (14)
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Two minima of the potential correspond to two possible configurations of such soft
molecule (Fig. 16) The potential barrier must be overcome to reach dissociation. The
energy for overcoming is accumulated by a molecule owing to interaction with
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Fig. 15. The temperature dependence of the mean
potential energy in DkgT/2 units for the two-
dimensional case (N=32: triangles = soft, squares =
hard molecules)

surrounding hard molecules, and the
interaction force is given by the Lennard-
Jones potential. The interaction potential of
hard molecules with hard molecules is the
same, but with parameters providing much
more shorter time of relaxation. The study
has been carried out within the scope of
2D-model with 100 particles. Initial
positions of particles correspond to minima
of the potential function, and then the
system reaches the given temperature
during a stage of «heating». A short
segment of the plot of the coordinate x of
the particle into a potential well of the
diatomic molecule against time is shown in
Fig. 17. The mean time t of transition
between two states connected with the
reaction rate by a relation t=1/K has been
calculated (Fig. 18) based on the function
x(r) presented above. It is certain that Int
as a function of the quantity AU/T, is not

linear, as it should according to the Arrhenius law, but it is parabolic instead. Similar
results have been obtained in the simulation of a reaction with participation of the

diatomic molecule, in which bond of atoms
form

V, (1) = el(exp(-6(-0,29) ) - 1)2 - 1].

occurs by the Morse potential reads in the

(15)

In T as a function of AU/T at fixed AU=50 proves to be not linear again, and at a
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fixed value 7=7.5 it is almost linear, but with a slope 0.5 instead of 1, as it should be in
agreement with the Arrhenius behaviour (Fig. 19). Thus, the effective temperature of the

system is not in agreement with the actual,
classically defined temperature of a
solution, because of the noise excited in
collisions of molecules, is not white and
effective temperature depends on its
spectrum. Currently it is impossible to

Fig. 19. The logarithm of the dissociation time for a
Morse molecule as a function of the Asrhenius
exponent. The full line corresponds to a fixed value
of the potential barrier A/=5C and the dashed line to
fixed temperature 7=7.5 and variable potential
barriers. All energies and temperatures are given in
the Argon-units used in [15] (i.e.7=1 corresponds to
119K)
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finally conclude that phenomena considered are explained entirely by existence of local
energy spots [15]. Nevertheless, this explanation is believed to be the most probable, and
further researches in this lead are still in progress.

7. Nonequilibrium phenomena

There is an ample class of problems about various flows and instabilities in fluids.
They are solved usually within the framework of hydrodynamic models. The results of
many of them are well known (see, for example, [19]). In particular, it is known, that at
low gradients of temperature and pressure the flow of a fluid is laminar, i.e., for example,
the flow velocity is the same at all points of a jet. However this statement is valid only for
spatial scales much more than characteristic sizes of molecules and a free length. The
trajectories of a motion of molecules corresponding microscales remain chaotic. What is
the way to structure unordered motion of individual molecules to collective motion of big
ensembles? The molecular dynamics simulation allowing to calculate trajectories of
molecules and then to carry out averaging complying with various scales plays an
invaluable role in studies answering this question.

Let’s consider for an example a motion of molecule of a fluid under conditions, at
which the instability of Rayleigh-Benar is harnessed [20]. The results of simulation of
motion of 5000 particles in a fluid layer in a rectangular vessel to be heated up from
below are presented there. It is known [19] from the analysis of this system taking a
hydrodynamic approach, that the type of collective motion of particles depends on a value
of a non-equilibrium parameter - the
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is well in accord with known «hydrody-
namic» one. However authors noted, that 0.3
an average over an ensemble of only 6 02F =%
particles is crude enough. For example,
; o B : 0.1 F
plots of the velocity distributions obtained
by MDS and in hydrodynamic appro- 00
ximation, differ in details, being the same 0.1 F x
qualitatively (Fig. 21). In this connection 5|
in [20] the chance to research effects of '
birth of small-scale vortexes and, in the 0.3 : . . . :
; 0.0 200 0 60 30 100
long run, the turbulence, by MDS is #a Ay N
estimated skeptically enough. The point i ;
that s PSR by £ g 1 P d hs Fig. 21. Horizontal component of the velocity as a
a ! a nsing nun} “r O «cels» and t € function of z, for a vertical slice located at x=L /4.
particles number in a «cell» for obtaining The curve refers to the hydrodynamical calculation
of data up to acceptable accuracy is where as the crosses represent the molecular
required with growth of number of dynamics data averaged over the last 10000 steps.
vortexes under the Rayleigh number DOt @xes arescaled in sysiem units
increasing (i.e. under decreasing of characteristic scales). However, it seems likely that
this problem will be overcome with computer efficiency increasing. At all events, it is
early to put an end to further investigations.

8. Conclusion

The molecular dynamics simulations (MDS) based on numerical solving of
equations of motion for a small ensemble of particles, is effective for studies of properties
of both a bulk state of matter (macroscopic systems) and states formed by clusters
(mesoscopic systems). In both cases a main field of application of a method is in the
systems which are nonequilibrium or are in a state of phase transitions «gas - fluid»,
«fluid - solid», «gas - plasma». For many problems MDS is the only research instrument.
The models are used both with a classical nonlinear potential (Lennard-Johnes, Morse,
Toda etc.), and semiclassical, in which individual events of particles interaction occur
potentials determinated on the basis of quantum mechanical calculations. It is
implemented effectively not only for three-dimensional models, but also for two-
dimensional and in particular one-dimensional. It is possible in the last case to compare
computer simulation data with analytic results. Among the problems related to properties
of bulk states, problems concerning origin and evolution of structure transformation in
ensembles of particles used in studies of properties of chemical reactions, dilute plasma,
near-boundary fluids, processes of ionization etc., are assumed as most interesting. The
development of technique of determination of quantitative characteristics of structure
transformations (distribution functions, dynamical structure factor, probability
distributions and others) is very important. In researches of mesoscopic systems the datas
can be highlighted on availability of some phase states of clusters with a small number of
particles and opportunity of simultaneous existence of them. It seams likely that studies
of connection of properties of potential surfaces, created by cluster particles, with
nonlinear dynamics of particles and collective cluster performances are highly promising.
The examinations of transformation of the performances of mesoscopic systems under
increasing of a particles number are interesting because they lay a bridge between
mesoscopic and macroscopic systems.
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A VARIETY OF CRITICAL PHENOMENA ASSOCIATED WITH
THE GOLDEN MEAN QUASIPERIODICITY

S.P. Kuznetsov

The paper presents several universality classes of critical behavior, which may occur
at the onset of chaotic or strange nonchaotic attractors via quasiperiodicity. Parameter space
arrangement and respective scaling properties are discussed and illustrated.

1. Introduction

Turbulence as a dynamical process in spatially extended systems attracts attention
of researchers for a long time. An important aspect of the problem is the question: how
does the spatio-temporal chaos originate from simple regular regimes as we vary one or
more control parameters? As known, chaotic dynamics in multi-dimensional systems
may arise via quasiperiodicity, in a course of subsequent birth of oscillatory components
with incommensurate frequencies, followed by chaotization (see e.g., early works of
Landau, Hopf, and Ruelle and Takens [1, 2, 3]). However, details of the transition from
quasiperiodicity to chaos are subtle and complicated. Some of them may be revealed if
we turn to a restricted problem: Suppose that the object can be decomposed to a master
subsystem with quasiperiodic behavior, and a driven slave subsystem that demonstrates
transition to chaos. Then, what are possible scenarios of the onset of chaos in the second
subsystem? (This question also is of special interest in context of synchronization of
systems with complex dynamics by periodic external force.)

One important advance on this way of reasoning was formulation of the concept of
strange nonchaotic attractor (SNA) [4-6]. In the phase space SNA is an object of fractal
geometrical structure, but without instability in respect to initial conditions. In
quasiperiodically forced systems SNA are found to be very typical in an intermediate
region between order and chaos.

One more essential idea consists in application of the renormalization group (RG)
approach, proven to be very efficient for understanding dynamics in critical states at the
chaos threshold (e.g. [7-13]). The critical behavior may be universal for a class of
systems of distinct physical and mathematical nature. Hence, all relevant details for the
critical dynamics may be revealed in one model, the simplest representative of the
universality class. Originally, this approach has been developed by Feigenbaum for the
period-doubling scenario of the onset of chaos [7, 8, 9], and latter for quasiperiodic
transition to chaos by Feigenbaum-Kadanoff-Shenker and Ostlund et al. [10-12].
Afterwards, analogous treatment was applied to some cases of birth of SNA [14-16].

22



If a system we deal with possesses several control parameters, it is natural to
introduce parameter space and speak about structure of this space in geometrical terms. It
may contains some bifurcation surfaces, critical surfaces, separating domains of chaos
and order, critical lines and points, where some special regularities of dynamical behavior
at the onset of chaos occur. In Refs [13, 17, 18] such a picture is revealed and studied in
some details for the period-doubling transitions to chaos.

In the present paper we review and discuss several types of critical behavior
associated with the onset of chaotic or strange nonchaotic dynamics via quasiperiodicity
in model systems. We consider two-frequency quasiperiodic motions with the golden-
mean ratio of the basic frequencies, w=(5"2-1)/2. This irrational number is a traditional
choice in many studies of quasiperiodicity. One reason is simplicity of the theoretical
description. Another is a possibility to observe more subtle details of bifurcational
structures in numerical and physical experiments than it would be possible for any other
selection of the frequency ratio. In Sec.2 the procedure of RG analysis appropriate for the
golden-mean quasiperiodicity is explained, and a two-dimensional generalization of
approach of Feigenbaum-Kadanoff-Shenker [10] and Ostlund et al. [11, 12] is developed.
In Sec.3 we discuss model systems including quasiperiodically driven logistic, circle, and
fractional-linear maps. In Sec. 4 our generalized RG scheme is used to reproduce some
results of classic analysis of quasiperiodic transition to chaos in the circle map [9-12]. In
Sections 5, 6, and 7 we review three novel types of critical behavior discovered in a
course of joint research program with the group of nonlinear dynamics and statistical
physics from Potsdam University (A. Pikovsky, U. Feudel, E. Neumann) [15 ,16, 19].
For each type of criticality we illustrate scaling for the critical attractor associated with
dynamics exactly af the critical pomt and scaling of topography of the paramctcr plane
near the criticality.

2. A two-dimensional generalization
of the Feigenbaim-Kadanoff-Shenker equation

Let us consider quasiperiodic dynamics in some system with two basic frequencies,
o, and w,, and assume that two subsystems associated with these frequencies are coupled
unidirectionally. To describe dynamics in terms of Poincaré map, we perform
stroboscopic cross-section of the extended phase space by planes of constant time,
separated by T' = 2w/w,. The first subsystem («master») is independent of the second one,
and the associated dynamical variable is the phase ¢ governed by equation P =P, 0y T
(mod2r). For the second subsystem («slave») we assume that the dynamics is csscnnally
one-dimensional: x,  =F(x,.,). In respect to the second argument the function F(x, ¢) is
2n~periodic. Instead of ¢ we introduce a variable u defined modulo 1:

=fx,u), u.=u +w(modl), (1)

where f(x,u)=F(x,2nu), w=m1T3275=m1fw2. In the further study we fix w=(5"2-1)/2.

In general context of nonlinear dynamics, the basic idea of the RG analysis consists
in the following. We start with an evolution operator of a system on a definite time
interval and apply this operator several times to construct the evolution operator for larger
interval. Then, we try to adjust parameters of the original system to make the new
operator reducible to the old one by scale change of dynamical variables. This procedure
is called the RG transformation. The adjusted parameters will define location of the
critical point. The RG transformation may be applied again and again to obtain a
sequence of the evolution operators for larger and larger time intervals. If the approach
works, one possibility is that the produced operators become asymptotically identical, and
we speak about a fixed point of the RG transformation. Another possibility is that they
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repeat each other after several steps of the RG transformation, and we speak about a
periodic orbit, or a cycle of it. In any of these cases, the rescaled long-time evolution
operators will be determined by structure of the RG transformation, rather than by
concrete dynamical equations of the original dynamical system. This implies universality.
On the other hand, repetition of the rescaled evolution operators at subsequent steps of the
RG transformation means that the system manifests similar dynamics on different time
scales. This implies scaling.

How can we apply this approach to critical phenomena associated with the golden-
mean quasiperiodicity? As known, the convergent sequence of rationals for w=(5"2-1)/2
is defined as F, /F, , where F, are the Fibonacci numbers (F =0, F\=1, F, ,=F,+F, ).
This sequence delivers the best possible approximation for w, and the dynamics on a time
interval F, is close to periodic. So, it is natural to consider a sequence of evolution
operators over intervals of discrete time given by the Fibonacci numbers.

Let f F¢(x,u) and f F(x,u) designate transformation of x after F, and F, iterations,
respectively. To construct the next operator, for F_, iterations, we start from (x,u) and
perform first F,,, iterations to arrive at (ff«i(x,u), u+F,,,w), and then the rest F| iterations
with the result

[ B2 (xue) = f B (FFs(xu), uvwF,,,). (2)

To have a reasonable limit behavior of the evolution operators we change scales for x and
u by some factors a and f at each new step of the construction, and define the renorma-

lized functions as
g, (xu) = o'f (o, ulp"). (3)

Note that wF,, = - (-w)*!(modl), so it is natural to set p=-1/w=-1.618034....
Rewriting (2) in terms of the renormalized functions we come to the functional equation
[15, 16, 19]

8o(xu) = g (alg,, (X, -uw), wiu + w). (4)

In the present article we deal with several different solutions of this equation -
fixed points or cycles in the functional space. The constant « is specific for each
universality class; it is evaluated in a course of solution of the functional equation.

The next step of the RG analysis consists in the following. Let us suppose now that
we deal with dynamics not precisely at the critical point, but in a vicinity of it in the
parameter space. Then, a perturbation of the solution appears. Analyzing evolution of the
perturbation we come to an eigenvalue problem. A number of relevant eigenvalues define
a codimension of the critical situation. The relevant eigenvalues are those, which are
larger than 1 in modulus, not associated with infinitesimal variable changes, and not
violating the commutative properties of successively applied evolution operators (see e.g.
[10-12, 15, 16, 19] for details). The codimension may be understood as a number of
parameters, which must be adjusted to reach the criticality. For instance, in three-
dimensional parameter space the codimension-one situations may occur at some surfaces,
codimension-two situations at curves, and codimension-three at points.

To derive an explicit form of the linearized RG equation appropriate for a vicinity
of a fixed point g(x,u) we substitute g,(x,u)=g(x,u)+eh, (x,u), e<<1 and account terms of
the first order in ¢ in Eq. (4). Then, setting h, (x)=8"h(x) we arrive to the eigenvalue
problem .
8%h(x,u) = adg'(g(x/a, -uw), wu+w)h(x/a, -uw) +

(5)

+ o2h (o' g(xa, -uw), wiu + w).

where the prime designates derivative of the function in respect to the first argument.
For each particular type of criticality, with specific g(x,u) and o, this equation can
be solved numerically to obtain spectrum of relevant 8.
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2. Basic models

The simplest example, for which the developed RG scheme is applicable is the well
known circle map [20, 21, 10-12, 9]

x,,, =X, + - (K2x)sin2nx, (mod1), (6)

where r and K are two relevant control parameters. The function in the right-hand part is
monotone in the subcritical domain K<1, and it has maxima and minima in the
supercritical domain K>1. For critical

value K=1 the function has cubic inflection 407

points.

Fig. 1 shows chart of dynamical
regimes on the parameter plane (r,K). For
K<1 one can observe periodic or
quasiperiodic regimes associated with K
rational or irrational values of the rotation
number defined as p(r, K)=lim___(x,/n).

Periodic regimes are observed inside
the Arnold tongues, and quasiperiodic
motions are observed between them for
K<1. Here one can find a curve of constant
golden-mean rotation number: p(r,K)=w. Fig.1. Chart of dynamical regimes on the parameter
This curve starts at K=0, r=w, and meets plane of the circle map. Numbers inside Arnold
the critical line K=1 at the point tongues indicate the respective rotation numbers

Koy =1, rg =0.60666106347.. (7)

we call the GM critical point (GM stands for the «golden mean»). It was discovered by
Shenker [21] and afterwards studied in terms of RG analysis by Feigenbaum-Kadanoff-
Shenker and by Ostlund et al. [10-12].

Further examples of types of critical behavior we discuss in the present article
occur in quasiperiodically forced maps.

One model is the quasiperiodically driven logistic map [22-26, 15, 16]. A usual
logistic map x, ,,=A-x,? is a basic model to study period-doubling transition to chaos. As
it has the only relevant parameter A, a natural generalization for presence of the external
driving is to assume that this parameter is modulated with some frequency. In our study
this frequency, measured in units of time discretization, is fixed: w=(52-1)/2. So, the
model is

1.0

X, =MA-x2+ ecos2nnw. (8)

Fig. 2 shows a chart of dynamical regimes for this model on the parameter plane (g,A).
For e=0 Eq. (8) becomes the con-

ventional logistic map. So, what is x 5 2<Torus
observed along the line e=0 is the usual "2 .
period-doubling cascade, accumulated to Clase
the limit critical point of Feigenbaum asf i
(point F) [7, 8].

Let us take a value of A at which the | i
unforced map has a stable fixed point. At i . )
nonzero ¢ the fixed point will be trans- B ¥ 0 e

formed into a stable smooth invariant
curve. In continuous-time dynamical
systems such curves appear in the Poincaré

Fig.2. Chart of dynamical regimes on the parameter
plane of quasiperiodically driven logistic map (8)
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cross-section for the motion on a torus, so, with commonly used abuse of the
terminology, we speak about the torus-attractor T1.

If the external force of small amplitude effects a stable period-2 orbit, it gives rise
to an attractor consisting of two closed smooth curves, the doubled torus T2. Period-4
orbit generates a four-part invariant curve (the torus T4), and so forth. In contrast to usual
period-doubling, the sequency of torus-doubling transitions appears to be finite: the
smaller amplitude of driving, the larger number of torus doublings seen in a course of
increase of A [22-28].

If we keep A constant and increase the forcing amplitude, the smooth torus may
transform into SNA: the Lyapunov exponent remains negative, but the geometrical
structure of the attractor .becomes complex, fractal-like. Also regimes with positive
Lyapunov exponent arise for larger A and e. With further increase of the parameters the
orbits escape to infinity (white domain in Fig. 1).

As known, the parameter interval corresponding to existence of an attractive fixed
point in the unforced logistic map A€(-0.25, 0.75) is bounded from one side by the
tangent bifurcation, collision of a pair of fixed points (stable and unstable) with their
subsequent disappearance. From the other side it is bounded by the period-doubling
bifurcation. Analogously, the bottom border of the domain T1 in Fig. 2 is the bifurcation
curve of tori collision: attractor and repeller, represented by two invariant curves,
approach one another, collide, and disappear. The top border is the bifurcation curve of
torus doubling: instead of one attractive invariant curve attractor appears consisting of
two closely placed curves; after the bifurcation they move one off another.

Let us start at e=0, A=-0.25 and go in the parameter plane along the torus collision
bifurcation curve increasing e. The situation of collision of smooth invariant curves takes
place while the motion is confined on one side of the logistic parabola. At some value of ¢
the invariant curve at the bifurcation threshold touches the extremum, x=0, and in
accordance with argumentation of Ref. [16], it corresponds to the terminal point of the
bifurcation line. This is critical situation of particular interest, the TCT critical point -
(TCT stands for «torus collision terminal») [16]:

Aep =-0.09977122895..., e = 1.01105609099.... (9)

Now, let us start at e=0, A=0.75 and move along the torus-doubling bifurcation
curve. As in the previous case, this bifurcation of smooth invariant curve takes place only
while the whole curve is placed on one side of the logistic parabola. At some value of e
the invariant curve at the bifurcation threshold touches the extremum,x=0, and the torus-
doubling bifurcation line is terminated. This is the TDT critical point (TDT stands for
«torus-doubling terminal») [15]:

Apr = 1.158096856726..., €, = 0.360248020507.... (10)

TCT and TDT critical point were found also in quasiperiodically forced circle map
X, =X +r-(K2n)sin2nx, + ecos2unw (modl) (11)

in the supercritical case K>1 (near the extrema it looks locally like the logistic map). In
some fespects, this is a more convenient object for detailed study: no divergence can
occur in this map because the variable x is defined modulo 1.

Fig. 3 presents a chart of dynamical regimes for the driven circle map on a part of
the parameter plane (b,e) including the TCT critical point [16]. Separately, two rectan-
gular fragments of the chart are shown together with phase portraits of attractors at
representative points.

The large gray domain in the diagram corresponds to existence of the localized
torus attractor. The right border of this domain is the bifurcation curve of bifurcation of
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0.35 0.37 0.39 b

Fig. 3. Chart of dynamical regimes on the parameter plane , &) and two enlarged fragments with phase
portraits of attractors on phase plane (,x) at representative points

collision of a pair of smooth tori, one stable and another unstable. After the event, both of
them disappear, and intermittent regime arises, with long-time travel of the orbits through
the region of former existence of attractor and repeller (the «channel»). Going along the
bifurcation curve we observe that the semi-attractive invariant curve, formed at the
moment of collision of stable and unstable tori, grows in size, and ultimately touches the
minimum of the map; there we arrive to the TCT point. As found numerically, it is
located at
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Feep = 0.377866239..., ¢, = 0.132566321... 12)

Another, upper border of the gray area corresponds to a situation when the stable
and unstable invariant curves touch each other, but do not coincide. This means that at
least one of the curves must be non-smooth («fractal torus»). From the figure one can see
that both bifurcation lines of smooth and fractal tori-collision meet at the TCT critical
point.

It was observed that fractalization of torus and transition to SNA in the forced
circle map is possible also in the critical and subcritial domain (K<1) [29, 30]. This
transition can not be associated with the TDT or TCT points because of absence of the
quadratic extrema. Its nature was revealed in Ref. [19] as linked with the torus
fractalization at the intermittency threshold. To describe the phenomenon it was
convenient to use a model

x.., =f(x,) + b+ ecosZawn, (13)

where f(x) was defined as

x/(1-x), x<0.75
Ax) = (14)
9(2x)-3,x>0.75

One branch of the mapping is selected in a form of the fractional-linear function, x/(1-x),
which naturally appears in analysis of dynamics near tangent bifurcation associated with
intermittency (e.g. [31-34]). The other branch is attached somewhat arbitrarily to ensure
presence of the «reinjection mechanism» in the dynamics and to exclude divergence.

Fig. 4 shows a chart of dynamical
regimes for the model (13). The white area
designates chaotic regime with positive
Lyapunov exponent A. Gray regions
correspond to negative A. In the bottom gray
area attractor is localized and represented by
a smooth torus. The upper border of this
region is the bifurcation curve of transition
to delocalized attractor via intermittency.
The bifurcation consists in collision of
smooth stable and unstable tori with their
coincidence, and the Lyapunov exponent at
the bifurcation is zero. In the right part of

1.8 2.0 2.2 ¢ the diagram the bifurcation curve separates

regimes of torus and SNA. The bifurcation

FII%) 41-thth of dynamical regimes gor thle rri?dec: corresponds to fractal collision of two

. e M gra € : . L

st oo g e comsspons ¢ ez inyariant curves at some exceptional set of
border of the bottom area is the bifurcation curve of POINts, and the Lyapunov exponent at the
the intermittent transition. In the left part the bifurcation is negative. These two parts of
bifurcation consists in collision of smooth stable and the bifurcation border are separated by the

unstable tori with their coincidence, in the right part .,.;.; : 5 IOl L P

- to fractal collision at some exceptional set o :l;r??a; p ?:”él ('if torus fractalization (TF)
points. White area designates chaos, and dark gray aL1slocaio 4

presumably corresponds to SNA. Sign of the

Lyapunov expoment A is indicated in all three ETF=29 bn.-= -0.597515185376121... (15)
domains
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3. The classic GM critical point

Critical behavior in the circle map associated with break-up of the golden-mean
quasiperiodicity (GM critical point) was discovered first by Shenker [21] and studied in
terms of RG analysis by Feigenbaum-Kadanoff-Shenker and Ostlund et al. [10-12].
Although the circle map is one-dimensional, it may be treated in terms of our general

scheme, as a particular case of (1). We consider two decoupled maps
x,,,=fx), w, =u +w(modl), (16)

with f{x)=x+r-(K/2x)sin2nx. The function is independent of the second argument «, so,
the GM criticality will correspond to a degenerate fixed point of our functional equation:
g, (x,u)=G(x). In this case Eq. (4) yields

G(x) = &*G (a'G(x/a)), (17)

the relation known as the Feigenbaum-Kadanoff-Shenker equation. It has been solved
numerically (e.g. [10-12, 35, 36, 37, 9]), and the function is found in a form of high-
precision expansion in powers of x*. The scaling constant is

a = -1.288574553954.. (18)

0.0}

i

Fig. 5. Attractor of the two-dimensional map (16) at the GM critical point (top panel) and illustration of
the basic local scaling property: the structure reproduces itself under magnification with factors
a=-1.28857... and B=-1.61803... along the vertical and the horizontal axes, respectively
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Accounting representation of the circle map in the form (16) it is natural to depict
the critical attractor in coordinates (u,x) (Fig. 5). Observe that it is represented by a
fractal-like curve. Locally, the basic scaling property of this fractal may be deduced from
the RG analysis. Indeed, the evolution operators for time intervals increasing as Fibonacci
numbers become identical, up to the scale change. For each next Fibonacci number the
variables x and u are rescaled by a and p=-w'. As follows, attractor in coordinates (u,x)
must possess self-similarity: increasing resolution by factors o and f along the vertical
and the horizontal axes, respectively, one should observe the similar structures (see
bottom panels of Fig. 5).

For perturbations of the GM fixed-point, which do not violate the unidirectional
nature of the master-slave coupling, the equation (5) accepts the form

82h(x) = adG'(G(a))h(x/a) + o? (o' G(xlar)). (19)
As found (e.g. Refs [10-12, 35, 36, 37, 9]), there are two relevant eigenvalues,
8, = - 2.8336106559... and &, =a?=1.660424381... (20)

These are the constants responsible for the scaling properties of the parameter
space structure near the GM critical point. However, to demonsirate them we need to
define a special local coordinate system near the critical point - the scaling coordinates.
(The same will be necessary for other types of criticality, see sections 4-6.) As argued in
Refs [37, 9], this is a curvilinear system: one coordinate line goes along the critical line
k=1, and the another - along the curve of constant rotational number. Numerically, the
relation of new coordinates (C,, C,) with parameters of the original map is expressed as

r=r,+c, - 001749, - 0.00148c2, k=k_+c, (1)

In these relations we account terms up to the second order because of the relation
between 8, and 6,: 8,<8, and 6,<3,2, but 8,>8 > (see Refs [13, 16-19, 37] for explanation
of the rulcs for selecnun of the scalmg coordmates) Fig. 6 shows a chart of dynamical

Fig. 6. Chart of dynamical regimes on the parameter plane of the sine circle map and a sequence of
fragments for several steps of magnification of vicinity of the GM critical point in the scaling coordinates,
with factors §, and 8, along horizontal and vertical axes, respectively
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regimes with Armold tongues and a sequence of fragments for several steps of
magnification in the scaling coordinates. Observe excellent repetition of the two-
dimensional arrangement of the tongues at subsequent levels of resolution.

4. Critical point TCT

RG analysis of the torus-collision terminal point was developed in Ref. [16]. The
critical behavior of this type was found in the forced logistic map (8) and in the forced
supercritical circle map (11). Here we prefer to deal with the last one because divergence
of iterations is excluded in this case. The equation may be written as

=X +r- (K2n)sin2nx, + ecos(2nu) (modl),
| (22)
=u_+w (modl),

xu+1

um-l

and parameter K is supposed to be supercritical and fixed, K=2.5. As mentioned in Sec.2,
the TCT point is located at (r, £),.,=(0.377866239, 0.132566321).

In the RG approach, the TCT point is associated with a fixed-point solution of the
functional equation (4). This circumstance was checked accurately in numerical
procedure based on iterations of the RG transformation (4). Also the multi-dimensional
Newton technique was used to solve the fixed-point equation in respect to the coefficients
of polynomial expansion of the universal function in an appropriately chosen domain in
the (u,x) plane (see [16] for details). The scaling constant o was found in the course of
the computations, so

a=1.7109605... and = -w! = 1.6180339... (23)

As seen from Fig. 7, the critical attractor in coordinates (i, x) is represented by a
non-smooth fractal-like curve, To observe scaling, we need to select properly the origin
of local coordinate system (the «scaling center»). As found in Ref. [16], it is located at

u_= 0.284109286 and x_ = (2x) arctan(K? - 1) = 0.184505060. (24)

Now, if we rescale Ax=x-x, and Au=u-u_by factors a and B=-w™, respectively, the
dynamical regimes remain of the same kind, but with rescaling of time by factor w™. The
invariant curve also must be invariant under this transformation. Indeed, the picture inside
a selected box in Fig. 7 reproduces itself under subsequent magnifications (with inversion
in respect to the phase variable, due to the negative B). This scaling property implies that
locally the behavior of the invariant curve obeys Axe|AulY with y=logo/logB=1.117. The
power y is close to one, so visually the curve looks like broken at the point of singularity.

/.
4

-0.5 0.0 Au

Fig. 7. Attractor of the forced circle map at the TCT critical point (the left panel) and illustration of the
basic local scaling property: the structure reproduces itself under magnification with factorsa=1.71096...
and B=-1.61803... along the vertical and the horizontal axes, respectively
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Due to ergodicity ensured by irrationality of the frequency, the singularity at the origin
implies existence of the same type of singularities over the whole invariant curve, in a
dense set of points. Note that y>1. It means that the singularity is weak: the invariant
curve, apparently, remains differentiable, but not twice differentiable.

The next step is analysis of the linearized RG equation and of the corresponding
eigenvalue problem (5). Numerical solution of the functional equation with substitution
of g(x,u) and constant « associated with the TCT criticality was performed with
approximation of the eigenfunctions via finite power expansions in respect to.x and u. As
found, two eigenvalues are relevant:

5, = 3.600810... and &, = 1.828329... (25)

These are scaling factors determining self-similarity of topography in a vicinity of
the TCT point. To demonstrate the scaling property we define scaling coordinates in the
parameter plane. Note that §,<6, and §,<3 7, but 8,8 % So, we account terms up to the
second order in the parameter change. As suggested in Ref. [16] it may be chosen as

r=r.+c -03121848c, - 2.047¢c,?, e=¢ +c, (26)

Fig. 8 shows a fragment of the chart of dynamical regimes near the TCT point for
the forced circle map. Note similarity of the configurations represented in scaling
coordinates.

0.0001

-0.0004 C,  0.0005

Fig. 8. Chart of dynamical regimes on the parameter plane of the quasiperiodically driven supercritical
circle map and a sequence of fragments for several steps of magnification of a vicinity of the TCT critical
point in the scaling coordinates, with factorsd, and 8, along horizontal and vertical axes, respectively.
Gray area corresponds to localized attractor Wiﬂ}l negative Lyapunov exponent, and white to chaos
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5. Critical point TDT

Let us turn now to the RG results relating to the torus-doubling terminal point [15,
38, 39]. The basic illustrative example will be the forced logistic map that may be

rewritten as
L =u,+w (modl). (27)

As noted in Sec. 2, the TDT point is located at (A.e),,,=(1.158096856,
0.360248020).

It was found in Refs. [15, 38] that the TDT point is associated with a period-3
cycle of the RG equation (4): g,(x,u)—=>g,(x,u)—>g,(x.u)—>g,(x,u). To find this period-3
solution with high precision a numerical procedure was developed, the result was a
representation of functional pair {g, (x.u),g,(x,u)} in a form of polynomial expansion over
the arguments x and « (see the table of coefficients in [38]). The rescaling constant is
a=1.58259341...

In coordinates (u,x) the critical attractor looks like a fractal curve (Fig. 9). To
observe scaling, the origin of the coordinate system must be placed at the «scaling center»
[15, 38]

=A-x2+ecos2mu, U,

u, = 0.3952188264 and x_ = 0. (28)

Due to the period-3 nature of the solution of the RG equation, observation of self-
similarity of the critical attractor requires using the scaling factors

a® =3.96376647... and p* = -4.23606798.... | (29)

If we rescale x and Au=u-u_by o’ and f°, respectively, the dynamical regimes remain of
the same kind, but with characteristic time rescaled by w. The curve representing the at-
tractor must be invariant under this transformation, and this is indeed the case, see Fig. 9.

X

10

Fig. 9. Attractor of the forced logistic map at the TDT critical point (the left panel) and 1Jlustranon of the
basic loca.l scaling property: the structure reproduces itself under magnification with factorsa=3.96376...
and ,B =-4.2360... along the vertical and the horizontal axes, respectively
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The picture inside a selected box reproduces itself under subsequent magnifications.
Locally the invariant curve behaves as xe|Aul' with y=loga/log|Bl=0.954. The exponent is
close to one, so the curve looks like broken at the point of singularity. Due to ergodicity
of the quasiperiodic motion, the singularity at the origin implies presence of the same
type of singularities in a dense set of points over the whole invariant curve.

Because of the period-3 nature of the solution, analysis of the linearized RG
equation is more complicated than for a fixed point. The eigenvalue problem reads

8%h,(x,u0) = adg,' (g,(Xat, -uw), wrurw)hy(x/a, -uw) + a?h, (o' g, (xlct, -uw),w’u+w),
8%, (x,u) = adg,’ (g(xlet, -uw), wurw)hy(x/ o, -uw) + a?hy(o' g (xlax, -uw),wiu+w),

8%h,(x,u) = adg,’ (g,(x/a, -uw), wu+w)h, (x/a, -uw) + o?h,(ag, (xla, -uw),wu+w).
(30)

Numerical solution of this problem with substitution of g, , ,(x,u) and o associated with

the TDT criticality yields two relevant eigenvalues [15, 381
8, =10.5029... and &,=5.1881... (31)

To demonstrate scaling property in the parameter plane we need to define
appropriate «scaling coordinates». In the present case 8,<3, and 8,>9,” for m=23,... It

0.5

0.0

Fig. 10. Chart of dynamical regimes on the parameter plane of the quasiperiodically driven logistic map
and a sequence of fragments for several steps of magnification of a vicinity of the TDT critical point in the
scaling coordinates, with factors®, and , along horizontal and vertical axes, respectively
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means that a linear parameter change is sufficient. According to Refs [15, 38], it may be
chosen as
A=Mpr+C,, =gy, -c +03347c, (32)

Fig. 10 shows a chart of dynamical regimes near the TDT in scaling coordinates for
several steps of subsequent magnification.

6. Critical point TF

The transition from localized to delocalized attractor in the model map (13) is
accompanied by appearance of intermittent regimes. While we are close to the point of
bifurcation, the laminar stages of dynamics occupy an overwhelming part of observation
time (like in the case of the usual Pomeau-Manneville intermittency). They correspond to
dynamics on the left branch of the map (13). To study details of the transition we may
concentrate on the laminar stages and consider a simplified map [19]

=u +w (modl). (33)

As explained in Sec. 2, the bifurcation border in the plane (¢,b) contains a critical point
TF separating situations of smooth and fractal tori collision at (g,b),=(2,
-0.597515185).

An important note is that due to the fractional-linear nature of the map the
functions obtained at subsequent steps of the RG transformation (4) will be fractional-
linear too. The same is true for the fixed-point of the RG equation, associated with the TF
critical point. It implies that we may search for the fixed-point solution in a form.

g(xu) = (a()x + b(w)/(c(u)x + d(u)), , (34)

where a, b, ¢, d are some functions of u. Without loss of generality we require them to
satisfy additional conditions a(u)d(u)-b(u)c(u)=1 and c(0)=-1. Substituting (34) into (4)
we arrive at the fixed-point RG equation in terms of the functionsa, b, c, d:

(a(u) b(u)] (a(w2u+w) a’b(w?u + w)
c(u) d(u) )

The solution was found numerically, the coefficients of polynomial expansions for a(u),
b(u), c(u), d(u) are listed in Ref. [19]. The factor a was also computed, so

a=2.890053525... and B=-w'=-1.6180339... (36)

X, =% [(1-x)+ b+ ecos(u(nw + 1)), u

n+l1

a(-wu)  ab(-wu)

] - (35)

aZe(wiu+w) d(wu+w) ale(-wu) d(-wu)

These two constants determine scaling properties of the critical attractor on the (x,u)-
plane. In fact, the variable x in the RG equation and in the original map are not the same:
we need to introduce «scaling coordinates» in the (x,u)-plane. As found numerically [19],
the variable change looks like

Xocx + 2.34719526 + 5.92667u - 210.629:2, U = u. (37)

Fig. 11 illustrates scaling property of the critical attractor. Observe excellent reproduction
of details of the structure in scaling coordinates (X,u).

Numerical solution of the eigenvalue problem (5) for the fractional-linear fixed-
point reveals two relevant eigenvalues

8, =3.134272989... and &,=w' =1.618033979... (38)

responsible for scaling properties of the parameter space near the critical point. If we
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Fig. 11. Attractor of the forced fractional-linear map at the TF critical point (the left panel) and illustration
of the basic local scaling property: the structure depicted in scaling coordinates reproduces itself under
magnification with factors a=2.89005... and B=-1.618034... along the vertical and the horizontal axes,

respectively

depart from the critical point along the bifurcation curve of the attractor-repeller collision,
the first eigenvector does not contribute, the relevant perturbation is associated with 8,.
If we choose a transversal direction, say, along the axis b, the perturbation of the first

kind appears.

In the case under consideration we have ,>8, and §,>8,%, but 8 <8,’, so quadratic
terms must be taken into account in the parameter change; the scaling coordinates (C,,C,)
are linked with parameters of the original map as

b= by, + C, - 0.64938C, - 0.33692C 2,

8.0
E Slope
8 change
+-E
&
=
Slope
0.424
0.0 R R
-12.0 16AD -2.0

Fig. 12. Data of numerical experiments with the
fractional-linear map: average duration of passage
through the «channel» versus deflection from the
bifurcation threshold for three values of ¢ in the
double logarithmic scale. Observe a «crossover»
phenomenon, the slope change from critical to
subcritical value at some intermediate value of Ab
for e=1.95
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e=2+C, (39)

To illustrate scaling associated with
nontrivial constant 8, let us consider
duration of laminar phases in a course of
the intermittent dynamics generated by the
map (33). In usual Pomeau - Manneville
intermittency of type I the average duration
of the laminar stages behaves as (z, )oAb
with v=0.5 [31-34]. In presence of the
quasiperiodic force the same law is valid in
the subcritical region, ¢<2. In the critical
case e=2 the exponent is distinct. Indeed, as
follows from the RG results, to observe
increase of characteristic time scale by
factor 6=w'=1.61803 we have to decrease
a shift of parameter b from the bifurcation
threshold by factor 6,=3.13427. As follows,
the exponent must be

v=logb/logd =0.42123.

Fig. 12 shows data of numerical



experiments with the fractional-linear map. At each fixed ¢ an average duration of
passage through the «channel» near the formerly existed attractor-repeiler pair was
computed in dependence on Ab for ensemble of orbits with random initial conditions.
Results are plotted in the double logarithmic scale. For particular e=1.7 (subcritical) and
2 (critical) the dependencies fit the straight lines of a definite slope, estimated as 0.508
and 0.424, in good agreement with the theory. At subcritical ¢ slightly less than 2 one can
observe a «crossover» phenomenon, that is the slope change from critical to subcritical
value at some intermediate value of Ab.

7. Conclusion

The present paper was devoted to a review of critical situations at the onset of
chaotic or strange nonchaotic behavior via quasiperiodicity, more concretely, in the case
of the golden-mean ratio of the basic frequencies. We have derived a two-dimensional
generalization of the Feigenbaum-Kadanoff-Shenker RG equation and demonstrate that it
may be used to treat from the common point of view a number of critical situations, the
conventional golden-mean criticality (GM), and the critical situations in quasipe-
riodically driven model maps: torus collision terminal (TCT), torus-doubling terminal
(TDT), and torus fractalization at the intermittecy threshold (TF). All these critical
situations are of obvious interest for a problem of synchronization in nonlinear systems,
in context of study of transitions associated with break-up, or other bifurcations of
complex generalized synchronous regimes. In perspective, it would be interesting to
reveal details and regularities of coexistence and subordination of all the types of critical
behavior.

As is common in situations allowing the RG analysis, one can expect that the
quantitative regularities intrinsic to our model maps will be valid also in other systems
relating to the same universality classes. It would be significant to find this type of
behavior in systems of higher dimension, for example, in quasiperiodically driven
invertible 2D maps, which could represent Poincare maps of some flow systems. It would
be interesting to arrange special experiments on search and observation of the considered
types of critical behavior. Since now, only two of them, GM and TDT critical behavior,
were observed experimentally (see e.g. [40, 28, 41, 38, 39)).

I thank U.Feudel, E.Neumann, A.P.Kuznetsov, A.Pikovsky, and I.Sataev for
fruitful collaboration, discussions, and valuable help during a work on different parts of
the present research.

This work was supported by RFBR (grant Ne 00-02-17509) and CRDF (award
REC-006).
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NONLINEAR DYNAMICS OF SPATIAL AND TEMPORAL PATTERNS
IN LASERS AND ATOM OPTICS: KERR-LENS MODE-LOCKED LASER,
ZEEMAN LASER AND BOSE-EINSTEIN ATOMIC CONDENSATE

L.A. Melnikov, A.l. Konukhov, I.V. Veshneva, V.L. Derbov, V.V. Serov

Nonlinear dynamics of spatial and temporal behaviour of laser and atom optical
systems is investigated numerically. Systems with nearly one scalar transverse mode (Kerr-
lens mode-locked laser), with large number of vectorial transverse modes (Zeeman laser with
large Fresnel number and anisotropic cavity), and non-ground collective states of Bose-
Einstein condensate of trapped neutral atoms are considered. Attempts to classify the complex
transverse polarization pattern dynamics are made basing on the vectorial Karhunen-Loeve
modes and their singularity points character, including catastrophes and Newton diagrams.
Excitation of non-ground states of atomic Bose-Einstein condensate via resonant perturbation
is analyzed.

Introduction

Nonlinear dynamics in lasers and optical systems is at present mainly addressed to
the models which incorporate the distributed nature of these systems. Since the
nonlinearity in lasers is not large, the laser field can be treated as a superposition of
longitudinal and transverse empty-cavity modes coupled via linear and nonlinear
elements in the cavity. Huge number of different regimes can be realized in lasers,
depending on the active medium and cavity parameters. However, two different limit
cases are of primary interest: (i) huge number of longitudinal modes and small number of
transverse modes, and (ii) small number of longitudinal modes and large number of
transverse modes. If all modes oscillate with definite phases, the laser output appears to
be a regular sequence of ultra-short pulses for case (i) and a regular motion of light
intensity spots in the transverse plane for case (ii). These regimes are often referred as
mode-locked regimes, and the investigation of their stability and destruction is a
challenging problem, taking the practical importance of these regimes into account. It is
well known that mode locking is the only way to producc extremely short (a few
femtoseconds) laser pulses.

On the other hand, there exist systems described by equations, similar to those of
nonlinear paraxial optics, but with nonlinearity huge compared with that of optical
systems. An important example of such a system is the Bose-Einstein condensate (BEC)
of neutral trapped atoms whose wave function in the mean-field limit obeys the
Schrédinger-type equation with large qubic nonlinear term proportional to the number of



atoms. Investigations of the dynamics of BEC are of interest in the context of its
promising applications in atom optics.

The study of the dynamics of these distributed systems in essentially nonlinear
regimes is possible if we have (i) powerful methods for numerical modeling of the
underlying physical processes, and (ii) means and approaches for the description of the
resulting dynamics of distributed systems. The last condition is vital for the description of
multitranverse polarization pattern dynamics. In this paper we present the models and
numerical results related to the dynamics of the above-mentioned systems, the possible
way for the classification of the regimes and excitation of nonlinear stationary states.

As an example of a laser system with large number of longitudinal modes we
consider the Kerr-lens mode-locked laser. The full spatial-temporal model of this laser is
presented and used for numerical investigations of the nonlinear dynamics of Z-cavity
Ti:Sph laser with Kerr-lens mode locking (KLM).

In the mode-locked regime the laser output represents a pulse train with the
repetition rate determined by the cavity round trip time 2L/c, where L is the cavity length.
Kerr nonlinearity of intracavity elements provide intensity-dependent phase shift, thus
inducing a lens-like medium with the intensity-dependent focal power. In specially
designed cavities a spatially narrow gain profile or a physical aperture can provide
intracavity losses which decrease almost instantaneously with the intensity. This makes
the Kerr-lens mode locking to be a powerful technique for generating femtosecond
pulses.

In time domain the Kerr nonlinearity in combination with the negative group
velocity dispersion (GVD) leads to the solitonic pulse shaping [1, 2]. The pulse
amplitude modulation due to Kerr-lens effect is usually treated as the effect of fast
saturable absorber [5, 6]. For the mode locking process to be self-starting, the power-
dependent losses must exceed a definite value [1, 7]. The optimum resonator parameters
are derived with the help of the nonlinear ABCD-matrix formalism [5, 8, 9, 10, 11, 15].

The Schridinger equation for the field envelope was completed with gain, losses,
high-order dispersion terms [16, 17], Bloch equations for the coherent semiconductor
absorber [18], stimulated Raman gain [19] and then either solved numerically or
evaluated analytically using the hyperbolic secant ansatz for the solution [14, 3, 4]. This
allows one to estimate the pulse chirp, pulse width and stability conditions. The pulse
energy increase or the reduction of the negative group delay dispersion can result in the
pulse instability [3], as well as the finite bandwidth of the gain and the reflecting mirrors
[4] or the gain depletion and recovery during the pulse round-trip [20].

For certain conditions KLM lasers demonstrate instability of the pulse train {21,
22]. Quasi-periodic and chaotic oscillation regimes [26], bifurcation of the fundamental
mode [27] arise due to the nonlinear coupling of geometrical and energetic characteristics
of the beam due to Kerr effect. KLM lasers can keep a small portion of lasing energy in
higher-order transverse modes [25]. The dynamical instabilities can be associated with
the transverse mode beating [23, 24, 28].

The time-domain ABCD-law [29] in conjunction with ABCD-law for a Gaussian
beam allows one to construct an iterative mapping for the beam and pulse parameters [30,
31, 32]. Numerical simulation reveals the evidence of quasi-periodical and chaotic
behaviour of both the beam and the pulse parameters [30, 33].

In this paper we present a model with no limitations of pulse and beam shape. The
transverse and temporal evolution of a pulsed beam is governed by the paraxial wave
equation, which is solved in terms of Laguerre-Gauss modes. For simplicity we consider
axially symmetric beams. A prominent feature of our model is that we take into
consideration the temporal evolution of the active medium polarization (i.e., the gain and
dispersion) during the pulse. The spatio-temporal profile of the gain is directly calculated
from the density matrix equations for two-level media. Simultaneous treatment of spatial
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and temporal field distribution inside the cavity enables one to consider the dynamics and
the transient processes during the build-up of the oscillation regime. Our model is not
restricted to small round-trip changes of the transverse beam profile, round-trip gain,
dispersion and amplitude modulation coefficient. It takes into account the amplitude
modulation of the pulse due to self-focusing, the nonlinear mode coupling via the
medium polarization, and the gain aperturing.

As an example of a laser system with large number of transverse mode we consider
the Zeeman laser with anisotropic cavity [49]. Correct description of the polarization
transverse pattern dynamics in lasers with large number of transverse modes is a
challenging problem for laser dynamics [35, 28, 36, 37, 38]. For the classification of the
structures of the laser field its singular points (zeroes, saddle points, maxima and
minima) can be used [39, 40]. However, in these papers the models of the laser fields are
far from reality. Another approach utilizing the hierarchy of symmetry breaking was also
used for the classification of the regimes [41, 42].

