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Ot pepakKnoAHOR rpynusl

Hacrosumuit cienmanbHbIi BbIMYCK XKypHana «lIpuknamHas HeawHelHas [uHA-
MHKa» MOCBAIIEH 3amMeyvaTeNbHO# jpate - 6(-TeTHiO M3BECTHOTO Y4YEHOTO, OJHOrO M3
cosparelel capaTOBCKOM LIKOJIb] HEMMHEHHOU JHHAMUKY, 3aC/TyKEHHOTO JesiTesl HayKi
P®, naypeara npemum mM. A. I'ym6ombpra, akagemuka PAEH, sasefyromero xadepoi
HETWHEHHON JuHaMuKd ¥ paguodusuku  CapaTOBCKOLO — TOCY/IapCTBEHHOTO
VHHBEpCHTETa, JOKTOpa (DU3AKO-MaTeMaTHYeCKUX HayK, Ipodeccopa Bammma
Cemenosrua Amxmiuenko. Hayumble pocTmxkenms B.C. AHMINEHKO MW €r'0  IIKOIBI
HOJYMHIM HIMPOKYI0O M3BECTHOCTh M NpH3HaHME Kak B Poccuu, Tak U Jlalieko 3a ee
npepenamd. OHE BHecHH 3aMeTHBI BKJIAJl B Pa3BHTHE MHOIMX aCHEKTOB HEJMHEHHOMH
Teopum KojeOaHMA. YUeHbIe MHOTMX CTPaH XOPOINO 3HAIOT W HA HPOTSIKECHMH MHOTHX
et corpypau4alor ¢ B.C. AHMIIEHKO W co3faHHOM MM JabopaTopuell HeldHedHOH
IUHAMMKH, KOTOpas B 3TOM rofly npeoOpa3oBada B MeX[IyHapoJHbIM MHCTATYT HEJH-
HEeHHOH JHaMUKH, OObENUHAOIMN § KOOPIUHAPYIOMEA paboTy MECTH MEXIyHApOH-
HBIX HAYYHBIX KOJMeKTHBOB 13 Poccun, ['epmanym, annn n BemakoGprranuu.

K rofunero yyeHOro ero KOIErn U3 Befylux yHusepcaTeToB Poccu, EBpons! 1
AMepHKH TIPeNCTAaBWIM B SKypHal CBOM HayuHble paboTsl. TemaTHka craTell BecbMa
pasuooOpa3Ha. OHa OXBaTbIBAaET MHOTHE (DyHHaMEeHTalbHbIE W IPHKIAAHBIE 3a1a4M
HENMHEeWHON IMHAMUKH, TaKue, HaiupuMmep, KaK KpUTEepHM [MHAMMUYECKOrO Xaoca,
OuQyYpKAUMOHHLIA aHANW3 HEIMHEHHBIX CHCTEM paslIHYHOM NpPHPORS, 3(PheRTh!
XAaOTWYECKOU M CTOXACTUYECKOH CHHXPDOHH3AUWM, IpUMEHEHHEe METOJOB HEeIMHEHHOU
[MHAMIKH A MaTEeMaTH4eCKOro MOJenrpoBaHAs B OHOJIOTHM U MEMIMHE. A OTKDBIBAET
BRINYCK 0030p pabdor B.C. AHMINEHKO ¢ COABTOpaMH, MOCBAIUCHHLIN HCCICHOBAHUIO
CTAaTHCTHYECKMX XapaKTEepUCTHK Xa0ca M aHaJIM3y BIMSHMS IIyMa Ha NOBEJEHHE XaoTH-
yeckux cucTeM. Takum o0pasoM, B XKypHale IPENCTABICHBI MOC/CHUE JOCTHXKECHWS
pAfla BeNYIWX HAy4YHbIX KOJIEKTHBOB B o0dacTd HEJIMHEHHOM [HHAMUKH H €€
npunoxennid. Hajeemcs, 4To coGpaHHbIi B 3TOM FOOHIEHHOM BBIIYCKE MaTepuall OyfeT
MoNe3eH [ IIWPOKOIo Kpyra YHTaTelled, WHTEPECYIOIMXCS COBPEMEHHLIMH
npobaeMaMi HeMHHEeHHOH [TMHAMUKMY.

Ot EMeHH BceX aBTOPOB, [IPHCIIABILAX CBOM CTAThY B CHENMAJIbHBIA BBITYCK, BCEX
KOJner, [py3eii ¥ Yy4YeHWKOB MbI kejaeM Bapmmy CeMeHOBMUYY BCEro caMoro
HAWTYYIIero B JIeHb ero 06uies, JONr X JIET KU3HHW, HOBBIX APKUX U (DYHIAMEHTAJbHbIX
OTKPbITHIH.

Caparos, oxTa6ps 2003
B.B. Acmaxos

T.E. Badusacosa
I''H. Cmpearosa

Pepakuuonsass KoOJierMs >XypHajla IIPMCOCIMHSETCS K IO3[IpaBicHUsSIM H
HcKpeHHe xenaeT BaguMmy CeMeHOBMUY 3[0pPOBbS U JaIbHEHIIMX YCIIEXOB B Pa3sBHTHU
€r0 HayYHOH LIKOJIBIL.



Editorial Preface

This special issue of the Journal Applied Nonlinear Dynamics is dedicated to the
60th birthday of Vadim Anishchenko. Vadim Anishchenko is one of the founders of
School of Nonlinear Dynamics at Saratov State University. He is scientific coordinator
and principal investigator of the Laboratory of Nonlinear Dynamics at Saratov State
University. Professor Anishchenko is the Honored Man of Science of the Russian
Federation, the Humboldt Prize Winner, the academician of the Russian Academy of
Natural Sciences. He is the Head of the Radiophysics and Nonlinear Dynamics Chair.
Fundamental scientific contribution of Vadim Anishchenko and his pupils and students to
development of physics of nonlinear oscillations are widely known and highly recognized
both in Russia and world-wide. Many of Vadim’s former students became professors in
physics both in Russia and abroad.

The highest standards of research in Vadim Anishchenko’s laboratory have gained
him, his students and coworkers world-wide international recognition. This year the
Laboratory was reorganized into the International Institute of Nonlinear Dynamics that
unites and coordinates the work of six international research groups from Russia,
Germany, Denmark and the United Kingdom.

On the occasion of Vadim Anishchenko’s 60th birthday his colleagues from
leading Universities of Russia, Europe and the US and his former PhD students submitted
their scientific papers to this special issue «Chaos, Fluctuations and Structures in
Dynamical Systems». The presented papers cover many fundamental and applied aspects
of nonlinear dynamics, such as criteria of dynamical chaos, bifurcational analysis of
nonlinear systems of different nature, effects of chaotic and stochastic synchronization,
application of the nonlinear dynamics and mathematical modeling methods in biology
and medicine. This issue also includes a survey of the recent papers of Vadim
Anishchenko and his collaborators, that is devoted to the study of statistical
characteristics of chaos and effects of noise on the behavior of chaotic systems. Many of
the authors benefited from discussions with Vadim Anishchenko, his original ideas, his
outstanding personality. '

We hope that this collection of papers will be helpful for students, lecturers and
scientists who are interested in modemn problems of nonlinear science.

On behalf of all the contributors to this special issue, all colleagues and friends, we
wish Vadim Anishchenko very well on his 60th birthday and we look forward to his new
inspiring and fundamental research during many many years.

Saratov, October 2003
Viadimir Astakhov

Tatjana Vadivasova
Galina Strelkova

The Editorial Board of the Journal «Izvestiya VUZ. Applied Nonlinear Dynamics»
joins the congratulations and sincerely wishes Vadim S. Anishchenko a great health and
further big success in the development of his Scientific School.




T —— e e—
w problems of nonlnear dynamics

Tzv. VUZ «AND», vol. 11, Ne 3, 2003

STATISTICAL PROPERTIES OF DETERMINISTIC
AND NOISY CHAOTIC SYSTEMS

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova,
George A. Okrokvertskhov

This work represents a survey of the results that were recently obtained in the research
group supervised by Prof. Dr. Vadim 5. Anishchenko and published in a series of scientific
papers. The presented results are referred to statistical description of dynamical chaos and to
the effect of noise on different types of chaotic attractors. We consider peculiarities of the
relaxation of an invariant probability measure in systems with chaotic attractors of different
types and perform the correlation and spectral analysis of chaotic self-sustained oscillations.

1. Introduction

Dynamical chaos, like a random process, requires a statistical description. When
chaotic systems are studied in computer or physical expriments, probability
characteristics, such as a stationary probability distribution on an attractor, correlation
functions, power spectra and others, are usually calculated or measured. Chaotic
oscillations that correspond to different types of chaotic attractors in the phase space of
dynamical systems are characterized by various statistical properties as well as by a
different degree of sensitivity of the statistical characteristics to the influnce of noise.

From a viewpoint of the rigorous theory, hyperbolic chaos is often called «true»
chaos and is characterized by a homogeneous and topologically stable structure [1-4].
However, strange chaotic attractors of dissipative systems are not, as a rule, robust
hyperbolic sets. They are rather referred to as a nearly hyperbolic attractors, e.g., the
Lorenz attractor. Nearly hyperbolic (quasi-hyperbolic) attractors include some nonrobust
orbits, e.g. separatrix loops, but their appearances and disappearances often do not affect
the observed characteristics of chaos, such as a phase portrait, the power spectrum,
Lyapunov exponents and others. Dynamical systems in a chaotic regime may give rise to
an invariant measure which does not depend on an initial distribution and fully reflects
the statistical properties of the attractor. The existence of an invariant measure has been
theoretically proven for hyperbolic and nearly hyperbolic systems [5-10].