An efficient approach to the analysis of very complicated signals and processes is
based on Karhunen-Loeve procedure [44, 45, 46, 43, 47, 48, 49]. In [49] the laser regimes
with rotating patterns were investigated and it was shown that these regimes are
connected with catastrophes A, of xtiy arguments, where x, y are the transverse
coordinates. In the present work we also used Karhunen-Loeve modes (KL-modes),
however, we added the laser regimes corresponding to oscillating patterns. We introduce
the vector Karhunen-Loeve modes, transform the four-dimensional vector field,
representing the polarized laser transverse patterns, to the two-dimensional vector field,
representing the transverse distribution of the Stokes parameters (2DSP), discuss some
properties of this 2D vector field and try to classify the structures in accordance with the
behaviour of the 2D vector field near the singularity points. For the oscillating patterns
2DSP does not belong to the gradient case [49]. We propose to use Newton diagram
method for the investigation of singular points of the 2ZDSP vector field.

Bose-Einstein condensates of neutral trapped atoms have become a subject of
numerous and extensive studies (see, e.g., the reviews [54, 55, 56]) as a new state of
matter with properties opening new possibilities in atomic optics and related fields. One
of the most exciting features is the possibility to construct atom lasers. In the present
paper we report some new dynamical properties of the Bose-Einstein condensate of
atoms in a harmonic trap. In contrast to the optical systems, the nonlinear terms in the
equation governing the collective wave function, are typically dominating and, generally,
cannot be treated as a perturbation, thus making the eigenfunction problem to be
essentially nonlinear. In the present paper the non-ground stationary states of BEC are
calculated, and the dynamics of these states under resonant perturbation of the trapping
potential is investigated.

2. Kerr-lens mode-locked laser

2.1. Theoretical model. The model was developed assuming the amplitude of the
electric field F to be varying slowly. For numerical simulations the Z-cavity configuration
was taken (Fig. 1, a). To calculate the electric field envelope dynamics we consider the
field passing the optical elements of the cavity from the plane of aperture A, to the plane
of aperture A, and then returning back. For sunphcny we consider the stigmatic case.
Schematic cquwa.lent diagram of the Z-cavity is shown in Fig. 1, b. The spherical mirrors
of the folded cavity are replaced by lenses of the same focal power F=2/R, where R is the
curvature radius of the mirror. The round-trip change of the electric field envelope was
obtained by applying transfer operators in the order of their action in the cavity.

Assuming the cylindrical symmetry of the cavity, the expression for the field at any
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transverse plane z=z;=const may be written in terms of Laguerre-Gaussian mode
amplitudes:
E (zpriv) = 2, A,(z,7) L; (n(zy)r?) exp(-P (z,)r*/2), (1)

where j is the mode index, L, are the Laguerre polynomials, r is the transverse radius,
v=t-z/c is the local time in the running coordinate system z, t-z/c, P(z)=n(z)+i&(z) is the
complex beam parameter of the empty cavity, normalized to the value of k//, where k=
=27/A is the wavenumber, A=800 nm is the wavelength of the fluorescence peak, /=1 mm

is the unit length of the propagation distance.
The mode amplitudes Aj((},-c) at the initial plane z=z, are defined by the integral

transformation

A, (z24%) = 1U(2n) [y rdr E(zy,r:0) L, (n (2)r% exp(-P(z,)r12), )

while the modal amplitudes and the beam parameters at arbitrary point z during the free-
space propagation are given by
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A, (z) = A;(0,7) [1 +i(z/n) P(0)]* exp(i ¢,),
P(z) = P(0) [1 +i(z/n) P(0)] ", (3)
¢, =-2jarg (1 +i (z/n) P(0)),

where P(0) is the beam parameter at the initial plane z=0, n is the refractive index.
The transformation of the beam parameter and mode amplifudes at the mirrors

(lenses) is
PQ2)=P(1) +iF, AQ27)=A(17)T7, @

where 1, 2 denote the input and output planes of the mirror, F=2/R is.the mirror optical
power, T is the uniform power transmission coefficient.

The masking of the beam by the aperture with Gaussian transmission profile was
taken into account in a way similar to [28]. For the transmission function of the aperture
T (rH)=exp(-n, 1%2)

PQ) = K1)+,

A (2r)=Z A, (1x) Ly,

(-1)fG +k)! 0*1( 1~ k), (1+0)), j <k

L :f:L; (x) L, (x) exp(-x') dx'= {
j>k

1

where x=nr?, x'=(n+n )%, n is the real part of the beam parameter P before the aperthre,
o=n,/M.

The transformation of the beam parameter per one round-trip obeys the well-
known ABCD-law:

P(z+L) = P(z), P(z+L) = (A(z)P(z) + B(2)) | (C(z)P(z) + D(z)),
is the matrix of the cavity round-trip. This matrix is a product of the
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for propagation through a homogeneous medium of the length z and refractive index n,

1 F
(0 1] (5)

1 n, )
0 1)
for an aperture.

The thin dispersion element was placed near A, aperture of the right arm of the
cavity (see Fig. 1). Assuming the effect of diffraction to be small, the equation for the
mode amplitudes can be written as follows

0A;(2,7) 19z = -i (x/2) (0°A; /7).

C D

matrices

where ( A

for a mirror with optical power F,
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For the chosen amplitude of electric field E negative x, corresponds to the negative group
velocity dispersion. To calculate the modal amplitudes after the dispersion elements the
Fourier transform method was used. It allows one to add linear dispersion terms of higher
order and nonlinear group velocity dispersion [2].

For our calculations 15 Laguerre-Gaussian modes were used. After several
thousands of the cavity round-trips the transient evolution was finished and the spatial
and temporal dependencies were saved and analyzed.

To find the pulse transformation after the laser crystal the split-step method is used.
The rod is divided in two parts (Fig. 1). We assume the active medium to be thin. The
thin active layer is placed in the middle of the medium having the refractive index n. In
the space of half rod length d/2 the mode amplitudes are calculated using (3). In the plane
of the active layer the radial grid (r,) is chosen. In each of the grid points the field E(r,x)
is calculated using (1), then the field equation is solved:

0E(z,rv)/0z = -(G/2)iP(z,r;x) + i BIEPE. (6)

Here G is the non-saturated power gain, § is the Kerr constant, P(z,r,t) is the medium
polarization given by the density matrix equations (Bloch equations). In the thin layer the
diffraction and dispersion are not taken into account.

We use the full set of Bloch equations for a two-level medium to simulate the
oscillation regimes when the pulse width and the relaxation time of the medium
polarization are of the same order.

3P [dv=-(T+i A)P +iE(N, - N)T, 7
ON, (z,rx)ldt= N, + Im(E*P)v,y" (v +v,), (8
N, (zr0)fde=-y (N, - N.%) - Im(E"Pyy, /(y,+,), 9)

where I, y, y,, are the relaxation rates of the medium polarization and the populations of
upper (#) and (/) lower levels, respectively, N (z,t), N, (z,r;¥) are the populations
normalized to the unsaturated value of N, A=w-v, is the frequency detuning, w, is the
transition frequency. The field E(z,7x) is normalized so that IEI? is the dimensionless
intensity. At each of the transverse grid points r, for given E(r,) the value of P(r;x) is
calculated using the second-order Adams scheme. In order to simulate the spontaneous
emission effect the random short pulses are added to the field amplitude at each of the
grid points. The effect of soft aperturing on the active medium is approximated by a
Gaussian aperture placed near the thin active layer.

2.2. The cavity parameters. For the empty cavity we chose the total power
transmittance of the aperture to be A, ~75% (Fig. 1). The transmittance of the aperture A,
did not exceed 99.5%, having no effect on the pulse formation. The coefficient in (4) was
taken to be 7=0.95. The focal power of the lenses was F=2/R, R=100 mm. We have
performed the numerical calculations for the symmetric cavity with L, =L,=850 mm. The
rod length was d=20 mm, the refractive index of the rod of Ti:Sph was n=1.76, the cavity
detuning A=0 (7), the relaxation rate of the medium polarization I'=0.31 fs’, the
relaxation rates for the upper and lower levels y=2-10 fs-1, y =2-10° fs', the dimension-
less Kerr constant p=(k/[)nn,l , where n,=3.2: 1076 cm?W- 'fl] the saturation intensity

1.=290 kW/cm? [13].

The optimal configuration for mode locking gives the nonlinear loss coefficient [5,
6] 8=dL/dW, where L presents the differential cavity losses for the distributed laser
model. For the discrete-element laser model the power dumping satisfies the round-trip
equation W =@W®, where W) is the power before the cavity round trip and W® is the
power after one round trip. Correspondingly,
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L=-n®, &=-(1/0)(de/dW),, (10)
For one intracavity aperture
@ =Tn(n+m,)", d = - (2w (w2+w 2)) (Liw) (awl dW) ,_o (11)

where n=2w is the real part of the beam parameter before the aperture, n,=2w 2 is the
aperture parameter.

To calculate the value of & the ABCD-matrix formalism was used. The thin Kerr
layer was approximated by the lens (5) with the focal power F=2Re(P)pdW /x, where P
is the stationary beam parameter in the middle of the laser rod, dW is the power deviation
from the zero value.

For L,=111.8 the cavity is equivalent to the confocal one [6]. The upper half plane
L,>111.8 (Fig. 2, a) contains a wider region for stable mode locking. In the experiments
[6, 12] this is referred as a region of low sensitivity to the misalignment of the mirrors
and the laser rod.

2.3. Numerical results and discussion. To characterize the output pulsed beam we
expressed the infracavity power in Watts, while the pulse energy and the beam cross-
section area were scaled to their stationary values. The field was calculated in the fixed
time frame. We calculated also the pulse shift s from the frame center and the pulse width
T,. For the chosen aperture transmission and uniform loss the differential losses are 0.35.
For G above this value we have obtained the mode-locking regime (Fig. 3).

As seen from Fig. 3. a, at the pulse peak the beam has the smallest transverse
dimension. In addition to the solitonic pulse shaping this effect leads to the pulse
shortening. In spite of the perfect pulse symmetry (Fig. 3, b) the relative beam area o(t)
has an asymmetry with the respect to pulse peak. This asymmetry arises due to effect of
finite relaxation time of the gain media. For longer pulses, which can be obtained for the
same cavity configuration by increasing of the GVD-magnitude, such asymmetry is
absent.

The relation between the solitonic pulse shaping and the pulse compression due to
Kerr-lens effect is given by the factor [1]

R = (1/2x)(BJIIDI). (12)
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Fig. 3. Pulsed beam characteristics before the apertureA,. The folding distance L,=112 mm, the rod
position x=47 mm. The round-trip power gain G=0.38. Power and relative beam area versus local time
(a). Decimal logarithm of the axial intensity versus time g:) Axial intensity 1512?_ and axial phase
arg(IE1%)  Versus time (c). Aperture transmittance w,  2w(t) +w,?)! versus beam power (d)

For the regime shown in Fig. 3 J=5 nJ which yields R=0.25. Therefore, the
solitonic pulse shaping is predominate. Logarithmic plot versus the axial intensity reveals
the pulse shape closer to sech (v/r))? (Fig. 3, b). The phase of the field shows the
presence of pulse chirp. The linear part of the chirp corresponds to the pulse retardation
with respect to the pulse propagation without the active medium. In other words, the
pulse repetition rate is less than the reciprocal round trip time.

Estimating the power-dependent losses & by means of the ABCD-matrix formalism
for L,=112 mm, x=47 mm we have found 8=0.43-10° W.. To compare this value with
the result of numerical simulations of mode-locking regime we have calculated the beam
transmittance of the aperture A, (Fig. 3, d). Calculating the nonlinear loss coefficient
(10) at W~0 we get 6=0.4-10'5] W-1 which is in agreement with our assumption. For
higher power the weak saturation arises decreasing the magnitude of 6. Indeed, the effect
of finite relaxation time causes a slight asymmetry in the transmission of the pulse front
and the pulse train (Fig. 3, d).

The aperture transmittance can be calculated: i) by direct calculation of power
before the aperture and after it; ii) as w *(w(t)’+w ?)! in assumption of Gaussian
intensity profile having the width w(x)’=o(t)w,’. Both methods give the same results,
due to perfect approximation of the output beam by Gaussian. Besides, the analysis of
spatio-temporal beam profile shows that the pulse width is independent of the radial
coordinate.

The gain increase leads to the increase of the power dependent loss Wa. As a
consequence, the pulse width is decreased (Fig. 4, a).

We have calculated also the pulse shift s. The minimal pulse shift corresponds to
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Fig. 4. Pulse width (a), averaged pulse shift per round trip (b) and pulse energy (c) versus round-trip
power gain, The filled area shows the boundaries for the pulse energy (a) and pulse width (b) in the
regime of pulse-train periodic instability
the maximal repetition rate, that corresponds to the minimum of the pulse width (Figs 4,
b, ¢). This tendency is common for mode locking regimes. For example, at the rod
position x=47 mm and the folded mirror distance L,=112.5 mm the magnitude of the
nonlinear loss coefficient & is not sufficient to develop a pulse train instability up to
G<0.6.

Before achieving the minimal width (Figs 4, a, 5, @) the pulse can be well
approximated by the hyperbolic curve t,(J)=n/6"%c,(/)* [1] as a function of the pulse
energy. For higher gain values the parameter R21 (12), which corresponds to the
breakdown of the weak-pulse-shaping approximation in the description of femtosecond
pulses.

For given cavity configuration the phase delay per round-trip for each Laguerre-
Gaussian mode of the empty cavity is close but not equal to 2r. That is possible only for
the unstable cavity configuration. Due to the mismatch between the phases of transverse
modes quasiperiodic regimes are possible. Up to a definite value of gain the nonlinear
medium gives rise to the locking of phases of mode amplitudes. Larger nonlinearity
initiates distortion of the mode-locked regime. Earlier works [23, 24] have shown that
very small amplitudes of higher-order transverse modes can give rise to quasiperiodic
oscillation. Additional pulse instability arises due to the propagation of nonlinearly
chirped pulse in the dispersive medium [1].

Pulse train periodic instability occurs starting with round-trip gain value G>0.41
(Fig.4, a, b). At the instability threshold we observed significant temporal variations of
the spatial beam size (Fig. 6, a)

Logarithmic plot versus the axial intensity reveals the wing structure of the pulse
(Fig. 6, b). The pulse shape significantly differs from sech’. Moreover, the variation of
the temporal profile from one transverse point to another was observed.

Due to the variation of the spatial beam size (Fig. 6, a) the pulse chirp has a

J,n” Tﬂt S, fS
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Fig. 5. x=47 mm, L,=112.5 mm. Pulse width (a), averaged pulse shift per round trip (b), and pulse energy
(c) versus round trip gain
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significant nonlinear part. However, for this regime the pulse shift has a minimum (Fig.
4,0).

Fig. 6, d shows the fractional power transmitted by the aperture A,. For comparison
two curves are shown: near the gain threshold (G=0.38) and close to the start of the
pulse-train periodic instability (G=0.41).

The oscillation regime for G=0.43 is shown in Fig. 7. The curve showing the
dynamics of pulse width (Fig. 7, a) has small spikes in front of one period of oscillations,
but the pulse energy smoothly varies from one round trip to another.
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Fig. 7. G=0.43. Other parameters are unchanged. Pulse energy and pulse width versus round trips number
(a). The pulse width shown by the solid curve was calculated as the second moment, the dashed curve
corresponds to the pulse width defined at the sech(1) level. Temporal dynamics of the beam power (b)
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Fig. 8. Temporal dynamics of the beam power for
G=0.46

At larger gain the magnitude of
oscillations is growing (Fig. 8) which
breaks the pulse train.

The growth of the oscillation
magnitude is accompanied by successive
excitation of several equidistant frequen-
cies in the Fourier spectrum of the pulse
energy evolution. The ground oscillation
frequency depends on the GVD, the rod
position and folded mirror distance.

3. Transverse pattern dynamics in Zeeman laser

3.1. Karhunen-Loeve vectorial modes. The electric field vector in the transverse
plane of a laser can be expressed in the paraxial approximation as follows:

E(xyzn) =% _ [(I)E(t)e

The spherical component of the field E, can be expressed in terms of the amplitudes of
right and left polarized waves A

E, =A_ (r,9z,1) exp(ivt -iKz) + A_(r, 9z.t) exp(-ivt +iKz),

where (r,p) are the polar coordinates, g==+1.

To describe the complex spatio-temporal laser dynamics we use the Karhunen-
Loeve procedure in which it is necessary to calculate the eigenvectors and eigenvalues of
the normalized correlation matrix 2x2, obtained by time averaging of the product of
normalized field components at two different points in the transverse plane. It is often
more convenient to work with a matrix equation rather then with an integral equation.
This can be done using the field decomposition in terms of Laguerre-Gaussian (LG)
modes. For a fixed transverse plane z=const in the laser cavity

AQ’ (J’(P’I) :Em=—ao n=0 "m (I) w"m 0 ,(P) (13)
where A ""*(r)"T is the mode amplitude,

9, (9) = L, (1)) (1) exp(-P()12 + imy),

<.¢"m ! 'llJ n ’t> — N m &

mm' 't

Here P is the complex beam parameter at the chosen z plane, L ™ is the Laguerre
polynomial, N "=2x(n+m)!/n!. It is convenient to introduce normalized mode ampli-
tudes

(a”m) = (A m) (N“m J;w) lﬁ (14)

In terms of Laguerre-Gaussian mode amplitudes the time-averaged total power of the
beam can be written as W=(2n)'<X =~ N (4 ) AAR)
The matrix version of the 1megraﬁ cquauon can be easﬂy derived

[A, b] = ab, (15)

where

50



(b"m)‘- (a::”)+ (anm)+‘ A (aum)-!- (aﬂm)-* e

bl 1 | . ke E : e (16)
(bum)_ (a"m)_ (a"m)+‘ (anm)- (anm)-‘

Here the overline denotes the time averaging.

Due to the normalization chosen (14), the matrix A is Hermitian and Spur(A)=1.
Hence £, =1, and the eigenvectors, corresponding to the different eigenvalues, are
orthogonal:

bk bj‘ = Em,n,q (bnm)!fk (bnnl)q; = Bkrj ’

The laser dynamics is dominated by the modes (b) whose sum of eigenvalues is
close to unity. Obviously, for stationary fields the KL-modes include only one mode
which coincides with the field itself with the eigenvalue A=1. In LG basis the KL-modes
coincide with LG modes with amplitudes (b "’) WI/N " and eigenvalues which are the
relative intensities of modes.

3.2. Numerical model and results. We consider a Zeeman laser with nonplanar
(image rotating) ring cavity with large Fresnel number [51, 49]. Fig. 9 shows the field
transformation operator scheme used for numerical modeling.

For each slowly varying complex amplitude A (r,g.z,1) . 2 paraxial wave equation
similar to (6) is solved. We consider round-trip variations of the total field and describe
the laser dynamics in the scale of round trip times. The field transformation during one
round trip is a consequence of the following steps: i) free-space propagation; ii) image
rotation; iii) Gaussian aperture and lens; iv) nonlinear active medium; v) linear cavity
anisotropy.

In free-space part of the cavity we used the decomposition of each complex field
amplitude in terms of Laguerre-Gauss orthogonal modes. The image rotation after one
round-trip is described by the coordinate frame rotation by the angle 6, ¢'=¢-8, where ¢’
is the azimuthal coordinate in the rotated coordinate frame

4,M, =(4,"), exp(i (m- q)6).

The field transformation at the ’m
Gaussian aperture and lens was also
expressed in terms of the transverse mode
amplitudes [28, 51]. For simplicity a
stigmatic cavity was considered. Grid
representation of the field in the active q
medium was used. In each of the
transverse polar grid points (r,cp) e
i=1,...,15, j=1,...,20 the field components i
Ar.r N calcglatcd .W’e su;?posc that the Fig. 9. Image rotating ring cavity model with axial
active medium is thin,  9A /0z= maghetic fieldH
—IGJZP(:f,tp) where Pg are the circular
components of the medium polarization, G is the round-trip power gain.

The active medium is supposed to have a transition j=1<» j=2, where j denotes the
angular momentun quantum number, and is placed into the homogeneous magnetic ficld.
The density matrix equation for the irreducible spherical tensors is solved algebraically.

Phase aperture and lens Im:.ge
plate rotation
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where
- ; — -
D,=y/(y+i (0-v+qQ)), S, =IAPL, L = Re[Dq].

Here vy is the relaxation rate of the medium polarization, the frequency w is associated
with the energy gap in the absence of magnetic field, Q is the Zeeman splitting, o"=0.46,
a®=(0.21/y,+0.01/)y,y,/(v,+v,), where y, and y, are the relaxation rates of the upper and
lower level, respectively.

Phase anisotropy of the cavity was modeled by the birefringent plate.
Corresponding expression can be found in [49].

We consider a high-gain active medium and a large number of transverse modes.
In numerical studies we have used more than 200 transverse modes in both circularly
polarized components of the field.

In numerical experiments we used the following set of parameters: the ratio of the
beam area to the area of Gaussian aperture 1,=0.05, the normalized focal power of the
effective lens in the cavity F=L/f=1.5, 2.0, 2.5, where L is the cavity length, f is the focal
distance of the lens, the Zeeman splitting normalized to the transition line width u=
=Q/y=0.15, the transmission coefficients responsible for the linear amplitude anisotropy
of the cavity 7 =0.95, 1 =0.94, the linear phase anisotropy (phase retardation in the
birefringent plate inside the cavity) 8=0.1. The round-trip gain is G=0.52, corresponding
to the relative excitation value close to 2.0. In the regimes considered the image rotation
variation affected only the power modulation frequency, leaving unchanged the
transverse pattern structures. Hence we used the zero value of the rotation angle.

3.3. Classification of Karhunen-Loeve modes. We can use the Stokes parameters
for the characterization of each KL mode polarization state:

X =2Re(E.E"),
Y =2Im(E.E "),
Z=(EE'-EE"),
I=(EE +EE"),
where E, represent the right and left circularly polarized components of the KL mode
feld Obviously, X, Y can be expressed as polynomials in terms of coordinates x, y, thus
defining a 2D vector field (2DSP) X=X(x,y), Y =Y(x,y). Of course, there exists the

exponential factor appearing from Laguerre-Gaussian modes, but it has no influence on
singular points. This 2D vector field can be associated with the autonomous dynamical

system: ) )
= X(x(0), y(0), ¥ =Y(x(0), ¥(1)), (18)

and the classification of the KL-mode polarization pattern can be made investigating the
character of the singular points (zeroes of X and ¥ ) of this system.

There are three possibilities [49]:

* The system is gradient,

(17)

0X/dy = d¥/d x.

There exists a potential function V(x.y), which should be classified using the
catastrophe theory [S0].

* The system is Hamiltonian. The Hamiltonian H(x,y) can be introduced in such a
way that
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dx/dt = 0H/dy, dyldt=- dHldx

and can be classified using Birkhoff-Gustavson normal forms [52].

« General case. The singular points X=0, ¥=0 should be determined and their
classification can be made using the methods [53].

In the previous paper [49] we have investigated the case F=2.5 which corresponds
to rotating transverse patterns. These regimes belonged to the gradient case. Due to the
rotation of the transverse pattern and the electric field vector ¥=0, and the KL modes are
linearly polarized. The results of numerical simulation of laser dynamics are summarized
in the Table 1. a, b, ¢, d are nonzero coefficients, 7”=x?>+y%. The type of catastrophe is
presented in corresponding column, where «Morse» stands for Morse-type function,
«QP» and «St» denote quasi-periodic and stationary regimes, respectively.

Table 1
Catastrophe classification of 2DSP for different gain and optical power

F gain | number KL modes X catastrophe | regime
L5 04 1 a+br’-cr* A, St
1.5 0.5 1 -ar* A, QP
1.3 0.5 2 -ar ¢ A QP
15 0.5 3 ar* A, QP
1.5 0.5 4 -ar? Morse QP
1.5 0.5 5 ari? - Ay QP
1.5 0.6 1 at+br2-cr* Ay QP
1.5 0.6 2 -ar8 A, QP
1.5 0.6 3 ar* A, QP
1.5 0.6 4 -ar A, QP
2.5 0.4 1 a-br 2+cr 4-dr © B St
25 0.5 1 a+br? Morse QP
2.5 0.5 2 -ar® A QP
2 0.5 3 ar* A QP
2.5 0.5 + -ar? Morse QP
25 0.6 1 a+br? Morse QP
2.5 0.6 2 -ar 8 A, QP
235 0.6 3 ar Ag QP
2.5 0.6 4 -ar 10 A QP
2.5 0.6 5 -ar® A, QP
25 0.6 6 ar® A, QP
2.5 0.6 7 -ar? Morse QP
2.5 0.6 8 -ar* R QP

Another situation was observed for F=2.0. In this case the transverse patterns do
not rotate but oscillate, changing the orientation of the pattern, while the polarization (the
azimuth and eccentricity of the polarization ellipse) of the field in a given point of the
transverse plane is almost unchanged. In Fig. 10 the corresponding instant laser patterns
for right and left polarization are shown.
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a b

Fig. 10. Transverse laser :Paucms for right-hand circular component of the electric field vector. Transverse
intensity distribution [E_|° (). The curves Re(E, )=0 are solid and Im(E )=0 are dashed (b)

There exist two KL modes at F=2, g=0.7 (Fig. 11).
In this case both X and Y parts of the 2D vector field of Stokes parameters are
nonzero. Explicit expressions for X, ¥ can be written as:

x= %, UEJ 0‘9;; xXHy¥ (19)

6 _6
e 21 2
Z g2 b, X yu

For the classification of these regimes we can use the procedure [53], which
includes some steps explained below. First we should find the so-called carrierof the
system Eq.(19). We should multiply the first equation by y and the second equation by x.

The resulting monomials x” y" can be labeled by its powers (n,m), representing the
corresponding point in the plane of variables (n,m). The set of all these points is the
carrier of the system. The set of coefficients of a given monomial appearing in the right-
hand part of the system is called vector coefficients. The points in the plane n,m form the
Newton polygon of the system, and the part of this polygon which «looks» at the origin is
Newten diagram.

The second step consists in simplifying the Newton diagram. The polygons can be
transformed using the change of variables of the special kind (z is no more the
longitudinal coordinate starting from here):

x=zlhvwh, y=zw,

The matrix of indices C associated with this transformation looks as follows:

C=(p' q‘). (20)
P 4

In our specific case it was convenient to use C =1, 0, 1, 1. Under the transformation
of coordinates the system is subjected to the corresponding transformation too:

w = z w eroa 2% 1)

w = 2,4 p

wHzZ b 74
J=0.6 T
and, therefore, the Newton diagram can be simplified (Fig. 12).
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Fig. 11. The transverse patterns of the right-hand circularly polarized component of the first (@, b) and the
second (c, ) Karhunen-Loeve modes. The correspondent tranverse pattern of the field is shown in Fig.
10. The eigenvalues ,;=0.650072, A,=0.349926. The density (a, c) plot shows intensity of right-hand
circularly polarized component of Karhunen-Loeve mode. Solid curves (b, d) shows the point of
transverse plane where the real part of right-hand circularly polarized component of KL-mode is zero.
Dashed curves shows the zeros of imaginary part of the same
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Fig. 12. Newton diagram for the right - (@) and the left-polarized (b) components of the second KL-mode
after the transformation
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After these transformations we can calculate the eigenvalues of the linearized
system «,, k,. The signature of k set shows the type of singularity (in our case at z=w=0).
In this case k,=0.,......., therefore the type of singularity is saddle-node. Using the
described algorithm we can study in general the behaviour of the transverse polarization
structure near the singularities of 2D vector field of Stokes parameters, which, of course,
correspond to peculiarities of electric field polarization patterns. Further classification of
singular points of the field is possible in the spirit of catastrophe theory for the
transformed fields with linear Newton diagrams.

4, Stationary modes in boson traps

4.1. Nonground stationary states. Consider an ensemble of neutral atoms trapped
in a parabolic potential. At low temperatures the Bose-Einstein condensation is possible.
In the mean-field limit and s-scattering approximation the condensate is described by the
collective wave function @ that obeys the Gross-Pitaevskii (GP) equation [55]

i 0®(r,t)lot = ﬁoé(r,r) + gl@(r,0)Pd(r,1), (22)
where g is proportional to the number of the atoms and the length of scattering,
!-?0 =-1hV2+ (022 + 0 2y + 0 272, (23)
X, ¥, z are the coordinates. The initial condition to solve Eq. (22) is
 0(r,=0) = @,(r). (24)
The wave function can be normalized
Sl ®(r,0)Pdr = 1. (25)
Let us seek the stationary solution of Eq.-(22) in the form -
O*(r,r) =exp (-ips) ¢(r). (26)
The stationary states ¢ satisfy the stationary GP equation
Hi(r) + 8lo(r)P4(r) = uo(r). (27)

For cylindrical traps w =w=w , w<<l. In all examples we consider w =1, w_=0.
Obviously, in this case Eq. (22) is similar to the scalar paraxial wave equation for a beam
in a parabolic waveguide with Kerr nonlinearity. In contrast to optics, the nonlinear term
in Eq. (22) is typically very large. Our aim here is to investigate the stationary mode with
one transverse node (Fig. 13) and the possibility of a resonance transition to this state
from the ground state. '

For a weakly perturbed stationary state

@Fet(r,t) = exp(-i pt){d(r) + [Cu(r) exp(-i of) + Cv'(r) exp(i w?)]}, (28)

corresponding to small oscillations of the order parameter around the stationary-state va-
lue, the linearized GP equation is reduced to the simultaneous Bogoliubov equations [55]

oU = (f;’o -+ 2g1¢[2)1c + gd?v; (29)
-~V = (f?o -u+ 2810y + g, (30)

with the orthonormalization condition
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Joo (Wu, - v/ v)dr =8, (31)

The oscillations (collective modes) for the
one-node state considered possess some
specific features in comparison with those
for the ground state. One of the functions
(u,v) must have no nodes, while the other
has two. So we can identify the normal
state by indicating the quantum numbers of
the base state and of the function u. For
(uv),, (Fig. 14, a) the result of the 04 P e A T e
numerical calculation (dotted line in Fig. 0.0 1.0 20 30 40 50 p
15) shows that w=2w, at any g. Therefore, Fig. 13. One-node stationary wave function versus
this state is an analog of the monopole ﬂlﬁsgiséﬂﬂ;e fl']:?nm the lt{r]a{{! gxiS-_FU (solid line),
mode of the ground state. For (u,v), , (Fig. g;t) g(= i e&l aShec)&gEo[) (dot line), =200 (dash
14, b) the dependence of the frequency .
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Fig. 14. Collective modes for one-node stationary state,g=50

Fig. 15. Characteristic frequencies: the difference o .
between the potentials corresponding to one-node 0

stationary state and the ground state (solid line); the
kinetic-interaction exchanging frequency (dashed ]
line); the averaged square radius oscillation 1.6

frequency(dotted line) : . e
124 TTTTTTTTTTIEEREESS
upon g is shown in Fig. 15 with dashed ] Ap=p-H,
line. This mode, corresponding to exotic 081 ______ o,
oscillations, should occur with the package : S— W = Oy

radius and, therefore, the potential energy,  0.4-
being constant, while the kinetic energy ]

exchanging with the energy of atomic 0.0 : . T .
interaction. 0 100 200 300 g

4.2. Excitation of the non-ground states. Consider a harmonic external
perturbation that may be caused, e.g., by the variation of the trap parameters. In this case
the GP equation may be written in the form

i Q(r.0)/30) = [H, + gld(r.0) + ksin@r (2 + y?)]@(r.1). (32)

Let us take the ground state as the initial one
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Fig. 16. Dynamics of the projection of the ground
state to the one-node state under the harmonic
excitation: «on-resonance» frequency (I, Q=Apu=
=1.43017), positive detuning @, Q=Ap+0.1),
negative detuning (3, Q=Ap-0.1). The maximal
value is achieved for the positive detuning, because

o(r,1=0) = 9,(r). (33)
Earlier it was supposed [56] that the

transitions between the stationary states are
possible under the action of a resonance
external field. It is well known that for
linear oscillator the maximal rate of a
transition to a fixed state is limited because
the energy spectrum is equidistant.
Nonlinear operator eigenvalue problem
(27) yields a non-equidistant spectrum.
This fact was noted in [56] as the case for

the corresponding @ is the closest to the collective

mode frequency w, =2, g=50, k=0.1 the applicability of the two-level approxi-

mation and possibility of creating the non-
ground state. However, the results of our direct numerical solution (32, 33) contradict to
this hypothesis. We found that, firstly, there is no resonance at Q=Ap=p~u, for any i and
any g, and, secondly, the population of the non-ground state is oscillating from 0 to some
maximal value, which increases with the growth of x, but tends to the saturated value
<40%, that accords with the maximal transition rate for a simple linear oscillator (see
Fig. 16). We observed only resonances associated with the collective modes, i.e., at Q=w,
see Egs .(29, 30). This result is easy to explain. While the wave function of the system is
close to a certain stationary state, another stationary states does not exist, because of the
different effective potential in Eq.(27). The result of [56] can be a consequence of using
one-parametric variational functions for the solution of Eq.(27). As a result, the authors
of [56] found that Au—c when g—so, so, the averaging technique and the two-level
approximation hold when g is big enough. Actually, as seen in Fig. 15, Ap tends to a
constant for big g.

Conclusions

Using the numerical simulations within the framework of full spatio-temporal
model, we have analysed the pulse train characteristics of the Kerr-lens mode-locked
laser. At the threshold the pulses have the hyperbolic secant shape. We have found that
the gain depletion due to the finite relaxation time of the medium response leads to the
asymmetry in the beam size variation. The gain increase leads to the distortion of the
hyperbolic secant pulse shape and to deep beam size variation during the pulse. The effect
of finite-time relaxation and gain saturation leads to the nonlinearity in the calculated
beam transmittance at the output aperture.

In the absence of the third-order dispersion the pulse remains symmetric, but the
beam size demonstrates pronounced asymmetry.

We have found that in the mode-locked regime only single solitonic solutions are
stable. The gain increase leads to instabilities of pulse train. The threshold of the non-
periodical oscillations of the beam shape is decreased with the decrease of the GVD and
with the increase of the amplitude modulation coefficient. In quasi-periodical regimes the
output power spectrum depends on the GVD coefficient and the frequency spacing
between the transverse modes of the empty cavity. The coupling of multiple transverse
modes leads to the sweeping of the beam size. This result is in agreement with
experimental investigations.

The presented model makes it possible to obtain the full information about the
spatio-temporal evolution of the pulse train. The temporal and transverse beam reshaping
becomes important for femtosecond pulses. Our approach to the description of pulsed
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beams can be applied in modeling femtosecond laser dynamics without the approximation
of slowly varying amplitude.

We present the algorithm for the classification of different dynamics of transverse
polarization patterns based on the calculation of eigenmodes (Karhunen-Loeve modes)
and eigenvalues of the two-point correlation matrix, expressed via the time average of the
products of the electric field components. The use of the vector Karhunen-Loeve modes
allows one to select the group of transverse modes which determine the laser dynamics.
These KL modes form the orthogonal basis and provide the optimal description of the
dynamics of the vector field laser. Using numerical simulation of the polarization
transverse pattern dynamics in a Zeeman laser, it was demonstrated that the number of
essential KL modes is not so large (four in the regimes considered), while the number of
Laguerre-Gaussian modes necessary to reproduce the laser dynamics is several hundreds.
The regimes corresponding to the rotation of the pattern with nearly constant angular
velocity were investigated as well as the regimes with oscillating patterns and nearly
constant polarization parameters.

For the classification of vector transverse patterns we propose to investigate the
behaviour of the polynomials representing the KL modes or the total field in the vicinity
of its singular points in the transverse plane, namely, to investigate the 2D vector field of
the Stokes parameters X, Y.

Non-ground stationary states of Bose-Einstein condensate of trapped atoms were
studied numerically solving the strongly nonlinear Gross-Pitaevskii equation for the
collective wave function. Small harmonic perturbations of these states described by
Bogoliubov equations revealed essential difference between the ground stationary state
and the ones having one transverse node. In contrast to earlier assumptions, we have
demonstrated that in the strongly nonlinear system under consideration the periodic
perturbations are unable to produce resonant transitions from the ground state to one-
node non-ground states.

This work was supported in part by grant REC-006 of the US Civilian Research
and Development Foundation for the Independent States of the Former Soviet Union
(CRDF).
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HEJIUHENHA S JUHAMUKA ITPOCTPAHCTBEHHBIX 1 BPEMEHHBIX
CTPYKTYP B JIABEPAX U ATOMHOM OINTHUKE: TA3EPBI C
KEPPOBCKON CHHXPOHU3AIIMEN MOJI, 3SEEMAHOBCKHU JIA3EP,
ATOMHBIN KOHTEHCAT BO3E - SMHITENHA

JLA. Meavnuros, A.1. Kontoxos, H.B. Bewneea, B.JI. [lepbos, B.B. Cepos

[IyreM MareMaTHYeCKOrO MOJIe/IMPOBAHHA HCCIIEAOBAHBI NPOCTPAHCTBEHHOE H
BPEMEHHOE TOBEJICHME J1a3epHbIX H aTOMHO-ONTHYECKHX CHCTeM. PaccMoTpeHb!
CHCTEMBI B peXKuMe BO30YXKIeHHs HeOOJbIIOro YMCla CKalSpHBIX MONePevHbIX MO[
(masep ¢ KeppoBsckoit cHHXpoHH3auuedl MOM), ¢ HEONHOPOJHBIM PACIIpENie/IeHUM
NONSAPU3AUME [O MONEPEeYHOMY CEYEeHMIO TydKa B peXKuMe BO30YXK[EHHs BBICIIUX
nonepevHbix Moy (3eeMaHOBCKHIA asep ¢ GonbImM uncaoM PpeHelns i aHH30TPOIHEIM
PE30HATOPOM) W BO30OYXKJeHHbIE KOJICKTHBHBIE COCTOSHHA KOHjeHcara bose -
DitnmTeiiHa HefiTpalIbHBIX aTOMOB, 3aXBa4eHHBLIX B JIOBYHIKY. B paloTe npenupuHsATEI
TIONBITKA KIACCH(HIMPOBATH JUHAMHKY CIIOXKHBIX TIONAPU3AUMOHHBIX CTPYKTYp IO B
nasepe. ITomxompl K KimaccuHKalWi OCHOBAaHbI HA BBIYMCJIECHAA BEKTOPHBIX MOJ
Kapynena - JIoBa M ONMCAaHMM MX CHHTYJIDHbIX TOYEK C HCHONB30BaHUEM TEOPHH
karacTpot, muarpamm HeioroHa. IIpoananmusupoBaHO BO30YX[EHHE HEOCHOBHBIX
COCTOSIHMI aTOMHOTrO KoHjieHcaTa bose - DHHIITeHHA 1epe3 PE30HAHCHOS BO3MYILCHHE.
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MULTISTABILITY, IN-PHASE AND ANTI-PHASE
CHAOS SYNCHRONIZATION IN PERIOD-DOUBLING SYSTEMS

V. Astakhov, A. Shabunin, P. Stalmakhov

We consider mechanisms of multistability formation and complete chaos synchro-
nization loss in mutually coupled period-doubling maps. Cases of in-phase and anti-phase
synchronization are investigated. Influence of non-identity of partial oscillators is also
discussed, '

1. Introduction

Phenomenon of complete synchronization of chaos has being intensively
investigated for the last time. Majority of authors consider a case of in-phase
synchronization when oscillations of subsystems are equal or almost equal to each other
in the every moment of time [1, 2]. The other case of complete synchronization is
antiphase synchronization when the subsystems oscillate identically but with opposite
signs: x,(f) =-x,(1). The antiphase synchronization of chaos was considered in the work
[3]. The authors investigated «master - slave» synchronization [4], when one subsystem
unidirectionally influences on the other one.

Bifurcational mechanisms of both in-phase and antiphase complete chaotic
synchronization are in close connection with bifurcations of saddle periodic orbits
embedded in the synchronous chaotic attractor. In a system of symmetrically coupled
identical oscillators a limit set relating to synchronous oscillations locates in the
symmetric subspace (X, = X,) (for the in-phase synchronization) or in the antisymmetric
subspace (X, =- x,) (for the antiphase synchronization) of the whole phase space of the
system, where X, and x, are vectors of identical dynamical variables of interacting
subsystems. If a chaotic set is attracting in the normal to the subspace direction, namely
when its largest transversal Lyapunov exponent is negative, the synchronous oscillations
are observed in experiment. When the exponent changes its sign to the positive, the
chaotic attractor becomes non-attracting in the normal direction and transforms to a
chaotic saddle. The synchronous oscillations are not observed in experiment further.
However, the case is possible when the largest transversal Lyapunov exponent on the
chaotic attractor is negative, but the exponents on some limit sets encapsulated in the
attractor are positive. In this case the synchronous regime remains stable but becomes
unrobust. Any infinitesimal noise or the parameters mismatch can lead to the «bubbling»
of the attractor. Time-series of the oscillations related to motions in the normal to the
subspace direction becomes an intermittency process when the phase point moves in
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vicinity of the symmetric subspace for a long time (laminar phase) and leaves it from
time to time (turbulent bursts) [12]. The bubbling of attractor is the first step to the
desynchronization of chaos. Then, with changing of the controlling parameters more
quantity of encapsulated cycles lose their stability in the normal direction. This enforces
the process of bubbling and then the averaged on the attractor largest normal Lyapunov
exponent can become positive. As a result, the chaotic set in the symmetric subspace
becomes non-attractive. This phenomenon is called the blowout bifurcation [5]. The
bubbling of attractor can be followed also by the riddling of its basins when «holes» from
the basins of another attractor appear in infinitesimly small vicinity of the attractor . In
this case, the presence of small noise or the parameters mismatch leads to leaving of the
phase point to the another attractor. Regimes which accompany the process of chaotic
synchronization loss in the coupled logistic maps were described in works [13], [14].

In the paper we detaily describe phenomena and mechanisms of in- and anti-phase
complete synchronization of chaos in period-doubling maps with symmetric diffusive
coupling. The paper is organized as a follows: The section one describes bifurcational
mechanisms of destruction of in-phase synchronization and formation of multistability in
system of symmetrically coupled cubic maps. The found regularities are compared with
that in other systems. In the second section we consider the influence of small
parameter’s mismatch on mechanisms of synchronization loss in logistic maps. In the
third section we hold comparing mechanisms of in-phase and anti-phase synchronization
of regular regimes in coupled cubic maps. We propose a method of control for anti-phase
chaos synchronization and describe the phenomena which accompany it. The conclusion
summarises main results of the paper.

2. Mechanisms of destruction of in-phase synchronization
and formation of multistability in coupled cubic maps

Let’s consider a system of two identical discrete maps with symmetrical diffusive
coupling:

x,a=f&)+1(FO) -F()). 1)

Yo =F () +v (F ()  (3,)- 2

It is seen, that this system is invariant to the transformation (x <= y) and therefore
the subspace (x=y) is invariant to the operator of the evolution of the system. For
investigation of the stability properties of symmetric solutions it is convenient to use
«normal» variables: u= (x+y) /2, v=(x-y) /2.

Adding and subtracting equations (1) and (2) and then linearizing results in the
vicinity of the symmetric subspace we get:

um—l = f(uu)’ (3)
UJH-I = (I-ZY)f‘ (un)vn . (4)

The equation (3) describes the dynamics inside the symmetric subspace. It is
evidently the equation of the single map. The tangent stability of the synchronous
solution is described by the tangent Lyapunov exponent:

Al =lim,__ (IN)Z_Inif (u)l. (5)
The equation (4) describes the dynamics in the normal direction to the symmetric

subspace in its small vicinity. The transversal stability of the synchronous solution is
determined by the transversal Lyapunov exponent:
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A, =lim, _ (UN) =, Inl (1-2y) £ (). (6)

Comparing (3) and (4) we see that the tangential and the transversal Lyapunov
exponents satisfy the relation:

A=A +1In -2yl 7

and hence, for small positive coupling (0<y<0.5) the normal Lyapunov exponent is
smaller than the tangent one. Any in-phase regular oscillations are normally stable and in-
phase chaotic oscillations are stable only at sufficient large coupling. Let the single map
be a period-doubling one. In this case in the symmetric subspace a cascade of period-
doubling bifurcations leading to formation of synchronous chaos takes place. The
resulting chaotic attractor contains infinite number of saddle periodic orbits taken part in
its formation. According to (7) every orbit in the cascade can undergo one more period-
doubling bifurcation which takes place in the normal direction to the symmetric subspace.
As a result the saddle orbits which undergo the bifurcation become repellers and saddle
orbits of double periods appear in their neighborhood. Then, the new saddle orbits
become stable with further .parameter changing. Hence, if first period-doubling
bifurcations lead to complicating of synchronous oscillations, the second ones lead both
to multistability and to transforming synchronous saddles into repellers.

In the Fig. 1 we built an example of a scheme of bifurcations that begin the
formation of multistability. For better clarity we use here the following notation: the first
index denotes the period of the orbit (or Cycle), the upper number is the number of steps:
on which oscillation in y map is delayed from that in x one. Obviously, synchronous
oscillations have zero upper index. The bottom index identifies the orbit if there are
several ones. Firstly, we observe the situation (Fig. 1, @) when there are two saddle orbits:
period-one C°), period-two (2C°) and one stable period-four orbit (4C") in the
symmetrical subspace. Then, the saddle orbit (C°) undergoes the second period-doubling
bifurcation in the normal to the subspace direction. As a result it becomes a repeller and a
saddle orbit of period-two 2C! appears outside the diagonal (x=y) (Fg. 1, b). With fur-
ther parameters change it undergoes pitchfork bifurcation in the result of which the orbit
2C" becomes stable and two symmetrical orbits 2C,** and 2C,* appears near it (Fig. 1, c).
Then, similar series of bifurcations occurs with orbits of higher periods (Fig. 1,d).

The considered scheme is a typical one. It is observed for a number of different
period-doubling oscillators. Here we consider a coupled cubic maps system:

f(x) =(a-1) x - ax. (8)

We investigate bifurcations of the periodic orbits located inside the symmetrical subspace
and of periodic orbits appeared from them. The structure of lines of tangential and trans-
versal period-doubling bifurcations on the parameters plane is represented in the Fig. 2.
Horizontal lines /,, /y,, /,; marks period-doubling bifurcations of periodic orbits
€% 2C° and 4C° inside the symmetric subspace. On the line [, the periodic orbit C°
undergoes tangent period-doubling bifurcation. As a result, it transforms to saddle and a
stable periodic orbit of double period 2C° appears in its neighborhood. Then, on the line /|
the saddle C® undergoes the transversal period-doubling bifurcation. As a result, it loses
stability in transversal direction and transforms to repeller. In its neighborhood, outside
the symmetrical subspace a period-two saddle orbit 2C"! appears. With further parameter
change this orbit becomes stable through pitchfork bifurcation on line /,. The similar
bifurcations take place with other periodic orbits in the symmetric subspace (see lines /g,
I, 1, and lines [, /). Choosing value of the coupling we can observe different sequences
of tangent and transversal bifurcations with the parameter a change. For example, the
scheme described in the Fig. 1 corresponds to y = 0.18. Further increasing of the
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Fig, 1. Scheme of multistability formation beginning in the system of two logistic maps. Orbits 1IC 9(0)
ZC% (03) 4% (A) are located inside the symmetric subspace. Orbits 2C* (<) 4c? (V) 2C, (+) and 2C,
(x) are outside it
parameter of nonlinearity (line /,, in the Fig. 2) leads to transition to synchronous chaos
2NA®  (2VA* is 2V -band self-symmetric chaotic attractor originated on the base of the
periodic orbit 2¥C*). Inside chaotic region band-merging bifurcations and windows of
periodicity are observed. On the line [, the system transits to one-band synchronous
chaos A°.

Every transversal period-doubling bifurcation for a periodic orbit 2 C° located in
the symmetric subspace, which is accompanied by its transformation to repeller adds
points of local transversal instability to the chaotic attractor 2YA°. From these points
phase trajectory leaves the symmetric subspace at transversal perturbations. The regime
of synchronous oscillations becomes unrobust. Any small noise and mismatch of the
subsystems lead to destroying of the complete synchronization. Time-series of the
difference (x, -y,) becomes intermittency process (on-off intermittency), when motion in
the symmetric subspace is intermittent by bursts from it. As a result a boundary of the
synchronous region in the system with any small noise is shifted relatively to one in the
system without noise. We have hold numeric investigations on determination of the
boundary of the synchronization region. In these investigations we define oscillations as
synchronous if the time-series of the subsystems are equal with precision of (g) during
the whole time interval of cbservations:
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max lx, -y | <e,n=123,..N

observ”

at chosen values: £ =0.0001, N, =2000000
iterations. In the Fig. 2 (o) mark' the expe-
rimentally determined boundary of the
robust synchronization region. From the
right side of it stable synchronous chaotic
oscillations take place. Under the line /j
the system demonstrates many-band syn-
chronous chaotic attractors 2¥A°, over it
there is one-band synchronous chaotic
attractor A°. Adding small noise with
intensity ~ 0.00001 to the system doesn’t
lead to desynchronization.

From the left side of this boundary'

and from the right side of the boundary
marked by (<) there is a region of unro-
bust synchronous chaos. The synchronous
regime is observed only in the absence of
noise. The transition process to this regime
has the form of intermittency. Its duration
essentially depends on the chosen initial
conditions. Adding very small noise to the
system destructs the synchronous regime.

a

3.65[

3.40¢

3.15¢

lo

2.90 a— . .
0.0 0.1 0.2 03 v

Fig. 2. Location of bifurcational lines on the plane
«coupling - nonlinearity» for the system of coupled

cubic maps. Iy, [y, [j; are lines of tangent period-
doubling bifurcations of orbits €% 2C° and 4C?
respectively, [, I; and /. are lines of transversal peri-

od-doubling bifurcations of the same orbits,/, and /
are lines of pitch-fork bifurcations of orbits ¢! and
4C2. Line [y, marks transition to synchronous chaos;

The system demonstrates bubbling
behaviour. In the region from the left side
of the boundary (<) we observe riddling
of the basins of the synchronous chaotic
attractor. The basins is riddled with holes that belong to basins of other regular or chaotic
attractors.

Comparing mechanisms of multistability formation for different systems (coupled
cubic maps, logistic maps [10, 11], Hennon maps [18], Chua’s self-oscillators [19],
Rossler oscillators [20]) we have concluded that:

1. It is common for period-doubling oscillators with diffusive symmetrical
coupling including invertible and non-invertible discrete maps and continuous time
oscillators.

2. The same bifurcations of the same periodic cycles form the basis of both
appearing of new stable oscillatory regimes and destroying of the regime of in-phase
chaotic synchronization.

3. The main mechanism of multistability formation and synchronization loss is
based on the cascade of transversal period-doubling bifurcations which take place with
orbits of main family forming the skeleton of the synchronous chaotic attractor.

4. Bifurcations of synchronous periodic orbits initiate and then enforce the
bubbling process of the chaotic attractor. Bifurcations of unsynchronous orbits appeared
from synchronous ones lead to riddled basins of the attractor.

line /s - transition to one-band the synchronous
chaotic attractor. Symbol smark destroying of chaotic
synchronization: (o) - bubbling process, (©) - riddled
basins

3. Synchronization of chaos in weakly non-identical oscillators

Real oscillators are non-identical. Hence, there is a reasonable question: is it
possible to apply theory of synchronization based on symmetry properties to real systems.
At what conditions idealized pure identical systems will behave similarly to real objects.
For investigation of the complete synchronization phenomenon identical interacting
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systems are usually used as mathematical models. Then obtained in the frameworks of
such idealization results are applied to explain behavior of real experimental systems. If
the regime of synchronization is stable and the used mathematical model is rough it is
observable in real experiments. Intervals of synchronization on the coupling parameter
are practically similar for identical and slightly mismatched systems. In this sense the
behaviors of the identical and slightly mismatched systems correspond to each other.
However, when we investigate more exact effects such as mechanism of the
synchronization loss from the point of view of bifurcations of saddle periodic orbits
embedded in the chaotic attractor, there are differences in the scenario for identical and
weakly non-identical systems. This situation can take place when the symmetry breaking
bifurcations take part in the process of synchronization loss. For example this is the pitch-
fork bifurcation. From the bifurcation and catastrophe theory it is well-known (see [21,
22]) that the point of this bifurcation is the cusp catastrophe. At slight non-identity
between interacting systems the bifurcation is eliminated by the certain ways. Non-
identity can qualitatively change behavior of orbits in dependence on a parameter of the
system. :
We consider this subject on the example of coupled logistic maps with weak non-
identity between elements:

xu+1 =2 Fxnz T Y (x112 i yuz)

©)

Yo = M=32+y0,2-x7)

here & is a detuning parameter. The considered system has no more subspace of
symmetry. Hence, we can not define synchronous oscillations as motions inside the
surface x=y. In this case we must use «experimental» description of oscillating regimes in
asymmetric system. In the frameworks of the present description we call the chaotic
regime synchronous, if lx - y | < A, at any moment of time 7, where A is a suitable given
value that is small with respect to the intensity of the chaotic oscillation. In our
investigations we use the following value of the parameters: A=1.56, 8=1 (identical
oscillators) and 0.995<6<1 (non-identical oscillators). These values correspond to regime
of one-band chaotic attractors in both oscillators at zero coupling.

Let’s consider firstly the identical case (8=1). In the system (9) the
synchronization region has a finite interval. The stability loss of the symmetric one-band
chaotic attractor A° in the transversal direction occurs both at decreasing (y<0.5) and at
increasing (y>0.5) of the coupling coefficient y. The synchronization loss is induced by
bifurcations of saddle orbits 2VC® which are embedded in the chaotic attractor and form
its skeleton. In the both cases of coupling increasing and decreasing the loss of stability
begins with a bifurcation of the saddle point 1C?, which induces the bubbling transition in
the system.

With y decreasing the saddle point 1C® undergoes the period-doubling bifurcation.
In the result it becomes a repeller and the saddle period-2 orbit 2C" appears in its vicinity
outside the symmetric subspace. This bifurcation induces the bubbling transition in the
system. With further y decreasing the saddle orbits 2VC? of higher periods undergo the
same bifurcations. This enforces the bubbling phenomenon.

Then the saddle orbit 2C! located outside the symmetric subspace undergoes one
more bifurcation. It becomes stable and a pair of period-2 saddle symmetric to each other
orbits appear in its vicinity (at inverse parameter changing this bifurcation is the
subcritical pitch-fork bifurcation). The bifurcation of the orbit 2C! induces the riddling
transition in the system. With further decreasing of the coupling the chaotic attractor
gradually «loses» its basins and transforms into a chaotic saddle. The described
mechanism fully repeats one of the cubic maps. At the coupling increasing we observe
the other mechanism: The point 1CY undergoes the pitch-fork bifurcation. In the result it

68



becomes a repeller and in its vicinity a pair of saddle points C, and C, symmetric to each
other appear. This bifurcation induces the bubbling transition. With further mcreasmg ofy
other saddle orbits 2¥C° undergo the period-doubling bifurcations similarly as in the case
of coupling decreasing. The riddling phenomenon of the A’ basins is a result of the
bifurcation of the saddle points C, and C,. They become stable and in their vicinities
saddle orbits of double period appear (at inverse parameter changing this bifurcation is
the subcritical period-doubling bifurcation). In the cases of both the coupling decreasing
and the coupling increasing bifurcational scenario of the synchronization loss are very
similar. The difference is only in the following. At weak coupling 1C° undergoes the
period-doubling bifurcation, but at strong coupling - the pitch-fork bifurcation. Other
saddle orbits 2YC? undergo the period-doubling bifurcations in the both cases. Aty
decreasing the process of riddling basins of A’ begins with the pitch-fork bifurcation of
the orbit 2C", but at y increasing - with the period-doubling bifurcations of C, and C,.

The depended on coupling sequence of bifurcations of periodic orbits which begin
the bubbling of the attractor and then the riddling of its basins is built in the Fig. 3, a.

Let’s now consider the parameter mismatch effect on the bifurcational scenario of
the synchronization loss of the system (9) when &#1. We consider the synchronization
loss both at decreasing and increasing of the coefficient of couplingy. At small value of §
we investigate bifurcations of unstable periodic orbits which lead to breaking of regime of
nearly identical chaotic oscillations in the coupled systems.

At y decreasing a period-doubling bifurcation of the saddle point C° induces the
transition to the bubbling behavior. After this bifurcation a rebuilding of the phase space
structure occurs in the vicinity of the A°. Namely, inside the quasi-symmetric region the -
saddle C° transforms to repeller and a saddle orbit 2C' appears outside it. Stable
manifolds of the saddle 2C' lean on the repeller C" and unstable manifolds leave to the
quasi-symmetric region. The appearance of such structure changes the character of
motions from nearly identical oscillations to the bubbling behavior. At increasing of
coupling scenario of the transition to the bubbling behavior is different. With increasing
of y firstly we observe a gradual displacement of the saddle C° in the normal direction. It
leaves the quasi-symmetric region. Other saddle orbits 2VC? practically do not change
their locations. Then the sadd]e-repeller bifurcation takes place m the system. In the
v1c1mty of the quasi-symmetric region a repeller C_"and a saddle C,° appear. With further
mcreasmg of y the fixed points diverge. The repeller C, 0 entcrs the quasi-symmetric
region and the saddle C| 0 moves away from it. As a result there is the same structure of
the phase space in the wcmlty of the A” as in the case of identical oscillators, but it is
formed on the base of other bifurcations. In the quasi-symmetric region there is the
repeller C on which stable manifolds of the saddles C° and C° lean. Their unstable
manifolds leave to the quasi-symmetric region. This phase spacc structure also leads to
the bubbling behavior. Then, with further coupling increasing both saddles C° and C°
undergoes subcritical period-doubling bifurcations. As a result they become stable and
the trajectory from vicinity of the ex-attractor A° transits to one of them. This process is
very similar to the case of identical oscillators except the fact that now we do not observe
riddled basins more. A trajectory leaves A’ from any its neighborhood. But the duration
of the transition process can be extremely large and essentially depends on the initial
values. The scheme of bifurcations that take place in the mismatched system are
represented in the Fig. 3, b.

Comparing the behaviors of the system (9) at 8=0.995 and at 8=1 we see good
qualitative correspondence. The regime of complete synchronization corresponds to
nearly identical chaotic oscillations. The bubbling transitions in the symmetric system
corresponds appearance of bubbling behavior in the system with mismatch. With further
coupling change the same stable orbits appear both in the symmetric and asymmetric
systems. In the asymmetric systems there is no riddled basins but one can observe the
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Fig. 3. The scheme of bifurcations on coupling which initiate bubbling and then riddling process in the
system of identical (a) and weakly non-identical () logistic maps

sensitive dependence of the transition process time on initial conditions. However,
comparing the results quantitatively one need take into account the following: At the
coupling decrease the value lx, - y | exceeds the chosen threshold value A almost at the
same value of y that corresponds to the bubbling transition in the identical systems. At the
coupling increase the corresponding values of y are very different. This difference of
changing of left and right boundaries of the synchronization interval is a result of
difference of behavior of unstable periodic orbits embedded in the chaotic attractor which
takes place at decreasing and increasing of y. This difference appears as a result of
elimination of the bifurcation conditioned by the symmetry of the system. Thus, if the
bubbling transition in the symmetric system is induced by «uneliminated» bifurcation
(the period-doubling bifurcation of the saddle C° at the coupling decreasing) weak
asymmetry does not influence on the bifurcational scenario of the transition to the
bubbling behavior. If the bubbling transition is determined by the bifurcation conditioned
by the symmetry of the system (the pitch-fork bifurcation of the saddie C” at the
couplingin creasing) the weak non-identity of the subsystems eliminates it and the
bubbling behavior appears according to another scenario.The determined structure of the
phase space in the vicinity of A? is formated not as a result of the bifurcation of the saddle
C% but after saddle-repeller bifurcation of birth of new unstable points, namely the
repeller C° and the saddle C°. The completion of the process of the chaos synchro-
nization loss occurs accorclmg to different scenario in the symmetric and non-symmetric
systems. At the coupling decreasing slight non-identity eliminates the bifurcation of the
saddle 2C". Besides it the saddle-node bifurcation of the new stable period-2 orbits 2C,}
and 2C ! birth take place. Starting from the vicinity of A° phase trajectories move to this
stable orbit. At the coupling increasing the loss of synchronization in the non-symmetric
system is completed by the bifurcation of the saddle C?. After the bifurcation the point C°
becomes stable.

4. Antiphase complete synchronization of chaos

In this section we consider another case of complete synchronization of chaos: the
antiphase synchronization on example of the coupled cubic maps (1, 2, 8). The single
cubic map has a symmetry to transformation of the coordinate:

I x & -x.
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The system of the coupled maps posses the symmetric property of the single map to the
transformation:
I xe-x, ye-y,

and due to the symmetric coupling and identity of the subsystem sit also posses symmetry
to transformation:
R: xey.

Because / and R commutate with each other, their combination is also a symmetric
transformation for the system (1, 2, 8):

IoR: xe» -y, y < -x.

Consequence of the symmetry of the system to the transformation R o / is a possibility of
existence there anti-phase oscillations, which are satisfied condition x=-y.

Let’s consider the stability properties of the antiphase motions in the coupled
maps. In this case we also use normal variables.The equations in the small vicinity of the
antisymmetric subspace (x=-y) have the form:

un+1 = f’(Un)u" (10)
Uu-rl = (I_ZY)f(D")‘ (11)

In this case the dynamics inside the antisymmetric subspace is described by the
equation (11). Contrary to the case of in-phase synchronization it depends on the
coupling coefficient y. Stability of an antisymmetric solution to the tangent perturbations
is determined by the tangent Lyapunov exponent:

Af=lim, _(UN) " Inl(1-2y) f'(2,). (12)

The equation (10) determines dynamics in the normal direction to the
antisymmetric subspace in its vicinity. It has no obvious dependence on the coupling
coefficient y but it depend on it through the variable v , which is determined by the eq.
(11). The normal Lyapunov exponent which determines transversal stability of the
antiphase oscillations has the form:

A2 =lim, __(UN) 2., Inlf (o). (13)

It is seen that the normal and tangent Lyapunov exponents are connected with each
other: -
Af=A"+1n[1-2y. (14)

This relation is the opposite to the in-phase case. Here A * < A “ and hence, the
every antiphase oscillating regime firstly loses its stability in the normal to the
antisymmetric subspace direction and secondly in the tangent direction. Because of
relation (14) the antiphase self-synchronization of chaos is impossible in the considered
systems. For a chaotic attractor A >0 and therefore the normal Lyapunov exponent must
be positive. Hence chaotic antiphase oscillations can not be transversally stable.

Oscillating regimes inside the antisymmetric subspace are formed on the base of
the fixed points C,, and C,, which appeared from the trivial fixed point Cy, = (0; 0).
Limit sets formed on the base of these points are identical up to symmetry transformation.
Therefore we consider only one family of the regimes (for example, near the pointC, ).

The saddle fixed point C,, appears from the saddle fixed point C, in the result of
the symmetry breaking bifurcation. It is unstable to the perturbations directed
transversally to the antisymmetric subspace. On the line !{Pi (Fig. 4) it becomes stable
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through pitchfork bifurcation. With chan-
0 ging of the parameters @ and y on the base
of this fixed point there is a cascade of
period doubling bifurcations which leads to
formation of a chaotic set inside the
antisymmetric subspace. The every orbit
undergoes the period-doubling bifurcation
twice in the cascade. Firstly, as stable orbit
on the first multiplier, secondly as saddle
orbit on the second multiplier. As a result
of the first period doubling the orbit loses
o {  its stability in the normal to the subspace
direction. In its vicinity, outside the anti-
symmetric subspace a stable orbit of double
period appears. As a result of the second
'\ o period doubling the saddle orbit loses

lsp stability in the tangent direction and
becomes repeller. In its vicinity, inside the
1.5 : - : antisymmetric subspace a saddle periodic
0.0 0.1 0.2 0.3 ¥  orbit of double period appears. In the Fig. 4
the lines of the first period doubling
bifurcations are denoted: /,,! (for the orbit
of the period-one), [ 2 (for the orbit of the
period-two), [ * (for the orbit of the period-four), and the lines of the second period
doubling bifurcations as [}, I ? [ respectively. Then, with further parameters
changing, the appeared saddle antisymmetric orbits become stable through the subcritical
pitchfork bifurcations. In the Fig. 4 these lines are denoted as /, > and /, *. Therefore, on
the parameters plane there is a stable antiphase period-one orbit in the region between the
lines /' and /!, a stable antiphase period-two orbit between the lines / * and /[ ? and a
stable antiphase period-four orbit between the lines /,* and [ *. Bifurcations of orbits of
higher periods take place by similar way. Hence, on the plane of the parameters there are
bounds of stability for regular antiphase regimes, between which bounds of transversal
instability exist.

The considered bifurcational scenarium is very similar to the one for in-phase
orbits. However, in the case of in-phase synchronization the bifurcations inside the
symmetric subspace precede the bifurcations in the normal direction. Therefore, in the
case of antiphase synchronization, contrary to the in-phase synchronization:

+ regions of transversal stability are divided by the regions of transversal
instability;

+ in the symmetrical subspace the transversally stable chaotic attractor is not
formed.

Antiphase synchronous system in the diffusively coupled period-doubling maps is
impossible. However, for stabilization of antiphase chaotic oscillations one can apply
feedback controlling technics. We want to find the controlling function in the form which
does not change the form of antiphase oscillations, but changes their stability. Hence, the
controlling function W (x, y) must be equal to zero inside the antisymmetric subspace, na-
mely: W(x, -x) = 0. In our work we suggest the function in the form: W(x ,y)=r[fx)+Ay)].
The controlling term is added to the right side of the first equation of the system (1, 2):

X, =f (%) +¥(F 0,) Ax)) +r (F(x,) + () (15)
Yurt =F () +1(Rx,) A,))- (16)

COO

Fig. 4. Bifurcational lines of antisymmetric periodic
orbits on the pane of the parameters y - a
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Fig. 5. Dependence of the normal Lyapunov exponent for antiphase chaotic attractor on the controlling
parameter r (a) at ¢=3.8, y =0.04. Dashed line denotes the values of the tangent Lyapunov exponent. In the
(b) this dependence is presented in larger scale with regions of the antiphase controlled synchronization

The term r(f(x )+f(y,)) can be considered as another coupling loop with coupling
coefficient r.

The equations in the normal variables for the system with the control have the form
(near the antisymmetric subspace): '

u,,=+r)f'(v,)u, (17)
v,.=(1-2y) f(v,) +f (v )u, - (18)

In the case of antiphase oscillations «, =0 and equation (18) transforms to the (11).
The normal Lyapunov exponent for the system with the control is:
v
AC o =limy  (UN) 2 _ Inl (1+7) f'(2,)! (19)
and hence:

‘(\J.ci contr

We chose parameter r near value -1 to make the normal Lyapunov exponent
sufficiently small and hence, the synchronous chaotic regime transversally stable. The
Fig. 5, a represents the dependences of the normal Lyapunov exponent on the controlling
parameter r. Values of the other parameters corresponds to the regime of the developed
chaotic attractor: a=3.8, y =0.04. To transit to regime of antiphase synchronization we use
the following procedure: We chose initial conditions from the basins of the chaotic
attractor. In the every moment of time we appreciate the distance between the phase point
and the antisymmetric subspace: p =Ix_+ y |. The distance was compared with the chosen
value &. If p>e, the phase point is far from the subspace and the controlling influence is
switched off. The trajectory evolves on the unsynchronous chaotic attractor. When phase
point appears near the antisymmetric subspace (p < §), the controlling influence is
switched on. If the controlling parameter r locates in the interval where A, <0 the
chaotic set inside the antisymmetric subspace becomes stable to transversal perturbation
and the trajectory is attracted to the subspace. After this the controlling influence tends to
zero. In our numerical experiments we chose ¢ =0.01. In the Fig. 6 phase portraits of the
oscillations without control (a) , with control (¢, ¢) and correspondent time-series of
x,+y, (b, d, f) are represented. The original chaotic attractor (Fig. 6, a) corresponds to the
regime of unsynchronous chaos. The phase trajectory draws the square-like region. With
applying small controlling influence the diagonal line x=-y appears on the region (Fig. 6,
c). The time-series has interval of synchronous behavior (Fig. 6, ). With further

= A, +Inl1+rl. (20)
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changing r the interval of synchronous behavior grows and as a result the system transits
to fully synchronous oscillations (Fig. 6, e, f). In this case the resulting chaotic attractor is
a one-band attractor located in the antisymmetric subspace. In the Fig. 5, b the intervals
of the parameter r sufficient for complete synchronization at different intensities of noise
are presented. The more dark color corresponds to larger noise. Without noise the interval
of the synchronization coincides with the interval of r where the normal Lyapunov
exponent is negative. With noise the controlled synchronization region becomes more
narrow (Fig 5, b).

As we have demonstrated before the process of the in-phase synchronization loss
is accompanied by the bubbling phenomenon and riddled basins. It is reasonable
question: Do these phenomena exist in the case of antiphase synchronization loss? To
answer this question we consider the evolution of the chaotic attractor with changing of
the coefficient . In the numerical experiments we chose initial values near the

1.0 x+ty

1.0

0.0 [t

¥ = 0.0

l ] a0l | .

-1.0 1.0 0 200 400 600 800 n

Fig. 6. The phase portraits and time-series of the oscillating regimes without control @, b), with partial
control (¢, d) and in the regime of the complete antiphase synchronization , )
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antisymmetric subspace. The controlling influence is switched on during the whole time
of observation (not depending on nearness p of the phase point to the subspace). At
-1.46<r<-0.525 the chaotic attractor inside the antisymmetric subspace is stable to
transversal perturbations. The synchronous regime is robust. Adding noise of small
intensity (~ 0.00001) doesn’t lead to visible changing in the systems behavior. With
increasing of the controlling parameter at 7 >-0.525 a bubbling attractor is observed in the
system. The chaotic attractor remains stable to transversal perturbations but the time of
transient process becomes extremely large (hundreds of thousands iterations) and it
sensibly depends on the initial values. Adding noise of small intensity leads to essential
rebuilding of the phase portrait of the oscillations. The attractor gets finite transversal
size. Phase point begins to visit neighborhoods of the both fixed points C,, and C,,. The
corresponding time-series of x_ + y is the on-off intermittency process [12]. The Fig. 7
demonstrates phase portraits of the attractor without noise (2) and with small noise (¢). In

1.0 S TR S LI R x+y T T T [ T T T
- — 1.0 -
¥y - - 0.0
- - -1.0 -
L o 1 i
% 01 ST N TR N 2.0 T LS VU T (ERE AR
-1.0 x 1.0 0 1000 2000 3000 4000 n
a b
x+y T T T —r1 |
1.0 |- R
0.0
-1.0 -
2.0 A ] ] ] ] ! | ] | ]
-1.0 1.0 ¥ 0 1000 2000 3000 4000 n

-1.0 1.0 0 1000 2000 3000 4000 ~n

e o f

Fig. 7. The phase portraits and time-series of antiphase oscillations without noise @ b) and with noise (c,
d). In (e, f) there is chaotic oscillations resulted from the blowout bifurcation
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Fig. 8. A part of the basins of the chaotic attractor
inside the antisymmetric subspace (white color) at
r =-1.485. The black color denotes regions relating

the (b, d) there are corresponding time-
series. With small noise phase point moves
along the antisymmetric subspace for a
long time. Then, it is short burst apart from
the subspace, after which the phase point
return to the vicinity of the antisymmetric
subspace. The averaged frequency of the
bursts increase with increasing of the
parameter r. Finally, at r =-0.406 the
blowout bifurcation [5] takes place when
the chaotic attractor is not already stable in
the normal direction and it transforms to
the chaotic saddle. The synchronous oscil-
lations are not observed further in the
system both with noise and without it. The
phase portrait of oscillations looks like the
bubbling attractor in presence of noise
(Fig. 7, e).

to the basins of the attractor in the infinite With decreasing r from the synchro-

nization region, at r <-1.46 we observed the transition from the robust stable synchronous
regime to the bubbling behavior. Then, at r <-1.472 the basins of the synchronous
attractor is riddled by holes of the basins of the attractor in the infinity.

In the Fig. 8 we present a fragment of the basins of the chaotic attractor in the
antisymmetric subspace (white color) with holes from the basins of the infinity attractor
(black color) wedged in it. This basins is represented in the normal coordinates « and v,
the antisymmetric subspace is marked by the dashed line. The results were obtained for
the parameters values: a =3.8, y =0.04, r=-1.485.

Comparing in-phase and anti-phase synchronization of chaos we demonstrate that
bifurcational mechanism inside the antisymmetric subspace is similar to the one in the
symmetric subspace except the order of bifurcations taking place tangently and normally
to the subspace. The anti-phase self-synchronization in similar systems is possible only
for regular regimes. The chaotic synchronization can be achieved with applying methods
of chaos control. We demonstrate that the process of loss of this type of synchronization
can be similar to the case of in-phase synchronization. It demonstrates bubbling behavior,
riddled basins and blowout bifurcation.

Conclusion

We consider in- and anti-phase complete synchronization of chaos in dissipativelly
coupled periodic-doubling oscillators. For in-phase synchronization cases of purely
identical and slightly mismatched subsystems are investigated.

We demonstrate that the processes of loss of in-phase and anti-phase
synchronization are very similar. The both ones go through stages of bubbling attractor
and riddled basins. Structures of bifurcations inside symmetric and antisymmetric
subspaces are similar to each other except the order of their bifurcations. In the both cases
every periodic orbit undergoes two period-doubling bifurcations: in tangent and normal
direction to the subspace. In the case of symmetric subspace the tangent bifurcations
proceed the transversal ones. In the case of antisymmetric subspace the transversal
bifurcations proceed the tangent ones. Two period-doubling cascades lead to formation of
multistability. The bifurcations inside the symmetric subspace form the synchronous
chaotic attractor. The similar bifurcations in antisymmetric subspace form synchronous
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chaotic saddle which can be stabilized in normal direction by using control of chaos
technic. In the both cases the transversal period-doubling bifurcations lead to (@) loss of
transversal stability and (b) forming new periodic regimes outside the corresponding
subspace.

Comparison of 1dent1cal and slightly mismatched systems demonstrates that in the
both cases the loss of in-phase synchronization goes through similar steps with small
differences: bubbling attractor and riddled basins for identical systems and bubbling
behavior and essential dependence of the duration of transition process to another
attractor for mismatched ones. In the both cases we observe similar structure of the phase
space near the symmetric subspace. However, this structure can be following of different
bifurcational mechanisms: pitch-fork bifurcation in the case of identical oscillators and
saddle-repeller bifurcation in the mismatched ones.
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Mynpracrabuasnocts, cundaznas u nporuso gaznas CHHXPOHU3AUNA
B cHCTeMax ¢ OudypKauusaMu yABOEHHs NepHoaa

B.B. Acmaxoe, A.B. lllabynun, I1.A. Cmanrvmaxos

B crathe paccMaTpuBarOTCs MEXaHH3MbI OOpa30BaHMS MyJILTHCTAOHILHOCTH H
HOTepH IMOJHON CHHXPOHM3AIMH Xaoca B Auc@Y3HOHHO CBA3aHHBLIX OTOOpaXKEHHSIX C
OudypkamusiMu  ygBoeHmst nepmopa. PaccMmarpusarorcs caydan  cuHbasHOH
npotuBogasHoi cuHXpoHm3auud. [{nst cuHda3HON CHHXPOHM3AIMH HCCHEYeTCd BIIHS-
HHe HEHJEHTHYHOCTH MEX[y OCLMUIATOpPaMH Ha MEXaHH3M HOTePH CUHXPOHW3AI[HH

Xaoca.
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MULTI-PARAMETER PICTURE OF TRANSITION TO CHAOS

A.P. Kuznetsov, L.V. Turukina, A.V. Savin, L.R. Sataev,
J.V. Sedova, S.V. Milovanov

In this paper we outline several research directions linked with multi-parameter
analysis of complex dynamics of nonlinear systems. In particular, we discuss examples of
realistic models of multi-parameter systems, critical phenomena at the chaos threshold,
correspondence of features of differential equations and maps etc.

Introduction

The commonly recognized conception of a scenario of transition to chaos suggests
that this term designates some sequence of bifurcations observing under variation of one
control parameter. For example, in a driven nonlinear oscillator increase of the amplitude
of the external force is accompanied by a period-doubling cascade with subsequent
transition to chaos. However, in a system with two or more control parameters we should
imagine a picture on parameter plane or in parameter space. (For example, in the case of
the mentioned oscillator it is natural to use a plane of amplitude versus frequency of the
external force.) A study of arrangement of the parameter space implies revealing of
typical bifurcations, regularities of their coexistence and subordination, characteristic
forms of phase portraits at representative points of the parameter space, plofting
bifurcation trees associated with definite paths in the parameter space, consideration of
plots of Lyapunov exponents etc.

Moreover, it is natural to develop and generalize the concept of scenario of
transition to chaos in application to multi-parameter systems. Let us imagine some three-
parameter nonlinear system demonstrating transition to chaos via the period-doubling
cascade. It is clear that in general the period-doubling bifurcations in such system will
occur at some curved surfaces, and they will accumulate to the limit, the Feigenbaum
critical surface, which corresponds to the border of chaos. It may be expected that in
some cases this surface may have an edge, some critical curve. In a neighborhood of this
curve some special regularities of coexistence of bifurcations and scaling laws should be
observed distinct from those of Feigenbaum. In turn, on the critical curve some critical
points may occur, etc. The corresponding classification and discussion may be found in
reviews [1-5].

Multi-parameter approach to a study of nonlinear systems is proven to be
productive and has induced a number of research directions, which will be discussed in
the present article.
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1. Two-parameter analysis of physical systems

First of all, we must outline the search for physical systems with complex
dynamics, for which the multi-parameter analysis is of importance. Very often researches
working in nonlinear dynamics tend to use rather formal models like logistic map, Henon
map, Arnold’s cat map, etc. An alternative is constructing maps describing dynamics of
physical systems from «first principles», that is, from their fundamental evolution
equations (Newton equations, Maxwell equations, etc). For physically motivated maps
dynamical variables and parameters have usually a clear sense, and this circumstance
increases its value and significance. For example, to account noise in such models we
turn to physical argumentation and mechanisms, while in abstract models the fluctuations
are introduced rather in formal and artificial manner.

I

Periodically kicked nonlinear oscillator. As a first example let us consider the

Duffing oscillator excited by a periodic sequence ci)f d-pulses

X+ i+ ox+pe=2 Céi(t - nT). (1)
|

Here x is a coordinate of the oscillator, y - is coefficient of decay, w, is frequency of free
linear oscillations, T is a period of pulses, C is their amplitude. For intervals between the
kicks one can derive an approximate analytlcal solution using the method of slow
amplitudes. It yields a 2D map: -

=A + Bz, exp(i (Iz P+ ), (2)

where z, 1s complex amplitude just before the n-{h kick, and dimensionless parameters A,
B and v are expressed via parameters of the origin'al oscillator as follows:

A = (Clwy)[(3BT Bay)(1-eMNT]'2, B =2, y=u,T. 3)

System of Ikeda. 1t appears that the map (2) also describes dynamics of the optical
system considered by Ikeda et al. It is a circular optical resonator containing medium with
phase nonlinearity and excited by laser beam [6]. In this case parameter A represents a
dimensionless intensity of the incident light, and B characterizes dissipation in the
resonator. Fig. 1, a shows a chart of dynamical regimes in the parameter plane (A, B) for
w=(.

The gray tones designate domains of definite period of motion generated by the
map. Fig. 1, b is a magnified fragment of the chart, it presents a very wide-spread pattern
of parameter-space structure called the «crossroad area».

In Fig. 1, a together with the chart we present several phase portraits of the Ikeda
map. There is some domain in the parameter plane where the phase portrait tends to turn
to a circle; it indicates that the description in terms of 1D map becomes appropriate. The
explicit form of this map may be derived from (2) [7, 8] and reads

r;|+l

= hcosx, + @. (4)

rr+'|.

Here x=Ms+g, Rez =§ . New parameters A and ¢ are expressed via parameters of the
original map as
A=2A’B, @=A’+vy. (5)

We see that the kicked nonlinear oscillator allows description in terms of
differential equations and in terms of analytically derived (approximate) 2D and 1D

mappings.
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Fig. 1. a - Parameter plane for the Ikeda map (2) and typical phase portraits in select points;b - magnified
fragment of parameter plane

Gravitational machine of Zaslavsky (bouncing ball on a vibration table).
Originally, the idea of gravitational machine was formulated in context of astrophysics
and celestial mechanics and consists in a use of alternating gravitational field (e.g. of a
double star) for acceleration of a spaceship or a celestial body [9]. The model suggested
by Zaslavsky is a ball of mass m bouncing up and falling down under the gravitational
force on a horizontal plate, oscillating in the vertical direction. A traditional
simplification used in a course of derivation of the basic dynamical equation (map)
consists in neglecting displacement of coordinate of the plate in the moment of impact. It
seems a very natural assumption, as the amplitude is small enough. The resulting map is
rather simple and looks like [9]

v,.,=(1-¢)o, +ksing ,
" ©)
¢ra+1 = q)n + Un-{—l’ (mOdZTE)

Here dimensionless variables and parameters are introduced: v, is a velocity of the ball
just after an impact, ¢ =t is dimensionless time of the impact, k=2(2-¢)V, w/g is
amplitude of the oscillating velocity of the plate, ¢ is a coefficient characterizing a
fraction of energy loss in an impact of the ball with nonmoving plate. In particular, this
approximate mapping was discussed in books of Moon [10], Lichtenberg and Liberman
[11], Guckenheimer and Holms [12] as one of classic examples of chaotic systems.
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Fig. 2 Parameter planes:a - approximate (6) and# - exact (7) maps of bouncing ball
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Alternatively, one can undertake more accurate analysis and obtain a map without
the restriction in respect to the amplitude of the plate vibrations [13]. It is an implicit
relation

E"’n-i-l =- (1 - E)Un - kSlD[]J” + 2(q]:wl - q)n)’

[(1-€)o, +ksing, ](9,,, - 9,) - (8, - 9,)° = [K/(2 - £)](cosp, - cos,,,)-

The charts of dynamical regimes both for the approximate and accurate models, the maps
(6) and (7), are shown in Fig.2.

(7

Relativistic electron beam interacting with a backward electromagnetic wave. As
known, in the system of electron beam interacting with a backward wave a generation of
the electromagnetic oscillations is possible. A very rough approach to description of the
dynamics is based on assumption that the electromagnetic field effects the electron beam
only in a narrow spatial domain near the input edge of the device, and the beam radiates
energy into the backward wave in a narrow domain near the opposite end. In other words,
we assume that the interaction takes place only in two gaps (8-functions). In this case the
dynamical equations can be reduced to a 1D map. In the relativistic case it was obtained
and studied in Ref. [14]:

An +1 = F(An)’

. 8)
F(A) = (L2x) Ifs exp(-i (e + (LIV)[1+(LvA/4)cos o] *(-L/v))dal. :

Here A  is a dimensionless amplitude of the wave at the input of the electron beam,
L is a dimensionless length of the interaction space (proportional to the cube of the beam
current), v is the relativistic parameter. The chart of dynamical regimes on the parameter
plane L, v exhibits an obvious resemblance with the chart for the kicked oscillator and
for the Ikeda model (Fig. 3, upper panel). The bottom panel in Fig. 3 shows magnified
fragment of the parameter plane and demonstrates formation of crossroad area type on a
base of the period-3 cycle. Also, several graphs of the map at some representative points
are shown.

Free-electron laser in regime of mode selection. Using approximation analogous
to that discussed above, it is possible to derive a map for description of interaction of two
modes (a basic modc and a parasitic onc) in a free-electron laser [15]



And‘l

vl

Fig. 3. At the top of figure - parameter plane of the map (8) for the relativistic electron beam interacting
with a backward electromagnetic wave. At the foot of figure (on the left) §) - its fragment. Line I', which
corresponds to mapping the maximum onto minimum, and Feigenbaum critical line [, are shown. Figu-
res a, ¢, d - iteration diagrams in typical points. Figured corresponds to tricritical point. Lines ' u l‘cr are
converged, and Feigenbaum critical line is terminated

Rlx

n+l

- x, = LT, ) (x ),

‘R‘Iym] N yu = L3| JIII xn)‘fl(yn)”

)

where x, and y, are dimensionless amplitudes of the basic and parasitic modes,
respectively, J; and J; are the Bessel functions, L is the normalized length of the
interaction space, R is a combination of reflection coefficients at the input and output
edges of the system. The arrangement of the parameter plane for the model (9) was
studied and discussed in Refs [16, 17].



2. On an effectiveness of the analytical methods in nonlinear dynamics

As we see, the analytical derivation of a map is possible usually with use of some
assumptions and physical approximations. How effective they are? Due to concepts of
universality (Feigenbaum and other authors) investigators tend to regard as a habitual fact
that the realistic systems should demonstrate the same phenomena as simple formal
models, like logistic or cubic maps. When we construct a map analytically, we. assume
definite assumptions, which may seem very natural and justified. However, speaking
about regimes of strong nonlinearity and high sensitivity in respect to initial conditions,
we must be extremely careful: quite logical approximations may appear to be
unsuccessful or to have a disappointingly restricted domain of application.

In Ref. [13] an example of such situation was demonstrated for the gravitational
machine of Zaslavsky. Fig. 4, a shows attractors of the approximate and exact mappings
(left and right panels, respectively) for several parameter values. Observe that they are
absolutely different although the selected parameters are from domain traditionally used
by researchers. Analogous situation occurs in a conservative case (Fig. 4,b).

We conclude that investigation of models of realistic physical systems in context of
nonlinear dynamics requires careful handling and attentive revealing conditions of
validness of the accepted assumptions. The last may turn to be a separate voluminous

20.0

9.42

-3.14 & AT
0.0 o, 6.28 0.0 0, 6.28

b

Fig. 4. At the top of figure (a) - phase portraits for approximate (on the left) and exact (on the right)
dissipative map of bouncing ball. Parameter values aree=0.4, k=6.5. At the foot of figure (&) - phase
portraits in the conservative case parameter values are e=0, k=12
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research. For example, such a study of the original differential system (1), the 2D map
(2), and 1D map (4) was presented in Ref. [7, 8].

3. Critical points in the parameter plane

One of the simplest critical phenomena mentioned in the Introduction is the so-
called tricritical dynamics. This is a phenomenon that may occur in two-parameter
analysis of bimodal (with two extrema) one-dimensional maps. In parameter plane the
tricritical point appears as a terminal point of the Feigenbaum critical line. Also a line
comes to this point associated in the parameter plane with a condition that one quadratic
extremum is mapped precisely to another. On this line, obviously, the twice iterated map
has a quartic extremum. Hence, moving along this line we will observe period-doubling
cascade, but the scaling constant will be 8,=7.284686... and it is distinct from the well-
known Feigenbaum value ,=4.6692016...

As an example, let us consider Fig. 3. In the parameter plane of the system of
relativistic electron beam and electromagnetic wave one can see the Feigenbaum critical
line and the line of existence of the quartic extremum in the twice iterated map. These
two lines intersect at the tricritical point. Fig. 3, d shows typical iteration diagrams at
these lines and precisely at the tricritical point. Detailed two-parameter analysis and
discussion of scaling properties of the system may be found in Ref. [14].

Usually, a tricritical point is not unique, but there exists an infinite number of such
points forming a complex nontrivial set in the parameter plane. To study and classify
them, MacKay and Van Zeijiz suggested a specific procedure of constructing «a binary
tree of superstable orbits» [5]. In Fig. 5 this tree is plotted on the parameter plane of the
map (4), which describes approximately dynamics of the kicked nonlinear oscillator. In a
sense, the «crown» of the tree organizes the complex form of the chaos border in the
parameter plane. Detailed study of the

A tricritical dynamics in this system and
illustrations of scaling may be found in

2.5 Refs [7, 8, 18].
It is worth noting that the maps for
2.0 the gravitational machine (6) and (7)
_ demonstrate one more type of critical
{ 5 |Periodd behavior. In these maps, Feigenbaum’s
Period 2 critical line in the parameter plane comes to
1.0 [Perio the point //, where the dissipation vanishes.
0.0 1.0 20 This point may be found as limit of period-
x : ; ?  doubling cascade in the Hamiltonian

Fig. 5. Binary tree of superstable orbits in the
parameter plane of «cosine map» (4) the branch of
the tree are lines, which corresponds to mapping the
maximum onto minimum after some iterations. The
type of doubly superstable cycles associated with the
branching points at the tree are indicated in brackets

system (along the line e=0). A neigh-
borhood of the critical point H on the
parameter plane is characterized by a two-
parameter scaling, with universal constants
8,=8.721097... and 5,=2.

4. Comparative description of complex dynamics in terms
of mappings and differential equations

Correspondence between description of physical systems with three-dimensional

phase space in terms of differential equations and of 2D maps is, in a sense, perfect.
Indeed, the 2D map may be thought as obtained from the Poincare cross-section
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Fig. 6. Scaling properties on the three level of resolution on the attractor for the Ikeda map (2) at the
pseudo - fricritical point A=2.8988007984, B=0.1445571961. We magnify each fragment by o=
=-1.69030297...

construction. However, passage from a 2D map to a 1D map may lead to principal
differences in subtle details of dynamics. In particular, it relates to critical behavior of the
maps at the chaos threshold, as mentioned in the Introduction.

In Ref. [18] the related matters were discussed by means of comparison of the
Ikeda map (2) and of its 1D approximation (4). As we know, both Feigenbaum’s and
tricritical dynamics allow description in terms of the renormalization group. On this basis,
one could expect that the exact 2D maps and the approximate 1D maps will relate to the
same universality class and demonstrate identical scaling regularities. The only notable
difference would be in some displacement of the Feigenbaum critical lines and tricritical
points due to the approximate nature of the 1D map. However, the attempt to find the
tricritical points in the 2D Ikeda map appears to be unsuccessful! It occurs that the
tricritical behavior in the 2D map survives only in a sense of somewhat an intermediate
asymptotics, perhaps over a sufficiently large number of period doublings. In the last case
it is convenient to speak on the so-called «pseudo-tricritical» points In computations
performed in Ref. [18] they have been located in the parameter plane of the Ikeda map,
and tricritical scaling has been illustrated in the attractor structure at several levels of its
resolution (see Fig. 6). However, the tricritical scaling behavior at those points is
destroyed inevitably at some level of the resolution. The larger parameter of dissipation
B, the less number of levels at which the tricritical scaling is valid.

So, in the picture of scenarios of transition to chaos a number of phenomena exists
that can not be extended from 1D maps onto 2D maps, and further, onto the differential
equations.

" T T i
: ! :

X X X

5. Universality and scaling in presence of noise

As known, in early 80-th Crutchfield et al. have revealed the property of
universality and scaling for Feigenbaum’s period doubling scenario in presence of noise
[19]. The appropriate version of the renormalization group analysis was developed, and a
new universal constant was estimated, y(2)=6.6190365: to observe one more level of the
period doubling one has to decrease the noise magnitude by this factor. Due to the
universality intrinsic to the critical behavior, the regularities are in a high degree
insensitive in respect to correlation properties of noise and to details of the form of the
distribution function. '

Naturally, analogous problem concerning the effect of noise arises in respect of the
critical behaviors relating to other classes of universality, which may appear in the multi-
- parameter analysis of the transition to chaos.
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First, we may consider an effect of noise onto 1D maps with extrema of different
degree y: x,,,=1-Mx [*+eE , where § is a random sequence. The scaling property consists
in the following: to observe each one new level of the fractal structure of the attractor at
the critical point, it is necessary to decrease the noise amplitude ¢ by a definite factor y
that depends (in a universal manner) on the degree x [20].

As noted, in two-parameter analysis of smooth 1D maps situations can be met,
when the twice iterated map has an extremum of degree 4 and the period-doubling
accumulation lead to the tricritical point. Analogously, in three-parameter analysis of 1D
maps additional critical situations may appear, when a twofold iteration yields a map with
extremum of the 6-th degree, or a threefold iteration gives rise to an extremum of the 8-th
degree. These situations correspond to certain critical points of codimension three [4]. In
all these cases the constants responsible for scaling properties in respect to noise differ
from that of Crutchfield et alt. The respective numbers have been computed in Ref. [20]
and summarized in the Table. Also charts of the Lyapunov exponent on the parameter
plane of the noisy maps were plotted, and illustrations of the scaling properties in
presence of noise were given.

Table

Universal constants responsible for scaling in respect to noise for different
types of criticality in 1D maps

Type of criticality X ()

Feigenbaum 2 6.6190365
Tricritical 4 8.2439109
Type S («six power») 6 10.037886
Type E («eight power») 8 11.523865

Also we have revealed and illustrated in numerical experiments the scaling
properties associated with the effect of noise at the so-called bicritical point B. This type
of criticality occurs in a system of two unidirectionally coupled period-doubling
subsystems as we bring both of them to the threshold of chaos by tuning their control
parameters [21, 22]. The model equations are of the following form:

r1CJIH-I = 1 - }"tn?. + KEn‘ yu+l = 1 & Aynz = Bxuz + ET]”-, (10)

where € and m, are random sequences effecting the master and slave subsystems,
respectively. An essential qualitative and quantitative difference was noted between the
respond of the system to the noise added either into the first, or into the second
subsystem. The universal constants responsible for the scaling in respect to the noise
intensity are y=6.619036 and v=2.713695, respectively. (The first one, naturally,
coincides with the constant of Crutchfield et al.) Fig.7 illustrates scaling regularities on
the charts of the Lyapunov exponents. ?

6. Complex dynamics of nonlinear oscillators and catastrophe theory
Concept of the multi-parameter analysis allows formulation of a novel and original

view onto a study of complex dynamics of nonlinear oscillators. Traditionally, researc-
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Fig. 7. Charts of the largest Lyapunov exponent in the parameter plane for fwo unidirectionally coupled
logistic maps with noise (10) (the grey tones designate magnitude of the Lyapunov exponent). Values of
noise amplitude are k=0, £=0.005. Top row of the fragments are demonstrated scaling properties. We
magnify fragments by 4.6692016 along A and by 2.392724 along A in the vicinity of the bicritical point

A=1.4011552, A=1.0900943 and rescale value of noise by 2.713695. Lower row of fragments are

demonstrated role of the noise in case if its amplitude is not rescale ' '

hers fix a form of the potential relief for the oscillator and regard amplitude and
frequency of the external force, or the dissipation coefficient, as variable control
parameters. We suggest an alternative approach based on ideas of the catastrophe theory.
Let us assume that a function that defines the potential relief is controlled by one, two, or
more parameters. Classification of such functions is delivered by the catastrophe theory
and, in particular, by the Rene Thom classification theorem. This approach gives an
opportunity to formulate and study a sequence of situations of increasing codimension
corresponding to potentials associated with canonical catastrophe theory forms: fold,
cusp, swallow tail, etc. For example, a potential function U(x)= - bx - (Y2)ax’ (/3)°
depending on two parameters a and b corresponds to the fold catastrophe. It generates a
family of nonlinear oscillators which are governed (in presence of dissipation and of
periodic external force) by the following equation:

X+ yX+ b+ ax +x* = Bcoswt. (11)

The main object of attention is now an analysis of dynamics of the system in dependence
on parameters a and b responsible for configuration of the potential relief. Concrete
examples of nonlinear oscillators considered in literature may be regarded now as
particular representatives in a frame of the suggested gencralized scheme. A study of
complex dynamics for forced dissipative oscillators with potential functions associated
with different elementary catastrophes may be found in Ref. [23].