However, the most of chaotic attractors which we deal with in numeric simulation
and real experiments are nonhyperbolic [11-13]. The problem of the existence of an
invariant measwure on a nonhyperbolic chaotic attractor involves serious difficulties
because it is generally impossible to obtain a stationary probability distribution being
independent of an initial distribution, A nonhyperbolic attractor is a maximal attractor of
the dynamical system and encloses a countable set of both regular and chaotic attracting



subsets [11,12]. When &-correlated Gaussian noise is added to the system, an invariant
measure on such attractors exists too [14]. In the nonhyperbolic case the behavior of
phase trajectories is significantly affected by noise [15-18] while it changes only slightly
in systems with hyperbolic and nearly hyperbolic chaos [15,16,19,20].

A statistical description of noisy nonhyperbolic chaotic atfractors is an important
and still unsolved problem of the dynamical systems theory, One of the topical problems
in this direction is to study the relaxation to stationary distributions in time. There are a
number of fundamental questions which have as yet unclear answers. What is a real
relaxation time of the system to a stationary distribution? Which factors define this time?
Which characteristics can quantify the relaxation time to the stationary measure? What is
the role of the noise statistics and the noise intensity in regularities of the relaxation to the
stationary distribution? Is there any connection between the relaxation process and the
system dynamics? These problems are studied in [21,22] with the methods of computer
simulation.

The relaxation to a stationary distribution is described by the evolutionary operator
that can be represented by the Fokker-Planck operator or the Frobenius-Perron operator.
The eigenvalues and eigenfunctions of the evolutionary operator determine the rate and
character of the relaxation process and characteristics of mixing, which are related to the
relaxation to an invariant probability measure. However, if the dynamical system is high-
dimensional (N23), the nonstationary solution of the Fokker-Planck equation is difficult
enough to find even numerically. Therefore, the method of stochastic differential
equations was used in the studies described in [21,22].

The presence of mixing causes autocorrelation functions to decay to zero for large
times (correlation splitting). This means that the system states separated by a sufficiently
large time interval become statistically independent [6,8,23-25]. From the property of
mixing it follows that a dynamical system is ergodic. Additionally, for chaotic dynamical
systems the splitting of correlations in time is connected with an instability of chaotic
trajectories and with the system property to produce entropy [6,8,23-27]. In spite of their
significant importance, correlation properties of chaotic processes have been studied
insufficiently. It is widely believed that autocorrelation functions of chaotic systems
exponentially decrease at a rate being defined by the Kolmogorov entropy [23]. The
Kolmogorov entropy, H,, in tumn is bounded from above by the sum of positive
Lyapunov exponents [8,27,28]. But this estimation is true only for some special cases.

It has been proven for some classes of discrete maps (expanding and Anosov
ones), which exhibit a mixing invariant measure, that the decay of correlations with time
is bounded from above by an exponential function [9,29-31]. There are different
estimations of the rate of this exponential decay which are not always connected with
Lyapunov exponents [32-34]. For continuous-time systems, there are no theoretical
results at all for estimating the rate of correlation splitting [35].

The studies of specific chaotic systems testify to a complicated behavior of
correlation functions, which is defined not only by positive Lyapunov exponents but also
by different characteristics and peculiarities of the system chaotic dynamics [32,34,36].

In the papers [37-39] the correlation and spectral properties of chaotic oscillations
are studied for several types of chaotic attractors which can be observed in autonomous
differential systems with three-dimensional phase space. Classical models of nonlinear
dynamics such as the Rossler oscillator [40], the Lorenz system [41], and the
Anishchenko-Astakhov oscillator that represents a mathematical model of a real
radiotechnical device [42] were chosen for the studies. In the cited papers an attempt was
taken to answer several fundamental questions. Which peculiarities of the system’s
chaotic dynamics can define the rate of correlation splitting and the basic spectral line
width? How does noise affect the spectral and correlation characteristics of chaos?
Basing on the results of numerical simulation, we would like to show that in the context



of correlation properties, different types of chaotic self-sustained oscillations can be
associated with basic models of stochastic processes such as harmonic noise and a
telegraph signal.

The aim of this work is to present a brief review of the recent results reported in
[21,22,37-39]. The presented results concern some probabilistic aspects of chaotic
dynamics such as peculiarities of the relaxation to a stationary probability distiribution,
the rate of mixing and the correlation and spectral analysis of chaotic regimes of different
types. A special attention is paid to the effect of noise on the statistical properties of
chaotic dynamics. :

2. Relaxation to a stationary probability distribution of chaotic
attractors in the presence of noise

2.1. Models and numerical methods. We will study chaotic attactors of well-
known model systems such as the Rossler oscillator [40]

X=-y-z+ (2D)'"*&(1),
j=x+ay, (1)
i=b-z(m-x),
and the Lorenz system [41]
X = - o(x-y) + (2D)*5(1),
y=ri-y -, )

z=-PBz+xy.

In both models E(¢) is a normal white noise source with the mean value (E(7))=0 and
correlation (E(¢)&(+t))=b(x), where &() is Dirac’s function. The parameter D denotes the
noise intensity. For the Rossler system we fix @=0.2 and b=0.2 and vary the control
parameter m in the interval [4.25, 13.0]. In the Lorenz system we choose two different
regimes, namely, a quasi-hyperbolic attractor (0=10, p=%/3, and r=28) and a nonhy-
perbolic attractor (o=10, p=8/3, and r=210).

We integrate Eqs (1) and (2) using a fourth-order Runge-Kutta routine with noise
sources taken into account. Chaotic attractors of systems (1) and (2) have been studied in
detail and are typical examples of quasi-hyperbolic and nonhyperbolic chaos [43,44].
Thus, results obtained for Eqgs (1) and (2) can be generalized to a wide class of dynamical
systems.

To examine the relaxation to a stationary distribution in these systems, we analyze
how points situated at an initial time in a cube of small size & around an arbitrary point of
the trajectory belonging to an attractor of the system evolve with time. We take 8=0.09
for the size of this cube and fill it uniformly with n=9000 points. As time goes on, these
points in the phase space are distributed throughout the whole attractor. To characterize
the convergence to the stationary distribution we follow the temporal evolution of this set
of points and calculate the ensemble average

x(t) = [ p(x,t)xdx = linE:;lxi.( ). (3)

Here, x is one of the system dynamical variables, and p(x,r) is the probability density of



the variable x at the time r which corresponds to the chosen initial distribution. It is
known that the phase trajectory of system (2) visits neighborhoods of two saddle-foci. In

this case, when calculating x(¢) one may first sum separately over points having falled in
the neighborhood of each saddle-focus, and then combine the obtained results. However,
the mean value appears to approach zero in a short time interval and its further evolution
is badly detected. To follow the relaxation in (2) we compute the mean value when points
in the neighborhood of only one saddle-focus are taken into account. In this case the
relaxation to this quantity goes more slowly in time. Then we calculate the functiony(z, ):

T{";_—) = Lx;,( '[;-1.1} - Em( { s [4)

where x (1) and X, (t,,,) are successive extrema of X( { ). Thus, y(z,) characterizes the
amplitude of the mean value oscillations. In the expression (4) , and 1, , are successive
time moments corresponding to the extrema of x. The temporal behavior of y(z,) allows
to judge the character and the rate of relaxation to the probability measure on the
attractor.

We also calculate the maximal Lyapunov exponent (LE) &, of a chaotic trajectory
on an attractor, Besides, we also compute the normalized autocorrelation function (ACF)

of steady-state oscillations x(¢):

W() = p(@)p(0), i) = (x(1)x(t+7)) - (x(1)) (xle+7)). (3)

The brackets (...) denote time averaging.
To make some figures more informative and compact, instead of y(z,) and W(<) we
plot (where it is necessary) their envelopes y,(z,) and ¥, (t), respectively.

2.2, Relaxation to a stationary distribution in the Rissler system: Mechanism of
the effect of noise on the rate of mixing. A chaotic attractor realizing in the Rossler
system (1) at fixed a=b=0.2 and in the parameter m interval [4.25, 8.5] serves as a well-
known example of a spiral attractor. The phase trajectory on the spiral attractor rotates
with a high regularity around one or several saddle-foci. The autocorrelation function is
oscillating and the power spectrum exhibits narrow-band peaks corresponding to the
mean rotation frequency, its harmonics and subharmonics. By virtue of these properties
spiral chaos is called phase-coherent [43,45-47].

The chaotic attractor of system (1) is qualitatively changing as the parameter m
increases. In the interval 8.5<m<13.0 there occurs a nonhyperbolic attractor of
noncoherent type, called funnel attractor [42,46]. Phase trajectories on the funnel attractor
make complicated loops around a saddle-focus and thus, demonstrate a nonregular
rotation behavior. Consequently, the autocorrelation function of noncoherent chaos
decreases much rapidly than that in the coherent case, and the power spectrum does not
already contain sharp peaks.

The calculations performed for me[4.25, 7.5] (spiral chaos) and for m€[8.5, 13.0]
(noncoherent chaos) allow to assume that an invariant probability measure exists for the
parameter values considered. All the effects being observed for each type of attractor in
the system (1) are qualitatively preserved when the parameter m is varied. In our numeric
simulation we fix m=6.1 for the spiral attractor and m=13.0 for the funnel attractor.

Figure 1 shows the typical behavior of y,(t) for both the spiral and the funnel
attractor of the Rossler system. We find that the noise significantly influences the rate of
mixing in the regime of spiral attractor in the Rossler system. The relaxation time is
strongly decreasing for increasing noise intensity (see Fig. 1,a).

We find a quite different situation for the funnel attractor. Noncoherent chaos is
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Fig. 1. y,(1,) for attractors in the Rissler system (1). (@) For the spiral attractor @ =b=0.2, m=6.1) at D=0
(curve 1), D=0.001 (curve 2), and D=0.1 (curve 3); (b) for the funnel atiractor (@ =b=0.2, m=13) at D=0
(solid line) and D=0.01 (dotted line)
practically insensitive to noise perturbations. Behavior of y,(r,) does not significantly
change when noise is added to Eqs (1) (see Fig. 1, 5). At the same time, it is well known
that noncoherent chaos exhibits a close similarity to random processes. This fact can be
verified, e.g. by means of the autocorrelation function W(x) for the spiral and the funnel
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Fig. 2. Envelopes of the normalized autocorrelation function't! () for attractors in (1), {a) At m=6.1 and
for D=0 (solid line) and D=0.01 {dotied line); (b) at m=13 for 5:0 (solid line) and D=0.01 (dotted line)

attractors in system (1) (Fig. 2). Our numerical experiments show that the correlation
times are essentially different for these two chaotic regimes: without noise they differ by
two orders. On the one hand, in the case of coherent chaos the correlation time decreases
dramatically in the presence of noise (Fig. 2, @). On the other hand, the autocorrelation
function for the funnel attractor in the

M O B ST deterministic case practically coincides with

' 1 that in the presence of noise (Fig. 2, b).
M Hence, noncoherent chaos, which is
0.10 | 1 nonhyperbolic, demonstrates some pro-
[ perty of hyperbolic chaos, i.e. «dynamical
[ | stochasticity» turns out to be much stronger

0.08 { than that imposed from an external
i (additive) one [6]. This experimental result

[ 1 is interesting and requires a more detailed

0.06 . . e T consideration. It is also worth noting
00 002 004 006 008 p another finding of our simulations. We
have found that the positive LE for both the

Fig. 3. For the Rossler system, A, on the spiral spiral chaos and the funnel chaos is weakly

(wriangles) and the funnel (circles) attractor a5 gepsitive to fluctuations (see Fig. 3), and
functions of the noise intensity [




rather grows not much with increasing noise intensity, whereas in certain cases the
correlation time changes considerably under the influence of noise. Thus, in the regime of
spiral chaos the rate of mixing is not uniquely determined by the largest LE but depends
strongly on the noise intensity.

We suppose that the essential effect of noise on relaxation to the stationary
distribution in the regime of spiral chaos may be associated with peculiarities of the phase
trajectory dynamics in the neighborhood of an unstable equilibrium state. Since the
trajectory rotates almost regularly on the spiral attractor, the relaxation process appears to
be very long. The addition of noise to the system destroys the relative regularity of the
trajectory and, consequently, the rate of mixing significantly increases.

It is known that for chaotic oscillations one can introduce the notion of instan-
taneous amplitude and phase [47]. The instantaneous phase characterizes the rotation of a
trajectory around a saddle-focus. System (1) is of such type because the trajectory in the
(x-y) projection rotates around the unique saddle-focus located very near to the origin.
Let us introduce the substitution of variables

x(1) = A()cos®(z), y(r) = A(r)sind(z), (6)

that defines the amplitude A(r) and the total phase ®(f) of the chaotic oscillations. Then
the instantaneous phase ®(¢) can be calculated as follows:

o(r) = arctan(y(£)/x(1)) + wn(f), (7)

where n(1)=0,1,2,... is the number of intersections of the phase trajectory with the plane
=0

The component of mixing along the flow of trajectories is related with the
divergence of the instantaneous phase values and thus, is determined by the temporal
behavior of the phases. The instantaneous phase of an ensemble of initially close
trajectories on the spiral attractors remain very close to each other over a long period of
time, although the points in the secant plane are spread over the whole attractor section.
In this case the relaxation to a stationary probability distribution on the whole attractor of
a flow system will be much longer than that in the Poincaré map. The violation of regular
rotation of trajectories is characteristic for the funnel attractor and leads to a
nonmonotonic dependence of the intantaneous phase on time. The phase trajectory
creates complicated loops at nonequal time intervals that causes the value of the current
phase to slightly decrease. This results in a rapid divergence of the phase values of
neighboring trajectories. The influence of noise on spiral chaos leads to similar effects.
Figure 4, @ shows the temporal dependences of the variance o,’ of the instantaneous
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Fig. 4, Characteristics of the instantancous phase divergence of neighboring trajectories for spiral chaos
(m=6.1) and funnel chaos (n=13) in Eqs (1). () Temporal dependences of the variance of the
intanianeous phase 2 for spiral chaos at D=0 (curve I), D=0.1 (curve 2), and for noncoherent chaos at
D=0 (curve 3}, D=c[;,°i (curve 4). (b) The effective diffusion coefficient B, as a function of the noisc
intensity D for spiral (curve I) and noncoherent (curve2) chaos




phase on an ensemble of initially close trajectories for both the spiral and the funnel
attractor of system (1). We observe that in both the noisy and the noise-free case the
variation grows almost linearly on the time intervals being considered. The fact that the
temporal dependence of the instantaneous phase variance of the chaotic oscillations in the
Rossler system is a linear function was assumed in [-w;x]. Nevertheless, this suggestion
was confirmed neither theoretically nor numerically or experimentally. In the case of
spiral chaos without noise (curve 1), the value of o,* is small (on the given time interval
it does not exceed the variation of the uniform phase distribution on the interval [+mx])
and increases much slower than in the other cases considered. The linear growth of the
variation allows to estimate the divergence of the intantaneous phases by using the
effective diffusion coefficient:

B =1y do 2(t)/d. (8)

Figure 4, b illustrates the dependences of B . of the instantaneous phase of chaotic
oscillations on the noise intensity for both the spiral and the funnel attractor in the Rissler
system (1). It is seen that in both cases B, grows with increasing D but for spiral chaos
this growth is more significant. This result strongly testifies that B is a very effective
characteristic for diagnosing the statistical properties of a chaotic attractor in the presence
of fluctuations.

2.3. Relaxation to a probability measure in the Lorenz systems. Well-known
quasi-hyperbolic attractors in three-dimensional continuous-time systems, such as the
Lorenz attractor, the Morioka-Shimizu attractor [48], are attractors of the switching type.
The phase trajectory switches chaotically from the neighborhood of one saddle
equilibrium state to the neighborhood of another one. Such switchings are accompanied
by chaotic phase changes even without noise. In this case the addition of noise does not
change considerably the phase dynamics and, consequently, does not influence the rate of
relaxation to the stationary distribution.

Figure 5 shows the behavior of y,(¢,) for both quasi-hyperbolic and nonhyperbolic
chaotic attractors of the system (2) with and without noise added. We find that noise does
not significantly influence the relaxation rate for the Lorenz attractor (Fig. 5, a).
However, we observe a quite different situation for the nonhyperbolic attractor. There the
rate of relaxation is strongly affected by noise (Fig. 5, b).

Now we are going to check whether the other characteristics of the mixing rate,
such as the LE and the correlation time, will also depend on noise perturbations. For the
same chaotic attractors in the Lorenz system we compute the largest LE A, and estimate
the normalized autocorrelation function W(z), v=t,-t,, of the dynamical variable x(t) for
different noise intensities . We find that for both types of chaotic attractors the LE does

Tl:l T p——— T — Tﬂ
4.0 P\
20.0}
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0.0 oot 0.0t - :
0.05 0.15 025 1 0 100 200 %
a b

Fig. 5. y,(¢,) for chaotic attractors in the Lorenz system (2). (a) For r=28 and D=0 (solid line), and
D=0.01 (dotted line); (b) for r=210 and D=0 (thick line), and for r=210 and D=0.01 (thin line). Other
parameters are o=10, p=8/3
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Fig. 6. Envelopes of the normalized autocorrelation function W (t) for attractors in system (2). @) r=28
and D=0 (solid line), and D=0.01 (dotted line); (b) =210, D=0 Esolid line}, and D=0.01 (dotted line)

not depend within the calculation accuracy on the noise intensity. The autocorrelation
function of the quasi-hyperbolic attractor is practically not affected by noise (see curves I
and 2 in Fig. 6, a). However, in the regime of a nonhyperbolic attractor it decreases more
rapidly in the presence of noise (see curves in Fig. 6, b).

3. Correlation and spectral analysis of dynamical chaos

Let us now examine correlation and spectral properties of different types of chaotic
oscillations in more details. Experience of the studies of dynamical chaos in three-
dimensional differential systems shows that two classical models of random processes
can be used to describe the correlation and spectral properties of a certain class of chaotic
systems. They are the models of harmonic noise and a telegraph signal.

As we will demonstrate below, the model of harmonic noise represents sufficiently
well correlation characteristics of spiral chaos, while the model of telegraph signal is
quite suitable for studying statistical properties of attractors of the switching type, such as
attractors in the Lorenz system [41] and in the Chua circuit [49].

In the following we summarize the main characteristics of the above mentioned
classical models of random processes.

Harmonic noise is a stationary random process with zero mean. It is represented as
follows [50-52):

(1) = Ry[1+a(r) Jeos[og+(r)], )

where R, and o, are constant (average) values of the amplitude and frequency of
oscillations, respectively; a(r) and ¢(r) are random functions that characterize amplitude
and phase fluctuations, respectively. The process a(t) is assumed to be stationary.