.
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7. Non-invertible 2D maps

Mappings constructed in a course of the Poincare cross-section procedure appear to
be invertible because the differential equations themselves allow continuation of solutions
back and forth in time. Nevertheless, noninvertible 2D maps are of interest too. They may
arise in a straightforward way in some physical problems [24]. The simplest example,
however, is a pair of coupled logistic maps (coupled period-doubling systems):

'rlH-l =1= }d:raz - Cynz’
(12)
yii+l =1- Ay”?' - anz'

Here » and A are control parameters of two subsystems, C and D are coupling
constants, and the coupling is supposed to be quadratic.

Fig. 8, a presents examples of charts of dynamical regimes on parameter plane (A,
A). One can see there bifurcation points of codimension 2, where the bifurcation lines of
Andronov-Hopf (birth of quasiperiodic regimes) and those of period-doubling meet
together. The sequence of the codimension 2 bifurcation points converge to somewhat
new critical point called the FQ critical point [4]. (FQ stands for «Feigenbaum» and
«Quasiperiodicity».) A magnified fragment of the chart (Fig. 8, b) demonstrates that the
system is characterized by an unusual form of the synchronization tongues. More detailed
study shows their nontrivial metamorphoses. For instance, Fig. 8, ¢ and d present
examples of tongues of ring-like form. Yet more fascinating picture can be obtained for
coupled 2D maps, say Hénon maps.

20.0

1 20.0

0.8

1.24 A 158 173 2 191
b d

Fig. 8. Parameter plane of the system of two coupled logistic maps (12) ) and its magnified fragment
(b). Parameter plane of the coupled Henon maps ¢€) and its magnified fragment (d)
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Interesting features of synchronization of noninvertible maps challenge us to
elaborate a «universal» 2D map, which would demonstrate all basic bifurcations typical
for two-dimensional phase space. To construct such a map, let us start with a note that a
fixed point of any 2D map has a stability domain in the parameter plane of trace § and
determinant J of the Jacobian matrix represented by a triangle with borders {/=1, S-J=1,
S+J=-1}. Now, we construct the model to have S and J as natural parameters of the
linearized part of the map, and add arbitrarily some quadratic nonlinearity:

i 2 2
xli'!-l - Sx.-: = yn = (Iﬂ > I }’

Yo =J%, - (1/5)(x 2 +y.2).

Chart of dynamical regimes for this «universal» map is shown in Fig. 9. One can
see a set of synchronization tongues with sharp edges at the upper side of the triangle,
representing the Andronov-Hopf bifurcation line. Observe that the arrangement of the
tongues differ. from that intrinsic, for example, to the circle map and to the ring map. In
particular, bifurcations occur, for which two multipliers are equal to 1 and -1,
respectively. These codimension-2 bifurcation points may accumulate to somewhat new
critical point called the critical points of C-type [4].

(13)

nchronization tongues L7 :

divergency

; : : 0.9 E&
-2.1 S 47 -0.6 S 4.1
a b
Fig. 9. Parameter plane S, J «universal» 2D map (13). One can see «triangle of stability», which is formed
by lines of tangent bifurcation, period doubling bifurcation and Neimark bifurcation. Inside of

synchronization tongues there are the points of C-type, which corresponded to accumulation of the points,
in which lines of the period doubling are terminated in the bounds of synchronization tongue

8. Synchronization and bifurcations of cycles

The idea of multi-parameter study opens new possibilities in research of the
phenomenon of synchronization. Indeed, let a non-autonomous system be characterized
by one or several control parameters, and undergoes some bifurcations under their
variation. Then, the metamorphoses of synchronization regimes should be studied
naturally in a parameter space of dimension increased by 2. (We add amplitude A and
frequency  of the external force to a number of internal parameters of the system.) The
simplest example is a situation of a unique control parameter of the autonomous system
A; let us suppose that its variation gives rise to a period-doubling bifurcation cascade.
Then, in a cross-section of the parameter space by a plane (w,r) the period-doubling
bifurcation lines are terminated at edges of the synchronization tongues, these are
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Fig. 10. Synchronization tongue for the forced Réssler system (14) and its interior arrangement in the
parameter space; o is frequency, A is amplitude of the external force, r is the parameter, controlled period
doubling. One can see surfaces of tangent and period-doubling bifurcations. These surfaces are intersected
along the lines, which are accumulated to critical lines of C-type as the number of period-doubling
increase
codimension-2 bifurcation points. In 3-dimensional parameter space (w,,A) they
correspond to codimension-2 bifurcation lines accumulated towards some critical line.
The respective picture for the forced Réssler system [24]

X=-y-z+Asin2aQt, y=x+ay, z=b+z(x-r), (14)

is reproduced in Fig. 10. The critical line obtained as a limit of codimension-2 bifurcation
lines corresponds to the criticality of C-type [4] mentioned in the previous section. In
Ref. [24] the respective scaling properties intrinsic to this criticality are revealed and
discussed.

Next, let us consider a self-oscillator with hard excitation under external periodic
force governed by an equation

X+ (h- 2%+ o)X+ x + = bsinor. (15)

Note that in autonomous case variation of a control parameter gives rise to bifurcation of
collision of a stable and unstable limit cycles in this system.
Using 2 method of slow amplitudes one can derive the following reduced equation:

R=-R+R>- kRS- ecosp, ¢=-A+3pR2+ (¢/R)sing. (16)

Here ¢ is a dimensionless amplitude of the external force, A is a dimensionless
deviation of the external frequency from the frequency of self-oscillations, parameter k
controls mutual location of the stable and unstable limit cycles, k=yh. At k=0.25 they
collide and disappear.

Bifurcation analysis in the parameter space of the model (15) reveals a fascinating
picture. At small values of k there exist two synchronization tongues, one corresponds to
a stable, and another to an unstable regime. With increase of £ one observes their
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Fig. 11. Parameter plane (e is a dimensionless amplitude and A is dimensionless deviation of the

frequency) for system (15) after collision of the limit cycles in the autonomous system.k=0.29
unification via bifurcation situations of codimension 3. In particular, a known catastrophe
of «swallow tail» [25] is observed. At the bifurcation of the autonomous system the
synchronization tongue loses touch with the frequency axis and forms a singularity
known in the catastrophe theory called «lips» [25]. In this situation the quasiperiodic
regimes at small amplitudes of the external force disappear. The respective picture is
shown on the central panel of Fig. 11. Also the Andronov-Hopf bifurcation lines are
shown there, which have common points with the tongue edge (the Bogdanov-Takens
points). It may be seen that above the bifurcation threshold of the autonomous system the
quasiperiodic regimes are possible yet at large amplitudes of driving. They are observed
in a region between the Andronov-Hopf bifurcation lines. Only at k=0.3 one more
codimension-3 bifurcation occurs, when the pairs of the Andronov-Hopf bifurcation lines
collide and disappear. -
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INVESTIGATION OF TRANSIENT CHAOS IN
GYRO-BACKWARD-WAVE-OSCILLATOR
SYNCHRONIZED BY THE EXTERNAL SIGNAL

A.E. Hramov, A.A. Korornovskii, I.5. Rempen, D.I. Trubetskov

In this work we explore the transient chaos in non-autonomous, distributed active
medium (gyro-backward-wave oscillator synchronized by the external signal). The transient
chaos characteristics near the synchronization tongue boundaries are investigated. Special
attention is payed to the building of long time series which is used to appreciate the
characteristics of system dynamics. The time series is constructed by gluing of short time
realizations which characterize the transient chaos observed in the distributed system.

Introduction

In our days great interest causes the questions of microwave signals generation and
amplification in gyroresonance devices with the travelling wave and the backward wave,
based on the interaction of the unmoderated electromagnetic waves with the spiral
electron beam (gyro-BWO and gyro-BWT). Such devices are actively examined
theoretically and experimentally [1-5].

The non-autonomous active medium «spiral electron beam - backward
electromagnetic wave» demonstrates several non-linear effects like periodical and
chaotical modulation of the output signal, synchronization of the gyro-BWO by the
external signal etc. [5-9]. In this work we show the possibility of appearance of a
phenomenon of transient chaos in such system. As distinct from the «classic» dynamical
chaos (its image in phase space is strange attractor and the phase trajectories tend to it
with t—>co), under the term «transient chaos» [10-12] the follow phenomena is ment: in
the phase space of the system there exists the so-called chaotic saddle - a chaotic set
which is unstable in one of directions. The phase path starting from the points situated
near the chaotic saddle for a long time demonstrates chaotic behaviour and henceforth
quits from its vicinity and reaches the attractor which may be regular of chaotic.

The unstable chaotic set might be characterized by the same parameters as a
strange attractor (dimension, Lyapunov exponent etc.) In this case the characteristics can
be carried out from ensemble of short time séries describing the transient chaotic process
in the investigated system. In this case usually the procedure of gluing of the time series
is used. Mostly, the transient chaos is investigated in simple finite-dimensional systems
with discrete and continuous time.




In this work we investigate transient chaos in a distributed (and therefore, infinite-
dimensional) active medium containing oscillations-electrons. The characteristics of
transient chaos in non-autonomous gyro-BWO are examined. Special attention is payed
to the problem of correct building of long time series using the short series derived from
the distributed system.

The structure of the work is the follows. In sec. 1 the mathematical model of the
investigated system is set, the admissions used in its constructing and the boundaries of
its adaptability are discussed. In sec. 2 the oscillation regimes in non-autonomous gyro-
generator with backward wave are discussed. The parameters’ interval, in which the
regime of transient chaos realizes, is explored. Sec.3 is devoted to the question of
building of long time series produced by distributed system in transient chaos regime. In
sec. 4 some characteristics of transient chaos (dimension, maximal Lyapunov exponent)
are derived from the constructed time series.

1. General formalism

When the spiral electron beam interacts with the TE-modes of the waveguide and
the waves synchronizm condition is fulfiled

N

0=, 0+ ﬁﬂ([r;\))vu -0, =0, (1)

we can observe high-frequency generation [13, 14]. Here  is the synchronism frequency,
w,_ is the cyclotron frequency, v, is the electrons longitudinal velocity, i.e. the velocity

A
which is parallel with the applied magnetic field, f,(w) is the distribution constant of the
waveguide without electron beam.

In such system accelerative grouping of the electrons takes place. It is caused by
relativistic non-isochronism of the electrons-oscillators of the spiral (or polyspiral) beam.
One of the peculiarities of this system is the possibility of retuning the generation
frequency by the changing of the longitudinal electrons velocity v, or the static magnetic
field B, In real systems for such purpose it is necessary to change the geometry of the
waveguide and the value of the magnetic field along the interaction space [15, 16]. From
this sight the model described in our paper is idealized.

The interaction between the weakly relativistic spiral beam and the backward wave
is described by the self-consistent system of movement equation [13] and stimulation
equation [17]

dplde - j u(l - Ip’p = F, 2)

OF [du-OF Re=-1, I="uf> pdo, (3)

where B=rexp(j0) is the complex radius of the trajectories of the ensemble electrons,
which are initially distributed by phases relatively the HF field, F=F(E,x) is the slowly
changing complex non-dimensional amplitude of the field in the beam section, I=I(&,1)

is the first harmony of the grouped current, E:ﬁo(g:)sz is the nondimensional longitudinal
coordinate, r=$s(t—zfv]l)(1+v”/ Ivgl)‘I is the non-dimensional time in the coordinate system
moving with the longitudinal beam velocity v,, ® is the frequency satisfying the synchro-
nism condition (1), ﬁu(c?)) is the coefficient of propagation of the backward wave with the
frequency @ in the system without electron beam, v, is the wave group velocity on the

frequency @.
Besides we bring in the following parameters: u=(v,/c)/2¢ is the non-isochronism
parameter, characterizing the system phase non-linearity,
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e=[([,KIAV (1 ++v* (I?)]" << 1
is the interaction parameter,

o, = (eB, Imc)(1 - h(v?2 +12 ) Ic?)

is the cyclotron frequency with =0, K is the coupling impedance, v o is the initial
transversal electron velocity, /; and V, are the constant constituents of the beam current
and voltage.

Equations (2) and (3) are solved within the follow initial and boundary conditions:

F(&w=0) =€), I(&:x=0) = 0, (4)
B(&=0) =exp(j&)), 8,0, 2x], &)
where the initial distribution f ° is taken as
fUE) = dsin(n(A -E)12). (6)
The external controlling signal
F(g=A,7) = Fyexplj 1] (7

is added on the collector boundary of the system E=A, where A is the length of the sys-
tem, F is the external signal amplitude, Q is the mismatch between the external signal

frequency and the «cold» synchronism frequency .

The model described by the equations (2)-(5), is correct only within the following
conditions: the EM field in the beam cross section is uniform, the longitudinal velocity
v,~const (i.e. the interaction between the electrons-oscillators and the HF components of
the magnetic field is neglected), the non- stationary process is assumed to be narrow-
band, hence in the active frequency band it is necessary to take into account only the
interaction of the spiral beam with the backward wave.

In our work we investigate the gyro-BWO within the following parameter values:
pu=4 and A=3.0. In the autonomous system these values correspond to the regime of a
periodical self-modulation of the exit signal. The numerical scheme parameters for the
equations (2) and (3) were taken as AE=8-10" (coordinate step), At=4-10"3 (time step).

2. Oscillation regimes and the transient chaos in gyro-BWO

In the works [9, 18, 19] the influence of different types of external control signal
on the dynamics of the simple gyro-BWO model is investigated. In reference [20] the
problem of chaotic auto-oscillation synchronization in the system «spiral electron beam -
backward elecrtomagnetic wave» is analyzed. The importance of this problem is
conditioned by the practical aspects of elaborating gyro-devices with controlled
parameters and also by theoretical interest attracted to the investigation of auto-oscillation
synhronization in distributed active medium.

In Fig. 1 we introduce the regimes map of the gyro-BWO synchronized by the
external signal on the parameters plane «frequency - amplitude of the external influence»
(the external signal parameters are foregoing) [18]. Different symbols on the map marks
the areas of different oscillation regimes. With ©>-2.0 we derive the synchronization
regime, i.e. stationary generation on the frequency of external signal. The dashed line
marks the boundary of frequency capture area. In this case the device may demonstrate
periodical or chaotic self-modulation of the output signal.



F

0.7
0.6

0.5
0.4

0.3
0.2
0.1

0.0

-4, 0? ~3.2?

-1.67

1
-0.07

-0.87 9

Fig. 1. Typical regimes of the non-autonomous oscillations in gyro-BWO on the controlling parameters
plane frequency € - amplitude F,. By the dashed line the quasi-synchronization area is marked

The region of frequency capture from the side of higher frequencies coincides with
the boundary of the self-modulation region (and, accordingly, the synchronization
region), and, on the side of smaller frequencies, the frequency of the external signal, at
which the frequency capture takes place lays, essentially more to the left of from the
boundary of the stationary generation regime. The regions of the regimes map marked by
the symbols T, corresponds to the periodic automodulation of the output signal with the
period n. And, at last, the regions marked by the symbols C and Q corresponds to the
chaotic generation and generation with several incommensurable automodulation base
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Fig. 2. Typical time series of the output signal
amplitude of non-autonomous gyro-BWO. The
signals are constructed at the following values of the
untml perturbation amplitude: (@) 8,=0.0019 and (b)

8,=0.0072. By vertical shaped !_mcs the typical parts
of time series are divided: the part II is the region of
the transient chaos which we analyse
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spectral components (quasiperiodic auto-
modulation).

Near the right boundary of the
synchronization tongue (in the region of
larger frequencies) the appearance of
transient chaos considered the Introduction
takes place. We explore the transient chaos
in the regimes map point with the
following values of the external signal
control parameters: Q=2.0 and F|=0.62. In
Fig. 2 we represent the typical time series
of the output signal F(§=0,t) in the tran-
sient chaos regime obtained at the different
starting conditions (6), namely at different
amplitudes of initial perturbation d,,.

In Fig. 2 one can see that depending
on the initial perturbation amplitude 8, the
transient time duration is various, but
finally the regime of stationary generation
on the external signal frequency is stated.
The transient process is rather irregular,
what testifies the presence of the
phenomenon of transient chaos in a system.
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We analyse the transient chaos characteristics, for which it is necessary to create an
artificially long time series consisting of the «sewed» short segments of time series
corresponding to the transient chaos. For analysing the transient chaos regime and the
procedure of gluing of short time series characterizing the unstable transient chaos regime
we use the time series generated by the field amplitude oscillations IF(z)!, taken from the
exit of the system E=0.

3. Constructing of an artificially long time series

Time series generated by the explored system in the transient chaos regime, can be
«divided» into four parts (see Fig. 2): I - evolution of the system from the initial state to
the unstable chaotic state, II - naturally, the transient chaos regime, III - the exiting of the
system on an asymptotic regime and IV - the final asymptotically stable state. The
information concerning the unstable chaotic saddle we can obtain from the part II of the
time series, while the parts I, III and IV correspond to other states of the system.
Therefore, for the analysis of characteristics of the chaotic saddle existing in the system
phase space, we need to «cut out» the parts I, IIT and IV of the time series [12], and then
to «sew» the parts corresponding to the chaotic unstable regime. This approach allows
then to apply the standard methods of the analysis to the obtained artificially long time
series (see, for example, [21, 22, 23]).

One of possible methods of deriving an artificially long time series is immediate
combination of the truncated time series with each other. In this case the variable F of the
derived new time series can have break points i.e.

lim,_,. _, F@) #1im,_, , F(0), (8)

Where T, are the points of the uniting of the series.
Yet when we restore an attractor using the delay method (Takens method) [24, 25]
by an artificially derived long time series, J false points appear on an attractor [12]:

J=d(T/Ax)(n-1), (9)

where T is the delay time of the Takens method, n is the amount of the truncated time
series, d is the dimension of the space of embedding, At is the time step.

Another, more correct method of deriving of similar long time realization is the
method of «gluing» of two different time series. Let x(¢) and y(r) be the «glued» time
series. If the attractor is restored in d-measure phase space, the following condition must
be fulfilled for the «gluing» of the phase trajectories:

[0 (e, + ixT) - y(t, + ixT))] < e, (10)

where ¢ is the «gluing» precision (we have chosen e=2.5x107), ¢, and ¢, are the times of
«gluing» for x(¢) and y(¢). The condition (10) can be replaced by the similar

(e, +ixT) - y(t, + ixD)l <g, i=0,...,d-1. (11)

For procedure (11) it is required the value of the phase space dimension d, in
which the attractor corresponding to the transient chaos is embedded. Let’s estimate the
value of d, calculating the correlation dimension D [21, 22], of an attractor restored by an
artificially long time series derived without special method of «gluing» for different,
increasing values of embedding space dimension d=2.3.4..... The phase space dimension
is equal to the value of embedding space dimension d with which the correlation
dimension D is saturated [26].
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Of course, such estimation is not absolutely precise, taking into account the pre-
sence of «false» points in the phase space. However, as was shown in [27], the estimation
of correlation dimension by short segments of chaotic time series is rather reliable.
Therefore the offered procedure can be used for the estimation of phase space dimension
d. Further, using the procedure of correct gluing of short time series, we shall test the
obtained results on calculation correlation dimension using simulated long chaotic time

Series.
The correlation dimension of an attractor D is a function of a scale of observation e:

D(e) = lim__, (InC (e.d) /Ine), (12)

where C(e,d), the number of pairs of points, distance between which in d-measured phase
space is less than ¢ (the reduced correlation integral), is derived from the following relation
N

Cle.d) = (IIMN) £, 5, . H(e - lIx, - x]l). (13)

i=1.r=f

Here M is the number of reduction points, N is the number of points in the time
series, H is the Heviside function, x is the position vector in the phase space restored by
Takens method.

In Fig. 3, a one can see the results of calculation of the correlation dimension D(e)
by the transient chaos time series combined without «gluing» for different values of
embedding space dimension d. Time series length was chosen N=6-10%, and number of
points of a reduction M=10". The time series is combined from three short ones and the
number of false points in pseudo-phase space J=3200 according to (9).

From fig. 3 one can see that the chaotic attractor corresponding to the transient
chaos, is strongly inhomogeneous, because there is no scaling region on the function of
correlation integral inclination depending on the scale of observation. However,
beginning from the embedding space dimension d=3+4 the shape of curves D(e) does not
vary. Therefore as an estimate of embedding space dimension d=4 can be taken. This
value would further be used for constructing artificially long time series by gluing the
short ones.

When the parts of short time series are glued it’s necessary to obtain the value of
the T. We realized the glue of short time series with different values of T" and analysed
the effectiveness of the method in each case. One of the time series x(r) (we shall call

. . . . 4 A
it «x-realization») was cut into two parts x, () and x,(¢) at the time 7 so, that

D

6.0}

2.0}

; ¥ : A\l 0.0 E ;
0.0001  0.001 0.01 0.1 elep  0.0001  0.001 0.01 0.1 g/gp
a b

Fig. 3. Correlation dimension D as a function of observation scale: (a) for attractor restored on the time

series derived by simple combining of short ones without special «gluing» method (11) and @) for

attractor restored on correctly glued long time series. The numbers correspond to different embedding
space dimensions d
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x, (1), if t<1?,
x, (1), if 1>1.

x(1) = (14)

After that the time series x, (¢) was glued together with another time series y(6), which we
shall call «y-realization» (see (11)), so that the following condition should be satisfied:

(16)

In the case of x- and y-realizations are equivalent, i.e. x(¢)=y(8), the following relation
takes place

h=t-(d-1)xT.

() =y, + (d-1)xT+(t-1), 12f (16)

In a case of phase trajectories corresponding to x- and y-realizations are close to each
other in d - measured phase space (but are not equivalent), by virtue of instability they
will disperse with time and after a slice of time As will separate on distance exceeding
some value ¢, (in our case ¢,=2.5x10?):

I, (+ Af) - y(t, + (d- 1) xT + AD) > &, (17)

The value of time interval during which the difference between «glued» time series x(7)
and y() is less than «,, characterizes quality of the procedure of time series «gluing».

In Fig. 4 the dependance of the average value of Ar on the delay time T is
represented. One can see that the average value of interval As during which the glued time
series becomes practically identical, does not depend on the chosen magnitude of a delay
time 7. Only at small delay times the

average value At diminishes. <Ar> : e SN

The analysis of normalized L ]
distribution (see Fig. 5) of the magnitude .01 |
of At shows that at a delay time 7=1.6 the
part of «unsuccessfully» glued time series I 1
is minimal. In this case the number of 2000 e e preT e

glued time series with little interval Az is
small. Simultaneously, the exploration
carries out that with the increase of the
delay time T the number of glue points
diminishes. Therefore the delay time for
the procedure of gluing is chosen T=1.6.
Besides, with such a choice of delay time
T=1.6 the duration of time interval (d-1)-T
becomes comparable with the typical
oscillations time scale.

Let’s consider now the glued time g
series. On Fig. 6 the examples of the most
successful (a) and unsuccessful (b) gluing
with delay time T=1.6 are represented. One
can see from the figure that even in case of
«unsuccessful» glue the y-realization well
agrees with the x-realization, with which it

Fig. 4. Dependence of the average magnitude (Af)
on the value of a delay time T. Average was carried
out on 300 points of «gluing»

N(AD) '?;' ) ! T

0.2

0.0

0 2000 4000 6000 8000 A#AT

is glued.

The important circumstance is that
all the time series used to construct the
artificially long one are generated by the
distributed system. Hence, that fact, that

Fig. 5. Normalized distribution of At at the different
values of a delay time T: curve 1 (+) corresponds to
the delay time T=0.8; curve 2 (x) - to the T=1.6;
curve 3 (¢) - to the T=2.4; curve 4 (OJ) - to the
T=3.2. The allocations are constructed on 300 glued
time series for each delay timeT
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Fig. 6. Successful (a) and unsuccessful (b) gluing of
the time series. The delay time in both casesT=1.6.
Time interval Af, during which the distinction
between x- and y-realizations does not exceed the
value €, is equal to Af =30.09 and A¢,=0.28 time
unities, accordingly. The vertical dashed lines restrict
the time interval (d-1)T, on which the glue of the x-
and y-time series is carried out. The circles (*)
correspond to the points of gluing (see relation (11)).
x-realization is shown by solid line, y-realization -
by dashed one

two time series are well glued, yet does not
guarantee that the states of an initial
distributed system are close in times ¢, and
t, for x- and y-realizations, accordingly.
Therefore it is necessary to consider the
spatial distributions of amplitude of the
field IF(§)l and current /()| in gyro-BWO
at the time corresponding to the points of
glue of time series x(¢) and y(6).

Fig. 7 illustrates the spatial distribu-
tions of the values |F(€)l and I/(€)! in the
case of «successful» glue of time series at
the chosen value of delay time T=1.6 (see
also Fig. 6, a) and the corresponding
distributions after the time Az =30.09
passes and the x- and y-realizations
dispersed on the distance e, Similar
dependences for the most «unsuccessful»
glue are represented on Fig. 8 (see Fig. 6,
b); the time interval Az is chosen the same
At =30.09. In spite of the fact that in a case
of unsuccessful glue of x- and y-
realizations, the spatial distributions IF(E)I
and I(g)l explicitly differ from each other,
these differences are quantitative but not
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Fig. 7. Spatial distributions of the field amplitude F and current/ for the case of «successful» glue of
time series with T=1.6. The time series with initial amplitude A,=0.0041 (solid line) at timet=29.36 and
A,=0.0012 (dashed line) at the timet=106.16 (Fig. a) are glued. The Fig. b illustrates the divergence of
time series and corresponds to the time interval passed from the moment corresponding to Fig.a,

Af=30.09
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qualitative. At the same time the structures existing in a distributed system which
generates x- and y- realizations, at the moment of gluing agree with each other. In the
case of «good» glue after the disperse of the two time series on distance e, in both cases
we derive the double-peak distribution of the first harmonic of the grouped current, what
is equal to two electronic structures (two phase bundles of electrons - oscillators of the
spiral beam) on the length of interaction space, though the value of the second maximum
of the grouped current strongly differs in both cases.

For the case of «bad» glue of time series after the pass of the same time Az , as in
the first case, essentially stronger discrepancy of system dynamics takes place. Compa-
ring the distributions introduced in Fig. 8, @ and the Fig. 8, b, one can see that not only
quantitative, but also qualitative distinction of the interior beam and field structures takes
place. However, if we take the time interval Ar,=0.28, through which the time series
disperse on the distance €., it is possible to make the same deduction, as earlier: the
difference between states is only quantitative. Qualitatively the behaviour of the system is
identical in both cases. Thus, the quality of gluing first of all renders influence on the
length of the time interval At, during which it is possible to consider the two time series
identical (compare the times Az, and Az, for the case of a good and bag glue accordingly).
It is obvious, that the duration At is defined, first of all, by quality of gluing, and, then, by
the magnitude of the maximum Lyapunov index A,, which is the measure of the velocity
of the disperse of neighboring phase trajectories of a chaotic set corresponding to
transient chaos.

In a view of above-stated it is possible to make a deduction that the offered
procedure of glue of truncated time series generated by a distributed system, allows to
create a correct long time series, on which it is possible to determine the characteristics of
transient chaos.
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Fig. 8. Spatial distributions of the field amplitude F and current/ for the case of «bad» glue of time series
with delay time T=1.6. The time series with initial amplitude A,=0.0033 (solid line) at timet=54.97 and
8,=0.0012 (dashed line) at the timet=111.80 (Fig. a) are glued. The Fig. b illustrates the divergence of
time series and corresponds to the time interval passed from the moment corresponding to Fig. g,
Ar =30.09
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4. Characteristics of transient chaos

Let’s compare the results obtained at calculation of the correlation dimension of the
attractor restored by «not glued» long time series at presence of false points, and the
result calculated from correctly glued time series. For correct comparison the time series
length N=6-10* and the number of points of reduction M=10-4 were chosen the same, as
in the previous case. The results of calculation are represented in fig. 3, b, on which one
can see the curves D(e) for the embedding space dimension d=2,3,4 and 5. It is obvious
that the earlier obtained estimated results agree with the more precise calculation of
correlation dimension. The embedding space dimension d in this case also don’t exceed 4.
The last means that the pseudo-phase spaces dimension, evaluated in previous section,

~was chosen correctly.

Also it is possible to make a conclusion that for the estimation of correlation
dimension of the attractor restored from short time series the procedure of glue is not
required and the small number of false points in the phase space does not render essential
influence to the calculation of correlation dimension.

Let’s consider now such important characteristics of transient chaos as the
maximum Lyapunov exponent A,. Its estimation was produced with the help of procedure
offered in [28, 29]. According to it the magnitude of ), is defined as

Ay =Tim,_ (1/6) In(x(0)/x(4,)), (18)

where (1) is the distance between two points X' and x” in phase space at the time t. We
suppose that at the initial time these points are close, i.e. |x'-x"ll=x(z,)<<R, where R is
the typical geometrical size of an attractor in phase space. The positive value of the
maximum Lyapunov index A is evidence of the chaotic dynamics of the system. Through
the time interval t=ln(R;’x(to))fl the behaviour of the system becomes unpredictable, i.e.
the magnitude of the Lyapunov index characterizes the measure of instability and
complexity of the chaotic process.

Now, keeping up for the system dynamics after starting from the points X' and x"'
and analyzing the distance y(f,+mAt)=IIx'(t+mAt)-x"(t,+mAc)ll between the current
states of the system, we find the time interval mAt, during which the trajectories disperse
on the distance larger than x__. Then a new point X " on the attractor, which is close to
the point x'(f+mAt)(IIX'(¢+max)-x "ll=x(1,+mAt)<<R), also is moved from it to the
direction of the vector x”(rn+mm)-x’fru+m At) is found. Then the procedure is repeated.

To define the value of the maximum Lyapunov index average on the attractor the
above described procedure it is necessary to iterate M times before reaching by
magnitude

()= (UMAT)Y 2, In(x(tytmAT)x(t+(m-1)At)) (19)

the asymptotic value.

Using the above described procedure for the «correctly» glued time series we
obtained the value of the maximum Lyapunov index A,=0.098£0.011.

Let’s remark, that if we are moving a little bit to the area of the chaotic generation
by changing the gencration parameters 2=0.1, F,=0.62 (let’s remind that we have studied
the transient chaos with @=2.0, F=0.62), the typical characteristics of the chaotic
attractor as the restored attractor and Fourier power spectrum are similar to the
characteristics of the transient chaos.

However, the maximum Lyapunov exponent of the chaotic attractor A,=0.002. Le.
the chaotic set (transient chaos) is @ more unstable (and, hence, more «chaotic») regime
than the chaotic attractor existing «at neighbourhood» in the parameters space.
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Conclusion

In this work the transitional chaos found in non-autonomous distributed active
medium «spiral electron beam - electromagnetic wave» (gyro-BWO, synchronized by
external signal) near the boundary of synchronization tongue was investigated. The
analysis of the characteristics of the transient chaos in explored distributed system was
carried out. For this purpose we modified the procedure of combining of short time series
generated by the distributed auto-oscillation system and obtained at the different starting
conditions of integration of the model equations (2)-(6). Great attention was payed to the
examination of the correctness of procedure of short time series «gluing» for the purpose
of constructing an artificially long time series. It is possible to make a conclusion that the
procedure of gluing offered in our paper is effective at constructing the long time series
by a set of short time series generated by distributed systems.

This work is supported by Russian Foundation for Basic Research, projects 01-02-
17392, MAS 02-02-06067, 00-15-96673 and U.S. Civilian Research & Development
Foundation for the Independent States of the Former Soviet Union (CRDF), grant REC-
006.
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CUHXPOHU3UPYEMOM BHEIHNUM CUT'HAJIOM

Xpamos A.E., Kopornosckuii A.A., Pemnen HU.C., Tpybeykos 1. H.

B paGore wu3y4aercs MepexogHbld Xaoc B HEaBTOHOMHOM pacIlpefeieHHOM
aKTHBHO# cpefie (TMponammna co BcTpedHoit BosHON (rupo-JIBB), cunxpoHM3npyemast
BHEIUHMMM CHTHaJIoM). VMcenemyrorest XapakKTEpACTHKY IEPEXOJHOro xaoca B rupo-JIBB
BOMIHGH TpaHHUBI O0NacTH CHHIpoHHIauuH, O¢oboe BHHMaHHE YAS/IAeTcA mNpobieme
NOCTPOEHHS UCKYCCTBEHHOH [IWHHOH BpEMEHHOH pealM3alud, WO KOTOpOi
OLICHMBAIOTCA XapaKTEPUCTHKH XaOTHYECKOH NMHAMUKH, U KOTOpasg CTPOMTCA IyTEM
CIIMBaHUS KOPOTKHMX BPEMEHHBIX peasu3aliui, XapakTepU3yIONX IepeXoHbll Xaoc,
TOPOXK[AEMBIH pPaCIipeleIeHHbIA CHCTEMOM.
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'CLUSTER AND GLOBAL SYNCHRONIZATION IN A QUASI-HARMONIC
SELF-OSCILLATORY CHAIN IN THE PRESENCE OF NOISE

T.E. Vadivasova, V.S. Anishchenko, G.I. Strelkova, A.l. Fomin

We study numerically effects of noise on synchronization phenomena in a chain of
Van der Pol oscillators. A structure of frequency clusters in the non-homogeneous noisy chain
is analyzed. We generalize the notion of effective synchronization to the case of a spatially
extended system. The effect of amplitude relations on the phase dynamics is also explored.
The possibility of realizing external synchronization of the homogeneous chain was
considered. We clear up a role of two components of coupling (diffusive and one-direct
coupling) and a noise sources in relation to the global synchronization.

1. Introduction

The phenomenon of synchronization plays an important role in the behavior of
ensembles of interacting nonlinear oscillators. This effect provides the basis for self-
organization of ensembles’ dynamics and is associated with a variety of phenomena, such
as multistability, growth restriction of the Kolmogorov entropy and attractor dimension,
spatio-temporal structure formation, etc. The theory of synchronization, originally
proposed for quasi-harmonic oscillations [1-4], was generalized to a wide range of
systems including chaotic [5-11] and stochastic [11-15] ones.

Phase synchronization in ensembles of locally and globally coupled interacting
periodic oscillators has been studied for a long time but these investigations still attract a
growing interest of many researchers [4, 16-29]. Ensembles of periodic oscillators have
found wide applications in mathematical modeling of physical [30-33], chemical [4, 16],
and biological [34-38] processes.

Even the simplest quasi-harmonic oscillators coupled in a large ensemble generate
a lot of complicated nonlinear effects such as a phase and frequency synchronization [20,
23, 24, 28, 29, 35, 40], an oscillatory death [21, 22, 27, 29, 40, 41], frozen states [28],
formation of a collective chaotic behavior [27, 33, 39] e.t.c. All these effects are the
manifestations of the phase - frequency synchronization phenomena.

It is known that fluctuations are inevitably present in real ensembles and a
parameter mismatch (random or definitely specified) of partial systems also takes place.
Effects of noise and parameter mismatch on phase locking in an ensemble of oscillators
are considered in [4, 17, 18, 20-22, 24, 25, 29, 31, 40, 42, 43]. The presence of a linear
gradient of native unperturbed frequencies along the medium consisting of locally
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coupled oscillators leads to the formation of so-called frequency clusters of
synchronization [20, 29, 40].

Recently, numerous works have appeared devoted to the study of ensembles of
chaotic oscillators [30, 44-52]. It has been shown that the synchronization effect also
plays an important role in the dynamics of chaotic ensembles. They demonstrate a
number of phenomena which appear to be quite similar to those occurred in ensembles of
periodic oscillators. Particularly, effects of phase-locking and cluster phase
synchronization have been found in ensembles of chaotic oscillators [50-52]. This fact
testifies that the effect of synchronization is generic for a variety of oscillatory systems.

However, even in the case of quasi-harmonic oscillatory ensembles it remains a
number of unresolved problems, which devote a special attention. One part of these
problems concerns the cluster synchronization in a chain of non-identical oscillators.
How much can cluster synchronization be stable to the influence of fluctuations? Is it
possible to generalize the notion of effective synchronization of self-sustained
oscillations in the presence of noise [54, 55] to spatially extended systems? It is
interesting to elucidate how significant may it be if a variation of instantaneous amplitude
values of oscillators is taken into consideration? Can the behavior of an ensemble be
qualitatively described by the phase equations only? The other part of the problems is
connected with the global external synchronization of a chain (i.e. the synchronization of
all oscillators of the chain at the external frequency force). What are the conditions of
global synchronization of the chain by a harmonic external force applied to the first
oscillator? How does the type of coupling between oscillators influence on the global
synchronization effect? Is the global synchronization possible in the presence of noise?

Some of these problems were considered in [56, 57]. In the present work we try to
answer the above stated questions and this is the main objective of this paper.

The paper is organized as follows. In Sec. I we study the effects of cluster
synchronization in a chain of non-identical Van der Pol oscillators with diffusive
coupling. The effect of noise on clusters structure is analyzed. In Sec. IT we explore the
peculiarities of the behavior of the chain of diffusively coupled non-identical Van der Pol
oscillators described by the phase equations only. Sec.III is devoted to the external
synchronization of a chain of identical Van der Pol oscillators with a harmonic force
applied to the first element of the chain. The role of two coupling components (diffusive
and one-direct) is discussed. The global synchronization of the chain in the presence of
noise is studied. And finally, we give our conclusions in Sec. IV.

2. Effect of noise on cluster synchronization in a chain
of non-identical Van der Pol oscillators

The model to study is a chain of Van der Pol oscillators, being similar to that
considered in [29, 40] and including additive noise on the chain elements. The chain is
described by a system of equations which, in a truncated form, are as follows:

p)' =.f'(1 - pjz)pj ¥ g(pj_]COS(ti)j - ¢j.1) + PFICOS(QJJH - ¢J) -zpj) + D"’pj+ (ZD)IQEJ‘ (I):

d’j:m_,-'f'g(p‘,ﬂfp sin(¢, i1 ¢') P 1"rlp Sll’l(d) ¢", 1)) ' (ZD)W'Tl (f)fP-s
=12 3:m

where j is the number of an oscillator, representing a discrete spatial coordinate, p; and ¢
are the amplitude and the phase of oscillations of the jth oscillator, respectively. &; (r) anc‘
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n}.(r) are assumed to be identical uncorrelated Gaussian white noise sources with zero
means and with the same intensity D".

The boundary conditions were chosen to correspond to a free-ended chain, i.e.,
Pe=P1> 0=01s Ppe1 =Py sy =9,,- The initial conditions for the oscillators are chosen to be
close to homogeneous ones with a small random dispersion within =0.1.

The model (1) has the following parameters: r is the excitation parameter (in
computation, we fix r=0.5), , is the unperturbed frequency of the jth oscillator, i.e.,
oscillation frequency without coupling and external forcing, g is the parameter of diffu-
sive coupling of nearest-neighbor oscillators. For the model (1) we suppose a case of li-
near dependences of the unperturbed frequencies on spatial coordinatej, i.e., mJ.:mﬁU—l)A,
where A is the frequency mismatch of two neighboring oscillators. The peculiarities of the
chain dynamics do not depend on the choice of the frequency origin. Therefore, we can
set w,=1.

: We study numerically the chain (1) with m=100 elements using a fourth-order
Runge-Kutta routine. In the course of numerical experiments, we analyze the dynamics of
each element, estimate the variation of phases ¢; during a large enough time T and

compute the average (perturbed) frequencies EBJ. of the partial oscillators:

@, = (; (1)) = lim_ [(¢, (15 +T) - o, (t))/T ]. ()
The angle brackets mean time averaging.

Equality of the mean frequencies o, and . , corresponds to the limitation of the
phase difference of the oscillators 8=¢, , (rj-cpj(t) in time:

lim_, 16,()l <M, where 0#M# . (3)

The condition (3) is the generalization of the phase locking definition [9]. So defi-
ned phase locking notion may be applied not only to harmonic oscillations but also to non-
periodic selfsustained oscillations. The group of oscillators (j=k;....,k,) synchronized in

the sense (3) is named as a frequency cluster. The instant values of the frequencies :])j(r)
of partial oscillators belonging to the same cluster may be different but their time

averaged values . must be equal.

For the chain (1) with a linear frequency gradient along the spatial coordinate j,
one can observe frequency cluster formation in a certain range of coupling parameter g
values [29, 40]. The partial oscillators exhibit the quasi-periodic oscillations
x.(r)zpj(!)cos:pj(r) and y.(t)zpj.(r)simbj(t), and the number of independent frequencies is
determined by the number of synchronized clusters. Fig. 1, a, b illustrate (x}.,yj) projec-
tions of oscillations in the regime of cluster synchronization, which are characteristic for
the center and the boundary of a cluster, respectively. If we consider the oscillators within
the same cluster, then a representative point rotates around the origin, x=0, y !.=0, on the
average, with the same frequency and a bounded phase shift. Oscillators belonging to
different clusters have distinct rotation frequencies. Consequently, the form of phase
projections (x,x,) is qualitatively different when jth and th oscillators belong to one
cluster (Fig. 1, ¢) and to different clusters (Fig. 1, d).

Now we are going to elucidate how the noise influences the cluster
synchronization. We fix A=0.002 and compute the distribution of perturbed frequencies

* In fact, in numerical experiments the same pseudo-random number generator was used having a
Gaussian distribution. Successive values produced by the generator may be treated as practically independent.
To make sure that the noise disturbances are uncorrelated, the noise source added to each subsequent element
of the chain was shifted with respect to the previous one by five iterations of the pseudo-random number
generator,

112



1.0
0.5
Y900 |
0.5
-1.0
-1.0
a
1.0 1.0~ :
1 P o ‘:\':?fc’" 20
0.5 0.5 YK
XSI 0.0_: XSU 0‘0_: / .
0.5 054 L AVASRY Y A/ NN
i il | ,\"‘ .o\./ / \\
-1.0 LS '
[} o : SRR | s Rl | LT NI EER | L L
1.0 05 00 05 10 -0 05 00 05 1.0
c Xy d X5

Fig. 1. Phase projections of oscillations of partial oscillators in the regime of cluster synchronization for
A=0.002 and g=3.8

®, of oscillators along the chain without and in the presence of noise. The calculation
results, shown in Fig. 2, a (I), b (I) for two different values of the coupling parameter g,
clearly demonstrate the effect of cluster synchronization in the noise-free chain (D=0)
and completely correspond to the analogous results presented in [29, 40].

Now consider the case when all oscillators are subjected to noisy perturbations.
Fig. 2, a (I), b (II) and a (III), b (III) presents the distributions of the perturbed
frequencies for two different noise intensities D=0.00001 and D=0.001, respectively. It is
clearly seen that for both coupling parameters, the clusters of synchronization are
destroyed as the noise intensity increases. If the noise is weak, the clusters’ boundaries
are only smoothing slightly (graphs IT). Both smoothing and gradual destruction of the
clusters begin with the chain center. For sufficiently large noise (graphs III), all middle
clusters are completely destroyed. However, our computations have shown that the first
and the last clusters appear to be highly stable to noisy disturbances and only a very
strong noise is needed to destroy them.

The effect of noise on cluster synchronization can be more clearly understood by
considering how the phase differences 6(r) of neighboring oscillators, located near the
clusters boundary, change with time without and in the presence of noise. Without noise,

113



@; ®;
1154 1.154

} _
1.10 1 1.10 5))
1.051 1.05
1.00 Frrrrr e e 1.00 e : e

20 40 60 80 j 0 20 40 60 80
&)1 &,
1.15 1.15
1.10: 1.10 1 an
1.05 1.05
1.00 : 1.00 : ‘ : , .
20 40 60 8 j 0 20 40 6 80

51 c"ﬁj-'
1.15 1.15
1.10 _ 1.10 4 1D
1.05 ; 1.05

- J
1.00 & P i 100 Loosisminrmrriery S

0 20 40 60 80 j 0 20 40 6 80
a b

Fig. 2. Distributions of the perturbed oscillator frequencies forA=0.002 and for different strengths of

coupling: (a) g=0.55; (b) g=3.8. Dependences (1), (IT) and (III) are obtained for the chain in the presence

of noise with intensity D=0, D=0.00001, and D=0.001, respectively
the phase difference of oscillators belonging to different clusters increases, on the
average, linearly as the time goes on. At the same time, the phase difference remains
strictly bounded if the oscillators considered belong to the same cluster. When the noise is
added, the phase difference of any neighboring oscillators grows indefinitely with time
but this growth is linear for none of j. The average growth rate of phase difference is
different for different j. This fact allows one to find certain segments of the chain, for
which this rate is low. Hence, we can identify clusters of effective synchronization in the
presence of noise [55].

The clusters’ boundaries in the presence of noise can be estimated by using the
effective diffusion coefficient D_ of the phase difference of neighboring oscillators [54].
D, defines the average rate with which the variance og(f) of phase difference 6,
increases in time. Its mean value can be calculated as follows:

D )= limr__wla':((crzﬂj(t) = ozgj(ru))f(i‘ - £5))s
o’y (8) = (8(0)) - (8,(1))*.

We compute the effective diffusion coefficient versus the spatial coordinate within
one cluster (39<j<62) for three different values of noise intensity D. Numerical results

4)

114



are presented in Fig. 3. They testify a D

gradual destruction of the clusters boun-
daries as the noise intensity increases. One
can note that the dependence D (/) is quite
similar (taking into account that j is a
discrete variable) to a well-known depen-
dence of the diffusion coefficient of the
phase difference between a self-sustained
system and an external forcing versus
detuning. The clusters boundaries of
effective synchronization can be defined by
specifying some tolerable level of the
diffusion coefficient D ™. In this case
oscillators for which D_<D_™* can be
considered as belonging to the same cluster.
Such a determination of clusters boundaries
is enough arbitrary since the value of D™

efls

S I N
30 40 50 60

Fig. 3. Effective diffusion coefficientD . as a func-
tion of spatial coordinate j for D=10"8 (rf:in dashed
line), D=10" (thin solid line), and D=10"* (thick
solid line). The horizontal dotted line marks the level
of D ™ defining the clusters boundaries. The
detuning and the coupling strength are A=0.002 and

can be given in different ways depending 88

on a particular task. However, in any case the length of a cluster decreases with
increasing noise intensity. For example, given D ™*=0.001, the boundaries of the cluster
shown in Fig. 3 for D=0.0001 correspond to the 44th and the 56th oscillators.

3. Phase dynamics approach

In the previous section we have numerically studied the chain of Van der Pol
oscillators, which is described by the system of truncated equations (1) where amplitude
and phase dynamics are combined. However, in many cases only phase equations are
often used assuming amplitudes to be equal and constant in time. Such an approach
allows one to qualitatively describe effects of frequency and phase locking and to
simplify numerical simulation. Besides, in some cases the problem can be solved
analytically using the phase equations only [4, 16, 20, 24, 25, 27]. Nevertheless, the
dynamics of an ensemble may be distorted and some effects may be lost such as, for
example, «oscillator death» [21, 22, 29, 53], if the amplitude dynamics is excluded from
consideration. In particular, as emphasized in [29, 40], amplitude effects may influence
the cluster structure formation. To reveal such an effect, we analyze first cluster
synchronization in the enforced chain described by the phase equations only and then
compare it with relevant results obtained for the full system of truncated equations (1).
The system of phase equations can easily be derived from (1) by setting p}.:l for any j.
This means that the amplitudes of all oscillators are taken to be equal to their unperturbed
value. The system of phase equations reads:

q;j =, + (} = 1) A+ g(SiIl(thjﬂ "¢‘j) = Sin(tt}j- ¢j_1)) s (ZD)mT]j (I), Jr = 1,2,...,??‘1. (5)

The boundary conditions corresponding to free ends are: ¢,=9¢,, ¢,,,,=¢,. The detuning is
fixed as A=0.002. The frequency distributions calculated from (5) are shown in Fig. 4 for
different strengths of coupling. The first three plots correspond to the noise-free case. In
Fig. 4, a illustrating the frequency distribution for g=0.55 only two clusters can be
observed being formed at the boundaries of the chain. The analogous distribution,
presented in Fig. 1, a (I) for the full system (1), reflects a more rich synchronization
picture. With increasing strength of the coupling the middle clusters also appear (Fig. 4,
b, ) but their structure is somewhat different from that formed when integrating the
system (1). As seen from Fig. 4, b, ¢, the extreme clusters are extended, while the middle
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Fig. 4. Distributions of the perturbed frequencies in the chain, described by the phase equations (5), for
A=0.002 and for different strengths of the coupling:a) g=0.55; b) g=0.7; ¢) g=1.5 without noise, and 4)
g=1.5 in the presence of noise with intensity D=0.00001

ones become more shorter. The height of clusters’ steps, i.e., the difference between the
frequencies of neighboring clusters, is less than that for system (1) and decreases rapidly
as the strength of coupling increases. Thus, the region of cluster synchronization
significantly shrinks when only phase dynamics is taken into consideration. Moreover, in
this case the cluster structure appears to be more sensitive to noise perturbations. This is
illustrated in Fig. 4, d when a weak noise of intensity £=0.00001 is added to the system
(5). As follows from the figure, the noise causes the middle clusters to be destroyed.