Several simplifying assumptions which are most often used are as follows: (i) the
amplitude and phase fluctuations are statistically independent, and (ii) the phase
fluctuations ¢(r) represent a Wiener process with a diffusion coefficient B. Under the
assumptions made, the ACF of the process (9) can be written as follows [50-52]:

(r) = 1y R [1+K (v)]exp(-Bltl)cosmy, (10)

where K (<) is the covariation function of reduced amplitude functions a(r)'. Using the
Wiener-Khinchin theorem one can derive the corresponding expressions for the spectral
power density.

Iprefactar Rﬂz[l+k' ()] is the covariation function K'ﬁ () of the random amplimde
A(#)=Ry[1+a(1)]. This notion is most convenient to use in our further studies.
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Generalized telegraph signal. This process describes random switchings between
two possible states r(r)-ia Two main kinds of telegraph signal are usually considered,
namely, random and quasi-random telegraph signals [52,53]. A random telegraph signal
is characterized by a Poissonian distribution of switching moments f,. The latter leads to
the fact that the impulse duration 6 has the exponential distribution:

p(8) = nexp(-n,8), 820, (11)

where n, is the mean switching frequency. The ACF of such a process can be represented

as follows:
Y(t) = a’exp(-2n, k). (12)

Another type of telegraph signal (a quasi-random telegraph signal) corresponds to
random switchings berween the two states x(¢)=+a, which can occur only in discrete time
momenis {=n +a, n= 1.2,3,.... where §;=const and « is a random quannry If the
probability of switching events is equal to 1;“2, then the ACF of this process is given by

the following expression:
Y(r) = a¥(1-klEy), ifltl <E;
W) =0, if kel Z €,

3.1. Correlation and spectral analysis of spiral chaos. From a physical
viewpoint, chaotic attractors of the spiral type possess the properties of a noisy limit
cycle. However, spiral attractors are realized in fully deterministic systems, 1.e., without
external fluctuations, Consider the regime of spiral chaos in the Rossler system (1) for
a=b=0.2 and m=6.5. Let us introduce the instantaneous amplitude A(r) and phase ®(r)
according to the relations (6). We calculate the normalized autocorrelation function of the
chaotic oscillations x(1) (grey dots region I, Fig.7), the covariance function of the
amplitude K, (7) and the effective phase diffusion coefficient B . Figure 7 shows the
results for ¥ (1:] in the system (1) both without noise and in the presence of noise. The
ACF decays almost exponentially both without noise (Fig. 7, @) and in the presence of

(13)
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In%, — Fig. 7. Normalized ACF of the x(t) oscillations in

| system (1) for m=6.5 (grey dots region I) and its
D=0.0 ) apprmumahnn by (2) (black dots 2) for D=0 (a)
. and D=10" (b). The envelopes of ACF in a linear-
] logarithmie scale for different D (c)
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: | noise (Fig. 7, b). Additionally, as seen from
0.01 | Fig. 7, ¢, for v<20 there is an interval on
which the correlations decrease much faster.

Using Eq. (10) we can approximate
-1.0 : ' the envelope of the calculated ACF W (z).
0 200 400 600 *  To do this, we substitute the numerically
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computed characteristics K, (t) and B=B ; into an expression for the normalized envelope
I'(x):
I'(x) = K, (1)K, (0)exp(-B ;). (14)

The calculation results for I'(z) are shown in Fig. 7, a, b by black dots (curves 2). It
is seen that the behavior of the envelope of W (t) is described well by Eq. (14). Note that
taking into account the multiplier K, (t)/K, ((}3 enables us to obtain a good approximation
for all times t. This means that the amplitude fluctuations play a significant role on short
time intervals, while the slow process of the correlation decay is mainly determined by
the phase diffusion. Thus, we can observe a surprisingly good agreement between the
numerical results for the spiral chaos and the data for the classical model of harmonic
noise. At the same time, it is quite difficult to explain rigorously the reason of such a
good agreement. Firstly, the relationship (10) was obtained by assuming the amplitude
and phase values to be statistically independent. However, this approach cannot be
applied to a chaotic regime. Secondly, when deriving (10) we used the fact that the phase
fluctuations are described by a Wiener process. In the case of chaotic oscillations, @(r) is
a more complicated process and iis statistical properties are unknown. It is especially
important to note that the findings presented in Fig. 7, a were obtained in the regime of
purely deterministic chaos, i.e. withont noise in the system.

We have shown that for t>7__the envelope of the ACF for the chaotic oscillations
can be approximated by the exponential law exp(-B_ltl). Then according to the Wiener-
Khinchin theorem, the spectral peak at the average frequency m, must have a Lorenzian
shape and its width is defined by the effective phase diffusion coefficientB_:

S(w) = CB /[B* #(w-wy)’], C=const. (15)

The calculation results presented in Fig. 8 justify this statement. The basic spectral
peak is approximated by using (15) and this fits quite well with the numerical results for
the power spectrum of the x(¢) oscillations. We note that the findings shown in Figs 7 and
8 for the noise intensity D=107 have also been verified for different values of D,
0<D<10?, as well as for the range of parameter m values which correspond to the regime
of spiral chaos. Qur findings for the approximation of the ACF and the shape of the basic
spectral peak are completely confirmed by our investigations of spiral attractors in other
dynamical systems.

The spectral and correlation properties of spiral chaos were also explored in a
physical experiment with the Anishchenko-Astakhov oscillator [42,43]. The performance
of such kind of experiment is important as the stochastic equations of the oscillator are
approximate only and cannot take into account all sources of natural fluctuations that are
really operating in the electronic scheme of the oscillator. Experimental results are
presented in Fig. 9 and completely confirm all the data obtained numerically.
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Fig. 8. A part of the normalized power spectrum of Fig. 9. Normalized ACF of the x(¢) oscillations in

x(t) oscillations in system (1) for a=b=().2, and the Anishchenko-Astakhov oscillator( region 1) and

m=>60.5 (solid line) and its approximation bsy Eq. (15) its exponential approximation exp(- B i) (curve

(dashed line) for the noise intensity D=10 2) (physical experiment). The phase diftusion coef-
ficient B, was calculated from experimental data
independently on the ACF
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3.2. Correlation characteristics of the Lorenz aftractor. In the previous section
we have used the effective phase diffusion coefficient to describe the correlation
properties of the Rossler system and the Anishchenko-Astakhov oscillator. However,
such an approach cannot be applied to approximate autocorrelation functions of chaotic
oscillations of a switching type. Some chaotic attractors demonstrating a rather complex
structure can contain ceriain regions which are separated by manifolds of saddle points
and cycles. Transitions (switchings) between these regions can occur provided that
certain conditions are fulfulled [54]. Such oscillations can be observed, for example, in
the Lorenz system [41]. Let us consider the Lorenz system in the regime of the quasi-
hyperboalic attractor for r=28, =10, and 5=8/3.

In the phase space of the Lorenz system there are two saddle-foci that are
symmetrical about the z-axis and are separated by the stable manifold of a saddle point in
the origin. This stable manifold has a complex structure that allows the (rajectories to
switch between the saddle-foci in specific paths [11,54] (see Fig. 10). Unwinding about

S
X -‘/‘|..-n|--‘l

Fig. 10. Qualitarive illustration of the structure of manifolds in the Lorenz system

one of the saddle-foci the trajectory approaches the stable manifold and then can jump to
the other saddle-focus with a certain probability. The rotation about the saddle-foci does
not contribute considerably to the decay of the ACF, while the frequency of «random»
switchings essentially affects the rate of the ACF decay. Consider the time series of the.x

coordinate of the Lorenz system, that is

x X shown in Fig. 11. If one introduces a
! i # ! l s ; symbolic dynamics, i.e., one excludes the
10.0 t h i i i l% rotation about the saddle-foci, one obtains a

0.0

-10.0 Hj |

-20.0

] 5 10 15 t
Fig. 11. Telegraph signal (solid curve) obtained for
the x(r) oscillations (dashed curve) of the Lorenz
system at o=10, §=8/3, and r=28
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telegraph-like signal. Figure 12 shows the
ACF of the x(t) oscillations for the Lorenz
attractor and the ACF of the corresponding
telegraph signal. Comparing these two
figures we can state that the time of the
correlation decay and the behavior of the
ACF on this time scale are predominantly
determined by switchings, whereas the
rotation about the saddle-foci makes a
minor contribution to the ACF decay on
large times. It is worth noting that the ACF
decreases linearly on short times, This fact
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Fig. 12. The ACF of the x(¢) oscillations (g) and of the telegraph signal (b)

1s remarkable as the linear decaying of the ACF corresponds to a discrete equidistant
residence time probability distribution in the form of &-peaks. Additionally, the
probability of switchings between the two states is equal to 1/, [52,53].