4. External synchronization of a chain of identical
Van der Pol oscillators

To study effects of external synchronization in a chain of quasi-harmonic self-
sustained oscillators we use the following model:

p:,' = 05(1 - pjz) pj+ g[(pj.1cos(¢j = ¢j.1) + pPICOS(quH— ¢J) - 29}) +

o gg(pj,]cos(qu - ¢.,‘.1) - p‘,) + D‘pr + Fj(f)i (6)
(i)j = [t)j + (gljpj) (pﬁ18in(¢j+]_ ¢J) - pj_]SiH((pj - ¢j-1)) -

- 8,(p.1/p,)sin(e; -9,,) + P(0), j=123..m.

Here the same signs are used as in the model (1). The functions F(f) and P(#),

J=1,2,...,m, describe forces which are applied to the oscillators of the chain. These forces
include independent sources of Gaussian 3-correlated noise §(r) and w(7) for all
oscillators of the chain, and also the harmonic force applied only to the first oscillator. So,
F(t) and P(1) are
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Fi() = Csin(w, - 0 + (2D)25,(),
P\() = (-C Ip))cos(w,.f - ¢;) + (2D)"™,()/p;,
F(0)=@D)7% (1), P,(0)= QD) (e, j=23..m,

where D is the intensity of noise sources, C and w,_are the amplitude and the frequency
of the external force, respectively. The boundary conditions are chosen as: p,=p,, =9,
Pps1 =Py Dei=0,,- The initial conditions for the oscillators are chosen to be close to
homogeneous ones (p,(0)=0.5, $,(0)=0.1) with a small random dispersion within =0.1.

The parameters of the chain are the unperturbed frequencies of partial oscillators
w, the external force parameters (amplitude C and frequency w, ), the coupling
parameters g, and g,, and also the noise intensity D. In the model (6) two types of
coupling are used: diffusive coupling and one-direction coupling. So, g, is the diffusion
coefficient, and g, characterizes a propagation of perturbations along the chain.

Let us consider first the effects of external synchronization in the homogeneous
chain (6) with fixed length m=100 without noise sources (D=0). The homogeneous chain
consists of identical elements. So, we suppose that w=w,=1, j=1,2,...m. The value
A, =w, -0, determines the mismatch of the excitation frcquency from the unperturbed
frequencies of oscillators. We also introduce the phase differences ej(z):%(x)-%(:),
0, (f)=w,t-¢,(¢). A perfect phase locking of oscillators on the main tone is given by the
following conditions:

6,=0, 6,=0, p;=0, j=12,.m. (7)

In this case the phase differences are constant, and the oscillations are harmonic
with the period equal to the period of the external force. According to a more general
definition of the phase locking [9] only the phase differences limitation (3) are needed.

The synchronization of the j-th oscillator on the external frequency was detected
numerically by the condition

: lp, -1l 104, (8)

where p=o/w,_is the relative mean frequency (winding number) of the j-th oscillator.
We consider the validity of condition (8) for all oscillators of the chain as a numerical
criterium of a global synchronization of a chain (i.e. synchronization of all chain
elements). In the case of global synchronization the condition (7) must also be valid for
all oscillators. If only a part of oscillators is synchronized, the oscillations are not
perfectly periodic (as in the case of frequency clusters exist). In this situation the
synchronization in the sense of (8) does not correspond to (7).

We will study a region of the global synchronization as the parameters A, , C, g, &,
are varied. Disregarding perturbations of the partial amplitudes p. it is possible to estimate
the region of global synchronization. Supposing in (6) that p=1, j=1,2,..m we obtain
from (7) the approximate synchronization conditions:

C<IA, (g +g,) /8y 1A, 158, ' 9)

The equality C=IA,l(g,+g,)/g, at IA |<g, determines the external synchronization
boundary of the first oscillator of the chain, assuming that all elements of the chain are
mutually synchronized. The equality IA, l=g, at C<IA_I(g,+g,)/g, corresponds to the
boundary of mutual synchronization of all chain elements in condition that the first
oscillator is synchronized with the external force. The estimation of the global
synchronization region in accordance with (9) does not reflect the dependence of
synchronization effect on a chain length m. Notwithstanding, in some cases these
estimations agree rather well with results of numerical simulations. The conditions (%)
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result in the impossibility of global synchronization of the chain with purely diffusive
interaction of oscillators (g,=0). On the contrary, numerical simulation shows that the
finite length chain can be synchronized. But the synchronization region is very small even
for a short chain (m=10-20).

The calculation results of the global synchronization boundaries are given in Fig. 5,
a. The global synchronization region S is obtained for a chain with m=100 elements on
the parameter plane (A, ,C). The signs (°) and () mean the numerically obtained points
of a boundary for the cases of one-direction and combined coupling, respectively. Dashed
lines mark the boundaries described by (9). The estimation (9) for the case of Fig. 5,a is
in a well agreement with the numerical data. When a diffusive component of coupling
prevails the one-direction coupling, then a distribution of partial amplitudes p, influences
essentially on the dynamics of phases ¢, In these circumstances relations (9) do not give
a satisfactory estimation for synchronization boundaries. As it follows from simulation
data, there exists a certain maximal value of the diffusive coupling parameter value g,"*
when global synchronization is yet possible in a chain of any length. Fig. 5, b shows the
numerically calculated values of a half-width band A, of global synchronization as
functions of a chain length at fixed external amplitude and different coupling component
relations. The signs (°), (*), (x) mark the results for the cases of one-direction coupling,
combined coupling and purely diffusive coupling, respectively. It is well seen that the
value A tends to the certain constant level as the m increases. For m>20 a value of A
does not practically depend on the next increasing of a chain length. So, it is reasonable to
suppose that in the presence of one-direction interaction of oscillators directed from an
external excited element, a global synchronization can be observed for the chain of an
infinite length. It takes place in the band of external frequencies of nonzero width. This
width essentially depends on the relationship between the coupling parameters g, and g,.
As the diffusive coupling parameter g, increases, the synchronization band becomes more
narrow. For the pure diffusive interaction the band width quickly goes to zero with m
increasing.

With crossing different parts of the region S boundaries two scenarios of the
transition to global synchronization may be realized. In Fig. 5 two routes (Q and R) on
the parameter plane corresponding to these scenarios are marked with arrows. The rout R

corresponds to the gradual simultaneous approaching of the mean frequencies (Taj of all
partial oscillators to the external frequency w,. Approaching to the boundary of the
region S from outside along direction Q0 we can observe external synchronization of
several first oscillators in the chain. If g 0, the synchronization of the first oscillators
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Fig. 5. a) Region § of global synchronization of the homogeneous chain of self-sustained oscillators (6)
on the parameter plane (A ,C) for g,=0, £,=0.04 (°) and g,=g,=0.04 (*). The dashed lines denote the
boundaries of region §, defined by the conditions (9). The directions @ and R marked by arrows
correspond to different scenarios of global synchronization; b) dependence of the half-width of the global
synchronization band on the chain lengthm for g,=0, g,=0.04 (°); g,=0.08, g,=0.04 (+); g,=0.08, g,=0 (x).
The amplitude of excitation is assumed to be equal c=0.1 B
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Fig. 6. Distribution of relative mean frequencies p:'JJmee along the chain when crossing different parts
of the region S boundary on the parameter plané {AEX,CS for g,=g,=0.04: a) direction R (Fig. 5, a),
A, =0.031; 0.0315; 0.0305; b) direction Q ( Fig.5, a), A, =0.04; ll(}39§; 0.039

must be understood in a sense of (3). The frequency synchronization cluster is formed
(j=1, 2,...k,m). For all oscillators belonging to the cluster the relative frequencies D
satisfy the condition (8). Oscillatory regimes for all elements of the chain (including the
synchronized ones) are quasi-periodic. With a distance till the synchronization boundary
decreases a length of cluster £ increases tending to m. The evolution of the distribution of
the relative frequencies p; along the chain with approaching to the region S boundary is
given in Fig. 6, a, b.

Consider the noise influence on the effect of global chain synchronization with the
external frequency. In the presence of Gaussian 3-correlated noise sources the perfect
synchronization is impossible. In this case we can speak about effective synchronization
of self-oscillator only, i.e. about a phase locking during finite time intervals. However, if
the noise intensity is small enough, the times of locking may be very long for some
nonzero region of mismatch A, values, and a mean frequency of self-sustained
oscillations is equal to the external force frequency with high accuracy. Therefore, the
usage of (8) as a criterion of the j-th oscillator synchronization is justified from an
experimental point of view both without noise and in the presence of noise.

We will study the robustness of global synchronization effect in the presence of
independent sources of Gaussian d-correlated noise in each oscillator of a chain. Consider
the chain (6) of fixed length m=100 consists of identical oscillators with combined type
of interaction. In Fig. 7, a some curves illustrate the dependence of relative frequency of
oscillator with number j=100 on mismatch A for different noise levels. It is well seen

5 )
1.02 3
0.995
3
1.00
0,08 1 0.990 :
0.96 : 0.985

-0.04 -0.02 0.0 0.02 0.04 Apy b 0 20 40 60 80 j
a v

Fig. 7. Effect of noise on global synchronization of the chain with g,=g,=0.04, C=0.06. a) Dependences
of the relative frequency of the self-sustained oscillator with j=100 on mismatch A ., obtained for
different noise levels: D=0.0 (curve 1), D=0.001 (curve 2), D=0.005 (curve 3), D=0.01 (curve 4); b)
variation of the relative frequencyp; along the chain for the given value of mismatchA, =0.02 and for two
different noise intensities D=0.005 {curve I) and D=0.01 (curve 2) :
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Fig. 8. Spatio-time diagrams of the phase behavior in
a chain (6) at g,=g,=0.04, =0.06, A, =0.02 without
noise (a) and wuh a noise of 1nt°ns1ty D=0.01 the
tone of gray colour correspond to a value of coscb

that the noise influence on the chain
synchronization is analogous to the case of
one noisy oscillator synchronization. The
region of effective synchronization .dimi-
nishes when the noise intensity D
increases. For a small enough mnoise
D=0.001 (x) the width of a global synchro-
nization region consists nearly 80% (o).
For the noise D=0.005 () it is nearly
30%. For the case of D=0.01 () there is
no any synchronization region because the
condition (8) is valid for all oscillators of
the chain only if A, =0. However, a few
first oscillators are still remain synchro-
nized. Fig. 7, b illu-strates how values of P;
change along the chain for the gwen
mismatch A =0.02 and two different noise
levels: D= 0005 and D=0.01. In a case of
D=0.005 the k=13 first oscillators can be

oL (blssk)dlll -+ rhie) considered as synchronized ones. At
D=0.01 the condition (8) is not satisfied even for the first oscillator of the chain. In Fig. 8
the spatio-temporal diagrams of the chain are given. They show the behavior of phases of
all oscillators of the chain in a region of global synchronization. Without noise excitation
a well- distinguishable structure of diagonal strips is observed (Fig. 8, a). It corresponds
to the regime of a phase wave propagation along a chain. The noise excitation destroys
this structure (Fig. 8, b). It is clear, that in the presence of any noise (even very small)
synchronization with the external frequency w_#w, can be achieved only for a finite
number (thought it may be very large) of the first oscillators of the chain,

5. Conclusions

In this paper we have numerically studied the synchronization phenomena in a
chain of coupled Van der Pol oscillators with noise. The numerical results obtained allow
us to make a number of important conclusions.

The frequency cluster structure observed in a chain of non-identical elements with
diffusive coupling appears to be sufficiently stable against uncorrelated Gaussian
fluctuations added to each element. The cluster structure can be considerably destroyed in
the presence of noise of large intensities.

Cluster synchronization in the chain in the presence of fluctuations should be
understood as effective synchronization and characterized by the effective diffusion
coefficient D .

The amplitude dynamics may play an essential role in creating the cluster structure.
Cluster synchronization can also be observed in a chain modeled by the phase equations
only. But this effect is realized in a considerably narrow range of coupling parameter
values. Besides, the cluster structure appears to be more sensitive to noise perturbations.

In a case of harmonic external excitation of the first chain element the character of
interaction of oscillators plays the principal role. The presence of one-direction
component of coupling results in a possibility of a realizing global synchronization with
an external frequency for a chain of any length. There exists a region of external
frequency variations in which the synchronization is observed. The width of this region

120



tends to a constant level when the chain length m increases. In the case of pure diffusive
coupling external synchronization is possible only for the chain of a finite length.

Two scenarios of the chain transition to the regime of global external
synchronization are observed. One of them corresponds to simultaneous frequency
synchronization for all oscillators, and the other one - to the formation of group of
externally synchronized oscillators. The number of elements of this group (cluster)
increases with approaching to the synchronization boundary.

And finally, the action of independent sources of Gaussian 8-correlated noise
restricts a number of chain elements which can be considered as synchronized in the
sense of effective synchronization. The synchronization of a chain of infinite length
becomes impossible in the presence of noise.

This work is supported by Grant Ne REC-006 of the U.S. Civilian Research and
Development Foundation (CRDF) and the REBR (Grant Ne 00-02-17512).
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KIJACTEPHAS U I'MOBAJIBHAS CHHXPOHHM3AIINA B ITEITOYKE
KBABUTAPMOHMNYECKUX ABTOTEHEPATOPOB C IIYMOM

T. E. Badusacosa, B.C. Anuwernko, I' 1. Cmpeaxosa, A.A. Pomun

B pa6ore uccaejyercs BamsHme myma Ha 3(deKThl CHHXPOHM3ALMM B IIeNOYKe
ocumwaTopoB Bau ziep [lons. AHanu3upyeTcs peXuM YaCTOTHBIX KITaCTEPOB B HEOJTHO-
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ponHOil nemouke ¢ mymoM. IlomaTie addexTusHON cHHXpoHn3aln o6obliaeTcs Ha
Cllydaif TIPOCTPAHCTBEHHO pacnpefieieHHoli cucTembl. Mccnepyercs: Takke BIIHsHHE
aMIUTHTY[HBIX COOTHOIIEHWII Ha moBefenue a3 ocHHUIATOPOB. PaccmarpuBaeTcs
BO3MOJKHOCTh BBIHYXK/ICHHON CHHXPOHH3AIHN OJHOPOFHON NENOYKH. BhIACHAETCS polh
MBYX KOMIIOHEHT cBsizi (udhy3uOHHON B OHOHAIPABIICHHOI) W HCTOYHAKOB IIyMa IIo
OTHOIIEHHUIO K 3¢hthekTy rinodaibHON CHHXPOHH3ALMH.
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NOISE-INDUCED SPATIAL STRUCTURES IN EXCITABLE MEDIA
0.V. Sosnovtseva, D.E. Postnov, A.l. Fomin

The paper considers the formation of coherent structures in a population of excitable
systems driven by noise. We focus on two effects. (i) A one-dimensional lattice with at least
one inhomogeneous unit demonstrates noise-induced excitation waves. The degree of
coherence in such a spatial structure can be enhanced by tuning the noise intensity. (ii) A
random distribution of the parameters responsible for the excitatory properties and the
interaction strength leads to self-organization in the form of cluster synchronization.

1. Introduction

Together with self-sustained oscillators, excitable units serve as an important
paradigm in the study of nonlinear dynamic phenomena. To understand electrical
signaling in cells, it is helpful to divide all cell types into two groups: excitable cells and
nonexcitable cells. Many cells maintain a stable equilibrium potential, For some of these,
if a current is applied to the cell for a short period of time, the potential returns directly to
its equilibrium value after the applied current has been removed. Such cells are called
nonexcitable. Typical examples are the epithelial cells that line the walls of the gut.
However, there are other cells for which, if the applied current is sufficiently strong, the
membrane potential goes through a large excursion, called an action potential, before
eventually returning to rest. Such cells are called excitable. Excitable cells include cardiac
cells, smooth and skeleton muscle cells, secretory cells, and most neurons.

The underlying excitability determines, for example, the propagation of an action
potential along the axon of a nerve, the reverberating cortical depression waves in the
brain cortex [1], waves in muscle tissue (particularly the heart muscle: in their two- and
three-dimensional manifestations these excitable waves are intimately related to the
problem of atrial flutter and fibrillation [2]), or waves in colonies of microorganisms [3].
In this context, a number of interesting problems arise for experimental and numerical
investigations of excitable media. Both the response of a single excitable functional unit
and the overall dynamics of an ensemble of such units to an external stimulus are now
well understood [3-5].

Noise is inevitably present in all natural oscillators. The positive (that is creative),
ordering role of noise was recently demonstrated for a wide range of natural systems,
including systems of physical, chemical, and biological origin. The phenomena of
stochastic resonance, noise-induced transitions, and stochastic synchronization have been
observed experimentally in various biological systems [6, 7]. Our topic here is the
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phenomenon of coherence resonance that is induced purely by noise without an external
signal [8-10]. At a certain noise amplitude the regularity of the noise-induced dynamics is
maximal. This is witnessed by a well-pronounced peak in the Fourier power spectrum
and by a ring-like structure of probability density distribution in the phase space of the
system. Recently, Postnov e al. [11-13] described synchronization mechanisms of
coupled coherence resonance oscillators.

Cooperative dynamics of an ensemble of interacting self-sustained systems
manifests itself in the form of synchronization phenomena and wave propagation.
Clustering, i.e. the formation of groups of functional units with similar properties
(amplitudes, phases or frequencies) is an important phenomenon which is assumed, for
instance, to underlie perception and the processing of information by the brain [14]. The
problem of clustering was formulated and analyzed in a general context within the
framework of phase equations [15], self-sustained periodic oscillators [16], chaotic
dynamical networks [17], or of a chain of bistable elements [18]. Vadivasova et al. [19]
showed that cluster synchronization is structurally stable to small fluctuations.

In the present paper we focus on the questions: what are the types of noise-induced
ordering that can be observed in ensembles of stochastic excitable systems? What are the
common, respectively the specific properties of chains of coupled excitable and self-
sustained systems? With this aim we investigate the generation and propagation of
excitable waves caused by the presence of an inhomogeneus element with a low
excitation threshold. Then we analyze cluster formation caused by the random
distribution of excitation parameters and coupling strengths.

2. Model and Method

Let us take FitzHugh-Nagumo model as the unit in an array. Being originally
suggested for the description of nerve pulses [20], this model is commonly applied to
describe excitable dynamics in different fields ranging from chemical reactions to
biological processes.

With x and y being a fast and a slow variable, respectively, the model reads

ede/dt=x;- X3 -y, + g(x;,, +x;, -2x),
(1)
dyj!dt =X +a +DE,J.(£). j=1,...,N.

Here, j numbers the excitable unit in the chain, and e=0.01 is the small time-scale ratio of
the two variables. The parameter @ governs the character of the solutions and is
responsible for the excitatory properties of the individual dynamics, and g denotes the
coupling strength. Each functional unit is subjected to stochastic forcing by Gaussian
white noise & (r) which is statistically independent in space and with zero mean value, i.e.
(€0)E(1))=8,8(r-t') and (§(1))=0. We use free boundaries and random initial conditions.

With noise, an excitable system generates a random sequence of pulses, i.e. firing
events, whose properties can be described by Eq. (1). We characterize the process via the
distribution of the time intervals between pulses, the periodicity of their occurrence, and
the mean frequency. The mean frequency of noise-induced oscillations in the j-th element
is defined as {f)=1/(t j), where (rj.) is the time averaged pulse duration specified as the sum
of the activation time needed fo excite the system from the stable fixed point and the
excursion time needed to return from the excited state.

In order to quantitatively characterize the effect of coherence resonance, different
methods can be used, including the signal-to-noise ratio [8, 9] and a properly defined
cnt[rop]y-like measure [13]. In this paper, we calculate the regularity of an individual unit
as [10]:
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R,= () [Var(z)]". 2)

Overall dynamics of the whole array is described by the regularity averaged over all
functional units R =R .

3. Wave structures

In the deterministic case, due to the local coupling between neighboring elements,
excitation waves can propagate through the medium. In the one-dimensional lattice, such
waves propagate without any decrement of their amplitude and velocity until they reach
the boundary of the medium. Note, that excitable systems are characterized by both
excitability and refractoriness. That is, after the system has responded to a superthreshold
stimulus with a large excursion from rest, there is a period of refractoriness during which
no subsequent response can be evoked followed by a period of recovery during which
excitability is gradually rebuilt. Once excitability is restored, another wave of excitation
can be evoked. The wave velocity is the higher the stronger the coupling and the lower
the excitation threshold of the individual functional units. Moreover, it strongly depends
on the time allowed for recovery of excitability.

With noise added to each system, the formation and propagation of excitation
waves are changed. Random excitation can happen in any element at any time. This
element then becomes the center of a wave propagating to both sides. The propagation
stops as soon as it reaches the array boundary or an element in the excitatory (or
refractory) state. Depending on the relation between the mean frequency of noise-induced
firings and the wave velocity, the wave can pass a shorter or longer distance along the
array before it disappears in a collision with another wave propagating in the opposite
direction.

For identical units and equal noise intensity, the above process is completely
unpredictable. In this paper we investigate the case when the one-dimensional lattice of
excitable systems contains an inhomogeneous element with lower excitation threshold.
This element is more frequently excited by noise and becomes the center of wave
propagation. In our simulations, the inhomogeneous unit with a,=1.01 is located at the
beginning of a chain (j=1). For j=2....100, the excitation parameter is fixed ata=1.05.

Fig. 1 presents the spatio-temporal pattern of noise-induced waves in the system
(1) for weak noise (D=0.0002). Black dots

I T i 1 = I

represent the firing state. The gray arrow 4

indicates a center of wave birth. The black
arrow points at an event of wave
suppression after collision with another
wave. One can observe how a wave is
annihilated when it reaches elements in the
refractory state.

In spite of a large number of
excitation and annihilation points, the
cooperative spatiotemporal dynamics looks
fairly regular (Fig. 2, a). In this case, wave
propagation precedes the mean time
between noise-induced firings for any
(except the first) unit in an array. As a
result, spatiotemporal structures in the form
of excitation waves running in different
directions can be observed. Along such
waves each element operates in a more

N g
N

W’ ]
e adi. ¥ .
0 20 40 60 80 j

Fig. 1. Spatiotemporal pattern for D=0.0002 and
g=0.015. Black dots indicate firing events. Appe-
arence (gray arrow) and annihilation (black arrow) as
well as interruption of excitation waves are clearly
observed
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regular way than it would be possible for the same noise intensity, but without spatial
communications. For strong interaction and weak noise, the first unit becomes the single
excitation center and waves propagate without annihilation for long distances. With
stronger noise as well as with weaker coupling, the structure is changed. Increasing noise
leads to interruption of wave fronts (Fig. 2, b). This is related both to effects of
refractoriness and to an instantaneously increase of the excitation threshold caused by
noise. Subsequent waves can not cause firings. Figs 2, b, ¢, and d illustrate how wave
fronts are interrupted more and more frequently with decreasing coupling strength. Thus,
the regime in Fig. 2, a in spite of wave fronts consisting of combinations of oppositely-
propagating waves, is seen to be more regular than the structures in Fig. 2,b, ¢, and d.

To characterize the observed structures, we introduce a causality principle for
firing events in two neighboring units if their phases overlap in time (Fig. 3). Let us call a
group consisting of L paired elements a mutually-conditioned discharge. Obviously, large
(in average) values of L correspond to a well-pronounced spatial structure. Hereafter the
spatial regularity can be defined as the ratio between the mean length of the mutually-
conditioned discharge and its maximal value L=N (i.e. the length of the chain):

R =(L)/N . _ (3)
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Both temporal R, and spatial R AT
: s #*T2
coherence measures characterize to what
degree  noise-induced  spatiotemporal
motions in a one-dimensional lattice can be
regularized by tuning the coupling strength
g and noise intensity D (Fig. 4). For fixed
noise intensity, one can distinguish
different behaviors of R, as function of the
coupling strength g. For weak interaction,
R, monotonically grows. Individual
regularities of all elements is almost equal
(except the first) and they slowly grow
with increasing D. This is related to the
effect of coherence resonance since the
noise intensity is lower than the optimal
value. The first element demonstrates a
high degree of coherence, but it does not
contribute much to the averaged R, along
the array. Thus, for weak coupling,
cooperative dynamics does not manifest itself.
For strong interaction, R, has a well-defined maximum for D=0.0004 that is close
to the optimal value for an individual system. In this case, noise-induced excitation waves
from the first unit penetrate deeply along the array and causes spatial synchronization of
firing events. Note, that individual regularities decrease near the boundaries. This fact
shows that both noise-induced waves and the effect of mutual stochastic synchronization
(discussed below) play an important role in the self-organizing process.
The coupling strength g=0.012 corresponds to some critical behavior where the

Fig. 3. Causality of firing events

6.0
¢ g 00 20 Dx104

Fig. 4. Integral characteristics for (a) the temporal regularity R, (b} the spatial regularity R , and (c) the
summarized regularity R=R r” B4R g
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above mechanisms contribute in an equal way. Within a wide range of noise intensities,
R maintains a constant value. The one-dimensional array becomes . insensitive to
variation of the noise intensity D. This is related to the combination of individual
coherence resonance effects and the regularization in the form of excitable waves.

The spatial regularity R_ behaves in a simpler way. It grows with increasing
coupling and with decreasing noise intensity, approaching a maximal value R =1 (Fig. 4,
b). Let us introduce a spatio-temporal regularity as the sum of the spahal componentR
and the temporal component R, (normalized to its maximal value in the individual

system):
R=R/R, . +R. (4)

rmax

This index allows us to characterize both the possibility of excitation waves and the
temporal degree of coherence. It is interesting to note two peculiarities. First of all, the
maximal value is shifted to a smaller value of the noise intensity D=0.00025. Moreover,
there is region of minimal value of R that corresponds to the absence of coherence in the
noise-induced firing events along an array. This region is located at the same range of D
as a global maximum but shifted to weak couplings.

In this section we investigated the propagation of noise-induced waves and the
appearance of spatio-temporal structures in homogeneous media (g =const., a=const. for
Jj=2,...,100). How will the observed structures transform if the excitable media is
disordered, i.e. the excitation thresholds and coupling strengths are randomly distributed
along an array?

4. Cluster synchronization

The collective dynamics of an ensemble of coupled excitable units of significant
interest for many biomedical applications [21]. A population of identical units with the
same coupling properties serves as the simplest model. In nature, however, full identity in
the properties and operating conditions of the units can only be an idealization. In our
work, in contrast to most previous studies, we investigate ordering effects in ensembles of
elements that are

(i) nonhomogeneous, i.e. the activation parameters a, are random numbers
distributed uniformly on [1.0; 1.1];

(ii) coupled with the strengths 8 which have a random uniform distribution on
some range A=g_ -g . (g .=0.005, but g and, hence, the mean level (g . +g .)/2)
are varied).

Thus, our model provides disorder between interacting units in different ways. The
question of interest is how such elements adjust their motions in accordance with one
another to reach some kind of coherence?

In our experiments with varying distribution intervals for the coupling strength and
with a certain level of noise, three basic types of space-time behavior in a one-
dimensional array (1) of 100 units was observed. For a vanishing and very narrow A, the
behavior is totally incoherent that is reflected in the irregular pattern of black (firing
state) and white points (Fig. 5, a). The firing events in individual units occur at
frequences that are randomly spread in the range [0.05;0.27] (Fig. 5, b). In this case, no
stable frequency- or phase-locked groups can be detected. A qualitatively different
behavioral pattern is encountered for a broader range of coupling (Figs 5, ¢ and d). Here,
synchronized groups, i.c., clusters of stochastic elements, appear. Within each cluster the
frequency difference between any two oscillators vanishes or is small in comparison with
the difference between neighboring clusters. To describe spatiotemporal patterns (Figs 5,
a and ¢) in terms of the causality principle let us calculate the probability of interruption
of firing on the j-th element. In the clusterless case, the distribution of probability along
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Fig. 5. Spatiotemporal evolution and mean firing frequencies q;b of an array of 100 excitable units at
D=0.025 for different widths of the coupling range forA=0.002 (a, b) and for A=0.1 (¢, d). A sequence of
clusters are clearly seen in the latter case

an array is random (Fig. 6, a). For a cluster structure, the function P contains a number of
local maxima whose locations coincide with the boundary of the respective clusters (Fig.
6, b). Hence, interruption of mutually-conditioned discharges takes place in excitable

P — " T T T P T T T T T ¥ T
8000 | {1 8000} 1
6000 + & 6000 - 4
4000 - 4000
2000 2000
0 " i . i : O il |
s 00 40 60 80 p 0 20 4 60 80

Fig. 6. Probability of firing interruption () without clustering and (b) with a cluster structure
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Fig. 7. Reduction of the number of frequency-locked clusters with an increasing width of the coupling
range (D=0.025)
units at the boundary of a cluster. With a broader coupling interval, the number of clusters
decrease (Fig. 7) until finally the global synchronous state (one-cluster state), where all
units fire simultaneously, is achieved. Since the incoherent behavior and the totally
synchronized behavior are well understood [22, 23], we focus our study on clustering of
noise-induced oscillations.

Let us consider now an individual cluster as a spatial meta-unit of an array and
describe its main properties. Because of the assumed distribution of system parameters,
the elements in a cluster have different randomly scattered frequencies for vanishing
coupling, i.e. there is no correlation between the firing events of different cells. With
interaction, a frequency locking effect which is responsible for cluster formation takes
place (Fig. 8, a). In this case, the elements composing the cluster display regular
synchronous firings. However, the variance of the pulse duration o’ =(v?)-(x;* changes
within a cluster. It is minimum in the center of cluster and the difference in Uj between
neighboring elements increases near the ends of the cluster (Fig. 8, b). Thus, with
frequency entrainment, oscillators demonstrate different degrees of mutual
synchronization.

Frequency-locking entrainment is closely related to the phase conditions. For
stochastic systems one has to use the notion of «effective synchronization» [24]. In the
presence of Gaussian noise (or another random process with unlimited distribution
function) the phase-locked state inevitably has to be broken at some moment. Thus, the
system is supposed to be effectively synchronized if the phase locking is observed during
a finite but long enough time (determined a priori). A measure of stochastic
synchronization is the cross-diffusion coefficient D/ = Yadl dt[( ¢2 (D)4, ()] [25]. This
quantity describes the spreading in time of an 1n1t1al distribution of the phase difference
¢r)" [26] between neighboring elements. In our study, the cross-diffusion coefficient
attains a vanishing value within each cluster (Fig. 8, ¢) and assumes different nonzero
valuecs for inter-cluster units. This agree wilth the stronger condition of phase
synchronization which provides high degree of collective entrainment within clusters of

" We use the instantaneous phase introduced as tI)j(z) 2n(r t (2, +t,) +2nk, where £, is the time of
the k th firing as defined by the threshold crossing of x| (.f) at x=1.0.
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Fig. 8. Mean firing frequency <f> (a), deviation of pulse duration o2, (b), effective cross-diffusion

coefficient D ¢! (c) and noise-induced regularity R, (@) within a single cludter. The widths of the coupling

interval and noise intensity are fixed at 0.1 and 0.025, respectively
stochastic oscillators. Hence, the notion of effective synchronization can be generalized to
the spatially extended group of elements. Similar effects have been observed for coupled
Van der Pol oscillators with fluctuations [19]. What are the coherence properties of such
frequency-locked clusters? It is clearly seen that the regularity exhibits a maximum value
inside the synchronized state (Fig. 8, d), while the outer-cluster elements demonstrate a
lower level of coherence. Comparative analyses of the regularity and pulse deviation
functions allow us to assume that high coherence behavior within a cluster is related to
synchronization phenomenon.

In general, the collective response of a cluster is characterized by two aspects. The
first is a synchronization effect that leads to the frequency and phase entrainment. The
second is the regularity of each functional unit due to coherence resonance effects.
Remarkably, the regularity averaged over the spatial coordinate can be maximized within
each cluster by tuning the noise (Fig. 9). At weak external noise, a cluster considered as a
whole functional unit demonstrates weak coherence in spite of the fact that firings in the
elements of the cluster tend to occur simultaneously. This is related to the relatively large
fluctuations of the pulse duration of each composed elements. With increasing D, the
coherence of the temporal and spatial structure of the firing process is enhanced and
reaches a maximum. At large noise, the frequency and phase fluctuations grow rapidly
and this leads to the destruction of the coherence properties for the composed units and,
hence, of the spatial coherence structure. Because of the phenomenon of array-enhanced
coherence resonance [23], the regularity of the whole cluster is much higher than that of
the uncoupled elements (compare the curves I, 2 and the dashed curve in Fig. 9).
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Fig. 9. Illustration of synchronization-enhanced
coherence resonance for the system (1) demon-
strating cluster structure for A=0.1. The regularity

Let us return to the full system. Now
an array composed by excitable elements
can be considered in macro level as a
sequence of clusters whose size and
structure is determined by a random
distribution of firing properties and the
degree of interaction. Fig. 10 illustrates the
ordering effect caused by the stochastic
synchronization and the resulting high
coherence within each cluster at the
optimal level of noise. The coherence of
the net output is averaged over a set of
clusters. Because of the frequency
difference between clusters, the regularity
of the array output is lower than the
maximum value of each cluster (curve 3 in
Fig.9).

averaged over spatial the coordinate R is plotted
versus noise intensity for individual clusters (curvel
and 2) and for the whole array with a cluster
structure (curve 3). Dashed curve corresponds to the

uncoupled array
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Fig. 10. Synchronous (@) and coherence (b) properties along the array with cluster structure for varying
noise level. The width of the coupling interval is fixed at 0.1

5. Conclusions

Our investigations of the coherence properties in an ensemble of diffusively
coupled excitable systems showed that self-organization can manifest itself in two ways:

(i) A one-dimensional lattice of excitable units with at least one inhomogeneous
element (in our case, a unit with lower excitation threshold) demonstrates excitation
waves. The degree of coherence of such a structure can be enhanced by tuning the noise
intensity and/or the coupling strength;

(ii) A random distribution of the system parameters responsible for the excitory
properties and the strength of interaction leads to cluster formation defined as stochastic
phase locking and as a mean frequency entrainment between a group of cells. Composed
by a number of elements with different properties, each cluster can be considered as a
«spatial» excitable unit exhibiting coherence resonance. Gain of regularity within each
cluster is associated with the effect of stochastic synchronization.
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We believe that these effects can be of importance for biological applications
where the background noise may play a constructive role in ordering phenomena in a
large networks of excitable elements through the synchronization mechanisms.

This work was partly supported by grant CRDF (REC-006), grant RFBR (01-02-
16709). O.S. aslo acknowledges INTAS grant (YSF 01/1-0023). '
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OBPA30BAHUE UHOYIIHPOBAHHBIX HTYMOM
INPOCTPAHCTBEHHBIX CTPYKTYP B BO3BYIUMbIX CPETAX

O.B. Cocrosuesa, [I.E. [locmuos, A.H. Pomun

Hccnenyerca oOpa3oBaiie KOTEPEHTHBIX CTPYKTYP B IONYIALHH BO30YIMMBIX
CHCTEM, HaxXOHAIMXCAd Tof BosfeiicTBieM Iuyma. I[lokasaHo, 4TO OFHOpOJHBIE
OJIHOMEPHbIE PEMIETKH C XOTsl Obl OHIM «BLIPOXKIECHHBLIM» 2JIEMEHTOM JEMOHCTPUPYIOT
HHIYIFPOBAHHBIE TIYMOM BOJIHbI 3a’KMTaHHsA, CTEMEeHbL YIIOPANOYEHHOCTH KOTODBIX
HMeeT MaKCHMYM IPH HEKOTOPOII ONTHMANIBLHON HHTeHCHBHOCTH IIyMa. Ilpu cnyyaitnom
pasbpoce MapaMeTpoOB OOHOMEPHOIO MacCHBa, OTBETCTBEHHBIX 3a BO30YXK/IEHHE U CHILY
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SPECIAL APPROACHES TO GLOBAL RECONSTRUCTION
OF EQUATIONS FROM TIME SERIES

B.P. Bezruchko, Ye.P. Seleznev, V.I. Ponomarenko, M.D. Prokhorov,
D.A. Smirnov, T.V. Dikanev, L.V. Sysoev, A.S. Karavaev

Some problems arising during global reconstruction from time series are illustrated by
reconstruction of etalon equations and modeling of real-world radiophysical systems.
Efficiency of specialized approaches oriented to modeling of restricted classes of systems is
demonstrated and new specific techniques are proposed.

1. Introduction

In practice, to obtain a mathematical model from general laws of nature (from «the
first principles») by individualizing them with reference to the object of investigation is
often impossible. Typically, numerous phenomena of different nature which details are
not clear affect the process under investigation or the first principles (similar to Newton’s
laws in mechanics) for the field of interest are not discovered yet. In such a case,
experimental data become the main source of information about an object and the
problem of an empiric model construction arises. Its simplest example is approximation
of a set of points on the plane (x,y) by a functional dependence y=f(x). Since results of
observations’ are presented, as a rule, in the form of time series (sequences of observable
values, measured at discrete time instants), then the problem transforms into modeling
from time series. It is relevant in physics, meteorology, seismography, medicine and
physiology, etc.

Here, we mean modeling of complicated (mainly, chaotic) behavior. Earlier this
problem was solved with the help of statistical models [1], since complicated behavior
associated only with very large numbers of degrees of freedom. However, in 1960-70s
scientific community got to understand that complicated behavior can be exhibited even
by simple (low-dimensional) nonlinear dynamical systems [2,3]. After that, there
appeared a significant interest to construction of dynamical empiric models in the form of

* difference equations x(7)=F(x(¢ ,).c), where x=(x,.x,,....x,)ER" is a state
vector, F is a vector-valued function, cER" 1s a vector of its parameters, #, is discrete time

(4-6];

1 An experimentally measured quantity is usually called«an experimental observable» or simply «an
observable».

137




« ordinary differential equations (ODEs)x(t)*F(x(r),c) [4.7];

* delay differential equations (DDEs) [8,9

* partial differential equations [10].

A peak of interest to the problem of globaF reconstruction was observed in 1990s
[11-36], which was foilowed by the appearance of reviews on this subject [37-40]. But
- then disadvantages of the developed approaches were shown and difficulties of empiric
modeling determined to a significant extent by the use of universal structures and
polynomial approximation became apparent. All that reduced, in part, attention to this
research area. In the latest papers devoted to global reconstruction, one observes certain
shift of focus to problems of dynamical variables and model structure selection [41-50],
though there are also some works oriented to further development of universal structures
and techniques [51-53].

The purpose of this work is to illustrate some difficulties arising in global
reconstruction from time series and to present approaches and technologic tricks for their
overcoming. In section 2 we describe a general scheme for empiric mddeling and the
standard approach and analyze peculiarities of its application. Our original results
concerning different stages of the scheme are presented in the rest of the paper which is
organized as follows. In section 3 the problem of dynamical variables selection is
considered. In section 4 we demonstrate possibilities of a specialized model structure
selection on the example of nonautonomous systems. A specific technique for parameter
estimation, based on peculiarities of behavior of systems with delayed feedback and
efficient in the case of noisy time series, is shown in section S. In section 6 we present a
special method of model refinement which is based on some properties of transient
processes and allows to optimize model structure by excluding superfluous terms from it.
We summarize and present generalizing considerations on the problem of global
modeling in section 7.

2. Typical scheme of empiric modeling and standard approach

Despite the variety of existing approaches and practical situations, it is possible to
distinguish the following basic stages in the procedure of modeling from a scalar time series.

1. Organization of an experiment (if there is such a possibility) and obtaining a
time series of an observable quantity n (a training time series): {n()},_,"", where t=t+(i-
1)At, At is a sampling interval, N_is the time series length.

2. Choice of the model equations type (stochastic or deterministic, difference or
differential, etc).

3. Choice of model variables x,,...,x;. Here, one specifies the number of variables
D and the kind of their relation with the observable v. As a rule, it is necessary to obtain
time realizations of lacking (hidden) variables from the observable series.

4. Selection of the forms of approximating functions F, (i.e. components of F),

=1,...,D, which will enter right-hand sides of model equations. On the stages 2-4, model
structure is specified, after that only stages of calculation remain.

5. Estimation of model parameters ¢,,...,c,, from a time series data.

6. Diagnostic check-up of a model, i.e. investigation of solutions to the obtained
equations and their comparison with the observed process, criteria of quality being
determined by modeling purposes.

Under statistical modeling, one uses, as a rule, ARMA-models [1] which are linear
stochastic difference equations where subsequent values of an observable are model

2 The term «global» means that model equations (written down in a closed form) describe behavior of
an object in the entire phase space (globally).
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variables. Under nonlinear dynamics approach to modeling, one can imagine (in contrast
to linear case) arbitrarily many different forms of equations. They differ from each other
by both function kinds and kind of relation between dynamical variables x, ,...,x, and an
observable n. Therefore, the problems of variables and model structure selection become
more difficult. This situation became easier after Takens [54] and Sauer et al [55] had
shown that it is possible to obtain from a scalar time realization n(f) of a dynamical
system such vectors x(r) that are related to the original state vectors in one-to-one and
smooth fashion. So, they «legalized» theoretically the use of sequential values of an
observable [n(z)mn(t+7),...m(t+(D-1)x)] (x is a constant delay) or its sequential

derivatives [n(z)7(t),...,d°(z,)/dt°"] as coordinates of vectors x(z)), given D22m+1
(sufficient but not necessary condition), where m is a dimension of the manifold which
the phase orbit of an original system belongs to. Even though it does not mean that
employment of different variables (e.g., obtained by integration [56]) is necessarily less
effective for modeling.

The choice of variables often dictates a model structure. For example, if sequential
derivatives are used for reconstruction from a scalar time series, then model equations
assume the form

1)

N b T S W |

where x, (£)=n(?), i.e. they involve the only function .

: After the equation type and the way of dynamical variables reconstruction are
chosen, one should select the forms of functions entering right-hand sides. Under global
modeling, a required function F is most commonly looked for in the pseudo-linear form,
1.e. linear combination of nonlinear basis functions f:

M

F(x) =2, ¢ f; (). )

One widely uses the standard polynomial basis: 1,x,,...,%,,,%,% X,%,,...x,%,..., i.e.
representation of F in the form of the multivariate algebraic polynomial of some orderK.
Coefficients c; are estimated, as a rule, via the least-squares routine’, i.e. by minimization

N
of the quantity e>=1/NZ_, (x,(2)-F(x(z,))).

Choice of dynamical variables and model structure is often oriented to construction
of models in a universal form. Thus, widely exploited model ODEs (1) with a polynomial
in the right-hand side are often called standard [17,18]. This term could be referred to all
the other cases when no information on specific features of an object is incorporated into
the model structure. Their pretensions to universality are theoretically validated [S5].
Nonetheless, all the achievements* in modeling of real-world objects we are aware of are

3 One could also employ the more general maximum likelihood principle [57]. But it is reasonable
only under the high noise levels that is not our case. So, we have used the least-squares approach.

4 Global model ODEs with polynomials are used for control [11,26], attractor characteristics
estimation from short and noisy time scrics [30], signal classification [23,24], and confidential transmission
of information [31]. Under the standard approach, there were obtained models qualitatively reproducing
complex dynamics of Belousov - Zhabotinski reaction [21], electrochemical process of copper dissolution in
sulphuric acid [19], a certain regime of vortex fluid movement [20].
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isolated rare instances. A blunders at any of the stages of modeling scheme can become
an obstacle. Choice of variables can be unfortunate. But even suitable variables can not
help if the form of functions is inappropriate. Thus, the popular standard structure can not
be the best one for the entire multitude of real-world systems and situations. As a rule, it
provides very cumbersome equations exhibiting divergent solutions (polynomial fit is
especially inefficient in high-dimensional spaces).

Seemingly, a promising way of the further development of global reconstruction
methods is rejection of the pretensions to model structure universality and creation of
specialized approaches oriented to some classes of objects. It is reasonable to consider
sufficiently important classes which specific features are known. But development of
specialized techniques for parameter estimation and model refinement seems also quite
useful. All these considerations are illustrated in the next sections.

3. Dynamical variables selection: preliminary testing for
single-valuedness and continuity

As it has been already mentioned, in constructing model equations in the form
y(1)=F(x(z)) from a time series {n(#,)}, one forms the series of state vectors {x(r,)}, where
x=(1x, ,X,,....X,JERP, x, are dynamical variables, D is a model dimension. Coordinates of
vectors X can be obtained as sequential derivatives, time delays, etc. Then, the series of
quantities to enter left-hand sides of model equations {y(¢,)] is obtained from the series
{x(t)} according to the chosen model type: either by numerical differentiation of {x(r)]
for ODEs dx(¢)/dt=F(x(t)), or just by the shift of {x(z,)} along the time axis for discrete
maps x(r.,,)=F(x(z,)). Finally, the forms of approximating functions £, are specified and
their parameters are estimated.

An uncontrolled choice of the variables can make approximation of the
dependencies y,(x) with a smooth function extremely problematic [58] or even make
these dependencies non-unique. Here, we describe the method of estimating suitability
and «convenience» of the chosen variables x, for constructing a global dynamical model.
It is based on testing the series {x(z,)} and {y(z)} for single-valuedness and continuity of
each dependency y,(x) in the entire region of an observed motion [46]. Importantly, we
use local characteristics rather than averaged ones [35, 59].

Our technique is based on the following consideration. If a dependency y(x) is
single-valued and continuous in a domain V, then the difference ly(x)-y(x,)| tends to zero
when [Ix-x,||I—0 for each x,€V. In practice, violation of this condition may be viewed as a
sign of non-single-valuedness or discontinuity of the dependency y(x). Since the
observable time series has a finite length, the above-mentioned limit, strictly speaking,
cannot be found. However, it is possible to trace a tendency in variations of the quantity
ly(z,)-y(¢))! when the vectors x(r) and x(t) are made closer and closer, down to a certain
finite distance. Given sufficiently large amount of data N_, high accuracy of measure-
ments, and low noise level, this distance can be made small enough for each region of the
observed motion.

The method of testing consists in the following (Fig. 1, a). The domain V is
partitioned into identical hypercubic boxes of the size 3, all boxes containing at least two
vectors are selected (they are denoted s,.s,,...,5,,). Difference between maximal and
minimal values of y inside a box s, is called local variations =max . y(x)-min  y(x).
Maximal local variation ¢ =max €, and its graph s-mi&) are used as the main
characteristics of the investigated dependency. The suitability of the considered variables
x and y for global modeling is assessed in the following way.

1) If a dependency y(x) is single-valued and continuous, the value of ¢ is
sufficiently small for small & and tends to zero when 8—0 (Fig. 1, b, filled circles). It is
not hard to show that a graph ¢__ (8) is a straight line for sufficiently small .

2) If a single-valued and continuous dependency has a region of very steep slope
(a «jump»), then e_  remains rather big for sufficiently small 8, since that region is
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Fig. 1. a - Illustration for a technique of testing a dependency y(x) for single-valuedness and continuity in
the case D=2. b - Possible appearance of graphs ¢__ (8) for different variants of dynamical variables

situated within one box. However, the further decrease of  leads to the decrease of ¢
because the region of a jump becomes divided into several boxes. The graphe gf
exhibits a «breakpoint» at the value of & equal to the size of the region of steep slope
(e.g., Fig. 1, b, white circles). In such a case, the dependency y(x) is also difficult to
approximate with a smooth function.