Figure 13 shows the residence time distribution calculated for the telegraph signal
resulting from switchings in the Lorenz system. As can be seen from Fig. 13, a, the
residence time distribution in the two attractor regions really has a structure that is quite
similar to an equidistant discrete distribution. At the same time the peaks are
characterized by a finite width. Figure 13, b represents the probability distribution of
switchings which occur at multiples of §;, where & is the minimal residence time in one
of the states. This dependence shows that the probability of transition at time &, is close to
1f2. The discrete character of switchings can be explained by peculiarities of the structure
of the manifolds of the Lorenz system (see Fig. 10). In the vicinity of the originx=0, y=0
the manifolds split into two leaves. This leads to the fact that probability of switchings
between two states in one revolution about the fixed point is approximately equal to 1/,.
This particular aspect of the dynamics ensures that the ACF of the x(¢) and y(r)
oscillations on the Lorenz attractor has the form defined by expression (13). However,
the finite width of the peaks in the distribution and deviations from the probability 1/, can
lead to an ACF that decays to a certain finite, nonvanishing value.
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Fig. 13. The distribution of impulse durations of the telegraph signal {a) and probabilities of transitions at
times multiple to &, (b)
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4, Conclusion

In our studies we have shown that there is a group of nonhyperbolic attractors of
spiral type for which noise strongly influences the characteristics of the relaxation to a
stationary distribution as well as the correlation time and practically does not change the
positive Lyapunov exponent.

The rate of mixing on nonhyperbolic attractors in R? is determined not only by the
positive Lyapunov exponent but also depends on the instantaneous phase dynamics of
chaotic oscillations. In the regime of spiral chaos noise causing phase changes can
essentially accelerate the relaxation to a stationary distribution.

For chaotic attractors with a nonregular behavior of the instantaneous phase the
rate of mixing cannot be considerably affected by noise. This statement is true for
nonhyperbolic attractors of funnel type and for the attractors of switching type, for
example, for the quasi-hyperbolic Lorenz attractor.

We have shown in our numerical simulation that the spiral chaos retains to a great
extent the spectral and correlation properties of quasi-harmonic oscillations. With this,
the rate of correlation splitting in a differential system depends on short times on both the
instantaneous amplitude and the instantaneous phase diffusion. The width of the basic
peak in the power spectrum of the spiral chaos is correspondingly defined by B . and
oscillations of the instantaneous amplitude determine the level of the spectrum
background. The effective phase diffusion coefficient in a noise-free system is defined by
its chaotic dynamics but is not directly related to the positive Lyapunov exponent,

Our studies of statistical properties of the Lorenz attractor have demonstrated that
the properties of the ACF is mainly defined by a random switching process and slightly
depends on the rotation about the saddle-foci. The classical model of telegraph signal
enables one to describe the behavior of y(t) for the Lorenz attractor by using the
expression (13). In particular, this expression approximates quite well a linear decay of
the ACF from 1.0 to 0.2 that allows to estimate theoretically the correlation time. The po-
wer spectrum of the Lorenz attractor both in a flow and in the Poincaré map was studied
in [36] by applying the symbolic dynamics methods. Already in this paper it has been
established that the power spectrum is not a Lorenzian. Our results obtained by using the
model of telegraph signal are in a good agreement with the findings presented in [36].
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CTATUCTHYECKHWE CBOUCTBA NETEPMHHUPOBAHHBIX
U SAIYMIEHHBIX XAOTHYECKUWX CUCTEM

B.C. Anwyenxo, T.E. Badusacoea, I. M. Cmpeaxosa, I'.A. Oxpoxeepuyxos

Januas pabota npencrasnseT cofoit 0630p pe3ynbTaTOB, HeJaBHO NOYYEHHBIX B
rpymne ueciefoparelei, posrnasasemon npogeccopom B.C. ARMIIEHKO, B ONyOIMKO-
BaHHLIX B pape HaydHbIX craTtei. [lpejcraBisemble pesynbTarhl OTHOCATCH K
CTATHCTHYECKOMY OTHMCAHHIO IMHAMWYECKONO Xaoca W BIMSHAIO [MyMa Ha PasiMyHbIC
THITBL XAOTHYECKHMX aTTpakTopos. Paccmartpusaorcsi ocoBeHHOCTH —pelakcanyu
MHBAPHAHTHOH BePOATHOCTHOH Mepbl B CHCTEMAax € XaOTHHECKWMHU ATTPaKTOpaMu
pa3NHyHbiX THIOB, MPOBOJHTCS KOPPENSUMOHHBIA M CHEKTPAlbHBIN aHanu3 XaoTu-
YEeCKHX aBToKonehaHuit.
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ANALYTICAL DESCRIPTION OF RECURRENCE PLOTS
OF WHITE NOISE AND CHAOTIC PROCESSES

M. Thiel, M.C. Romano, J. Kurths

We present an analytical description of the distribution of diagonal lines in
Recurrence Plots for white noise and chaotic systems, and find that the latter one is linked to
the correlation entropy. Further we identify two scaling regions in the distribution of
diagonals for oscillatory chaotic systems that are hinged to two prediction horizons and to the
geometry of the attractor. These scaling regions cannot be observed with the Grassberger-

Procaccia algorithm. Finally, we propose methods to estimate dynamical invariants from RPs.
Dedicated to the 60 B Birthday of Prof. Dr. Vadim Anishchenko
1. Introduction

Recurrence constitutes a fundamental property of dissipative chaotic systems. As
Poincaré showed in his recurrence theorem in 1890 [1], if a system restricts its dynamics
to a bounded subset of the phase space, the system will almost certainly, i.e. with
probability one with respect to the natural measure, return arbitrarily close to any given
initial condition.

Recurrence Plots (RPs) visualize in a two-dimensional binary matrix the
recurrences of the system in phase space. The Recurrence Quantification Analysis (RQA)
quantifies structures found in RPs to yield a deeper understanding of the underlying
process from a given time series [2,3]. However, this method is widely applied [4 - 10]
but in a rather pragmatic way. First steps in the direction of an analytical description were
made by Faure et al. [11], Gao and Cai [3] and Casdagli [12].

In this contribution we give an analytical expression for the distribution of
diagonals in RP in the case of stochastic processes and extend the results of [11,3] to
chaotic flows. Further we compare our approach with the well-known Grassberger-
Procaccia (G-P) algorithm |13] and show some advantages of the RP method for the
estimation of some invariants of the dynamics, such as the correlation entropy. One of the
most remarkable differences between our approach and the G-P algorithm is that we find
two different scaling regions for oscillating chaotic flows, such as the Rossler system,
instead of the single one obtained with the G-P algorithm. This new scaling region can be
linked to the geometry of the attractor and defines another characteristic time scale of the
sysiem. Beyond we propose optimized measures for the identification of relevant
structures in the RP.
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The outline of this paper is as follows. In Sec. 2 we briefly introduce RPs. After
considering in Sec. 3 the RPs of white noise, we proceed to general chaotic system (Sec. 4).
Then, we exemplify our theoretical results for the Réssler system (Sec. 5) and present the
two different scaling regions that characterize the system. Finally, we propose to estimate
main characteristics of nonlinear systems from RPs which extends the importance of the
RQA (Sec. 6).

2. Recurrence Plots and Recurrence Quantification Analysis

RPs were introduced to simply visualize the behavior of trajectories in phase space

[2]. Suppose we have a dynamical system represented by the trajectory {x, } for i=1,....N
in a d-dimensional phase space. Then we compute the matrix

R, =0(e-l- x)), i,j=1...N, )

where ¢ is a predefined threshold and ©(-) is the Heaviside function!. The graphical
representation of R, , called Recurrence Plot, is obtained encoding the value one as
«black» and zero as «white» point. A homogeneous plot with mainly single points may
indicate a mainly stochastic system. Paling away from the main diagonal may indicate a
drift i.e. non-stationarity of the time series. A main advantage of this method is that it
allows to apply it to nonstationary data [4].

To quantify the structures that are found in RPs, the Recurrence Quantification
Analysis (RQA) was proposed [6]. There are different measures that can be considered in
the RQA. One crucial point for these measures is the distribution of the lengths of the
diagonal lines P (I) that are found in the plot. In the case of deterministic systems the
diagonal lines mean that trajectories in the phase space are close to each other on time
scales that correspond to the lengths of the diagonals. In the next sections we show that
there is a relationship between P () and the correlation entropy. On the other hand we
compute the distribution of diagonals for random processes to see that even in this case,
there are some diagonals which can lead to pitfalls in the interpretation of the RQA
because noise is inevitable in experimental systems. A more detailed discussion of this
problem is given in [14].

3. Results for white noise

In this section we compute analytically the probability to find a black or recurrence
point and the distribution of diagonals of length / in the RP in the case of independent
noise. The probability to find a recurrence point in the RP is given by

N
P(e)=lim,  1NZ _R,, (2)
and the probability to find a diagonal of at least length / in the RP is defined as

ij=

N i1
P ECU) = limN—-m ln\ﬂ E_ij:l Hm:ORHm‘Hm’ (3)

where c stands for cumulative. Note that P,(e)=P £(1).

! The norm used in Eq. 1 is in principle arbitrary. For theoretical reasons, that we will present later, it
is preferable to use the maximum norm. However the numerical simulations of this paper are based on the
Euclidian norm to make the results comparable with the literature. The theoretical results of this paper hold

for both choices of the norm.
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We consider a random variable X with probability density p(x). Suppose that {x
for i=1,...,N is a realization of X and we are interested in the distribution of the distances
of each point to all other points of the time series. This can be done by computing the
convolution of the density p(-)

R() = p(0)*0(x). @)
P,(&) is then gained by integrating R (x) over [-¢.e]
P () =J R(x)dx = 2 R(x)dx. 5)
Note that P,(¢) is invariant against shuffling of the data. For [0,1}] uniformly distributed
noise, R(x) is given by
1-Wl ifld <1
R(x) = (6)
0 else

and hence the probability P,(¢) for RPs and CRPs is given by
P (e) = 2¢ - €2 + ©(e-1)[1-2e+€7]. (7)

For Gaussian white noise one finds P (e)=erf(e/(20)), where o is the standard
deviation.

Now it is straightforward to compute P¢(/) in the CRPs (in RPs only
asymptotically). As the noise is independent, we obtain

Pr(l) =P (e). (8)

The probability to find a recurrence point P,(e) is in both RPs and CRPs
independent of the preceding point on the diagonal (except in the main diagonal). Eq. (8)
shows that the probability to find a line of length/ decreases exponentially with /.

For our example of uniformly distributed noise we get

P (D) = 2e-e2+0(e-1)[1-2e+e]). 9)

Note that in this case the exponential decay depends on e. Hence the larger &, the
longer are the diagonal lines that one obtains. Usually one analyses the RP computed with
only one threshold e. As long diagonals are interpreted as a deterministic feature of the
system (good predictability), using only one ¢ can lead to a misinterpretation of the
dynamics of the system.

In the next sections we will show that the distribution of diagonals decays also
exponentionally for chaotic systems, but the decay is - at least in some region -
independent of the threshold .

4. Results for chaotic systems
We present in this section an approach for chaotic systems. It is an extension of the
results presented in [11] for chaotic maps and also covers general chaotic flows. To esti-
mate the distribution of the diagonals in the RP, we start with the correlation integral [15]
C(e) = lim,,___ 1/N?x{number of pairs (i,}) with Ix, - ] < e). (10)

Note that the definition of P,(&) coincides with the definition of the correlation integral
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C(e) =lim,  1/N?%_ B(Ir xl—e) hm IINZZ R..= P (e). (11)

ig=1""ij
This fact allows to link the known results about the correlation integral to the structures in
RPs.

We consider a trajectory x(1) in the basin of an atiractor in the d-dimensional phase
space and the state of the system is measured at time intervals v. Let {1,2,....M(¢)} be a
partmon of the attractor in boxes of size e. Then p(i,,....i,) denotes the joint probability

that x(t::r) is in the box i,, ’C(I-Z‘I:) is in the box i,,.., and x(t-h:) is in the box i, The
order-2 Rényi entropy [16, 17] is then defined as

K, =-lim_lim _ lim,__1/(lt)InZ,

b (12)

......

We can approximate p(i,,...,i,) by the probability P, ,(x_: ¢) of finding a sequence
of points in boxes of length ¢ about x(z=t), x(r=21), ..., x(t=lt). Assuming that the system
is ergodic, which is always the case for chaotic systems as they are mixing, we obtain

Z, Pl i) = UN 2 i) ~1NE, P (%), (13)

where p(i.....i,) represents the probability of being in the box 7, at time t=t, in the

box i, at time /=2, ... and in the box i, at time /=/xv. Further we can express P, I(r g) by
means of the recurrence matrix

IJ(x’ E) 1IN Es-ll:_lll':.'--':.‘e(E lxﬁm s+mi) LN Ea—ln -GRr+m,s+m' (14)
Hence we obtain an estimator for the order-2 Rényi entropy by means of the RP
. N I
K, (el) = l/(lt) In (IINQZ,‘SlemBRHm_w). (15)

™)
Note that (*) is the cumulative distribution of diagonal lines P “({) (Eq. (3)). Therefore, if
we represent P<(!) in a logarithmic scale versus / we should obtain a straight line with
slope K , () for large I’s.
On the other hand, in the G-P algonthm the /-dimensional correlation integral is
defined as

C () = lim,_ UN’Z,"_ (- B .01, (16)

Grassberger and Procaccia [18] state that due to the exponential divergence of the
trajectories, requiring

-1 — —

Z, b HF <6l 17)
is essentially equivalent to L
b, -l <e fork=1,...1 (18)
which leads to the ansatz:
C/(g) ~ e"exp(-hK,). (19)

Further they make use of Takens embedding theorem [19] and reconstruct the
whole trajectory from / measurements of any single coordinate. Hence they consider

C(e) = limy_ UNE,_ (e - (£, /% X, P)1D) (20)
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and use the same ansatz Eq. (19) for C/(¢). Then, the G-P algorithm obtains an estimator
of K, considering

K, (e,) = U 1n (C(e)/C,, (). (21)
Due to the similarity of the RP approach to the G-P one, we state
Pi(D=Z, , PA(i i) = C(e) ~ e¥exp(-1iK,). (22)

The difference between both approaches is that in P2(/) we further consider

information about [ vectors, whereas in C,(¢) we have just information about [
coordinates. Besides this, in the RP approach / is a length in the plot, whereas in the G-P
algorithm it means the embedding dimension. As K, is defined for /-, the RP approach
seems to be more appropriate than the G-P one, as it is always problematic to use very
high embedding dimensions [20].

A further advantage of the RP method is that it does not make use of the
approximation that Eq. (17) is essentially equivalent to Eq. (18). The quantity that enters
the RPs is directly linked to the conditions Eq. (18) and hence uses one approximation
less than the G-P method.

One open question for both methods is the identification of the scaling regions. It is
somewhat subjective and makes a rigorous error estimation problematic. For the cases
considered in this paper we have found that 10,000 data points assure reliable results for
both methods. Even 5,000 data points allow for a reasonable estimation, whereas 3,000
data points or less yield small scaling regions that are difficult to identify, However, the
RP method is advantageous for the estimation of K, as the representation is more direct.
The most important advantage is presented in the next section: RPs allow to detect
another scaling region in the Rossler attractor that cannot be observed with the G-P
algorithm.

5. The Réssler System

We analyze the Rossler system with standard parameters a=b=0.2, ¢=5.7 [21]. We
generate 15,000 data points based on the Runge-Kutta method of fourth order and neglect
the first 5,000. The integration step is #=0.01 and the sampling rate is 20.

First, we estimate K, by means of the G-P algorithm. Fig. 1 shows the results for
the correlation integral in dependence on ¢. There is one well-expressed scaling region for
each embedding dimension />3. Then we get from the vertical distances between the

lines an estimate of K, (Fig. 2),
K,=0.070+0.003. Next, we calculate the
cumulative distribution of the diagonal lines
of the RP in dependence on the length of
the lines /. We then represent the number of
diagonals of length /, i.e. N°({)=N*xP (1),
where N is the length of the time series
(Fig. 3). For large / and small ¢ the scaling
breaks down as there are not enough lines
10-6 . in the RP. The most remarkable fact
102 102 10! 169 g obtained here is tpc existence of two well

€ differentiated scaling regions. The first one

Fig. 1. G-P algorithm for the Réssler system; [ varies 1S found for 1</<84 and the second one for
from 3 (top) to 27 (bottom) in steps of 3 [>85. The existence of two scaling regions

g

10-2L

10-4_
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Fig. 2. Estimation of K, , for the Rossler system with
the G-P algorithm. Thé line is plotted to guide the
eye

200 300 l

Fig. 3. Number of diagonal lines of at least length /
m the RP of the Rossler system (N"(!)=N2xPE° 0,

where N is the length of the time series); € varies
logarithmically from 1072 to 10.0 (bottom to top)

is a new and striking point obtained from this analysis and is not observed with the G-P
method. The estimate of Kzf from the slope of the first part of the lines is Kzf ~(.225+0.03
(Fig. 4) and the one from the second part is K,=0.0675£0.004 (Fig. 5). Hence, K/ is

£y o

Kz E : i E K_‘z o

i 1 008 .

0.2 ;— -; ]

0.1t ] 004 ;
0.0k - . ' ; ,_

0.00 : . -

1072 1071 100 e 102 10-1 100 ¢

Fig. 4. RP method for the Rissler system: slope of
the curves N °(f) in the first region for three

different choices (x:[€[1,84], A:lg[1,40], O

Fig. 5. RP method for the Rossler system: siope of
the curves N (/) in the second region for three

different choices (x:  €[88,108], A: [ € [88,200],

[€[16,80]) of the scaling region in/ O :  €[108,160)) of the scaling region in /
between 3-4 times higher than K,,. As K, is defined for /-, the second slope yields the

estimation of the entropy.
However, the first part of the curve is interesting too, as it is also independent of .

The region 1</<84 characterizes the short term dynamics of the system up to three cycles
around the fix point and corresponds in absolute units to a time of =16.8, as we use a
sampling rate of 3=0.2. These three cycles reflect a characteristic period of the system
that we will call recurrence period T . It is different from the dominant «phase period»
Ty which is given by the dominant frequency of the power density spectrum. T,
however, is given by recurrences to almost the same state in phase space.

Recurrences are represented in the plot by vertical (or horizontal, as the plot is
symmetric) lines. Such a line occurs at the coordinates , j if

1 ifm=-1
0 for mefo,... -1}
1 ifm=L

R, = (23)

Pj+m
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The trajectory x for times n=j-1,...j+/ is compared to the point x, Then the
structure given by Eq. (23) can be mterpreted as follows. At time n=j-1 the trajectory

falls within an e-box of x,. Then for n=j,...j+/-1 it moves outside of the box, until at
n=j+l it recurs to the e-box of x,. Hence, the length of the line is proportional to the time

that the trajectory needs to recur close tox

In Fig. 6 we represent the distribution of vertical lines in the RP. The period of
about 28 points corresponds to T,,. However, the highest peak is found at a lag of about
87 points (the second scaling region begins at /=85). This means that after this time most
of the points recur close to their initial state. This time also defines the recurrence period
T.. For the Rossler attractor with standard parameters we find T,..=3T,

For predictions on time scales below the recurrence period, tlJl =1/K is a better
estimate of the prediction horizon than v=1/K,. This interesting result means that the
possibility to predict the next value within an s-range is in the first part by a factor of
more than 3 times worse than it is in the second part, i.e. there exist two time scales that
characterize the attractor. The first slope is greater than the second one because it is more
difficult to predict the next step if we have only information about a piece the trajectory
for less than one recurrence period. Once we have scanned the trajectory for more than
T, the predictability increases and the slope of P f(!) in the logarithmic plot decreases.
Hence the first slope, as well as the time scale at which the second slope begins, reveal
important characteristics of the attractor.