3) If ¢, remains rather large and does not decrease at 6—0 (Fig. 1, b, filled
squares), then the considered variables are not appropriate for global modeling. Such a
situation can be related both with non-uniqueness of the dependency and high noise level.

So, dynamical variables should be selected so that the graph ¢ _ (3) tend to the
origin gradually, without breakpoints, and with small slope (Fig. 1, b, filled circles). The
most important feature distinguishing the proposed approach and providing its usefulness
for global modeling is employment of local (not averaged) characteristics. Let us
illustrate it by modeling a real-world radiophysical system: a nonlinear electric circuit
(harmonically driven RLC-circuit with switched capacitors) which scheme is shown in
Fig. 2, a. The element K is an electronic key, a microscheme comprising dozens of

1.0 1.0
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- o .“. ’// + ..c
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0.0 0.5 0.0 3 0.5
a b 8 ¢

Fig. 2. a - The scheme for the circuit with switched capacitors: C,=0.1 uF, C,=4.4 yF, L=0.03 H, R=10%,
U,=02V, U=2344 V, driving frequency equals 2.98 kHz, sampling frequency equals 250 kHz.
b - The graphs e () for different variants of the model structure (for the dynamical variable x,=/): I - fora
dependency X;(x,,x,,x;) of a model (3), white squares; 2 - for a dependency J4(x; X, X5) of a model (1),
white circles; 3 - for a dependency X, (x, ,,,@) of 2 model (4), filled circles. The graphs e(d) look similar
for all the examples (the graph for the first one is shown with the dashed line). ¢ - The graphs £,.,(8) for
different variants of the model structure (when the dynamical variable x; is an integral of the current/):
4 - for a dependency x,(x, ,x,,x,) of a model (1), white circles; 5 - for a dependency x, (x;,x,,x;) of a
model (3), white squares; 6 - for a dependency X,(x;,%,,¢) of a model (4), filled circles
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transistors and other passive elements which is fed from a special source of dc-potential.
At small values of voltage U on the capacity C,, the resistance of the key is very large and
linear oscillations occur in the circuit RLC,. When the voltage U achieves a threshold
value U, , the resistance of the key decreases abruptly and the capacity C, becomes
connected to the circuit. Back switching occurs approximately at the same value of U (in
fact, at somewhat smaller value - hysteresis takes place). As a result, the system is
nonlinear and exhibits complex dynamics (in particular, chaotic oscillations) at big values
of driving amplitude [60,61].

We employ a chaotic time realization of the current / through the resistor R (see
Fig. 2, a) as an observable time series {n(z,)}. The data are recorded with the aid of a 12-
bit ADC, the sampling interval is Ar=4 psec, the driving period is T=84A¢, the length of
the series is N_=3-10*. Six examples are considered below (three variants of the model
ODEs structure for two different observables). The results of the application of the
proposed method (Fig. 2, b, ¢) and of the model construction are presented. The graphs in
Fig. 2 are numbered in agreement with the numbers of the following examples.

I - A popular model structure

X =f(x.2,%,),
X, = fo(x,%,%3), 3)
¥ ef(e ),

where x, (£)=n(t,), x,(t,)=n(t 1), x,(r)=n (¢ +27) are time delay coordinates, 1=21At is the
first zero of the autocorrelation function. A smoothing polynomial is constructed for

numerical differentiation. All three dependencies ¥, (x,,x,,x,), k=1,2,3 are analyzed. The

value of ¢ does not tend to zero when & decreases for all k. All graphs ¢__(8) look
similarly, one of them is presented in Fig. 2, b with white squares (for £=3). It indicates
the impossibility of constructing an efficient global model that is confirmed in practice
completely.

2 - A standard model (1,2) with x,(#)=n(z,). The dependency x;(x, ,x,,x,) is tested.
e . (8) decreases when 8 decreases (Fig. 2, b, white circles) that points out to the possible
single-valuedness. The result of modeling: an efficient model, which right-hand sides are
algebraic polynomials, can not be obtained. Obviously, a polynomial is inappropriate to

fit the dependency t,(x,,x,,x,). Another form of the approximating function is necessary
here. Its choice is a difficult problem which is not a subject of the present paper.

3 - Following the recommendations on the reconstruction of nonautonomous
systems [33,34], we construct a model in the form

(4)

X, = F(xl,xz,m),

where x,(z)=n(¢,) and g is the phase of driving. The dependency ,fg(xi X,,¢) is tested. The
time series of the phase g is obtained as ¢(t)=wt, (mod2x), the angular frequency w is
assumed to be known. The graph ¢ _ (8) (Fig. 2, b, filled circles) shows that the
dependency is, possibly, single-valued. However, an efficient model with harmonic

driving and polynomial fit can not be obtained. Again, one needs to select a special form
of the function F.

4 - A standard model (1,2) with x,(r) = f:: n(r)dt. This variable makes physical
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sense, it is the summed charge on the capacities C; and C,. The time series {x,(t)} is
obtained via the numerical integration of the measured time series of the current / (using

the method of trapeziums). The value of ¢ (8) for the dependency x;(x, .x,,x;) does not
decrease when & decreases (Fig. 2, ¢, white circles) and remains large. An effective
model can not be constructed.

5 - A model (3) with x,(t) = f:; n(#)dr and delayed coordinates x,(7)=x,(t4t) and
X, (1,)=x,(t7+2¢), where © is again the first zero of the ACF. All three dependencies

x;(x,%,,%,), k=1,2,3 are tested. The graphs ¢ () do not tend to the origin when &
decreases in all three cases. One of them (for k=1) is shown in Fig. 2, ¢ with white
squares. An effective model can not be constructed.

6 - A model (4) with x () = J}:"n(f)a‘t. A graph ¢

%,(x, x,,0) is single-valued and, moreover, varies «gradually» (Fig. 2, c, filled circles). A
reconstructed model (4) with additive harmonic driving and bivariate polynomial of the
11th order demonstrates a chaotic attractor qualitatively similar to the experimental one
(see also section 4s) and provides an accurate forecast 5T ahead.

It is significant that an optimistic estimate according to the criterion ¢_, (8) and
good results of the global reconstruction are achieved only in the last (the sixth) case.

(8) shows that the dependency

max

The graphs for averaged over all the boxes local variation € (8) are, however, practically
the same for all above-mentioned choices of variables (one of them is shown in Fig. 2,b

with the dashed line). It means that the average quantity ¢ does mot provide all

information necessary for global modeling. Therefore ¢ can be used in dynamical
modeling only as an additional characteristic.

4. Model structure selection: nonautonomous systems
under regular external driving

Here, we consider another cause of the standard approach inefficiency. In fact, its
failure is inevitable «payment» for the generality of model structure. Probability to guess
optimal model form without using a priori information or special preliminary
investigation of the object is quite low. Therefore, we suggest to choose some classes of
systems and modify the standard structure with reference to that classes. Here, we
propose such a modification for modeling systems under regular external driving. It
consists in the use of nonautonomous ODEs. That is function explicitly depending on
time are incorporated into the model equations. First, we consider the simplest case of
harmonic additive driving. Model is suggested to be constructed in the form

xl = xz,

xz = 13,

N (5)

Zp = . y) + acos(2nd/T) + bsin(2mt/T),

where F is an algebraic polynomial of some order K (at D=2, this is just an equation of
harmonically driven oscillator). However, it is insufficient only to incorporate the driving
into the last equation (5), a necessary condition for the success of modeling is to estimate
driving period T from a time series with high accuracy.
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Fig. 3. a - Typical appearance of the power spectrum for harmonically driven chaotic systems: there is a
pronounced peak. b - Approximation error for a model (5) versus trial value of driving period T

Prerequisites for construction of model equations in the form (5) can be a priori
information or the presence of a discrete peak in the power spectrum of an observed time
series (Fig. 3, a). Location of the latter can also serve as a rough estimate of driving
period. Given a precise value of T, parameters ¢ and b and polynomial coefficients are
easily estimated via the linear least-squares routine. But to estimate 7" is not so simple
since it enter equation (5) in a nonlinear way. Therefore, it is estimated individually using
a special procedure [33] (it is illustrated in Fig. 3, b where the graph of an approximation
error versus trial value of T is shown). Importantly, error in its estimation AT=T-T,
(where T, is an unknown «truth» value) leads to a significant «phase shift» between the
truth driving and its model fit if the training time series is long. The following
relationships between relative error of driving approximation e, and quantities AT/T'; and
T, /T, (where T, is the duration of the observed time realization) hold

e, = 2032 (ATIT,)(T,, IT,). (6)

It follows that the driving period should be estimated more accurately for longer training
time series, otherwise incorporation of explicit time dependence is useless.

A result of application of the proposed technique to modeling of the above-
mentioned (section 3) harmonically driven RLC-circuit with switched capacitors from
the integrated time series of current / (i.e. in the case selected as the best for modeling
with the help of the testing method of section 3) are presented in Fig. 4. Obtained empiric
model (5) with D=2 and K=11 (and excluded superfluous terms) behaves like the
original system and provides sufficiently accurate forecast quite far ahead.

Harmonic force represents an important but sufficiently narrow class of possible
ways of driving. The proposed approach to modification of standard structure can be
extended to more complex and realistic situations, namely, for
1. arbitrary way of entry of harmonic driving;

2. arbitrary form of regular (i.e. periodic or quasiperiodic) driving.

For the first situation, significantly bigger than for a model (5) degree of generality

can be achieved by using a polynomial F with alternating coefficients [44]:

X=X,

Xy = Xy,

) (7)

j’D = F (xl )'xz'!' * 'TxD!t)B
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Fig. 4. a - Projection of an experimental orbit for the circuit with switched capacitors (shown in Fig. 2,a)
onto the plane summed charge - current.b - A corresponding projection for the best reconstructed model,
i.e. a model (5) with D=2 and K=11

where x,=n, and Freads

K D
o Rl . ' r-
F (%0 iXp01) = 2,] Fiv il (‘h.fz‘....dy +a,,  cosot+ b,l_‘,z‘___‘jﬂsmu)r)l Ij.=1 xh,

(8)
D
Bl sk

To estimate parameters of a model (7, 8), one can exploit an above mentioned procedure
where accurate determination of the driving period T is provided.

To illustrate of efficiency and advantages of the structure (7,8), we present a
numerical example: reconstruction of equations from chaotic time series of Toda
oscillator when driving is not only additive. Original equations read

Uy = Uy,
. €
U, = -0.45u, + (5+4cost)(e™-1) + Tsint.

Time series is obtained here (and in all numerical examples presented below) by
numerical integration of original equations with the help of Runge-Kutta routine. The
best model (7, 8) is achieved at D=2, K=9, it exhibits chaotic aftractor practically
identical to the original one (Fig. 5, 4, b). Such results can not be achieved with models
(5) (Fig. 5, ¢). Standard models (1,2) demonstrate, as a rule, globally unstable orbits
(Fig. 5, d). Prediction times for the best models (7.8), (5) and (1,2) are equal to 77, 1.5T
and 0.157, respectively.

For the second situation (arbitrary regular driving), we propose to use the structure
of equations (7) involving time dependence but not necessarily harmonic:

Fly oy eeei¥pol) = [ Xy %50e % ) 1 8(0)s (10)

where f is an algebraic polynomial, and function g(r) describes the driving and involves
also free parameters. Two approaches to the specification of g(¢) are possible. The first
one is to guess a special formula on the basis of a priori information. The second
approach is more universal and can be used in the absence of detailed knowledge of the
form of driving which is approximated as
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Fig. 5. a- Projection of attractor of Toda oscillator (9).b-d - Projections of phase orbits for a model (7. 8)
(D=2, K=9), a model (5) (D=2, K=10) and a standard model (D=4, K=6), respectively

K, , X, )
g(t) =a,+Z_ a,cosujtlT, + @, )+ ... + 2 a cos(mit/T, + @, ). (11)

m.j

Here, m=1 for the periodic case, while quasiperiodic driving is described as the sum of
m>1 trigonometric polynomials with different periods T, and different orders k,, .

Procedure of estimating parameters of the model (7, 10) also rests on the least-
squares technique. But, since here several free parameters can enter the expression for the
driving g in a nonlinear way, it is reasonable to use one of well-known iterative methods
for the solution to the nonlinear least-squares problem (we use a modified Levenberg -
Marquardt routine [62]).

Efficiency of the approach was verified in numerical experiments (reconstruction
of equations from time series of Toda oscillator under different forms of driving: pulse
periodic, periodic with subharmonics, quasiperiodic [63]). We note that efficient models
with trigonometric polynomials (11) can be achieved for very large number of harmonics
(that is necessary to describe uneven driving signal). This is an important advantage of
the proposed approach, since instability of models (1,2) with algebraic polynomials of
high orders seems the main reason for the standard approach failures.

The considered stages (dynamical variables and model structure selection) are the
key ones in modeling. However, efficient specialized techniques for parameter estimation
and model refinement are also useful. Techniques of such a sort are presented in the
following two sections.
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5. Model parameters estimation: quick determination
of delay time from noisy time series

Here, we describe a technique of parameter estimation for DDEs. The technique is
based on some specific properties of time realizations of delayed feedback systems [47,
48). We consider one of the most popular first-order DDE as an object of investigation

ey¥(£) = -x(t) + f(x(t - 7)), (12)

where T, is the delay time, f is a nonlinear
function, and parameter e, characterizes *(t-w0) | Delay x(f)

inertial properties of the system. In general line <
case, Eq. (12) is a mathematical model of

an oscillating system composed of a ring N Fi
with three ideal elements: nonlinear, delay, ilter
and inertial ones. In a radiophysical version

of the ring (Fig. 6), an amplifier with the Nonlinear

transfer function f plays the role of device Fix(t-to))

nonlinear device, a delay line provides a
delay t,, and a filter defines the parameter
e, We develop a technique for estimating  Fig. 6. Radiophysical model of time-delay system
Ty, f, and ¢, from the time series.

The proposed method of estimating ¢, exploits the features of extrema shape and
location in the temporal realization x(¢) of the system (12). The peculiarities of extrema
location in time are clearly illustrated by N(<) plot in Fig. 7. To construct it one has to
define for different t values the number N of pairs of extrema in x(¢), that are separated in
time by t. If N is normalized to the total number of extrema, then for sufficiently large
extrema number, it can be used as an estimation of probability to find a pair of extrema in
x(r) separated by the interval . Let us explain the qualitative features of N (<) for various
values of parameter ¢,

In the absence of inertial properties (£,=0) differentiation of Eq. (12) gives

3(1) = 3(t-t)df (x(t-1))/dx(t-v,). (13)

From Egq. (13) it follows that if x(z-t;)=0, then x(¢)=0. Thus, for =0 every
extremum of x(r) is followed within the time <, by the extremum. As the result, N(t)
shows a maximum for t=v, in Fig. 7, a.

In the presence of inertial properties (g,>0), which corresponds to real situations,
the most probable value of the time interval between extrema in x(¢) shifts from 1, to
larger values. This effect can be explained using the ring system shown in Fig. 6: the filter

L0 02 T
|
N | N |
|
! |
! |
0.0 | 0.0 .
a 0 T Ta b 0 T TU

Fig. 7. Number N of pairs of extrema in a realization of Eq. (12) separated in time by <, as a function of =.
N(7) is normalized to the total number of extrema in time series: a - €,=0, b - €,>0
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introduces a certain additional delay in the system. As the result, the extrema inx(r) can
be found most often at the distance t,+t_ apart (Fig. 7, b). For instance, the computational
investigation of Eq. (12) with quaclratlc nonlinear funct:onj(r) A-x? allows us to obtain
an estimation t ~¢ /2 for large values of the parameter of nonlinearity A.

For ¢,>0 the extrema in x(r) are close to quadratic ones and therefore (7)=0

and x(¢)=0 at the extremal points. It can be shown that in this case there are practically no
extrema in x(f) separated in time by T, To prove this, let us differentiate Eq. (12) with
respect 1o £:

egx(1) = -x(t) + x(t-v)df (x(t-7,))/dx(t-7y). (14)

If for (r)=0 in a typical case x(r)=0, then, as it can be seen from Eq. (14), for
e#( the condition'x(¢-t,)#0 must be fulfilled. Thus, there must be no extremum separated in
time by T, from a quadratic extremum and hence N(x,)—0. For t#t,, the derivatives x(f)

and ¥(z-t,) can be simultaneously equal to zero, i.e., it is possible to find extrema
separated in time by <. The proposed method of T, determination does not need significant
time of computation because only operations of comparing and adding can be used for the
extrema definition and N(t) construction.

To recover the parameter ¢, and the nonlinear function f of system (12) from the

chaotic time series we plot in a plane a set of points with coordinates (x(z-t,),e,t(1)+x(z)).
According to Eq. (12), which can be written in the form

eX(1) + x(1) = flx(2-xy)), (15)
the constructed set of points reproduces the function f. Since the parameter ¢ is a priori

unknown, one needs to plot ex(#)+x(¢) versus x(7-t,) under variation of ¢, searching for a

single-valued dependence in the plane (x(r-t,), ex(r)+x(¢)), which is possible only for
e=e, As a quantitative criterion of single-valuedness in searching for e; we use the
minimal length of a line L(e), connecting all points ordered with respect to x(r-t,) in the

plane (x(t-v,), e¥(#)+x(¢)). The minimum of L(e) is observed at e=¢,. The set of points

constructed for the defined ¢, in the plane (x(z- t,), ex(£)+x(¢)) reproduces the nonlinear
function, which can be approximated if necessary. In contrast to methods presented in
[8,35] which use only extremal points or points selected according to a certain rule for the
nonlinear function recovery, the proposed technique uses all points of the time series. It
allows one to estimate the parameter ¢, and to reconstruct the nonlinear function from
short time series even in the regimes of weakly developed chaos.

To test the efficiency of the proposed technique we apply the method (o a time
series produced by the Mackey-Glass equation

X(t) = -bx(2) + ax(t-z ) )/(1+x°(t-7,)), (16)
which can be converted to Eq. (12) with e;=1/b and the function
flx(t=xp)) = ax(t= )/ [b(1+x°(r-7,))]. (17)

The parameters of the system (16) are chosen to be 4=0.2, b=0.1, ¢=10, ©,=300 to
produce a dynamics on a high-dimensional chaotic attractor.

Fig. 8 illustrates the reconstruction of the system parameters. To construct the N(t)
plot we use 10000 points of the time series of x(r). The time series exhibits about 600
extrema and N(t) is normalized to their total number. The time derivatives
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recovered nonlinear function

X(t) are estimated from the time series by applying a local parabolic approximation. The
absolute minimum of N(x) takes place exactly at t=t;=300, where N(300)=0. L(e) is
normalized to the most uncorrelated point set. To reduce the computation time one can
choose a large initial step of ¢ variation and then to reduce it in the neighborhood of
minimum L(e). Thus, in Fig. 8, b the step of ¢ variation is 1 and in the inset this step is
reduced to 0.1. The minimum of L(e) takes place exactly at e=¢=1/b=10. The recovered
nonlinear function (Fig. 8, ¢) coincides practically with the true function (17). Note, that
for the construction of the L(e) plot and for the recovery of the function f we use only
1000 points of the time series.

To investigate the robustness of the method to perturbations we apply it to the data
produced by adding a zero-mean Gaussian white noise to the time series of Eq. (16). We
found out that the method is still efficient for a noise level of 10%.

As another example, we consider an experimental time series from an electronic
oscillator with delayed feedback. For the case when the filter (see Fig. 6) is a low-
frequency first-order RC-filter this oscillator is given by

RCV(1) = -V(1) + A(V(1-1)), (18)

where V() and V (#-t,) are the delay line input and output voltages, respectively; R and C
are the resistance and capacitance of the filter elements. Eq. (18) is of form (12) with
e,=RC. In our experiment the nonlinear device has a quadratic transfer function. The
proposed method allows us to define accurately the parameters of the system.

The procedure of the delay time estimation from the N(z) plot considered with
systems like (12) can be successfully applied to time series gained from a more general
class of time-delay systems

x(2) = F(x(2), x(t-v,)). (19)
Time differentiation of Eq. (19) gives
aF - a t > i
D) o RO )
ox(1) ox(t-t,)
Similarly to Eq. (14), Eq. (20) implies that in the case of quadratic extrema derivatives

%(f) and X(¢-t,) do not vanish simultaneously, i.e., if ¥()=0, then x(r-t,)=0.
In principle, it is possible to extend the proposed method of 7, definition from time
series to high-dimensional time-delay systems having the following form

X(1)
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x(t) + axX™N(1) + ... +a, X(1) = Fx(£) x(t-p)), (21)

where x(")(¢) is the derivative of order n and are a,,...,a, , the coefficients. Differentiation
of Eq. (21) with respect to t gives

() + art(")(r) .o4a X(1) =

_ OF (x(1),x(#-1,)) e IF (x(r),x(t-1,))
ax(z) ox(t-t,)

(22)

x(t-1,).

The condition x(z-t,)#0 for x(r)=0 will be satisfied if the left-hand side of Eq. (22) does
not vanish. In general, a probability to obtain zero in the left-hand side of Eq. (22) is very
small and therefore, the N(t) plot qualitatively must have a shape similar to that inherent
in the case of first-order delay-differential equations like (12) and (19).

The proposed method of estimation of the parameter €, and the nonlinear function
can be also applied to a variety of nonscalar time-delay systems. For instance, the
dynamics of an electronic oscillator with delayed feedback containing two identical in-
series RC-filters is described by the second-order delay-differential equation

g2V (£) + 26,V(1) = -V(2) + AV(t=1,)), (23)

where e,=RC. Plotting e?V(r)+2eV(1)+V(r) versus V(¢-t;) under variation of e, we can
estimate the parameter ¢, by the location of the minimum of L(e) and recover the function
f. Thus, the proposed technique of parameter estimation can be successfully applied to a
wide class of time-delay systems.

6. «Technologic trick»: model structure optimization using transients

Usually, global models are constructed from time realizations of established
motion corresponding to an attractor in phase space. Such an approach seems reasonable
when the problem of predicting future behavior of an object after establishing of
oscillations is addressed. However, for modeling object dynamics in wide region of phase
space, success is more probable when one uses time realizations of transient processes
(when a phase orbit has not yet settled down onto an attractor). In this section we will
show how this property of transients (to explore wider region of phase space) can be used
to refine a model (to optimize its structure).

To detect a part of a time series which is the optimal for modeling, we compare
performance of global models obtained from different parts of a time series (some of
them involve a transient while the others do not). Let us use etalon differential equations
of Van der Pol - Toda oscillator as an object of modeling:

jl =X, (24)
X, = (1-x2x, - 1 + exp(-x,).

Reconstruction is performed form a chaotic scalar time series of the x, -coordinate with a
transient (a phase orbit is shown in Fig. 9, ). Models of the form (1) with D=2 are
constructed in two variants differing from each other by the form of a function F(x,,x,).
In the first case, a bivariate algebraic polynomial of some order X is employed:
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F(x,%,) =2, %%, i+j<K. (25)

ij=0 " if

In the second case, F is given by

F(xl X,) = (A- ,1712)."{2 +fx(x1): (26)

where f,(x,) is a univariate algebraic polynomial of the order K, which approximates
exponential function. To assess a model quality, right-hand side reconstruction error o is
calculated. This quantity compare functions entering right-hand sides of an object F; and

a model F:
o=[[; (F(x,x,) - F(x,,x,))dx, dx,, (27)

where § is an integration domain containing the phase orbit (hence, much larger than the
domain of an attractor). The lower is o, the better is a model.

A procedure of searching for an optimal for modeling part of the time series
(reconstruction window) consists in following. A certain length of a window (M points)
is specified. A reconstruction window can be denoted as {n(z))},_, ™, where m is the
number of its initial point. The initial point of the original time series coincides with the
initial point of a reconstruction window for m=0. When m increases, a reconstruction
window moves along a time series into the region of an attractor. Models are constructed
for different values of m. Optimal location of the reconstruction window corresponds to
minimum on the graph o(m). _

Graphs o(m) in Fig. 9, b show that the best results for a model (1,25) are obtained
with the use of the transient (the curve 1, small 7). For a model (1,26) the results are
better by an order of magnitude (the curve 2), but they are almost independent on the
location of the reconstruction window. It can be explained as follows. The first model
structure (1,25) includes variety of «superfluous» terms, e.g., the terms x,x, , x,x,% x,%x,?,
etc, which are not relevant for the original equation (24). Theoretically, model
coefficients corresponding to superfluous terms should vanish. But in practice their
estimated values differ from 0 due to truncation errors and impossibility of accurate
approximation of exponential function by a finite power series. Superfluous terms can
become significant outside of reconstruction window and lead to essential differences
between an object and a model. For a model (1,25) involving superfluous terms, o
depends essentially on m (Fig. 9, b) that is induced by essential dependence of
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«superfluous coefficients» on m (Fig. 10). For a model (1,26), the use of a transient does
not have advantages because model refinement is due to the absence of superfluous terms
rather than extension of the explored region in the phase space.
Let us look again at Fig. 10, a where graphs for necessary terms are grouped on the
left and for superfluous terms - on the right. The superfluous coefficients are obviously
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less stable than the necessary ones, the instability appearing close to the beginning of the
time series (in the region of a transient). Resting on these considerations, we propose a
procedure of model structure refinement based on sequential excluding of terms with the
less stable coefficients from the model. The degree of stability (reliability) of some
coefficient @ can be defined as the ratio of its mean value to its standard deviation
m =(a)l{(a<{a))*) "%, where angle brackets designate average over the ensemble of values
of a, obtained at different m.

Thus, to optimize a model structure, the less stable coefficient (with smallest ) is
found and a corresponding term is excluded from the model, reconstruction procedure is
repeated for the simplified structure, and so on until exclusion of a new term leads to
model deterioration. In Fig. 10, b we show a dependence of the model error o on the
number of excluded terms obtained during reconstruction from time series of the system
(24) starting from the model structure (1,25). The proposed procedure are shown to allow
for essential enhancement of the model quality.

7. Conclusions

To construct dynamical models means to follow the path pointed by an optimistic
outlook of determinism. There is neither guarantee that the path will lead out to the
highway, nor assurance that such a highway always exists. But even if a dynamical model
of an object is possible, one needs accuracy and «technological purity» to achieve a
success. An error at any stage of the empiric modeling scheme presented in section 2 can
make obtaining an efficient dynamical model impossible. Let us remember, by way of an
analogy, how at the early stage of microelectronics underestimation of the role of dust
particles and foreign microinclusions turned, e.g., production of a diode into art and did
not allow to do with confidence such things that nowadays are being done routinely. So,
let us hope for the absence of principal and overwhelming obstacles on the way of
empiric modeling. ’

However, we believe that to progress in this field, one needs to develop not only
original technical tricks but also (this is, possibly, the main thing) new approaches
oriented to sufficiently narrow classes of systems. For the latter, a special preliminary
analysis of time series and attraction of a priori information are necessary. Our work
shows prospects and necessity of such a «specialization». The main results are following:

1 the proposed technique for preliminary investigation of times series of
dynamical variables (section 3) allows to find variants which are the most suitable for
modeling. Its advantage is in the use of local characteristics which reveal even small
regions of non-uniqueness or discontinuity in dependencies between dynamical variables
and quantities to enter left-hand sides of equations. However, even good choice of
variables does not guarantee a success: one needs to succeed in the choice of functions
form and model parameters estimation;

2 the proposed modifications of the standard structure of model equations (section
4) allow to obtain efficient models of nonautonomous systems in the case of arbitrary
regular driving, while the standard approach does not give satisfactory results;

3 a special way of estimating delay time for DDEs reconstruction is proposed
(section 5). It is based on peculiarities of time realizations of delayed feedback systems
and efficient even when dealing with highly noisy data;

4 employed model structure often turns out very cumbersome. Therefore, it is
rather important to delete «superfluous» terms (which carry only distortions) from the
model. To detect such terms, we propose a special procedure which uses reconstruction
from different parts of a transient process realization.

All the presented approaches are demonstrated by constructing models from
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numerical solutions of etalon equations and from time realizations of real-world
(radiophysical) systems.
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NONLINEAR DYNAMICS OF MICROWAVE AND OPTICAL
SEMICONDUCTOR OSCILLATORS

D.A. Usanov, ALV. Skripal, An.V. Skripal, A.V. Abramov, A.A. Kletsov

The results of experimental and theoretical investigations of the nonlinear phenomena
in microwave and optical semiconductor oscillators are represented. It is shown that one of
the reasons of occurrence of various nonlinear phenomena in semiconductor devices of the
microwave range is qualitative change of their voltage-current characteristics, in particular
occurrence or disappearance of sections of negative differential resistance under the influence
of high-power microwave radiation on semiceonductor structures. The external optical
feedback forming autodyne operating mode of semiconductor lasers acts as the priority
mechanism of realization of their nonlinear operating mode in semiconductor laser structures.

Introduction

By now on the base of semiconductor devices the systems realizing various radio-
engineering functions in the microwave and optical range have been created. One of the
features of semiconductor devices is the dependence of their characteristics on the power
level of the affecting signal [1,2]. As the result of such influence semiconductor devices
can essentially changc their operating mode.

In the microwave range the reason for such changes can be quahtatwe change of
the current transport mechanism in the semiconductor structures and therefore the change
of the shape of the voltage-current characteristics.

In semiconductor elements, which are the sources of optical radiation, one of the
mechanism, which results in a great number of nonlinear phenomena, is the external
optical feedback, which, in particular, forms the autodyne operating mode of
semiconductor lasers [3]. Thereupon, theoretical and experimental investigations of the
nonlinear dynamics of semiconductor devices in microwave and optical range under the
influence of an external signal are actual ones.

Microwave semiconductor oscillators
When describing the properties of semiconductor devices in the microwave region
it is often considercd possible to use their stationary or small-signal characteristics

(voltage-current characteristic, impedance). Such approach allows us to successfully
construct microwave systems of various types on the base of semiconductor devices. At
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the same time it is clear that with the

LA increase of the power level of an affecting
1.2 signal the considerable change of the
‘."' semiconductor  devices propertics  is

0.8 5 - | 4 possible.
0.4 ?"- et The influence of the strong
= | electromagnetic radiation on the semi-
B L2 conductor devices operating mode has
0.0 0.4 0.8 1.2 Uy  dictated the necessity of creation of the

Fig. 1. The voltage-current characteristics of p-i-n- microwave delimite_rs aud 1n par-ticm?r o

diode 2A534A. P, mW: 1 - 0: 2 - 40: 3 - 150; the base of p-i-n-diodes. Le. p-i-n-diodes

4-420;5 - 680 in such devices are under the influence of
the high-level microwave power.

As the result of the carried out investigations it was determined that under the
certain levels of affecting microwave power the stick-slip change of the rectified current
and the stick-slip change of the output spectrum could take place in p-i-n-diodes [4, 5],
one or more sections with negative differential resistance on the p-i-n-diodes voltage- -
current characteristics could appear. The voltage-current characteristics of p-i-n-diode
2A534A under the different levels of input power are shown in Fig. 1. So in the
quasiactive delimiter on the base of p-i-n-diodes 2A522A and 2A534A with the increase
of the input power up to 300 mW the decrease by 5-6 dB of the spectrum componentf,,
which is the frequency of the input signal (800 MHz), and the rising of the subharmonic
at the 400 MHz were observed (Fig. 2, a).

At the input power of the 700 mW the spectrum component f,/4 arose (Fig. 2, b),
at the 1000 mW the noise spectrum was observed, at the 1100 mW the spectrum
component f,/3 arose (Fig. 2; ¢), at the 1800 the spectrum component £, /6 arose (Fig. 2,
d). The initiation of those spectrum components was accompanied ?Jy the stick-slip
change of power with hysteresis character. The influence of additional signal with the
frequency differing from the basic signal frequency on the p-i-n-diode can result in the
considerable decrease of the basic signal power at which subharmonics appear. The
presentation of the equivalent scheme of p-i-n-diode as the oscillatory circuit allows us to
describe the subharmonics initiation and hysteresis, but not in so complicated sequence as
it was observed in the experiment. It was found that the influence of microwave radiation
on p-i-n-diodes can result in arising on their voltage-current characteristics of one or
more sections with negative differential resistance (NDR) of N-type and consequently in
initiation of generation of high-frequency oscillations and modulation of output
microwave signal by the relatively low-frequency oscillations which frequency and form
in turn depend on the input power level. The theoretical description of that effect is

A,dB A.dB
00 00
~100 A A - 100 A
—200 > 200 l A >
80 fMHz . 0 266 800 f,MHz
A dB A.dB
00
- 100 A - 100
- 200 A > -200L[—a A A A,
0 600 800 f MHz 0 133 266 534 800 f,MHz

d

Fig. 2. The spectrograms of the output signal of the microwave delimiter on the base ofp-i-n-diodes
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possible with taking the dependence of

diode impedance on the input power level, L;ymA
the charge carriers heating and detection o
effect into consideration in the physical M
model [6]. 00—
The phenomenon of harmonics <3 2 __| W
initiation under the influence of the .
microwave signal on the semiconductor 00
element was investigated thoroughly. To =3000 00 3000 6000 9000 VzmV

prevent the influence of the higher Fig. 3. The experimental voltage-current
harmonics on the characteristics of micro- characteristics of a microwave diode. P, mW: I - 0;
wave delimiters on the base of p-i-n-diodes 2 ~100:3 - 300; 4 - 600

the low-pass filters were used. At the same time the arising subharmonics in the wide-
band waveguide systems can propagate and therefore influence on the output parameters
of a device, in particular, they can increase the power level which leaks through the
power delimiter. Carried out experimental investigations show, that introduction into the
delimiter scheme of the high-pass filter, which cuts off subharmonics, allows us to reduce
essentially the level of microwave power leak [7].

Experimental investigations and theoretical description show, that the influence of
high-power microwave field effects dramatically on the current transport mechanism in
the structures on the base of p-n-junction which results in the qualitative change of the
shape of the voltage-current characteristics.

The experimental voltage-current characteristics of the microwave diode for the
different power levels of input signal are shown in Fig. 3. As it follows from the
experimental results with the increase of the input power up to 150 mW the section of
NDR of N-type appears on the diodes voltage-current characteristics. The magnitude of
the NDR increases with the growth of the input power in the range from 150 to 500 mW.
At the input power of S00 mW NDR reaches -20 Q, and in the feed circuit the low-
frequency oscillations of ~200 kHz are initiated [8, 9].

Thus the essential result is: the structures with p-n-junction, which are incapable of
generating or gaining oscillations without external electromagnetic radiation, under the
influence of electromagnetic radiation become capable of that. At that the frequency and
the amplitude of the generated signal depend on the affecting signal parameters.

The degree of generality of the obtained results is of interest. Do the similar
phenomena appear in semiconductor structures of different types?

Another example when the structure with p-n-junction is under the influence of
powerful external signal is microwave multipliers. The desire to obtain at the output of
the multiplied signal of maximum power results in the increase of the input signal power.
Carried out theoretical and experimental investigations have shown, that in multipliers the
shape of the voltage-current characteristic qualitatively changes and the section with
NDR appears. The change of the voltage-current characteristic shape under the influence
of powerful microwave signal allows us to explain the maximum of the multiplying
efficiency [10].

One of the best-investigated semiconductor microwave devices is the tunnel diode.
There are theoretical investigations of nonlinear dynamics of devices based on tunnel
diodes. One of the approximation assumed when modeling the operation of devices on
the base of tunnel diodes is that tunnel diode voltage-current characteristic have the
section of NDR of N-type which remains unchanged with the increase of the affected
microwave power.

As the result of carried out experimental investigations it was determined that on
the contrary to the situation described above and typical for p-i-n-diodes and diodes with
non-degenerate p-n-junction such influence on the tunnel diode can result in the change
of its voltage-current characteristic from /N-type to exponential one which is typical for
non-degenerate p-n-junction. The experimental voltage-current characteristics of a tunnel
diode at the different values of microwave power are shown in Fig. 4 [11].
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In the case of using of the tunnel

A 7 diode as the active element of a microwave
0.75 i oscillator the consequence of the increase
/ l(_.—" of the external signal power is the

0.50 e e decreasing of the generating power and
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A LN [ subsequent oscillations failure. At that the
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025~ = S —— restoration of the oscillation mode is
i L{::."\*"'sf observed at essentially smaller external

"~ 00 750 1500 2250 v.mv Mmicrowave power, i.e. the dependence of

the power generated by the tunnel diode on
Fig. 4. The experimental voltage-current characte- the power of the external microwave signal
ristics of a tunnel diode. P, mW: I - 0; 2 - 0.05; has the hysteresis character [12]_
3-02;4-22 As well known N-shape of the tunnel
diode voltage-current characteristic is related to the fact that p-n-junction is formed as a
result of a contact of two degenerated semiconductors. Therefore, the disappearance of
the section of NDR, which is observed under the influence of microwave radiation, can
mean the removal of degeneration in p- and n-regions of p-n-junction. The theoretical
description of the phenomenon of changing the shape of the tunnel diode voltage-current
characteristics under the influence of high-power microwave signal [13] has shown that
the disappearance of the section of NDR is related to the decrease of the tunnel
component and to the abrupt increase of the diffusion component of the full current
because of the free charge carriers heating and appearing the detected signal. The
description of the model of the oscillator on the tunnel diode under the influence of an
external microwave signal because of the free charge carriers heating and appearing the
detected signal is given in [14].

In [I5] the experimentally found mode of initiation of NDR and switching in
tunnel diode under the influence of an external microwave signal [16] in the case when
the bias without microwave signal is essentially less than the peak value is described.

At present to obtain the maximum radiation power in the shori-wave part of the
microwave range one uses IMPATT-diodes as the active elements of oscillators [17]. In
the large-signal mode the effects related to the nonlinear dependence of the IMPATT-
diode parameters on the amplitude of an affecting signal are arose. One of them is the
effect of changing the IMPATT-diode direct current rating because of the detection
process on the diode nonlinear resistance [1].

The results of experimental investigations of the character of changes in voltage-
current characteristics of IMPATT-diodes as the dependence on affecting microwave
power level were presented in [18]. With the increase of the power level of the microwave
signal of frequency 2500 MHz the gradual deformation of the IMPATT-diode voltage-
current characteristic which is characterized by the increase of current both at the forward
and reversed bias was observed. Further (up to 5.0 W) increase of the external microwave
power resulted in the initiation of the section of the abrupt current growth on the voltage-
current characteristic (see the arrow in Fig. 5) at the negative bias far away from the

avalanche breakdown voltage in the region

L, mA 1 of thermal current. The steepness of that
100.0 L section and the current surge increased with
i the growth of the external microwave
50.0 | power. On the left and the right sides from
that section the regions of N-type NDR
0.0 appeared (curve 2 in Fig. 5). When the
50.0 microwave exposure was switched off, the
e diode voltage-current characteristic took
-100.0 the initial form, which is typical for
IMPATT-diodes without the external

-150.0 microwave signal (curve 1 in Fig. 5).

-50.0  -30.0  -10.0 100 UV It was experimentally determined
that the location of these sections of current

Fig. 5. The experimental voltage-current characte- _di
ristic of an IMPATT-diode. P, W:1 - 0; 2 - 5.0 strge and DR, on e [VIEATT<hode
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voltage-current characteristic depends essentially on the IMPATT-diode microwave
circuit parameters. When the input load of the IMPATT-diode changed as the result of
the short-circuiting plug shift on ~0.2 A (A is the wavelength of the microwave signal) at
the constant power of the input signal of 5.0 W the monotonous shift of the additional
section of the abrupt current growth was observed. If with such shift the impedance
matching of the coaxial line and the IMPATT-diode takes place then the power of the
external microwave signal accepted by the semiconductor structure increases and the
sections of NDR of N-type appear.

At present the GaAs MESFETs are widely used for gain of microwave oscillations.
Therefore to discover the specificity of practically used devices with GaAs MESFETs
under the influence of high-power microwave signal is of interest when the nonlinear
properties of transistor become essential ones.

The mode of subharmonic oscillations is the intermediate state before the chaos
state, for subharmonics to appear the presence of nonlinear capacity, parallel to nonlinear
resistivity, is essential. Since the nonlinear capacities and diodes model the area under the
transistor gate, one may suppose that when the microwave signal of rather high power is
applied to the transistor input, the subharmonics can arise in its output spectrum.

To find the subharmonics in output spectrum experimentally the amplifier of
medium power on the base of GaAs MESFET was investigated. The length and the width
of the gate and the thickness of the channel, when the charge carrier concentration equals
to (1+2)-10" cm?, is 1 um, 300 um and 0.3 um correspondingly. The transistor was
mounted in the microstrip scheme. The signal of frequency of f;=14 GHz from the
microwave oscillator G4-111 through the variable attenuator, power amplifier, low-pass
filter with the cutoff frequency f <f, was applied to the wattmeter M3-54 and to the
spectrum analyzer S4-60.

As the result of the experimental investigations it was determined that with the
increasing the power of the input signal up to 140 mW the spectrum components with
frequencies divisible to /9 appeared. The spectrogram of the output signal is shown in Fig. 6.

The theoretical c{]escription of the conditions of subharmonics arising in the output
spectrum of the medium-power GaAs MESFET with the gate of 1x300 wm, which
operated in the amplifier mode, was carried out by means of numerical simulation with
the use of equivalent scheme, the nonlinear elements parameters of which depended both
on bias magnitude and on input microwave power level [19-21].

As the result of numerical solution of the system of differential equations,
describing the equivalent scheme, the dependence of instantaneous values of the current
in the load on time was determined. The phase-plane portrait of this system in the mode
with stable subharmonic oscillations of current in the load and the spectrogram of the
output signal at the input signal of 190 mW are represented in Fig. 7. and 6.

During the experimental researches it was determined that decrease of inductance
values of input and load circuits leads to the disappearance of subharmonic oscillations of
frequencies divisible to the f,/9 and the occurrence of subharmonic with frequency equal
to f,/2 in the analyzed dynamical system [19].
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Fig. 6. The spectrogram of the output signal of the Fig. 7. The phase-plane portrait of the Gads
GaAs MESFET amplifier MESFET amplifier
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Thus as a result of researches it was experimentally determined and theoretically
proved the possibility of subharmonic existence in the output signal spectrum of medium-
power microwave amplifier on GaAs MESFET. The intervals of feed voltage and input
signal power at which the arising of subharmonics is possible were determined. These
subharmonics are characterized by large whole number equal to the ratio of input signal
frequency and subharmonic frequency. It is shown that on the going out of these
intervals, including the case when power exceeds the certain value, subharmonics in the
spectrum disappear. The latter indicates that with change of external signal level and, as a
consequence, direct current rating, the nonlinear characteristics of transistor stipulating
for bifurcation peculiarities change.

Optical semiconductor autodynes

At present semiconductor laser diodes are an integral part of data-measuring fibre-
optical systems. One of the nonlinear effects widely used in practice in such systems is
the effect of autodyne detection in active area of the semiconductor laser structure, arising
due to influence of the optical signal formed by an external optical feedback on the laser
diode. The reflected wave leads to the change of the charge carrier concentration in the
active medium and to the change of the optical generation frequency [3]. Significant
interest to effect of autodyne detection in semiconductor lasers is caused by an
opportunity of creation on their basis of simple measuring gauges with high sensitivity to
the reflected signal [21-28].

The semiconductor laser with external optical feedback can be described by the
composite resonator model [29]. Theoretical analysis is based on the solving of the field equation
for a complex electric field and the rate equation for density of charge carriers [30, 31].

The system consisting of the semiconductor laser and an external reflector
combines functions of the oscillator and the electromagnetic wave phase detector in one
device. For researched objects with small reflectance (not more than 1% ) the functions of
the oscillator and of the detector are realized practically independent from each other.
With growth of a feedback level their mutual influence grows, in particular, the form of
autodyne signal begins to differ from the form of interference signal formed by the same
movement of a reflector in interference system with decoupling from a source of
radiation. At the same time the level of a feedback, stationary phase, character of move-
ment of an external reflector influence essentially the form of autodyne signal [32-34].

In approximation of a stationary field the expression for linearized normed power
of electric field P/P, can be represented as [35]:

PIP, = cos(wr),

and the phase equation for stationary wave phase in the external resonator for the laser
with a feedback can be represented as
@ = @, - C sin(g+arctg(a)),

where @,=myt is stationary wave phase for the laser without feedback, C=tz(1+a?)'? is
the parameter of an external optical feedback, w, is the resonance frequency of the natural
resonator of the laser diode without a feedback on a threshold of generation, a is the
factor of widening of generation line, T is the roundtrip time of the external resonator, z is
the factor of external optical feedback.

For object vibrating under the sine wave law the function of stationary wave phase
in the external resonator for the laser with a feedback q(f)=w(f)t(r) was set as:

o(t) = Por + Pos sin(Qt),
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‘where @gr 18 the value of stationary phase p/p
at the fixed distance L to reflector, ¢, is 1.0

the amplitude of change of phase, Q is the
frequency of vibrations of the reflector.
In Fig. 8 the dependences of average 0.0

normed power P/P; on time ¢ are represen- ' 0 5

ted. They describe movement of external

reflector with frequency of mechanical -1.0f

oscillations Q=1/T (T is the period of

oscillations of the reflector) and amplitude

g=1 um for the laser with wave length of PIPy on time ¢ at the vibrations of an external
i . g reflector described by parameters @, .=n/2, @, =2n,

A=1.3 um where the specified parameters L=1.5 sm, for two values of feedback parameter: ] -

are related to amplitude of change of phase C=0.09,2-C=0.2

as:

Fig. 8. Dependences of the average normed power

0a = AmE/N.

As follows from Fig. 8, with growth of feedback parameter C the deviation from
the initial form of autodyne signal appears to be different on various sections of
dependence P(z). At the same time it is possible to single out sections with abrupt
changes of inclination angle of autodyne signal which as calculations have shown
correspond to occurrence of a mode of continuous relaxational oscillations [3].

In Fig. 9 the results of calculation of dependence of autodyne signal on time ¢
normed on the period T and phase-plane portraits of autodyne system signal are
represented. Hear C=0.8, a=5, the amplitude of vibration £=0.2A, stationary phase
w,t,=1.6n (Fig. 9, a), w;t,=0.6x (Fig. 9, b). As follows from Fig. 9, @, b the degree of the
deviation of the form of autodyne signal from harmonic law at the fixed values of
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Fig. 9. Dependences on time and phase-plane portraits of power of autodyne gignal of gystem with

parameters: C=0.8,0=5,E=02\, @y a- 1.6n,b- 0.6 . Here P, P - the maximal valves of output power
and it's derivative in a range of value.s of @, from O up to 2
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3 feedback parameters and values of vibra-

tion amplitudes is defined by the magni-

9 |8 1 4| 6 tude of stationary phase w,t,.
Experimental researches of structure
=10 5 of the phase-plane portrait of autodyne
11 Py 5 signal were carried out with the help of
setup the scheme of which is represented in

Fig. 10.
Fie. 10. The sch e e B B Radiation of the semiconductor laser
séfﬁicoﬁducto:(;a:en:,c;l— thel::imrcc of czcrregi, 3- th: 1,(]1‘NP-206)’ fed by the DC source 2, was
reflector, 4 - the piezoceramics, 5 - the generator of directed on the reflector 3 fixed on
sound oscillations, 6 - the micrometric mechanism, piezoceramics 4, vibrations of which were
7 - the photodetector, 8 - the filter of altemative sig-  stimulated by the generator of sound
2211{“911 o ;’I‘” ;:‘i’é‘g;ﬁte‘: 0 - the analog-digital ,qciTations 5. The opportunity of moving of
’ vibrating reflector was provided with the
micrometric mechanism 6. The part of the reflected radiation returned to the resonator of
the semiconductor laser, output power change of which was registered by the photode-
tector 7. The signal from the photodetector went through the amplifier 9 containing the filter
of an alternative signal 8, to an input of the analog-digital converter 10 of computer 11.

In Fig. 11 the measurement results of the signal of autodyne system are represented
at various values of stationary phase. As follows from Fig. 9 to Fig. 11, theoretical and
experimental curves of autodyne signal and the phase-plane portraits are in good
correspondence. However at the certain distances up to the external reflector on the
phase-plane portraits represented in Fig. 11, obtained experimentally, the occurrence of
noise component of autodyne signal was observed. At the same time a degree of noise
blurring of phase trajectory is various for its various sections. It is related to the fact that
at the certain values of stationary phase the mode of generation of the semiconductor
laser can change qualitatively starting from certain value of amplitudes of vibrations of
reflector [35].

0.5 F"

0.0 7

0.5

PP, }
1.0

0.0

10}k R g

Fig. 11. Experimental dependences on time and phase-plane portraits of power of autodyne signal at
various values of stationary phase ¢, a-1.5%,b-05xn
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It is proved by the phase-plane portraits of output power P at movement of
reflector of laser radiation for various values of a current through the laser diode that are
shown in Fig. 12.

As follows from Fig. 12, increase of a current through the laser diode results in
consecutive change of the phase trajectories describing the transition of the laser from the
mode of spontaneous radiation (Fig. 12, a) in the laser mode (Fig. 12, b), then in the
mode of unstable generation (Fig. 12, ¢, d) and later in the mode with a high degree of
nonlinearity of autodyne system signal. Distinctive feature of unstable generation mode
of the semiconductor laser is not the blurring of trajectories. on the whole phase-plane
portrait, but only their blurring on its separate sections (Fig. 12, ¢, d). Such behavior of
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Fig. 12. Phase-plane pom'ans of output power of the semiconductor laser at movement of a reflector of
laser radiation for various values direct currents of the laser diode: a - 58 mA, b - 63 mA, ¢ - 68 mA,
d-70mA, e - T8 mA
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phase trajectories is related to strong dependence of operating mode of the semiconductor
laser on position of the external reflector.

Conclusion

Thus, the results of experimental and theoretical researches given in the present
work show that one of the reasons of occurrence of a various nonlinear phenomena in
semiconductor devices of the microwave range is qualitative change of their voltage-
current characteristics, in particular occurrence or disappearance of sections of negative
differential resistance under the influence of high-power microwave radiation on
semiconductor structures.

It is shown that in semiconductor laser structures the external optical feedback
forming autodyne mode of operation of semiconductor lasers acts as the priority
mechanism of realization of their nonlinear operating mode.

The work was supported by the Program on Educational Ministry of Russian
Federation.
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IlpyBenieHbl pe3ynbTaThl 3KCNEPHMEHTANBHBIX W TEOPETHYECKHX WCCIIefIOBaHHH
HENMHEHHBIX SBJCHUMH B NONynpoBojHMKOBEIX CBY W onTHYEcKHMX reHepaTopax.
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HCYE3IHOBEHHE YYacTKOB OTPHIATENBLHOro uepeHHaTbHOrO CONpPOTHBIIEHUS MPH
BO3ICHCTBHM  MOLIHOIO MMKPOBOJHOBOTO H3JIYYCHHS Ha TONYNPOBOJXHMKOBEIE
CTPYKTYPbl. B NOJIyNpOBOIHMKOBbIX JIa3€PHBIX CTPYKTYPAaX B KAYECTBE NMPHOPUTETHOTO
MEXaHW3Ma peaNH3alliy HEJWHEHHOro peXuMa MX paGoThbl BBICTYNAET BHELIHSANA
omTH4yecKas oOpaTHas CBA3b, (QOPMHpYIOLas aBTOAMHHLIAI peXxuMm paboThbI
MOYTIPOBOTHUKOBBIX /1a3€POB.
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OPTICAL PROPERTIES OF COLLOIDAL-GOLD BIOCONJUGATES

N. G.Khlebtsov, V.A. Bogatyrev, L.A. Dykman,
Ya.M. Krasnov, A.G. Melnikov

We discuss optical properties of single or aggregated colloidal-gold conjugates that
can be fabricated by adsorption of a biopolymer onto the surface of nanoparticles. To simulate
extinction and scattering of light by such structures, we apply the generalized multisphere Mie
solution and the discrete dipole approximation along with a computer model of cluster-cluster
aggregation. Our consideration includes the following topics: statistical and orientational
averaging of optical observables; oplical effects related to the chain-like structures; effects of
polymer coating and interparticle spacing; simulation of kinetic changes in the optical
properties of aggregated sols formed during biospecific binding; modification of the exact
multipole approach for the case of two-layered monomers. In the rest of this paper, we give a
short review of our experimental work on the topic (including biomedical applications) and
provide experimental examples concerning the optical monitoring of biospecific interactions
on a nanometer scale.

1. Introduction

Colloidal-gold (CG) nanoparticles have been widely used during the past years as
effective optical transducers of biospecific interactions [1]. In particular, the resonance
optical properties of nanometer-sized CG particles have been employed to design
biochips and biosensors [1-3] used as analytical tools in biology (determination of DNA,
RNA, proteins, and metabolites), medicine (drugs screening, antigen and antibody
determination, virus and bacterial diagnostics), and chemistry (on-line environmental
monitoring, quantitative analysis of solutions and disperse media). As a special and
important example one should note polynucleotide detection, based on the formation of
3-D ordered structures that result from hybridizing conjugate linkers with complementary
oligonucleotides [4, 5]. These systems can potentially detect femtomolar concentrations
of oligonucleotides [1].

It is well known [6, 7] that the surface plasmon resonance (SPR) of gold
nanoparticles near 520 nm controls the characteristic spectral properties of colloidal-gold
sols. The formation of aggregated structures results in substantial changes in the value
and spectral position of SPR because of the strong electrodynamic interaction of cluster
gold particles when their average spacing is comparable to or less than the particle size
[8, 9]. This strategy (analogous to the sol-particle immunoassay, SPIA [10]) can be
applied to protein detection at nanogram level [11] as well as to sensitive clinical
diagnostics [12, 13]. It is clear that optimization of the nano-gold-markers methodology
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demands a deep insight into the optical properties of conjugates and aggregates built from
these monomers. However, noticeable progress in the field has been achieved only very
recently because of the strong electrodynamic many-particle interaction of cluster
nanoparticles when its spacing is less than their size [14).

This paper gives an overview of our recent work (including the work supported by
CRDF grant REC-006) [14-23] related to theoretical and experimental studies of
extinction and light scattering properties of colloidal gold bioconjugates and to some
biomedical applications of the markers developed [24-29]. Besides we present here some
new data that have not been published anywhere before.

2. Theoretical study

2.1. Computer model for cluster aggregation. A three-dimensional lattice model
with Brownian or linear trajectories of single particles and intermediate clusters was
employed to simulate the aggregation process. At the initial time moment, N, particles
are generated at randomly selected points of a cubic lattice with size L. When a particle
moves to a lattice point adjacent to another particle or intermediate cluster, a combined
cluster is formed. This model produces diffusion-limited (Brownian trajectories) or
ballistic (linear trajectories) clusters with fractal dimension d~1.8 and d=2.0,
respectively. A more detailed description of the model can be found elfsewhere [30].

2.2. Light scattering and extinction by a single aggregate.

2.2.1. Discrete dipole approximation (DDA). Consider the scattering of a plane
electromagnetic wave propagating in a dielectric surrounding medium with the refractive
index n,

E,=eexp(ikr), lej=1, [kl=k=2mn/, i=(-1)2 1)

by a single cluster built from N small spherical nanoparticles with radius a and complex
refractive index n()\ ). In the DDA method [31], a real aggregate is replaced by a set of
point dipoles d, =d(r), i=1-N. The linear equations for the interacting dipoles can be
written in the form [16]

s A, d =aepexp(ikr,), il=1-3N, @)

jm=1 " il jm "~ fm

where @, is the polarizability of the ith dipole, the combined indices are i/=3(i-1)+l,
jm=3(j-1)+m; i,j=1-N; and indices {,m=1,2,3 (x,y,z) correspond to the Cartesian compo-
nents of vectors or tensors. The explicit form of the dipole interaction matrix A, can be
found in Ref. [16]. The solution of the linear systems of Egs. (2) allows one to calculate
all the basic optical characteristics of the aggregate. For instance, the extinction cross
section, determining the spectrum of optical density of a dilute suspension, can be
calculated from the optical theorem [6, 14]

C,=4nkImZ. (e.d, ) exp( - ikr, ). (3)

In the above sketch description we omitted some important questions related to the
choice of optical polarizability and renormalization of interdipole spacing. The readers
are referred to the corresponding discussion in review [14] and to the references therein.
In short, we used the interparticle spacing parameter y=d,/a as a fitting parameter of a
theory providing for the best agreement between theoretical predictions and experimental
observations [32].

In practical applications, one usually needs average results for random orientations
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of clusters rather than calculations for a particular structure with a fixed orientation. In
principle, such averaging can be carried out by numerical integration over Euler angles
that define the orientation of a scatterer with respect to the incident wave. However, an
analytical solution of such a problem turns to be much more effective as compared with
the straightforward numerical approach. Examples of such analytical solutions are well
known in the T-matrix method including its application to the cluster light scattering [14].
In works [18, 20], we derived an exact analytical solution for integral extinction, °
scattering, and absorption DDA cross sections averaged over random orientations of
scatterers. Application of the solutions was illustrated by practical computations of
averaged extinction cross sections for several examples of fractal clusters (soot in air and
colloidal aggregates built from polystyrene, gold, or silver nanoparticles).

The interaction matrix in Eq. (2) does not depend on the incident wave orientation,
so it is convenient to perform orientational averaging in the cluster coordinate frame.
Using the inverse matrix B=A" to solve Eq. (2), we obtain the following general
equation for the extinction cross section

N

3 i} L )
(C,)= 4mkIm[EU=I Ep,q=1 oB,, Jqu’J], EJ = (Vwexp(-:kri.j)), (4)

where the angle brackets mean integration over Euler angles that define the orientation

—

of the incident wave in the cluster frame, sz ee, is the second-rank tensor, and e are
the Cartesian components of the polarization vector in the cluster frame. The general

scheme for calculation of average cross sections according to Eq. (4) consists in the

following: First, we represent the tensor V, as a linear combination of irreducible
spherical tensors in the incident wave coordinate frame. Such a transformation can be
performed using Clebsh-Gordan coefficients and Wigner rotation functions [14]. Then,
we expand the plane incident wave in a series over vector spherical harmonics (VSH) and
perform orientational averaging by using the orthogonality properties of VSH and Wigner
functions. Omitting the technical details of calculations, we give the final result:

(C,) = 4akIm{Spur(T)}, (C,)= dmkSpur(W), (5)

where the matrices T and W are defined by equations
M M N AN
AT = oE, W =nlal’BEB*, (6)

and the explicit form of parameter n and an auxiliary matrix £ can be found in Refs.
[18,20].

2.2.2. Generalized multiparticle Mie solution (GMM). For large dielectric
monomers or metal nanoparticles, the DDA model fails because of the multipole nature
of electrodynamic particle coupling. An exact solution of the cluster-light-scattering
problem can be formulated rather simply, using a generalized Mie theory for multisphere
configurations [33, 34]. An incident electromagnetic field E, ' for the ith particle can be
expanded over VSH Y  ®=N_Of(kr); Y ,O=M {‘](krj of the first kind (z=1;

Hlﬂi p mn mn

spherical Bessel generating functions are used

i 2

E =% " 3" p iY O@r), (7)

inc m=-n " p=1 mn £ nnp g

where E  are normalization coefficients. For a plane wave (see Eq. (1)) with the

incidence direction defined by Euler angles (p=c, 9=, y=y) in the ith coordinate frame,
the expansion coefficients are

B! = SXP(Ekr,) exp(-ime) Un(n+1)[x,,, (8) cosy - 7t (8) siny],  (8)
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kr. = k[x,sin® cosg + y, sin® sing + z, cos 9], 9)

where the functions tm(ﬁ) (p=1, 2) correspond to the well-known light scattering
functions 7, (cos®), x,, (cosd) [6].

The scattered field from the i-th particle can be expanded over VSH of the third
kind (Hankel generating functions are used) in the same manner as in Eq.(6)

E‘—E E =’ iE a 'Y, O k). (10)

m==-n p‘- nm mnp

The application of the usual boundary conditions leads to the following simple
relations between the expansion coefficients

| [ | i
amnp - anp p mnp ? (11)

where @ '=a', a,=b' are the usual Mie coefficients for an isolated homogeneous
sphere [6J] Solution (11) is a crucial one in the GMM as it gives a simple and exact
relation between p, | (exciting field) and @, ' (scattered field). The unknown
expansion coefficients of the exmtmg field can be found from the superposition principle
that leads to the set of linear equations

s IS Sl H (12)

where Pop "are the known expansmn coefficients of the incident field in the ith coordinate
frame. The interaction matrix H is determined by the «coefficients of translation» of VSH
based on spherical Hankel functions of the first kind (see explicit relations in Ref. [14]).

Once Egs (12) are solved and coefficients a, ' are found, one can calculate all
characteristics of light scattered by a cluster. For example, the extinction cross section is
given by equation

ij n i
map,puvy p |.qu =P nmp *?

C,= 4R 5, Z0 50 2 C Rela,,) (7)) (13)

n=1 " m=-n min

where coefficients C,  depend on VSH normalization. The light scattering observables
can be averaged over random cluster orientations by usmg T-matrix cluster formulation
and the corresponding theorems for orientational averaging [34, 35].

2.3. Calculation of extinction and light scattering spectra for ensembles of
clusters. A model for the dynamic simulation of extinction spectra during the aggregation
process was developed in our work [16]. We assume that a cluster suspension is dilute so
that the single scattering approximation is valid. This means that the extinction (optical
density or absorption) A(A) is directly proportional to the sum of extinction cross sections
of clusters per unit volume. It is convenient to normalize the extinction spectra to the
monomer optical density 4 (a,A__ ) at the maximum of extinction of monomers C,, (:

mn em thd.X

A (M) =A(a, WA (ah )=C (aN/C, (ah.). (14)

m m max em

The cluster-size distribution at an arbitrary stage of aggregation can be described
by a set of number pairs (p, N ) where p is the number of particles per aggregate from a
given monodisperse ensemble’ (p. N ) and N_ is the number of such aggregates. Light
extinction by the (p, Np) ensemble is given by the normalized extinction cross section

(@)= (C, (R, M)pC,,(R,}), (15)

where the angle brackets denote the averaging over random cluster orientations in a
monodisperse ensemble of clusters, and the horizontal bar designates statistical averaging
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over cluster configurations of ensemble (p,N ). The optical density of the suspension is
given by the relationship

EM) =E, (R, MZv(Q) (16)
where v is the fraction of p-cluster particles of the total number of initial monomers N,
v,=pN,/Z pN,=pN IN,. (17)

For calculation of the absolute values of extinction and scattering intensity, we
used a gold concentration of gold 57 ug/ml (cuvette thickness 1 cm).

2.4. Statistical and orientational averaging of light scatten'ng observables:

some important simplifications. It is clear that calculation of ( quantities is a
challenging step of the simulations. In both methods (DDA and GMf\/I) the analytical
procedures of orientational averaging imply that the cluster T-matrix (i.e., actually, the
corresponding inverse interaction matrix) has to be found. At moderate numbers of
cluster particles (say, N<3000), the DDA analytical method can be implemented in a
usual PC without any problem. However, the GMM analytical solution needs a huge
RAM volume even for small (N~100) metal clusters because of the multipole nature of
the electrodynamic interaction (see discussion in Refs. [14, 34]). Having in mind that
actually we need both orientational and statistical averaging over cluster configurations,
we encounter a serious calculation problem.

However, these difficulties suggest that statistical averaging over a large number of
random configurations is perhaps all we need. In other words, we can hazard a conjecture
that statistical averaging actually includes the orientational one. Symbolically, our
hypothesis can be written as follows:

AC =G (18)

To verify this hypothesis, we generated monodisperse statistical ensembles of
clusters with N=const. and then calculated two sets of the averaged parameters, for

example (C . and C Two quantities were computed: the extinction cross section C , or
the corrf:Spondlng absorptmn A, and the normalized scattered intensity Sy=S(6= G!)1
(for simplicity, we will subsequemly omit the subscript 90). Some data obtained are
listed in Table. We drew two important conclusions from these results: First, to simulate
the extinction of light by an aggregated suspension, it is sufficient to account only for
random cluster configurations, i.e., without orientational randomization. Second, the
scattered intensity is more sensitive to cluster orientations than extinction is. Therefore,
one has to use a big statistical monodisperse ensemble in order to eliminate fluctuations
in the calculated scattered intensity. The first conclusion leads to great simplifications, as
we can use effective and fast codes for clusters with fixed orientations instead of huge
RAM consuming codes for analytical T-matrix averaging.

2.5. Effects of aggregate form and interparticle spacing. Looking at the internal
structure of real or simulated clusters, one can note numerous chain-like fragments.
Therefore, it would be desirable to understand possible optical effects related to the
formation of such chain-like nanoparticle structures. We can make a rough-cast
evaluation by using a homogeneous spheroidal model that can be easily treated by the T-
matrix method [14]. Fig. 1 shows the spectral dependence of extinction calculated for
randomly oriented spheroids with equivolume radius 30 nm and axis ratio e=a/b=1, 1.3,

! Along with our own routines, we used numerical codes gmm{1s and scsmtml, kindly provided by
Yu-lin Xu (Univ. of Florida, USA) and Daniel Mackowski (Auburn Univ., USA). Thanks to both colleagues.
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Table

scattered intensity =S, (statistical

Comparison of extinction A=A, ,
averaging only) and AZE(A_'_,_: b Sze(S;-) (both orientational and statistical averaging).
Calculations for clusters built from N=10 or 100 gold particles
with diameters 15 and 30 nm coated by 2.5 nm polymer shell with n,=1.4.

All data are averaged over 100 independent cluster configurations.

A=400 nm A=500 nm A=600 nm

d,nm| N

A 1 A Sl S?c Al AZ e Sl S2C A 1 AZ ¢ Sl SZC

10 | .665(.664|.189 |.185 |.955(.954|.176|.174 | .213|.213|.163 | .161

2c

15nm
100 | .6741.6721.275|.278 {.922|.921.364|.368 | .296|.298|.589 | .603

. 10 J7111(.708(.763 | .744 | .894|.893(.779|.766 | .5511.545|.201| .195
30nm
100 | .671|.667|.448 |.470 | .7771.775|.4871.513 | .904|.897|.256 | .251

1.5, and 2. The optical constants of gold and the surrounding medium (water) were
calculated according to Ref. [36]. With an increase in the axis ratio, one can observe the
red shift of the extinction maximum and the appearance of a short wavelength mode
(peak splitting [6]). Fig. 2 shows extinction spectra calculated for a randomly oriented
linear chain of 13-nm gold spheres with interparticle spacing 1.1 nm. Again, one can
observe a noticeable red shift of peaks and its splitting. Note that our results essentially
differ from the data published recently by Lazarides and Schatz [37]. Perhaps, their Fig. 8
from [37] was calculated with an insufficiently large multipole expansion order.

The interparticle distance Ad is a key parameter that determines the electro-
dynamic coupling of gold monomers. We have shown [16] that for clusters built from
contacting silver or gold nanospheres, the convergence of the GMM method is too slow
due to the multipole nature of the interparticle interaction. However, if the cluster
particles are separated by a small distance, the number of multipole terms in a series is
decreased down to a tractable level. This effect is illustrated in Fig. 3, where the

3.0 1.5
=
o Mo 3 =
% 2.0 5 1.0
£ S
; -—C—
Qo =
1.0 5 0.5
0.0 0.0 '
450 533 Isso ’ 600 650 400 500 600 700 800
avelength, nm Wavelength, nm

Fig. 1. Extinction spectra of randomly oriented gold Fig. 2. Extinction spectra of randomly oriented
nanospheroids in water. The equivolume diameter chains built from 13 nm gold particles separated by
d,=30 nm and axis ratio e=a/b=1(sphere I), 1.3 (2), 1 nm distance in water. The number of spheres
1.5(3),and 2 (¢) equalsto 1 (7),2 (2),4 (3), 6 (4), 8 (5), and 10 (6)
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normalized extinction cross section @, =C /ma? (a, is the equivolume cluster radius) is
plotted as a function of multipole order at different distances between particles. The
parameters of the model (a=6.2 nm, A=520 nm) correspond to the surface plasmon
resonance of monomers. Generally, our data concerning this point are in agreement with
the data of Ref. [38].

2.6. Opfical properties of two-layered gold conjugates. Adsorption of a
biopolymer onto gold nanoparticles results in the formation of a complex structure that
can be approximated by a simplest two-layered model: gold core + homogeneous
polymer shell, as it was introduced in our work [36]. Recently, the importance of this
model was emphasized in relation to the optimization of a colorimetric gold nanoparticle
sensor [39] and to the studies of adsorption phenomena [40]. We have studied the optical
properties of a two-layered model for gold bioconjugates in detail. Here, we present only
illustrative examples of the simulations.

In our calculations, the polymer shell was treated as homogeneous nonabsorbing
dielectric with refractive index n,=1.4 or 1.5. The shell thickness s was equal to S5or10
nm and was close to the sizes of globular proteins. The refractive index of bulk gold
n,=n,(A) was used for the conjugate core. Fig. 4 shows changes in extinction spectra
caused by polymer adsorption (s=5 nm, n,=1.5 at ¢, =const=57 ug/ml). Increasing the
shell thickness and their refractive index leads to a corresponding increase in optical
effects. The maximal extinction and scattering are observed for particle diameters 60 nm;
however, the maximal relative change in extinction and scattering

dA = [A (A, ™=, s=5) - A(A, ™=, s=0)] / A (A ™, s=0), (19)

ext ext ext

8§ = [S(}‘scumm’ S:S) - S(]\‘smmax, S:D)] IS(} g .5'20), (20)

Joa
is observed for the smallest (10-nm) particles (Fig. 5, dashed curves). The red shift of
extinction and scattering is also maximal for the smallest particles and then decreases

with an increase in the particle diameter (up to 80 nm). On the other hand, the finest
particles have a higher polymer adsorption capacity. Therefore, to estimate the efficiency

2
0.90 %4
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18]
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Fig. 3. Dependence of the normalized extinction Fig. 4. Extinction spectra of gold particles in water
cross section @, =C [na 2 on the pumber of  (diamctors d=10 (Z), 20 (2), 60 (3), and 100 () nm,
multipoles included n VsH expansions of the  solid lines) and the same particles coated by a 5-nm
GMM method. Calculations for randomly oriented  polymer shell with the absolute refractive index
bispheres (d=24=12.4 nm, A=520 nm) in contaci n,=1.5 (dashed lines)

Ad=0.0 (1) and separated by distances Ad=0.054 (2)

and Ad=0.1d (3) in water
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of optical response per adsorbed polymer molecule, we introduce the SPIA efficiency

parameter?

E = (optical effect)/(polymer adsorption) ~ (optical effect) &V,

where 8V=(a+s5)’/a>-1 is the relative
change in the volume of a conjugate. For
example, for the relative changes in light
absorption and scattered intensity 85, we
have

E,=8A/8V, E =3S/8V. (22)

The solid lines in Fig. 5 show the
dependencies of the efficiency parameters
E and E calculated for s=5 nm and 10

mi=1; 4 ¢, =const=57 pg/ml. It is clear
that é{}-nm gold particles are the best
optical transducers of biospecific interac-
tions that result in adsorption of biopoly-
mers onto the particle surface. We also
studied another situation when the polymer
and gold concentrations were fixed
whereas the particle diameter was
considered as an optimization parameter.
Again, we concluded that 60-nm particles
gave the highest optical response. A more

(21)

60.0

40.0 -

S, E. %

200 -

0 20 40 60 80
Particle diameter, nm

Fig. 5. Dependences of the relative change in
scattering 8S(dashed lines) and the SPIA efficiency
parameter E_ (solid lines) on the diameter of gold
particles (in water) coated by a 5-nm (curves 1 and
3) and a 10-nm (curves 2 and 4) polymer shell with

100

the absolute refractive index ”1=1'4
detailed consideration will be published
separately.

2.7. Dynamic simulation of optical effects caused by particle aggregation. To
simulate the temporal dynamics of extinction and scattering spectra during the
aggregation process, we introduced the following model [15]: The time corresponding to
the formation of 10 new clusters in a system was used as a sample time interval. After
each interval, the cluster-size distribution function was determined and the corresponding
spectra were calculated according to the procedure described in Section 2.3. The simu-
lations were performed by the DDA method with intersection parameter y=(4x/3)!? =
=1.612 on a lattice with size L=46 and the number of initial monomers N,=500 (the
monomer density p=N,/L?*~0.005). Almost identical data were obtained during larger-
scale simulations with L=58, N,=1000. The dynamic simulation was terminated after the
cluster with size N=200 had been generated. To smooth the statistical fluctuations, we
repeated all calculations by using independent cluster generations and then averaged the
theoretical spectra. Fig. 6 shows an example calculated for 15-nm monomers, the curves
in the figure correspond to 100 newly formed aggregates. The appearance of the
secondary absorption peak in the red region and the complex dynamics of the spectra
resemble to a large extent, our experimental observations. For a deeper consideration, the
readers are referred to Ref. [15].

2.8. Exact multipole model for clusters built from two-layered conjugates. To
simulate the aggregation of colloidal-gold biomarkers, we introduce an exact multipole
model based on a combination of the GMM method and the two-layered model for a
single bioconjugate. The above consideration of GMM in Section 2.2.2 shows that all

2 One of variants SPIA technique is based on measurements of small changes in extinction caused by
adsorption of biopolymers onto surface of gold nanoparticles [12, 13].
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Fig. 7. Theoretical extinction spectra calculated by
the exact GMM method for aggregates built from]
(dashed line), 2 (2), 10 (3), 20 (4) and 50 (5) two-
layered monomers (core-mantle model of a
bioconjugate: 60 nm gold core and 2.5 nm polymer
shell, n,=1.4). All spectra were averaged over
random ~orientations of clusters and over 10
statistical configurations of monomers

new clusters

optical properties of an ith monomer are included in the single-particle coefficients @, p".
It is clear that the GGM solution can be applied to an arbitrary monomers that possess
spherical symmetry. Therefore, one can generalize the standard GMM solution by
replacing the well-known Mie coefficients for a homogeneous sphere with its two-
layered analogs [6]. We have made the corresponding modifications of our GMM codes
and the codes received from Yu-lin Xu and D. Mackowski. These modified codes were
tested by benchmark computations performed independently in our laboratory and in the
University of Florida, by Yu-lin Xu. At present, the exact two-layered multipole model is
extensively used in simulation of the optical properties of aggregated conjugates. An
illustrative example is shown in Fig.7. The extinction spectra were calculated for
aggregates built from 1, 2, 10, 20, and 50 gold conjugates. The core diameter was 60 nm
and the shell thickness was 2.5 nm, n,=1.4, so that the interparticle distance was 5 nm.
The spectra of individual clusters were averaged over random orientations and
additionally averaged over 10 cluster configurations. As in Fig.6, the aggregation results
in the appearance of additional red-shifted peak of extinction. This effect is observed at a
rather small number of monomers, because the average cluster size is large enough due (o
the large diameter of monomers.

3. Experimental

3.1. Materials and methods. In this Section, we - give a short review of our
experimental results related to the optics of colloidal-gold conjugates. Colloidal-gold
particles were synthesized according to procedures described in Refs. [16, 36], by
reducing tetrachloroauric acid with sodium citrate. The protocol for preparing conjugates
of CG to biospecific macromolecules, which involves preparing and purifying an aqueous
probe solution, determining the «gold number», coupling the probe to the label, adding a
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secondary stabilizer, concentrating the marker, and optimizing the end product, has been
described elsewhere [41].

3.2. Optical properties of clusters formed during slow and fast aggregation. Our
first experimental study [16] was related to the optical properties of colloidal gold
aggregates formed during aggregation initiated by addition of the NaCl salt. The
extinction spectra (400-800 nm) of aggregates of colloidal-gold particles (diameters 5, 15
and 30 nm) and silver particles (diameter 20 nm) were studied experimentally and
theoretically. We have found that during fast aggregation corresponding to the formation
of the diffusion-limited (DLCA) clusters, the spectra were dependent on the size of the
primary particles. For aggregates of 15- and 30-nm gold particles and for 20-nm silver
particles, we recorded spectra with an additional red extinction maximum, whereas the
extinction spectra for aggregates of S-nm particles had a single red-shifted extinction
maximum. The slow aggregation resulted in a decrease in the plasmon extinction peak
(without an essential red shift) and in the broadening of the long-wavelength extinction
wing. According to the TEM data, the fast aggregation gave typical ramified DLCA
aggregates, whereas the slow aggregation led to small compact structures along with an
appreciable number of single (not aggregated) particles. To explain these findings, we
used a computer diffusion-limited cluster-cluster aggregation model. The optical
properties of the aggregates were computed by the coupled dipole method (CDM or
DDA) and by a rigorous multipole method (GMM). The bulk optical constants of metals
were modified by the size-limiting effect of nanoparticles. It was shown that a modified
version of DDA [32] allows one to explain the shape of the experimental spectra for
DLCA aggregates and the dependence of the spectra on the particle size.

3.3. Optical properties of clusters formed by biospecific aggregation. Corre-
lation between the extinction spectra and cluster structure. In paper [22], we reported
on the optical properties of aggregates formed by biospecific interactions like antigen/
antibody, with one or both reaction components immobilized on gold particles. In the
case of biospecific aggregation, the temporal changes in the absorption spectra differed
from those recorded during rapid and slow salt aggregations. As in the case of rapid salt
aggregation, the absorption peak decreased and shifted to the red part of the spectrum
with simultaneous broadening. However, we did not observe the second red peak of the
optical density. According to the transmission electron microscopy data, the slow, rapid,
and biospecific aggregations resulted in small clusters with compact structures, branching
aggregates of the fractal type, and aggregates without direct conductive contacts of the
primary particles, respectively. It is supposed that the recorded differences in the
absorption spectra can be explained by the corresponding differences in aggregate
structures. We have found a direct correlation between the amount of the second added
protein initiating aggregation on the one hand, and the rate of spectral changes on the
other. Using these spectral changes, we have plotted a calibration curve for a sufficiently
rapid and technically simple quantitative test like sol-particle immunoassay (SPIA).

Using TEM and spectrophotometry, we recorded three types of structures realized
during the aggregation of colloidal-gold particles or bioconjugates, and also three types of
the corresponding absorption-spectrum changes. In the slow salt aggregation, relatively
small, compact aggregates form that have fractal dimension d>2. Such a type of
aggregation is accompanied by small decreases in the main absorption-peak and by non-
uniform widening of the long-wave wing. The rapid salt aggregation leads to the
formation of fairly loose aggregates with the characteristic branching DLCA [22]
structure and a fractal dimension of about 1.8. Contrary to the data of Ref. [42], we
recorded in this case the presence of a second long-wave absorption peak for gold
particles with direct ohmic contact. Finally, a characteristic of biospecific aggregates is
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the presence of a biopolymer interlayer among the aggregate’s gold particles, which
prevents a direct conductive contact. The absorption-spectrum peak of such aggregates is
reduced substantially and is shifted toward the red region, with the value of the peak
decrease correlating with the concentration of the component initiating the aggregation of
the conjugate.

3.4. A method for the differential spectroscopy of scattered light. Adsorption of a
polymer onto the gold-particle surface results in relatively small changes in the optical
density. The same is true for the initial stages of aggregation. Simple speculations [21]
suggest that light scattering spectra can be more informative for adsorption of a polymer
onto the particle surface, as well as for the initial stages of aggregation as compared to the
absorption technique. Recently, we proposed a new method [43] to study biospecific
interactions in systems of conjugates of colloidal gold nanoparticles. The method is based
on measuring the differential spectra of light scattered at 90° within the wavelength range
350-800 nm. Addition of complementary components to the bioconjugate probe results in
aggregation of nanoparticles that can be monitored by light scattering and extinction
spectra. To this end, we have developed a special attachment to the Specord M-40
spectrophotometer and a corresponding measurement procedure called by us differential |
light scattering spectroscopy. The method has been compared with the usual
spectrophotometry as applied to colloidal gold conjugated to various polymers including
proteins and oligonucleotides. Our experiments with the gold particles of different sizes
showed a higher potential sensitivity of the suggested method as compared with
spectrophotometry. It is expected that the differential light scattering spectroscopy can be
used to develop an analytical biospecific test for various biopolymers.

By contrast to known studies, in paper [43] we presented for the first time the
experimental data about kinetic changes in extinction and scattering spectra caused by
non-specific or biospecific aggregation of colloidal-gold conjugates. In both cases,
already at 1-2 minutes after mixing the reagents we observed an essential increase in the
resonance scattering maximum (up to 20 and even 400 times). Simultaneously, we
recorded weaker changes in the extinction spectra. This observation allows one to assume
that the developed light scattering technique can be used as a sensitive analytical test.

Fig. 8 shows an example of kinetic measurements of extinction and scattering

15 spectra during biospecific aggregation. As

' a model system (designated as CG-
15+PrA) conjugates of 15-nm particles to
Protein A (Sigma, USA) were used.
Aggregation was initiated by addition of
the human IgG solution (Serva, Germany).
The PrA molecule has two or more sites for
biospecific binding of IgG molecules. Data
in Fig. 8 correspond to an equimolar
amount of reagent binding sites. Note how
strongly the resonance scattering peak is
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Fig. 8. Kinetics changes in extinction (solid lines)
and right angle scattering (dashed lines) spectra of
conjugares CG-15nm + Protein A (sample volume 4
ml; the gold number is 5 pg/ml). The numbers near
curves correspond to the initial conjugate sol (0),
and to the time intervals at 2 (1), 7 (2), 30 (3), and
90 (4) minutes after addition of 150 pl IgG at a
concentration 1 mg/ml

increased in comparison with extinction
spectral changes.

3.5. Biological and medical
applications of colloidal-gold markers. A
pioneering biomedical application of
colloidal gold was published by Maclagan
in 1944 [44]. Since 1971, colloidal gold
conjugates have been used traditionally in
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immunocyto- and histochemical studies as markers for electron microscopy [45].
Gradually, the scope of use of gold markers was broadened. Currently, they are used in
light microscopy methods and in various versions of force microscopy [46]. In addition,
colloidal-gold conjugates are used in solid-phase-assay systems, such as dot-blot analysis
[47], immunochroma-tographic test strips [48], and amplification of the immune response
of experimental animals [49].

In our group, the fabricated colloidal-gold conjugates were used in studying the
surface of nitrogen-fixing soil bacteria [24, 25] by TEM and dot-blot analysis [41]
(perhaps, the first application of gold markers to dot-blot analysis of soil bacteria was
described in 1989 [50]). Additionally, our markers and experimental procedures were
used to develop an assay for a rapid diagnosis of acute enteric infections [26], as well as
in studies of a proliferative antigen of the initial cells of a wheat stem meristem [27].
Recently, we recorded for the first time changes in the infrared spectra of Protein A-
colloidal-gold conjugate after its interaction with immunoglobulin [51]. This result may
serve as a basis for the development of new assay systems to detect biospecific
interactions of the antigen-antibody type at the single-molecule level. Finally, one of the
promising field, is the application of colloidal gold markers to preparation of antibodies
both in vitro (by combinatorial phage display approach [28]), and in vivo (for
amplification of the immune response [29]). Note that this intriguing amplification effect
or, in other words, the adjuvant properties of gold sols have yet to be explained.

This work was partially supported by CRDF Grant Ne REC-006, and by RFBR
Grants Ne 01-03-33130 and Ne 01-04-48736. We thank D.N. Tychinin (IBPPM RAS) for
help in preparation of the manuscript, Yu-lin Xu (Univ. of Florida, USA) and Daniel
Mackowski (Auburn Univ., USA) for the GMM computer codes.
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OINTUYECKHUE CBOMCTBA BHOKOHBIOTATOB
KOIIOUIHOTO 30/10TA

H.I. Xnebuyos, B.A. Bozamuwipes, JI. A. oikman, .M. Kpacros, A.I'. Meavrukos

OO6cyxaroTest ONTHUECKUE CBOMCTRA eMUHAYHBIX i arpernpoBaHHbIX KOHBIOTaTOBR
KOJIJIOHTHOrO 30/10Ta, KOTOPbIE CHHTE3HUPYIOTCS NpH afcopOuuu OHOMOMMMEPOB Ha
IOBEPXHOCTH 30JI0TBIX HaHouacTwy. [1s MopenmpoBaHus ocnableHHs W paccestHus
cBeTa TNOJOOHBIMHM CTPYKTYpaMH MCMonb3oBaHa o6oOwmienHas Teopus Mu s
IIPOU3BOJNILHOM MyJbTHCEPHOH KOHpUTypauuu paccenBaTeneii W METOH JMCKPETHBIX
JTUIIONIENi BMECTE C KOMITBIOTEPHON MOJIENBIO KITacTep-KIacTepHOM arperauud, B nepBof
YacTH CTaThbU OOCYKOAIOTCS CHEOYIOLIMe BOIPOCHL * CTATHCTHYECKOE H OpHEeHTAlHOH-
HOE YCpefHeHHe ONTHUYECKHX HalJIofjaeMblX IIapaMeTpoB; * onTudeckue 3QeKTsl,
CBsI3aHHbIE C IMHEHHBIMM LENOYKaMU HAHOYACTHIL, » BIUSHHE NONHEMEPHOTO TOKPBITHST 1
MEJKYaCTHYHOrO0 PAacCTOAHMS Ha ONTHYECKUe CBOMCTBA arperaTos; * MOJEIHUPOBAHHE
KHHETHYECKHX U3MEHEHHIT ONITHYECKHX CBOMCTB arperdpoBaHHbLIX 30JI€H, (POpMHUPYEMbIX
B mporecce GHOCIELMDUYECKOTO CBA3BIBAHHA KOHBIOraTOB; * MONU(UKALMS MYJILTH-
MONIBHOI'O NOJXOHa A clydas JIBYXCIOHHBIX MOHOMepoB. BO BTOpOH 4acTH cTaThu
JaeTcAd KpaTKHWi# 0030p HallMX OKCNEPUMEHTANIbHBIX MCCIEOBAHMM [0 CHHTE3Y,
TEOPETHYECKOMY MOJEJIMPO-BAHUI0 M HPaKTHYECKOMY NpPHMEHEHHI0 GHOMapKepoB Ha
OCHOBE KOIJIOHJHOIO 30J10Ta (BKIOYAs GHOMEIUITMHCKHUE TIPUIIOXEHYST), i TIPHBOISTCS
3KCIIepUMEHTANIbHbIE MPUMEphl  ONTHYECKOrO MOHUTOPUHIa  OHOCHEeUUHYECKUX
B3aMMOJIENICTBHI Ha HAHOMETPOBOM Maciurabe.
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SPECKLE DIAGNOSTICS OF RELAXATION PROCESSES
IN NON-STATIONARY SCATTERING SYSTEMS

D.A. Zimnyakov, A.P. Sviridov, A.I. Omel’ chenko, V.A. Trifonov,
D.N. Agafonov, P.V. Zakharov, L.V. Kuznetsova

Coherent optical method of the study of non-stationary mass transfer in scattering
systems on the basis of statistical analysis of spatial-temporal fluctuations of speckle intensity
is considered. Non-stationary mass transfer in the case of saturating liquid phase evaporation
from a disordered porous layer and structure modification of IR-laser-mediated cartilage
tissue are discussed as the possible applications of the developed speckle-diagnostical
technique. For liquid phase evaporation from a porous layer, the specific feature such as the
anomalous broadening of spectra of speckle intensity fluctuations with decrease of the liquid
phase evaporation rate was found out. This feature is caused by peculiarities of development
of the fractal-like interface between liquid and gaseous phases in a porous layer. In the case of
the thermally induced structure modification of a cartilage tissue, the hysteresis-like form of
dependence of the time-averaged contrast of speckle-modulated tissue image on the tissue
temperature inside the treatment zone is characteristical. The effect of cartilage thermal
modification is presumably caused by the «bound-to-free water» transition in the

proteoglycane aggregates as one of the basic components of the tissue structure.

1. Introduction

Statistical analysis of random interference patterns, or speckle patterns, that appear
as a result of the coherent light propagation in scattering media is the one of universally
adopted techniques for probing the structural and dynamic properties of weakly ordered
condensed matter. The possibility to study the dynamic behavior of ensembles of moving
particles at length scales of the order of the wavelength of probe light by means of the
correlation analysis of scattered light intensity fluctuations stimulated a great number of
experimental and theoretical works dedicated to various aspects of the quasi-elastic light
scattering by non-stationary random media. Such well-known speckle technology as the
diffusing-light spectroscopy (DWS) [1] is now widely used for material testing in various
areas of science and technology; there are many classical examples of successful
applications of the DWS method and related technologies in studying such complicated
processes as a Brownian dynamics of particles in suspensions, a granular flow, a foam
formation, a growth of colloidal aggregates and crystallization, etc. (see e.g. Refs 2-6).

In biomedical optics, the statistical and correlation analysis of dynamic speckle
patterns induced due to laser light scattering by living tissues is the physical basis for
various techniques widely applied for the blood microcirculation monitoring, the burned
tissue diagnostics, the cerebral blood flow visualization, etc.[7-14].
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Also, the significant research activity in this field was stimulated by existence of
fundamental phenomena appearing in the case of scattering of classical waves by
disordered systems (such as, e.g., the long-range spatial and temporal correlations of
multiply scattered field, the «<memory» effect, the effect of coherent backscattering) and
demonstrating certain analogies with such quantum-mechanical effect as the electron
localization in disordered conductors (the so-called Anderson localization) [15-20].

The goal of this work is to review some novel techniques and results in the field of
speckle diagnostics of structural and dynamic properties of weakly ordered multiple
scattering media. These techniques are:

1) the study of a non-stationary mass transfer in disordered and ordered porous
media on the basis of spectral analysis of dynamic speckle patterns induced by coherent
light scattering in porous media;

2) the speckle contrast monitoring of structural changes in collagenous tissues
induced by thermal denaturation or modification under laser heating.

On the one hand, the development of these speckle techniques gives the new
opportunities in studying the complicated dynamic behavior of real systems with
stochastic structure such as, e.g., the structural relaxation forced by thermal processes or
non-stationary mass transfer. On the other hand, these methods are based on certain
fundamental effects related to light propagation in random media at mesoscopic length
scales such as the correlation transfer [21], the evolution of a polarization state of
propagating light [22-25], the manifestation of the coherence phenomena in multiple-
beam stochastic interference, etc. Thus, we can hope that further development of the
above mentioned speckle-based methods leads us to better understanding of processes
accompanying the light-matter interaction at microscopic and mesoscopic levels.

2. Speckle correlometry as applied to study the interface
growth in porous media

One of the possible applications of the speckle-correlation technologies in studying
a dynamic behavior of stochastic systems is the analysis of growing phenomena in porous
media (e.g. in the course of the evaporation of saturating liquid phase [26] or the
development of liquid-gaseous interfaces driven by capillary forces). The specific
property of these growth processes is formation of the fractal-like interfaces which fractal
nature is mainly caused by a structural randomness of «matrix» media. In such system,
the random connections between single pores form a «stochastic network» of channels for
propagation of the local boundaries between liquid and gaseous phases. The mobility of
an arbitrary local boundary depends on physical properties of a liquid phase and porous
medium, as well as on the characteristic size and geometry of pores. A significant
variance in sizes and orientations of pores causes stochastic fractal character of the
«global» interface between phases in disordered porous media. Thus, the direct
observation of the time-dependent dynamics of the local boundaries that form the
growing fractal-like interface is an object of great interest.

1In our case, we studied such time-dependent dynamics for the case of evaporation
of liquid phase from layers of wet porous media. Experimental technique was based on
the spectral and correlation analysis of speckle intensity fluctuations induced by laser
light scattering in layer of dried porous medium. In this case, the dynamic speckle pattern
is caused by a multiple scattering of coherent light by moving local boundaries in single
pores located in the vicinity of growing interface. The experimental set-up is shown in
Fig. 1.

Single-mode He-Ne laser (the wavelength is 633 nm, the output power is 0.5 mW)
was used as illumination source. The laser beam was focused on the surface of the wet

189



porous layer using a lens with the focal length of 200 mm. Scattered light was detected in
the paraxial region by CCD camera (EDC-1000L, Electrim, USA) without imaging lens.
The distance between the layer and CCD camera was 600 mm. Time delay and integration
(TDI) mode of camera was used to get images of dynamic speckle patterns at different
stages of the liquid evaporation. For this mode, the acquired image is composed as the set of
1D images of the same line in the detection plane, which are sequentially recorded with
given time delay. Brightness distributions along the rows of this image correspond to
temporal dynamics of the fluctuating intensity in the points of the chosen line.

Paper layers of different nature, such as copy paper and filter paper of different
thickness and porosity, were used in our experiments as the layers of the disordered
porous media. Before image recording, the studied samples were wetted by quickly
evaporating liquid, such as ethanol or acetone. For each paper sample, the thickness and
average porosity were measured. Also, such parameter as the relaxation time 7, was
used to characterize the studied systems «porous layer-wetting liquid». It was measured
as the time lapse corresponding to e-times decay of the liquid mass in the course of
evaporation from the saturated layer. For comparison with disordered porous media, the
ordered porous layers with cylindrical pores were studied in our experiment. These layers
are the glass plates with hexagonally packed cylindrical channels used for fabrication of

d

Fig. 1. a - scheme of the experimental setup;] - laser; 2 - prism; 3 - focusing lens; 4 - sample; 5 - CCD
camera; b - photos of ordered porous sample.c , d - TDI images of dynamic speckles at different stages of
wetting phase evaporation. ¢ - paper layer (thickness 88 pum, porosity 0.56) wetted by acetone;] - ¢, =10s;
2-1,=355,3-1,=2405;4 -1, =320 s; bar - 10s. d - sample as in Fig. 1p, wetted by ethanol; I - £, =30's;

dr

2-£,=1005;3-7,=400'5;4 -7, =580 s; bar - 10's
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Fig. 2. a - typical forms of the normalized Fourier spectrum module of intensity fluctuations for paper
layer (thickness 71 um, porosity 0.68, ethanol) (7, 2) and for ordered sample (Fig. 1,5) (3, 4) wetted by
ethanol (3) and acetone (4). I - 1, =23 5;2 - 1, =150 5;b - the dependencies of v, (1, 2; sample as in Fig.
1, b) and v, . (3, 4; paper sample, thJCknESS um, porosity 0. 56) on ¢ Wetrmg liquid - acetone (Z, 3)
and eIhanoPé 4); i - final stage of evaporation; ii - presumable stage ofd clusterization

the micro-channel plates (MCP) (Fig. 1, b). The fragments of typical speckle images for
different stages of the liquid evaporation are shown in Fig. 1,¢, d.

For each frame of a sequence of acquired TDI images, the averaged module of the
Fourier spectrum of speckle intensity fluctuations was calculated for pixel brightness
distributions along each row, using the averaging of values of the spectrum module over
the set of rows. The typical forms of the normalized spectrum module are shown in Fig. 2
for disordered and ordered porous media. In the first case, motions of the local boundaries
in the porous layer cause the speckle intensity fluctuations in the form of band-limited
random process with spectrum half-width v,, depending on the average boundary
mobility.

For ordered porous layer, the observed speckle dynamics has quasi-periodic
character (Fig. 1, ¢) with center frequency v depending on the average velocity of local
boundaries propagation.