To investigate how the length of the first scaling region depends on the form of the
attractor, we have varied the parameter ¢ of the Rossler system with fixed a=b=0.1, so
that different types of attractors appear [22] Especially we have studied the cases c—9
which yields T 2T , and ¢=30, which gives T =4T . In both cases the length of the

rec
first scaling region corresponds as expected to T’

On the other hand, the existence of the twréc scalings may be linked to the amplitude
fluctuations and the phase diffusion of the Rossler system, because the same two time
w , , : : scales have been also recently found by

Ne | ! Anishchenko et al. based on a rather subtle
2.0.10°F 1 method [23 - 25]. There, the first scaling
region was linked to the amplitude

fluctuations and the second one to the

PRI, [ I S

1.0105E 1 phase diffusion.
' ] The effect of the two scaling regions
; 1 in the distribution of diagonal lines is also
1 A L] detectable in other oscillating nonhyper-
0.0 B : i
8 bolic systems like the Lorenz system and
0 100 200 300 400

our simulations suggest a connection to the

Fig. 6. Number of vertical lines in the Recurrence conclusions presented in [23]‘ We will

Plot of the Rossler system with standard parameters, [epOrt our results in more detail in a
£=0.05 and based on 60,000 data points forthcoming paper.

6. Dynamical invariants for the RQA

With regard to our theoretical findings in Sec. 4 we have to assess the quality of the
possible results of the RQA.

The measures considered in the RQA [6] arc not invariants of the dynamical
system, i.e. they usually change under coordinate transformations, and especially, they
are in general modified by embedding [26]. Hence, we propose new measures to quantify
the structures in the RP, that are invariants of the dynamical system.
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The first measure we propose, is
the slope of the cumulative distribution of
the diagonals for large /. We have seen that t
it is (after dividing by 7) an estimator of the
Rényi entropy of second order K,,, which is il e SRPRID P E L RTEN T
a known invariant of the dynamms [27]. On
the other hand, we also can consider the L0
slope of the distribution for small s, as '
this slope shows a clear scaling region, too. t
The inverse of these two quantities, is then 0.0} , . , , 3
related to the forecasting time at different 0. g 05 1.0 15 20 ¢
- horizons. Especially the transition point
from the first to the second scaling region Fig- 7. Estimation of the correlation dimension D,

. : . . for the Rossler attractor by the RP method. The
is an interesting characteristic of the parameters used for the Rissler system and the

system. ) integration step are the same as in Sec. 5
The second measure we introduce,

is the vertical distance between P () for different ¢’s. From Eq. (22) one can derive

2(s) =In(Pe(D)/P, , (D))(In(e/(e+Ae))) . (24)
This is an estimator of the correlation dimension D, [17]. The result for the Rossler

=
]

T
PO R

system is represented in Fig. 7. The mean value of D,(¢) is in this case 1.86+0.04. This
result is in good accordance with the estimation of D, by the G-P algorithm given in [28],
where the value 1.81 is obtained. With a modified G-P algorithm a value of 1.89 was
reported [28].

The third measure we suggest, is an estimator of the generalized mutual
information of order 2,

L(x)=2H, - H,(x) (25)
where
H,=-InZ.p? H,(v) =-InZ,p, }(x) (26)

are the generﬁlized Rényi’s second order entropy (also correlation entropy) and its
corresponding joint second order entropy [29]. This measure can be estimated using the
G-P algorithm as follows [30]

I(ex) = In(Cy(e,7)) - 2In(C,(e)). (27)
Instead, we can estimate /,(t) using the recurrence matrix. As discussed in the preceding
sections, one can estimate H as

= In[UN?S, (28)

if=1 l,r]

Analogously we can estimate the joint second order entropy by means of the recurrence
matrix

H,(%) = -In[UNZE, | (29)

We compare the estimation of 12(-:) based on the G-P algorithm with the one
obtained by the RP method in Fig. 8. We see, that the RP method yields systematically
higher estimates of the mutual information, as in the case of the estimation of the
correlation entropy. However, the structure of the curves is qualitatively the same (it is
just shifted to higher values by about 0.2). A morc cxhaustive inspection shows, that the
difference is due to the use of the Euclidean norm. The estimate based on the RP method

.j—l iy r-H:JH]
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Fig. 8. Comparison of the estimators of the mutual
information for the x-component of the Rossler
system computed by the RP method (solid line) and
the G-P algorithm (dashed line). The parameters
used for the Réssler system and the integration step
are the same as in Sec. 5

is almost independent of the norm, whereas
the estimate based on the G-P algonthm
clearly depends on the special choice. If the
maximum norm is used (in G-P and RP)
both curves coincide.

Note that the estimators for the
invariants we propose are different from
the ones of the G-P algorithm.

The three measures that we have proposed, are not only applicable for chaotic
systems but also for stochastic ones, as the invariants are equally defined for both kinds
of systems.

7. Conclusions

In this paper we have presented an analytical expression for the distribution of
dlaoonals P (/) for stochastic systems and chaotic flows, extending the results presented
[11] We have shown that P (1) is linked to the second order Rényi entropy rather than
to the Lyapunov exponent. Further we have found in the logarithmic plot of P (/) two
different scaling regions with respect to €, that characterize the dynamical system and are
also related to the geometry of the attractor. This is a new insight provided by RPs that
cannot be seen by the G-P algorithm and will be studied in more detail in a forthcoming
paper. The first scaling region defines a new time horizon for the description of the
system for short time scales. Beyond the RP method does not make use of high
embedding dimensions, and the computational effort compared with the G-P algorithm is
decreased. Therefore the RP method is rather advantageous than the G-P one for the
analysis of rather small and/or noisy data sets. Besides this, we have proposed different
measures for the RQA, like estimators of the second order Rényi entropy K,, the
correlation dimension D2 and the mutual information, that are, in contrast to the other
often used RQA measures, invariants of the dynamics [26].

We thank Vadim Anishchenko very much for the long-standing and very exciting
discussions and his suggestions on this work. Moreover we thank Dieter Armbruster,
Annette Witt, Udo Schwarz and Norbert Marwan for the fruitful discussions. The
project was supported by the «DFG Priority Program 1114».
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AHAJIMTUYECKOE OIIUCAHUE OTOBPAXEHWM ITOCIETOBAHIS
NI BEJIOTO MIYMA U XAOTHYECKUX ITPOITECCOB

M. Thiel, M.C. Romano, J. Kurths

HaHo aHaJIUTHYECKOE ONHMCAHHE paclpefielieHds [MarOHaJbHbIX JIMHUH B
0TOOpaXKEHUIX MOCHIENOBaHUA I OEJOro IIyMa B CHUCTEM € XaOTHYECKON AHHAMUKON;
[OKa3aHo, 4YTO 3TO pacCOpefieieHHe CBA3aHO C KOPPENSIUOHHON SHTPOIHEi.
HpentudmmpoBassl [Be 001acTH CKEIUIMHra B paclpelelleHud [HaroHaied s
KoneGaTeNbHBIX CHCTEM C XaOTHUYECKOM QUHAMUKOI, KOTOPBIE TECHO CBS3aHbI C IBYMS
TOPH30HTAMH MPEJCKA3YEMOCTH H C FeoMeTpHell aTTpakTopa. JTH 00acTH CKEHIMHIa
HE MOryT ObITH MOJyHYEHHI ¢ MOMOWBIO anroputMa I'paccdeprepa - I[Tpokawyma. B
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EVOLUTION OF RUNNING WAVES TO SPATIO-TEMPORAL CHAOS:
INTERACTION OF TEMPORAL AND SPATIAL DYNAMICS
IN A RING OF PERIOD-DOUBLING SELF-OSCILLATORS

A. Shabunin, V. Astakhov, A. Akopov

In the work we consider transition from regular running waves to developed spatio-
temporal chaos in a chain of period-doubling oscillators. We investigate typical bifurcations
which take place on the base of the chosen running wave regime from the pericd-one cycle to
developed temporal chaos. We found that oscillations remain spatially periodic until transition
to temporal chaos. The exact spatial periodicity is changed by the periodicity in the average in
the chaatic region: Destroying of the averaged spatio-periodic structure is connected with
losing of coherence on main frequencies in the temporal spectra of neighbor oscillators in the
chain.

To V. Anishchenko, on the oceasion of his sixtieth birthday

In recent years a problems of collective dynamics of interacting oscillators attracts
a great interests. A series of works was devoted to consideration of coupled maps arrays
modeling different physical phenomena [1-4]. The maps with chaotic behavior have rich
dynamics and they allow to research formation of regular and chaotic spatio-temporal
structures resulted from synchronization of oscillations. Another base models are arrays
of phase oscillators which can be applied for investigation of phenomena of phase
synchronization and of formation of phase structures. Most of studies was devoted to the
global mean-field coupling systems [5-10]. It was demonstrated that the very simple
periodic oscillators can demonstrate complex macroscopic behavior: periodic, quasi-
periodic and even chaotic through quasi-periodic and period-doubling routes [6]. The
mean-field approach allowing to consider the behavior of the system as a whole, does not
take into account local connections between elements, which can lead to formation of
local spatial structures. Locally coupled limit-cycle oscillators was intensively
investigated in the works [11-13]. The phase regularities in nearest-neighbor coupled
oscillators were also considered on the example of the circle maps [14]. The work [15]
investigated spatial synchronization in the chain of unidirectionally coupled period-
doubling self-oscillators and developing of the dynamics along the array.