The typical dependencies of v, ; for disordered layer and v, for ordered layer on
evaporation time £, are shown in Fig. 5

Non-monotonic behavior of v, wnh increase of ¢, and appearance of its maximum
value at certain stage of evaporation characterized by 7__, can be mentioned as specific
property of the observed speckle dynamics in case of disordered layers. It was found for
all studied paper samples, that ¢ and ¢ , are related asr, ~t 010 Another feature is
that despite the higher mobility of the local boundaries in the case of acetone as
evaporating liquid, the speckle dynamics for disordered porous structure is characterized
by less values of v, than for ethanol (for companson see dependencies of v, on 7,

for ordered porous layer).
These peculiarities can be interpreted _ 12000
in terms of multiple light scattering by a %
non-stationary ensemble of local bounda- § 8000
ries in disordered porous layer. Non-mono- = P
tonically changing v, ; with the increasing = 4000} .~ e
time lapse #,, of liquid evaporation is caused . S

by variation of concentration of dynamic
scatters (i.e. local boundaries) in the
scattering volume. This is due to the effect
of multiplication of a random Doppler shift Fig. 3. The dependence of node release rate onn.
for each scattering event by an effective N;=N;=100; N;=30; Q=6. 1 - P<0.3; 2 - P=0.1;
number of scattering events. This number - $t28¢ of clusterization

0 Mmax 20 40 4 60 80 100
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for multiply scattering system depends on the parameter (L/I")’, where L is the
characteristic size of the scattering system and /" is the effective value of the transport
mean free path depending on the scatter concentration [1,19,27]. For drying disordered
porous layer, the growth of fractal interface [28] between phases causes simultaneous
changes in L (which is related to the interface «height») and in /* (which is proportional
to the inverse of concentration of moving local boundaries in the zone of interface
growth). In the case of a slab scattering geometry, the decay of temporal correlation of

fluctuating scattered field depends on the dimensionless parameter k(Ar 2(t))(L/I")?

[19,27], where k is the wave-number of light in the scattering medium, (Ar *(z)) is the
variance of the scatter displacements for the time lapse v and L is the slab thickness. The

value of (Ar %(t)) can be considered as corresponding to the generalized Brownian motion

of the scattering sites: (Ar %(t))=K<® where K is determined by scatter mobility and &
depends on dynamic properties of the scattering system.

The rigorous analytical form of the temporal correlation function of field
fluctuations is determined by scattering conditions and optical properties of the scattering
medium, such as the diffuse reflectivity and can be found only for a limited number of the
diffuse-scattering systems [27]. However, from the principle of similarity it follows that
the correlation time < of field fluctuations varies as t ~(/"/k*KL?)"'? in the dependence
on the parameters of scattering system. Considering the porous layer initially wetted by
liquids with approximately equal values of refractive index and assuming the same
dynamical properties of the ensemble of local boundaries (§,=89,=%) but different

mobility parameters (K, #K, ), the ratio of v, can be expressed as:

(vO‘Smax)lf(vD.Smax)z = (Tmnx)z’f (Tmu)l =
= (K

The ratio /,"/," can be modified using the relation for the transport mean free path:
:{cm(l-g)f", where ¢, o and g are the effective values of the concentration, scattering
cross-section and anisotropy parameter of moving scattering sites (local boundaries). We
can assume that for wetting liquids with close values of the refractive index (n,~1.354 at
633 nm for acetone and .'12-1 358 for ethanol) the effective values of o and g are
approximately equal and the ratio /,"/," can therefore be reduced to c,/c,.
Hence, we obtain: ’

(Vl} Srmx) !(vl} Smax )2 [Klman lmax "“KZmnx Y?mw(z] = 1 (2)

1)
UK yac

'2]1.&&
1max lmu Zm.l.x 2max 2rru|.x lmax

where the parameter y=fc characterizes the effective surface density of dynamic scattering
sites, or the number of stochastically moving local boundaries per unit area of porous layer.

Computer simulation of stochastic irreversible growth of interfaces in 3D lattices
with different number of connections Q between nodes was used to analyze the behavior
of the ratio y,/y, in the course of interface growth. The simulation model was similar to
the Eden model [29]. At the initial moment, the N, x N, x N, lattice (N,=N,>>N,) was
assumed consisting of occupied nodes. Interface grnwth is related to sequermal release of
the occupied nodes beginning from the lattice boundaries. Each occupied node can be
released with given probability P at the current simulation step if it has at least one
connection with free neighboring nodes released at previous steps. The number of
connections @ per lattice cell as the model parameter was varied from 6 (the simple cubic
lattice) to 14 (the cubic lattice with «diagonal» connections between layers). The growth
process for each set of simulation parameters was characterized by the relaxation
parameter n_, evaluated as the number of steps corresponding to e-times decay of the
amount of occupied nodes.
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The extreme case of P=1 leads to appearance of the «conventional» non-fractal
interface propagating in the lattice with constant velocity. Decreasing probability of the
node release causes the fractal-like growing interfaces with the increasing height of the
growth zone for a given position of interface. Despite the simplicity of this model, it has
allowed us to interpret the general features of the interface growth in porous layers that
are manifested in the observed spectra of scattered light fluctuations. Typical behavior of
the amount of nodes (AN/An), . released at each step is illustrated by Fig. 3 as
depending on the number of steps.

The maximal value (AN, /An),, ; obtained at n=n_ corresponds to maximally
developed interface between L[";e regions of occupied and free nodes. Analysis of the
relatlon between n_ and n, leads to the approximately linear dependence

e S R for 0.001<P<0.5 and 6<Q<l14, where G depends on the model
para.meters P, Q, N,=N,, N;. Such tendency is very similar to the above mentioned
relation between the measurcd values of z and ¢ . Evaluations of effective surface
density of occupied nodes for the zone of growth made at n=n__ ., show it as
monotonically decaying to the value close to 1 with increasing P (Fig. 4). In contrast,
values of y_ estimated for small values of P, are close to 3 as a manifestation of the
growing interface fractality. In the case of relatively high growth rates (P=0.20-0.25), the
dependencies of (AN, /An),,_, on n show the appearance of the sharp decay in this
parameter at final stage of release of nodes, which corresponds to the division of the
region of occupied nodes into separate clusters at the final stage of growth (Fig. 3,
marked by arrow). This peculiarity appears «smoothed» at low growth rates. Similar
tendencies can be mentioned for experimentally obtained curves v (z,) (Fig. 2, b),
where the noticeable sharp decay in v, takes place at the final stage of acetone
evaporation (marked by arrow). In contrast, similar curve for ethanol is characterized by
the significantly less peculiarity of this type.

The ratio of K,/K, was estimated using a consideration of the mass transfer of
evaporating phase for the zone of interface growth. The following relation can be

written for the mass flux from the growth zone: lﬂ~Cp(a)2::L )..;» where C is the
dimensionless parameter related to the pore geometry, p is the liquid density, (a) is the
characteristic size of the pore cross-section and (S)__, is the average path travelled by
moving local boundaries per unit time. With used assumptions, the traces of moving local*
boundaries can be considered as the fragments of 3D fractal curves characterized by the
fractal dimension equal to 2/ [30]. Estimation of the average length of trace (S)_, by use

of the average boundary displacement per unit time (Ar >(v=1))!2=K'? as the scale gives
the following relation: (S)_,~K"?® and, correspondingly, Ul~K"®y. Thus, for the same

Table
The estimated values of 9; subscript «1» corresponds to acetone as wetting liquid; «2» - to ethanol
Sample L lonx2? § (Vo.smax)1» HZ (Vosme)p Hz | 8
1¢ =46 =286 =(0.59 =0.65 =1.05
2° =31 =195 =(.92 =1.21 =0.96
3¢ =54 =207 =(.78 =1.42 =1.04

“ Filter paper; thickness 135 um, porosity 0.84;
b Copy paper; thickness 88 um, porosity 0.56;
¢ Copy paper; low quality; thickness 71pm, porosity 0.68.
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porous system saturated by liquids with p,=p, and different values of K/, the ratio K /K,
can be expressed as{(J,/y,) /(J,/y,)}". The parameter J/y at t,=r__ is related to the value

of t__ . For the simulation model, the following relation between (Aﬁ/Ar:)mux!Ymax andn_
was obtained for 0.001<P<0.5: (AN/An) M, ~ "Ny P> Where the value (AN/An) /

was estimated for unit area of the zone of gn;gwth and B is of the order of
(B=1.00£0.05). Assuming the similar relation between J_ /vy . and ¢ for studied

porous samples, we obtain the approximating relation:

(vO.Smn} 1 j(v{l.ﬁm)’l = (rrmxzkm:ml ) [Yma.r.l ZH rnaﬂz]1 fﬁ'_ (3 )

For paper layers saturated by acetone and ethanol, the measured ratiosr__ ./t vary from
4 to 6.5, depending on paper porosity and density. The ratios ("'u.sm:bﬁ Vosma)z VaTY
between 0.4 and 1.0. The measured typical values of these parameters for three paper
samples are presented in the Table. The results of simulation of irreversible growth (Fig.4)
allow us to estimate y for two porous systems with K,>>K, as the values of the

order of 2.5 - 3.0; this leads to the value of

max

max I'I?mnxl

30r 9 close to 1 (estimations of # made for the
sl value of y_ .M., equal to 275, are
. i presented in the Table).

= 20f ST Hence, the typical magnitudes of 9
- } obtained from experimental results allow
Lr b oo us to suppose that the dynamics of local

1.0 e g vn e ol ey boundaries, which causes the interface
0.0 0.2 0.4 P 0.6 0.8 growth in the course of liquid phase

evaporation from stochastic porous layers

Fig. 4. The effective surface density of released Such as paper, is in general similar to the

nodes vs node release probability atn=n_ (results  «classical» Brownian dynamics.
of simula[icn)',N] =N3=100', N3=30; Q=6

3. Speckle-contrast-based monitoring of the tissue
structure modification

Analysis of spatial-temporal fluctuations of scattered coherent light is a modern
approach in the study of non-stationary scattered systems, such as living tissues. We can
enumerate many examples of applying quasi-elastic scattering methods for tissue
diagnostics. These involve above mentioned modifications of laser Doppler flowmetry
(see, e.g., Refs [7, 8]) and DWS technique as applied to blood microcirculation
monitoring and burned tissue diagnostics [9], laser speckle contrast analysis (LASCA)
for similar applications [10-12, 14], and speckle contrast measurements in study of
mechanical properties of tissues [13].

One of possible approaches in the study of spatially heterogeneous non-stationary
media by the use of the speckle technologies is the contrast analysis of time-averaged
dynamic speckle patterns in the image plane. In this case the image of object surface,
which is illuminated by coherent light, is recorded with the exposure time 7' comparable
with the correlation time <, of intensity fluctuations of image-modulating dynamic
speckles. This causes the blurred speckle pattern on the recorded image, which is
characterized by the reduced value of contrast decaying with increase of T/x_ ratio. For
tissue images captured with T=const, the presence of dynamic macro-inhomogeneities in
the scattering volume (such as, e.g., large vessels or local variations of the blood
perfusion level) will induce the spatial variations of the locally estimated contrast for
blurred image-modulating speckles. This effect can be applied to functional imaging of
living tissues by the use of local estimates of the speckle contrast as the visualization
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parameter; in particular, such imaging technique was discussed in Refs [10, 11]. More
recent example of speckle imaging of living tissues is application of the LASCA
technique for visualization of cerebral blood flow reported in Ref. 14.

Here we present the results of the contrast analysis of time-averaged dynamic
speckle patterns to monitor the structure modification of thermally treated collagenous
tissue, such as cartilage. Laser-induced thermal reshaping of cartilage is a modern
approach in laser medicine [31]. One of the probable mechanisms of this reshaping is
presumably related to «bounded-to-free» water transition induced in macro-molecular
structure of proteoglycan aggregates (PGA), one of the components of cartilage tissue
[32, 33]. Another thermally activated mechanism of tissue reshaping is the partial thermal
denaturation of the collagen matrix as the second basic component of cartilage tissue. In
particular, the changes in mechanical properties of thermally treated collagen were
studied in Ref. [34], where the empirical relations between mechanical properties of the
thermally modified tissue, its shrinkage as a result of thermal modification, treatment
temperature and time duration of a treatment procedure were established. It was found
that mechanical properties decreased with increasing shrinkage, and that the maximal
allowable shrinkage before significant material property changes occurred was between
15% to 20%. At larger values of tissue shrinkage, the progressive increase of the
proportion of collagen fibrils undergoing denaturation was observed by means of the
transmission electron microscopy. The abrupt increase in the tissue shrinkage rate was
observed at the temperatures above 60 ° C.

Recent studies also revealed the existence of noticeable changes in physical and
mechanical characteristics of the heated cartilage in the narrow temperature region near
70° C [31-33]. In particular, changes in tissue scattering properties were observed for this
temperature range in the course of thermal treatment of cartilage. This effect was
interpreted in terms of water release from heated zone and subsequent decrease of
scattering centers sizes [35].

Also, the alterations of mechanical properties of the cartilage during the tissue
treatment that are, for instance, revealed as the relaxation of the internal stress, are related
to the time-dependent inhomogeneous deformation of tissue. In its turn, the process of
thermal treatment of cartilage tissue illuminated by coherent light must be accompanied
by expressed speckle dynamics of scattered optical field due to the time-dependent
mutual local displacements of scattering sites such as collagen fibrils that form the tissue
matrix. This is why statistical analysis of speckle intensity fluctuations can be used for
monitoring of modification processes. The importance of such monitoring for laser
reshaping of the native cartilage is caused by the necessity to provide conditions for
proper tissue modification and to avoid the dramatic changes in cartilage structure caused
by collagen denaturation in the treatment zone.

In experiments, the transmittance mode of probe He-Ne laser light propagation
through a layer of thermally modified cartilage tissue was chosen to study the
temperature-dependent dynamics of image-modulating speckles. Fig. 5, @ shows the
scheme of experimental setup. Single-mode He-Ne laser (1) (633 nm, linear polarization,
output power 5 mW) was used as a light source. Laser beam was expanded by 50*
telescopic system (2) and put on the front surface of ex-vivo sample (3) of porcine
cartilage. Samples were prepared as 15 mmx25 mm pieces of 1.5 mm thickness. Speckle-
modulated images of the sample back surface were captured by CCD-camera (5) (EDC-
1000L, Electrim, USA) with zoom lens (4) (LMZ13A5M, 12.5-75 mm). Such detection
geometry causes relatively high level of the detected light intensity and relatively low-
frequency intensity fluctuations for image-modulating speckles, or their slow dynamics,
in comparison with detection of the backward scattered light due to typically small values
of the scattering angle. This had allowed us to choose the appropriate parameters of the
image acquisition procedure for the range of exposure times and frame recording rates
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Fig. 5. a - scheme of the experimental setup; b - time-averaged images of the treated tissue; left panel -
before treatment; right panel - during the treatment; treatment zone is marked by white circle
typical for used video capture system and, in its turn, to provide the detailed analysis of
slow speckle dynamics for the treatment zone. Besides, image analysis with use of the
transmitted light allows us to exclude an influence of the tissue surface reflection on
speckle pattern formation that in this case is caused only by the bulk scattering into the
probed volume.

Optimal conditions for speckle-modulated image recording are determined by two
concurring factors that depend on the aperture of imaging lens: the appropriate mean size
of speckles in the image plane and the appropriate brightness of speckle-modulated image
captured with exposure time that is comparable with the correlation time of speckle
intensity fluctuations. The larger average size of image-modulating speckles in the case
of smaller imaging lens aperture leads to minimization of distortions of speckle statistics
caused by the finite photosensitive area of each CCD pixel. But the decrease of imaging
lens aperture causes a decrease of average brightness of image captured with given
exposure time and, as a result, a decrease in the dynamic range of detected speckle
intensity and the signal-to-noise ratio. For used experimental conditions and typical
values of the correlation time of speckle intensity fluctuations, the optimal value of
imaging lens aperture was found to be of the order of /12, where f is the focal length of
the imaging lens. In this case, the estimated average speckle size in the image plane was
10 - 12 um; this value is comparable with the pixel size for used CCD camera and thus
the integration of spatial intensity fluctuations over each local detection zone (CCD pixel
photosensitive area) takes place. On the basis of the sampling theorem (see, e.g., Ref.
[36]), these detection conditions will cause the certain diminishing of the estimated
contrast values due to the low-frequency spatial filtering properties of the detector in
comparison with the ideal detection conditions, when the speckle size is much larger than
the CCD pixel size, and a great number of image-modulating speckles is covered by the
whole CCD photosensitive area. .

Thermal treatment of the sample was provided by Erbium fiber laser (6) (A=1.56
um, cutput power up to 3.5W) with multimode quartz fiber (7) (0.6 mm diameter) as a
light-delivering system (LS-1,5, IRE-Polus, Russia). The wavelength of 1.56 pum
provides the bulk absorption of laser radiation by tissue and corresponds to the edge of
one of the water absorption bands in the near infrared region [36]. For tissue, the
penetration depth of treating laser radiation is of the order of 1 mm. The fiber tip was
placed at 15 mm from the sample surface and the diameter of treatment zone was about 4
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mm. Thin wire thermocouple (30 um in diameter, (8)) was used to control the current
tissue temperature T in the central part of the zone. It was embedded into the sample so
that the distance from the nonirradiated back surface of the sample was about 0.5 mm.
The use of such thin thermocouple provides locality and fast response of dynamic
measurements of the sample temperature. Notice that direct laser heating of thermocouple
tip may cause some error. Our rough theoretical estimates of a maximal difference
between the temperature of the laser-heated thermocouple and that of surrounding
medium were made using the comparison of the heat transfer from thermocouple body to
medium and heat deposition due to laser irradiation. These estimates give the difference
about 3° C for typical values of the used beam intensity. In practice, this difference
should be much less due to simultaneous heating by laser as thermocouple and tissue.
Indeed, at high absorption coefficient of tissue the temperature of thermocouple may be
less than the tissue temperature despite its being heated by laser. As to our experiments,
the validity of the thermocouple use is obliquely confirmed from cooling dynamics
measured immediately after the laser was switched off. In the case of a noticeable
difference between temperatures of the thermocouple body and surrounding medium, this
should cause the noticeable jump-like changes in measured temperature values because of
the fast equalization of the body temperature and that of surrounding medium. Any
distortions of this form at the initial stage of sample cooling were not observed in our
case. Notice finally that the tissue subsurface temperature near the back surface should be
slightly less than the temperature near the irradiated surface.

Sequential recording of speckle-modulated images of sample surface was carried
during the laser treatment and after the laser was switched off. After the capture of frame
sequences, the time series averaging of speckle intensity fluctuations was carried out for
each pixel in the image plane using a sampling window of given width 2K+1:

~ K
L'=% 1™ (2K + 1), , (4)

)

where k is the number of image in the frame sequence, and i, j are the pixel coordinates in
the image plane. The window width determined by the number of averaged frames was
chosen in correspondence to the correlation time of intensity fluctuations in the center of
treatment zone. The number of averaged frames corresponding to the window width
varied from 3 to 7 for typical image capture parameters (exposure is 10 ms, sampling
interval At is 400 ms). This scheme of speckle-modulated image processing is based on
the fundamental relations between statistical properties of the spatial-temporal
fluctuations of dynamic speckles. Such relations allow the evaluation of the correlation
time of speckle intensity fluctuations by the use of analysis of exposure-dependent
speckle contrast as applied to time-averaged images of dynamic speckle patterns. Our
scheme of speckle-modulated image processing reproduces in general the basic steps
typical for laser speckle contrast analysis (LASCA), namely:

1) recording of time-averaged dynamic speckle pattern with given exposure time
(in our case this procedure is similar to construction of image by averaging over the
number of sequential frames sampled by the window of given width; the advantage of this
approach is related to possibility to obtain values of the time-averaged speckle intensity
with high temporal resolution determined by the frame sampling interval used for the
frame sequence recording; on the contrary, in the case of using traditional LASCA
technique the temporal resolution is determined by the used exposure time comparable
with the window width for our case);

2) statistical analysis of spatial fluctuations of the time-averaged speckle intensity;
digital image processing procedure in our case is the same as for LASCA technique.

The example of time-averaged image of tissue before and during the treatment is
presented in Fig. 5, b. Treatment zone with expressed speckle dynamics is characterized
by smaller level of pixel brightness fluctuations. Averaged images were processed to
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obtain the local estimates of the contrast V, = o, f/( IH)U" for different regions of each
frame obtained with the window width of 2K+1. The time-dependent mean square root

value o, f and the mean value (F ),/ of 8-bit pixel brightness were calculated for a set of
pixels inside the circular sampling area:

-~

() f= UM)E,, I,

" m,

Ml (5)
o, k=[(UME, (L1 4}')’?.)1, &
1ij mn N i, iJ 1 24n2ep? L]

where r is the radius of sampling area and M is the number of pixels inside the area. The
area radius was chosen at least 3 times wider than the average speckle size, but less than
the treatment zone radius.

To characterize the relative changes in Vu* in the course of «thermal treatment-

thermal relaxation» cycle, the normalized contrast value ﬁu(t)z'v:. ANV, (0) was used,
where r=kAt is the time lapse and V,.(0) is the initial contrast. This normalization

procedure allows us to compare the behavior of the time-averaged contrast for various
treatment conditions independently on the initial contrast value that significantly varies

across the imaged tissue surface. Typical behavior of Vu( t) for central part of treatment
zone is shown in Fig. 6; the dependence of current temperature T measured with use of
the termocouple in the vicinity of the back surface on the time lapse is also presented. At
the first stage of treatment (time lapse interval from O to =20 s), the increase of T is

accompanied by the decay in fr._j(t). The second stage (20s<r<60s) corresponds to
thermally induced modification of cartilage and, being examined by the statistical
properties of image-modulating speckles, is characterized by suppression of speckle

dynamics that results in the increase of V, (1). The increasing heat loss rate at
temperatures above 60° C becomes comparable with the rate of the heat deposition due to
tissue irradiation by IR laser light for used treatment conditions and so causes a
significant fall of the tissue temperature rate; as a result, a plateau-like region appears on
the 7(zr) dependence. The final stage, or thermal relaxation of the treated tissue, is
accompanied by non-monotonic changes of the normalized contrast value with common
tendency to increase.

This behavior leads to a specific, «loop-like» form of dependencies of VU,({) onT

(Fig. 7) in the treated zone related to the irreversible thermal modification of tissue
structure due to partial relieving of

heterogeneously stressed collagen matrix.

%3 T T.°C Thus, the evolution of dynamic scattering
; lgn  System such as modified cartilage tissue

1.1 depending on treatment conditions can be
150  described by a set of similar trajectories in
LOg (T,V) plane. For arbitrary trajectory the
: 140 . T
[ following typical stages of system evo-
0.9 1" l3p  lution can be singled out and a correspon-
_ ding scenario. of system behavior can be
08" ‘ : - ! : considered:
0 40 80 ts

1) the stage of V decay caused by
Fig. 6. The dependencies of V. () (dotted curve) increasing thermal deformanfms of hetero-
and T (full curve) on ¢ during”and after the laser gene_UUSly stressed  scattering  structure
treatment (a and b, respectively). Er laser output consisting of 3D network of collagen fibres
Pis12W (collagen matrix) fixed by macro-mole-
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cular ensemble of water-coated proteogly-
cane aggregates;

2) the stage of partial stress rela-
xation, characterized by the rapid increase
in V with slightly increasing tissue tempe-
rature; the width of loop, AV, depends on
the duration of the plateau-like region of
T(t) dependence;

3) the stage of formation of a new,

partially relieved stable spatial con-
figuration of the scattering system accom-

panied by decrease in V;

4) the final stage of thermal
relaxation of modified cartilage structure.
The behavior of the scattering system at
this stage is generally similar to that
described for the first stage (in particular,

~ 1 --]

20 6 T,°C

Fig. 7. The dependencies of V, (1) on T for
treatment-relaxation cycle. Squares (1), P=1.2 W,
near the center of treatment zone; circles (2),P=0.8
W, near the center of zone. Black arrow indicates
the heating stage; gray arrows indicate the thermal
relaxation stage

both fragments of V(T) are characterized by close values of the trend line slope).

Following from experimentally observed non-monotonic behavior of the time-
averaged speckle contrast with increase of the tissue temperature, we can conclude that
the specific feature of cartilage thermal modification is the appearance of the additional
factor changing sufficiently the thermally activated dynamic behavior of tissue scattering
structure for measured values of tissue temperature above 60° C. These changes are
manifested not only in variations of the speckle contrast, but also in behavior of the tissue
diffuse transmittance as well as the internal stress [37]. At the initial stage of thermal

treatment, the decay in V with increasing temperature can be interpreted in terms of
thermally activated irreversible local deformations of tissue collagen matrix revealed at
macroscopic level as the tissue shrinkage [34]. Another well-known manifestation of
thermal modification of the collagen structure due to partial denaturation are the
temperature-induced changes in tissue optical properties, say, the birefringence [38]. On
the basis of empirical relation between the relative value of tissue shrinkage, the
temperature and the duration of thermal treatment given in Ref. 34, the instantaneous rate
of thermally induced irreversible deformation of collagen fibrils can be approximately
estimated as:

§(LT)= - K, ()0 (14K(T) KDY, (6)

where K,(T), K,(T), K,(T) are the empirically evaluated temperature-dependent
coefficients. This expression gives the abrupt increase of the deformation rate with
increasing temperature and its slow decay at the final stage of collagen thermal
modification, when the tissue deformation exceeds 25% and collagen native structure is
almost totally denaturated [34]. Mutual displacements of the structure-forming elements
such as collagen fibrils in the course of tissue deformation will induce intensity
fluctuations of coherent light scattered by the modified tissue structure. These intensity
fluctuations are characterized by the correlation time depending on characteristic time
interval required for displacement of scattering sites such as collagen fibrils at the
distance of the order of the wavelength %, of illuminating light and, correspondingly, are
related to the scattering structure deformation rate:
T, ~ AN/l en, 7
where [ is the characteristic distance between scattering sites for a probed medium, » is
the medium refractive index and the factor A depends on the average number of scattering
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events, illumination and detection conditions. With the use of such simple
phenomenological model, it is possible to give qualitative interpretation of the decay in
the correlation time of speckle intensity fluctuations and, correspondingly, in the time-
averaged speckle contrast with increasing tissue temperature that is observed at the ini

tial stage of the cartilage thermal treatment. In turn, the increase of V observed at the
second stage of modification process, cannot be completely interpreted in terms of further
progress in thermal modification of collagen matrix due to partial denaturation of the
collagenous component of cartilage tissue. With the tissue shrinkage progress, the
appearance and accumulation of new scattering centers due to thermal denaturation of
collagen fibrils is rather accompanied by further decrease in correlation time of speckle
intensity fluctuations or tissue transmittance. In particular, the additional study of
dynamic light scattering by soft collagenous tissue such as porcine sclera in the course of
its thermal denaturation at fixed temperatures in the range from 60° C to 90° C showed
the monotonic decrease in the correlation time of scattered light intensity fluctuations
with the increasing tissue temperature. Also, the additional oblique argument against the
mechanism of the time-averaged speckle contrast increase for the temperatures slightly
above 60° C that can be directly related to thermally activated denaturation of the
collagen matrix, is that the thermally induced dramatic changes in collagen structure
should appear for sufficiently larger values of laser beam intensity and exposure time than
that used for laser-mediated cartilage reshaping. Typically, the thermally induced
deformations of cartilage tissue accumulated to the final phase of the initial stage of
thermal treatment, are significantly less than critical values of 15-20% given in Ref. 34.
Thus, in our case we should not expect the decay in the tissue deformation rate and,
correspondingly, increase of the time-averaged speckle contrast due to degradation of the
collagen matrix. In particular, the examination of the cartilage after the laser treatment
with an optical microscope [39,40] did not show any evidence of dramatic changes in
matrix structure for appropriately chosen reshaping conditions.

Thus, the change in behavior of V' in the narrow interval of the measured tissue
temperature slightly above 60 °C can be presumably related with the manifestation of one
or several adequately effective thermally activated mechanisms of relaxation of the
matrix deformation rate. At present time, the total physical picture of this effect is not yet.
fully understood but the mechanism of bounded to free water transition in the
proteoglycan aggregates (PGA) structure due to dissociation of PGA macromolecules
was discussed as the probable candidate for the role of such stress relaxation controlling
mechanism [33]. The argument supporting this hypothesis is that the mechanical
properties of cartilage tissue are strongly influenced by the interactions between
subsystems of collagen matrix and PGA as the tissue basic components. Therefore, the
alterations in hydrodynamic properties of PGA ensemble as the ground substance will
cause the change in deformability of a whole tissue. In particular, it was found by means
of a dynamic light scattering [41] that the thermal dissociation of proteoglycan
macromolecules at temperatures above 60° C is accompanied by the significant increase
in the translational diffusion coefficient of PGA.

In further study of tissue modification process, analysis of «loop-like» curves

plotted in (7,V) coordinates (in particular, the relation between loop height AV and
duration of plateau-like region on T(¢) curve) can be applied for evaluation of kinetic
parameters of the internal stress relaxation, in addition to recently described approaches,
such as the study of thermal and mechanical effects, tissue diffuse transmittance and/or
reflectance measurements, FTIR spectroscopy, and examination by the use of optical and
atomic force microscopy.

200



4, Conclusion

Presented results illustrate the potentialities of various modifications of the speckle
correlometric techniques in studying the dynamic properties of local scatters that form
weakly ordered multiple scattering systems of various nature. Further development of
speckle-based coherent optical technologies can be related to the application of
polarization discrimination of multiple scattered speckle patterns as well as the use of
partially coherent probe light with the controllable coherence length. These approaches
open the way for precise analysis of the light transfer processes in disordered scattering
systems due to possibility of selection of partial components of multiple scattered optical
fields with given pathlength distributions.

This work was supported in part by CRDF grant REC-006 and by RFBR grant
Ne 01-02-17493.
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CHEK/JI-IUATHOCTHUKA PEJTAKCAIIMOHHBIX ITPOLIECCOB
B HECTAIIMOHAPHBIX PACCEUBAIOIUX CUCTEMAX

H.A. Bumnaros, A.Il. Ceupudos, A.H. Omeavuenio, B.A. Tpughonos,
H.H. Azaghonos, I1.B. 3axapos, JI.B. KyzHeyoea

PaccMOTper Kore peHTHO-ONTHYECKII METO]] HCCIIEH0BaHMs IIPOLECCOB HECTAIHO-
HApHOrO MacCONEPEHOCA B pacceuBalOIUX cpeflax Ha OCHOBE CTAaTHCTHYECKOIO aHaIn3a
INPOCTPAHCTBEHHO-BPEMEHHBIX (DIyKTyaldii WHTEHCHBHOCTH CIEKII- MOJIY/IIPOBaHHBIX
OITHYECKHX IOJeH, paccesHHbIX oObekTamu. B KauecTse IPAMEPOB PacCMOTPEHbI:
aQHaJM3 HeCTAHOHAPHOI'O MAacCCONEpPeHOoCca IPH UCIapeHHH HACHIIAIOMEH KANKOCTH H3
HEYNOPSIOYEHHOr0 [IOPHCTOrO CNOSA M aHAIM3 CTPYKTYPHOH MOJM(HKaAIUM XpsAIeBoil
TKaHu B npounecce ee Harpea MK nasepHbIM u3nydennmeMm. B ciydae mcrmapeHus
SKAIKOCTH M3 MOPHCTOro ciios obHapy:xeH >(¢eKkT aHOManbHOro YIIMpEeHHsA CIeKTpa
¢nykTyanuii HHTEHCHBHOCTH CIIEKJI-MOMYJIMPOBAHHOTO PACCESIHHOTO H3y4EeHHs [pu
YMEHBIIEHHH CKOPOCTH MCHApEHus KHAKOH ha3bl, 0OyclIOBIeHHEI OCOOEHHOCTIME
passuTHsi bpakTanbHOro (hpoHTa HcrmapeHus. XapakTepHo# OCOGEHHOCTBIO TEpPMit-
4ecKoil MOIM(HKAINY CTPYKTYpPbl XPSIEBO TKaHH ABNSETCS CYLIECTBOBAHUE THCTEpE-
3MCa 33aBHCHMOCTH KOHTpacTa CIEKJIOB, MONYMMPYIOMMX H300pakeHHe Hcciefyemoi
TKAHH B KOT€PEHTHOM CBeTe, OT TeMIepaTyphbl TKaHH B 30He Momudukanui. Mexamnsm
CTPYKTYPHO! MORM(HKALMU XpAINEBONH TKAHA INPENNOJOXATENBHO CBS3aH  C
TEPMHUYECKH aKTHBHPOBaHHLIM IIEPEXONOM «CBs3aHHAs BOfa - cBOGORHAS BOUa» B
. CTPYKTYPE TNPOTEOITMKAHOBBIX arperaTros Kak OJHOW M3 0a30BBIX COCTABISFOLIHX

XpAIIEBOIl TKaHH.
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PHYSICAL EXPERIMENT IN UNIVERSITY EDUCATION

B.S. Dmitriev, Yu.l. Levin, Yu.P. Sharaevsky

The role of physical experiment in modern university education is discussed. The
principles of organization of a training and research physical practical work for the lower
years students at faculty of nonlinear processes of the Saratov university are stated. The
concrete examples of experimental researches are cited.

Introduction

Exactly 40 years ago the academician P.L. Kapitsa spoke at the General meeting of
the Academy of Sciences of the USSR with a report, which gave the title to a famous
book «Experiment. Theory. Practice» [1]. The work is well known to physicists - its main
idea is comparison of theoretical and practical physics development in the USSR. As the
editor of «The Journal of Theoretical and Practical Physics» P.L. Kapitsa estimated
relation of articles on experimental physics to articles on theoretical physics as 1:4 or 1:3.
Work of great scientists - naturalists, who made a large contribution to development of
modern natural science, was making invariably in an intimate connection with theory and
experiment. Harmonious development of theory and experiment «is absolutely necessary
in all fields of natural science». Still the famous lord Kelvin compared theory with
millstones, and data of experiment with grain. Much as millstones whirled by themselves
- it would be nothing useful. But quality of flour is determined by quality of grain that is
why «high quality of experiment is a necessary condition not only for forming an
advanced theory, but also for getting practical results». It is hard to determine the
mentioned relation of theoretical and experimental works today, and the idea of high
quality of physical experiment, its role nowadays and teaching to this art, is urgent today.

In our opinion, preservation and development of the experiment on location is an
important element of the correct formation of a modern natural picture of the world in the
mind of the student. For a first year student (a physicist) experiment begins with a
physical practical work and connected with a course of general physics. It should be
noted, that organization of physical education at the University begins with its base - the
course of physics, being understood in a broad sense: a course of lectures, seminars,
laboratories, demonstrational experiments, manuals and so on.

Unfortunately it should be noted, that the role of physical experiment does not
often get due attention in modern manuals. Courses of general physics undergo an
excessive «theorization» - statement of fundamental classical experiments «disappears»
from the pages of training aids, and some of them changed radically established
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conceptions in physics. For science the most valuable experiments were those ones,
results of which contradicted theoretical expectations, though many experiments were
organized «under the direction» of one or another, sometimes hypothetical, but always
theoretical scheme, in the context of which they wanted to understand experimental facts.
Just such experiments played a decisive role in the picture of the modern natural science.
Side by side with simplicity and clearness of an idea (sometimes just «witty») these
experiments were notable for striking, even for today, resolution. Estimations on the
Mickelson - Morley experiment are usually traditionally given as an example from a
chrestomathy [2]. And some years before the very «sensitive» experiment, results of the
skilful experimentalist Rowland (1878) on direct verification of the Maxwell’s idea about
magnetic field of a moving charge (paragraph 770 of «The Treatise about electricity» [3])
were published. The idea of the experiment is simple - the magnetic field of a rotating
charged ebonite disk should be determined. What can be surprising for a modern student
here? Of course, experimental art - the value of the found magnetic field was equal to 10° (!)
of the earth magnetic field value. This is an extremely hard experiment even for today,
but it is difficult to find a description of the measuring method. There are some other
similar examples. We can observe the same situation with modern experiments. But when
explaining some effects, their enclosure was rather convincing. (For example, when
studying resonance - the application of the Méssbaur effect for measuring of fantastically
little effects of changing frequency when studying «gravitational violet shift» of the
photon in experiments of Paund and Rebka). It seems to us, that the student of nowadays
should know about such unique investigations. An educated specialist should get even «a
grain» of art and culture of organization of great experiments in the university lecture-
room. The usage of the adjective «great» is quite justified - many of the experiments have
a «Nobel» character.

Leading university centers pay serious attention to a new approach in creation of
training laboratories, corresponding to «the spirit of modern physical investigations» [4-
8]. They should provide interest for the student in researches in the physical laboratory,
but it is not so easy, as he is «charmed» by the computer technology, which is fascinating
and seems all-powerful to him. The practical work is only «ideologically» connected with
the course of lectures; its principal task is not verification of «correct» laws, and mainly
mastering of measuring techniques, analysis of reasons of experimental results difference,
correcting of experiments. All this is directed to overcome «intellectual sterility» of the
student. Organization of an effective process of studies in the physical laboratory
demands changing technology of the accepted method: creation of multifunctional
module facilities with elements of automation of measuring, autonomous composition of
elements on such facility to extend the number of being executed exercises, that provides
a «storing» system of collection of experimental data. The essential moment is the
intensification process of organization of the work at the sacrifice of time saving on usual
«routine» procedures (replacement of the facility and mastering of a new one, exception
of ineffective measurements, unjustified prolonged «theoretical» test). At the same time it
is necessary to take into consideration the natural law of «distribution of students over
energies» in depending on their creative abilities, desire and ability to work with the
equipment. Equally with a modern «arrangement» of organization of works it is expedient
to use «out-of-date» tasks (warmth, sound and so on): the student would not possess
some scientific erudition without fundamental studying «the classics». After having
carried out experimental investigations by the student, the crucial stage is analysis and
processing, showing sufficient erudition, of the received data, usage of a computer to
model and demonstrate visually the results.

206



Training and research physical practical work for the lower years students

The presented «ideology» was established when creating an integrated training and
research practical work «Methods, Technology and Informational Provision of the
Physical Experiment» at the faculty of nonlinear processes of the Saratov State University
(SSU). The main aim of such laboratory is a detailed analysis of the received
experimental results, estimation of influencing factors and reliability of the data, that is
the training to the foundations of the physical experiment, showing sufficient erudition.

In the practical work there are 15 multifunctional facilities with electronic
measuring systems, 110 students of 2 faculties of the SSU: the faculty of nonlinear
processes and the faculty of computer sciences and information technologies, take the
course during the academic year, 5 training aids have been published [9-13]. The main
directions of researches are carried out inthe following fields: physical foundations of
mechanics (the conservation law, dynamics of the rotary motion, friction forces of
different nature, elastic deformations, mechanical oscillations and resonance); oscillations
and waves in different mediums, molecular phenomena, thermodynamics and phase
transitions, and electromagnetic phenomena.

Taking into account the strategy of education at the faculty of nonlinear processes,
based on the ideas of nonlinear dynamics, let us note only some tasks on oscillations and
waves, being solved in the physical laboratory. This is, first of all, a vast class of
mechanical pendulums with analysis of their characteristic peculiarities, experimental
investigation of nonlinear effects and their comparison with different theoretical models
[9]. A series of tasks on investigations of waves in different mediums demonstrates the
«international» language of the theory of oscillations: waves in bars and strings, sound
waves in free space and an acoustical resonator, capillary-gravity waves on the water
surface, the study of which already requires a certain experimental skill. Both velocity of
sound and velocity of the electromagnetic wave are measured by a widespread standing
wave method. To complete the picture let us adduce some results of experimental
investigations.

Resonance in mechanical systems

A great role and beauty of the phenomenon of resonance in nature are well known.
In the training laboratories this phenomenon is usually studied in a oscillatory contour of
the radio range or in systems of microwave frequencies and the optical range. In our
practical work resonance is studied on torsional oscillations of the disk of the rotary table,
carrying out oscillations in the horizontal plane under the action of two elastic springs,
creating a torque moment throughout a thread, enveloping the axis of the pulley of the
rotary table [10]. Elastic properties of the springs and the moment of inertia of the
rotating system determine the oscillation period of such pendulum. The electronic
measuring system allows determining the oscillation period with resolution 0.1ms. To
excite forced oscillations in such system and to investigate resonance the pulley of the
rotary table is connected with an electric motor, allowing changing the frequency of the
forced signal and its amplitude. Dependence of amplitude and, what is more interesting,
phase of rotary forced oscillations of the system on frequency of external oscillations are
investigated in the work. It is interesting to pay attention, that resonance effects for
realized mechanical systems are observed with frequencies about 1 Hertz (!). Results of
measurements are presented in Fig. 1. Resonance amplitude characteristics (o - the angle
of deflection of the system from the equilibrium position) of the free platform and the
platform loaded by a ring are shown in Fig. 1, a. Dependences of the amplitude of
oscillations o and the phase shift A¢ on the period of external oscillations for one of the
systems are shown in Fig. 1, b. :
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Fig. 1

From received data one can make conclusions about good quality of being
investigated mechanical oscillating systems.

At the same time let us note, that such simple oscillating system is a simple and
rather precise device to determine moments of inertia of different bodies. It is enough to
measure the period of natural oscillations of the free table T, and its moment of inertia J,
the period of oscillations of the loaded table T, the moment of inertia of the table with any
figure, placed in an arbitrary way on the disk of the platfom is computed of the relation
J=J(TIT,)* In the table 1 there are found in the experiment and computed moments of
mema of different figures (the moment of the loaded table is J,=0.0026 kg/m? , moments
of inertia of figures are presented in the same units).

Table 1
Moments of inertia of different figures
Figure a Parallelepiped a Disk a Ring
In the
Position Flat- On the On the center On the In the
ways «long» side| «short» of the edge center
side platform

Experiment | 4.9-10° | 4.18-10° 9.65-10* 716+ 2.1:10% | 2.48-10*

Calculation | 4.92:10%| 4.19-10° | 9.65-10* 7.1:10% | 213102 | 2,510

An excellent coincidence attracts attention.
Measurement of velocity of light

We have already spoken above about the «international» language of the theory of
waves. It shows itself in methods of investigating waves of different nature. A wide
spread measuring technique of the velocity of sound is the standing wave method, as a
rule, here conditions of wave reflection are invariable, they are given by the facility
construction. By the same method one can investigate, naturally, electromagnetic waves:
to determine the velocity of a electromagnetic wave in the free space. Perhaps, first time
in his life a first year student has an opportunity to measure «with his own hands» one of
the principal «mysterious» physical constants - «velocity of light».
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The facility is very simple; its
scheme is given in fig. 2.
The source of electromagnetic

oscillations is a microwave oscillator in the

]

range of frequencies 1000-2000 MHz. The  1-2 GHz | =

signal, modulated by a low frequency, went

from the signal oscillator to a flat coaxial SSG Measuring line :i
line, along of which a needle-shaped radio- M

frequency indicator probe was moving. The .

signal of the probe was brought to the Fig.2

detector chamber, after which the low-frequency signal was amplified and observed on
the screen of the oscillograph. The position of the indicator probe along the shift axis was
fixed with the aid of noniuses with resolution to 0.5 mm. The standing wave character
was changed easily by the kind of charging of the line: a broken line, a short-circuited or
matched line. Length of the measuring line allowed fixing, when the probe moving, some
length of waves, in measuring of which one should be especial careful. The signal
frequency was determined to tenth parts of a Megahertz on the generator. The result
(«velocity of light) was determined by these two parameters - signal frequency and
wavelength. As we can see, measuring technique is very simple and the art of an
experimentalist was in analysis and in provision of conditions of certain measuring of
standing wave minimums. In table 2 there are values of velocity of the electromagnetic
wave in the air, measured for different conditions of the standing wave.

Table 2
A broken line
f, MHz 1140.7 12177 1259.9 14141 1689 1807.7
A, mm 263.23 247.46 238.82 21225 177.58 165.55
c,108m/s | 3.0027 3.0134 3.009 3.0014 2.9994 2.9927
A circuited line
1, MHz 1200.6 1276.5 1439.4 | 15182 | 15579 | 1716.7 | 1796.7
A, mm 251.30 23542 | 209.15 198.57 | 193.02 | 175.25 | 167.35
¢, 108 m/s | 3.0171 3.0052 ‘3.01 3.0148 | 3.0071 | 3.0085 | 3.0068

¢ - velocity of an electromagnetic wave, f- signal frequency, A - wavelength.

The method of a cavity microwave resonator for measuring «» is methodically
very close to the one, stated above, and it is one of modern for determining velocity of
light (even the depth of the skin-layer of electromagnetic radiation penetration inside of
metal is taken into account in the method). That is why organization of the described
work, because of its simplicity and clearness, is very useful for a yesterday’s schoolboy,
especially as it allows a large creative analysis of mistakes of the experiment. On the
facility one could demonstrate and value in quantity the effect of «decelerating» the phase
velocity of the electromagnetic wave by a dielectric, placed along the wave propagation
channel, and even value dependence of dielectric constant on the signal frequency.
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Waves on the water surface

It is interesting to investigate one more type of waves, which, of course, everyone
observed more than once - these are waves on the water surface. They are beautiful and
usual for us, but these are «especial» waves, as they are similar neither to sound nor to
light. As Feiman R. noticed «all difficulties, which only can be in waves, gathered
here»[14]. This is one of the most «beautiful» tasks in the theory of waves [15,16]. We
can indicate main physical factors, determining existence of the waves, of all variety of
waves on water - these are gravity and surface tension. These two effects are compared in
a certain field of parameters and these waves are called capillary-gravity. Their
characteristic peculiarity is dispersing waves, for which the phase velocity of waves
changes with the wavelength. This is a serious research for a student of the first year both
in an experimental and theoretical aspects of the phenomenon and, first of all, because of
getting to know phase and group velocities. The liquid being investigated is placed in a
special container (of organic glass), reminding an irrigation canal. A diaphragm, exciting
waves with a certain frequency from a generator, is joined to an edge of the canal. To
excite running waves in such canal, the opposite wall is made in the shape of a sloping
«bank». A thin probe, submerged a little to the liquid, moves along the canal. Current
through the probe depends on depth of its submerging to water, that gives opportunity to
observe the wave shape when the probe moves, that is to measure the wavelength. In the
measuring scheme we used a dual-beam oscilloscope, on which a reference sine signal,
exciting the diaphragm, is observed on a ray and a signal from the probe on another ray.
A picture of these two signals, convenient for measuring, can be chosen by means of
regulation of parameters of the electrical scheme. Moving the probe along longitudinal
coordinates, one gets cophasing or antiphasing position of the signals and determines the
wavelength, as a distance between points in a certain phase. Knowing the frequency of
the oscilloscope, a phase velocity can be determined easily. Dependence of phase velocity
on wavelength for water with temperature 25° C is presented in Fig. 3.

The rated dependence on the relation

V., = (glk + oklp)'®

is presented by an entire line, here g - gravitational acceleration, o - coefficient of water
surface tension, p - density of water, k=2n/A - wave number, A - wavelength. Values of
material constants are chosen for the operating temperature. Data of the experiment are
given in form of points. Range of operating frequencies is 6-70 Hz when taking down the
dependence, the experiment is rather «punctilious», taking into account, that measuring

on low frequencies (~10Hz) on usual

oscilloscopes is rather difficult. The

Vi experiment depends on many «ruses», that

m/s is why the present work can be carried out
Von =(g/k + ckp)”? in the form of a course work with large
P g

opportunities for independent researches.
The received experimental data reflect
principal natural properties of capillary-
gravity waves in the range of typical
wavelength about 1.7 cm, where minimum
value of the phase velocity is about 23 cm/
s. As for analysis of quantitative
coincidence - this is another theme of the
research.
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Conclusion

In the same work some important moments about a role of physical experiment in
training of the modern specialist - physics are shown. By the way of illustration stated
principles the results of organization of a new training and research physical practical
work for the lower years students at faculty of nonlinear processes SSU are given.
Different themes of investigations, which the student gets to know in the physical
laboratory, show convincingly wealth and breadth of the experiment on location in the
surrounding physical world to a young researcher. The knowledge received at this stage,
will allow him creatively and with confidence to participate in the program of researches
of scientific laboratories of faculty.
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