It has been known that chains of the simplest limit-cycle oscillators with periodic
boundary conditions exhibit running waves regimes when oscillations in nearest sites
differ from each other on constant phase shifts. In the work [11] a more complex
oscillators chain was considered. It was demonstrated that taking into account the second
harmonics in the spectrum of oscillations can lead to spatially chaotic behavior. Hence
the transition to more realistic models lead to dynamics which can’t be realized in the
simplest phase oscillators arrays. The works [16-19] demonstrate that running waves
regimes are possible for rings of chaotic oscillators. Nevertheless, until now a lot of
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questions about the developing and destroying of the chaotic running waves remain
unresolved. How does complicating of the temporal dynamics influence on the spatial
structures? How the destroying of spatial structures is connected with the synchronization
between nearest-neighbor oscillators? In our investigation we are focusing on these
questions. We have chosen a chain of period-doubling self-oscillators (Chua’s
oscillators) with diffusion symmetric coupling

i‘f = ﬂ'(y:'_lr'ﬂxf}}:
Y =Xyt gt T(yf-l""'}’m "Zyr')* (1)

i',' = 'ﬁy; ]
where
bx+a-b ifx>1

fixy=1 ax iflkis1
bx-a+b ifx<-1, =L 2N
with periodic boundary conditions:
X Sdyr Ny =W 5 S ¥y,

All oscillators are identical. The behavior of the single oscillator is widely described in
the literature (see, for example, [20]). It is characterized by period-doubling bifurcations
cascade and bistability, when two symmetric attractors formed near two non-trivial
equilibria P, and P, coexist in the phase space. With parameter o increasing these
attractors merge and as a result double scroll chaotic attractor appears.

We investigated the system (1) with changing of the parameter o and of coupling
coefficient y. Other parameters were fixed in the values: a=-8/7, b=-5/7, p=-22. The
number of oscillators in the chain was N=30 and N=1024. At the value of a is more than
a=8.78 period-one cycle temporal regimes with different spatial structures coexist in the
system. Choosing spatially-periodic initial values one can obtain attractors characterized
by exact space periodicity. These attractors can be considered as running waves rotating
along the ring with constant phase velocity because oscillations in the every site has equal
amplitude and equal phase shift relatively to the neighbor oscillator. We investigated the
waves with spatial periods of 6, 10, 15 oscillators (for the 30-sites chain). With
increasing of the parameter c these waves undergo bifurcations which lead to
complicating of their temporal behavior. At small coupling we observed period-doubling
bifurcations cascades of finite length. The number of the bifurcations increases with
decreasing of the coupling and tends to infinity at zero coupling. The every cascade is
ended by the tori birth bifurcation which is followed by the destroying of the torus and
the transition to chaos. At larger coupling the period-doubling bifurcations do not take
place and the torus appears on the base of the period-one cycle. The fig. 1 demonstrates a
diagram of typical regimes on the plane of parameters y-a for the family of regimes
originated from the running wave with spatial period A=15. The region of stability of this
family is bounded by lines marked by «o» (lines I, 5). The line 1 bounds this region from
the right. With crossing the line the regimes with wavelength A=15 lose their stability by
sudden way and the system transits to waves with larger spatial periods. The line 5 marks
destroying of periodic spatial structure by soft way. Near this line the spatial structure
begins to change its form and over it the regime awfully «forgets» its original spatial
structure. Over the line / and before the line 2 the stable period-one cycle is observed. On
the line 2 the system transits to quasi-periodic behavior. This is the line of the torus 1T
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Fig. 1. Dingram of regular and chaotic regimes originated from the wave with spatial period A=15 (0);

A=10 (dot lines); A=6 (dot-dashed line)
birth. At large coupling the system evaluates on the base of this torus and demonstrates
transition to chaos through the torus breaking (dashed line 4 in the fig.1). Over this line a
one-band chaotic attractor exists. At small coupling the transition to chaos occurs through
the period-doubling bifurcations and quasi-periodic behavior originated from cycles with
double periods. This region of smaller coupling is bounded by the line 3. In the fig. 1 we
also built lines which bound regions of existence of regimes originated from running
waves with spatial periods A=10 (dot lines) and A=6 (dot-dashed lines). It is seen that
regimes with longer wavelengths occupy larger regions on the parameters plane. The
short-lengths waves exist only at rather small coupling. The waves with minimal possible
spatial period A=2 (m-waves) were not found in the system possibly because of very
narrow region of existence. The bottom boundaries for regimes with different
wavelengths coincide at the values of parameters 0=8.78, y=0. Hence, the all mentioned
period-one running waves originated from the same equilibrium. The upper boundaries
coincide at the values a=11.65, y=0 that corresponds to transition to one-band chaotic
attractor in the uncoupled oscillator.

_All bifurcations of regular regimes do not change their space periodicity.
Oscillations remain exactly spatially periodic with the same periods until the transition to
temporal chaos. In the chaotic region the spatial behavior changes its character. The exact
space- periodicity destroys immediately after the transition to temporal chaos, but chaotic
regimes preserve the space-periodicity in the average. Spatio-temporal diagrams and
spatial spectra for these regimes are presented in the fig. 2. They are built for the one-
band chaotic regime with averaged spatial period of A=16 for the chain of 1024 elements.
The abscissa axis of the spatio-temporal diagram denotes the sites in the chain, the
ordinate axis denotes the Poincare section of the variable x; in the every oscmators
observed for the long interval of time. Three parts of the fi igure demonstrate serial
destroying of spatial structure with decreasing of coupling: aty=0.15 (), y=0.05 (b), and
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Fig. 2. Destroying of the averaged spatial structure of the wave at a=11.78, with decrease of coupling:

v=0.15 (a); 0.05 (B); 0.02 (c)
y=0.02 (c). The first case corresponds to averaged spatial periodicity with sharp peak in
the spatial spectrum (fig. 2, a). Then, with decreasing of coupling the spatial diagram
begins to lose its periodic structure that is accompany by widening of the peak in the
spatial spectrum (fig. 2, ) and as a result at small coupling the periodic spatial structure
awfully disappears and the spectrum becomes plate (fig. 2, ¢). It is interesting that the
destroying of periodic spatial structure with decreasing of coupling takes place only for
one-band temporal chaos. If we chose a correspondent to many-band attractor regimes
the averaged space-periodicity exists until neglect small couplings.

The periodic spatial structure in the chain is connected with coherence of
oscillations on main peaks in the temporal spectra of neighbor oscillators. The structure is
preserved until the coherence function on the main peaks is equal to 1. The fig. 3
demonstrates changing in the power spectrum and in the correspondent coherent function
for the cases described in the fig. 2. When main harmonics in the spectra are coherent the
chaotic regime is almost spatially periodic. Decreasing of coupling leads to decreasing of
the coherence function except main frequencies (fig. 3, b). This is accompany by gradual
destroying of spatial periodicity. Then if the coherence for main peaks becomes smaller
than 1 (fig. 3, ¢) the periodic spatial structure awfully breaks.

Summarizing the contents of our research we can conclude that the developing of
temporal dynamics in the ring of identical period-doubling oscillators with diffusing
coupling does not lead to changing of spatial periodicity until the transition to temporal
chaos. In the chaotic region exact spatial periodicity is changed by the periodicity in the
averaged. The destroying of the averaged periodic structure takes place only for
developed one-band chaotic attractor. It occurs both with developing of chaos and with
decreasing of coupling coefficient and is accompanied by the loss of coherence on main
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Fig. 3. Loss of the coherence between dynamics of the neighbor oscillators ata=11.78, with the coupling

decrease y=0.15 (a); 0.05 (b); 0.02 (c)
peaks in the temporal spectra of neighbor-oscillators. The family of regimes with
determine spatial period exists in the limited range of the coupling. If the coupling is
increased over the determine maximal values the system transits to a regime with larger
spatial period.

The authors thanks to the Fond of Civil Research Development (Grant REC 006)
for partial financial support.

References

1. Kaneko K. Simulating physics with coupled map lattices // Formation, dynamics
and statistics of patterns. Singapore. World Scientific. 1989. Vol. 1. Pp. 1-54.

2. Kaneko K. Lyapunov analysis and information flow in coupled map lattices //
Physica D. 1986. Vol. 23. Pp. 436-447.

3. Kaneko K. Towards thermodynamics of spatiotemporal chaos // Progr. of Theor.
Physics. 1989, No 99. Pp. 263-287.

4. Kuznetzov A.P., Kuznetzov S.P . Spatial structures in dissipative media near the
chaos threshold // Radiophysics. 1990. Vol. 34, Ne 2. Pp. 142-146.

5. Matthews P.C., Strogarz S.H. Phase diagram for the collective behavior of limit-
cycle oscillators // Phys. Rev. Lett. 1990. Vol. 65, Ne 14. Pp. 1701-1704.

6. Marthews P.C., Mirolio R.E., Strogaiz S.H. Dynamics of a large system of
coupled nonlinear oscillators // Physica D. 1990. Vol. 52. Pp. 293-331.

35



7. Daido H. Onset of cooperative entrainment in limit-cycle oscillators with
uniform all-to-all interactions: bifurcation of the order function // Physica D. 1996. Vol. 91
Pp. 24-66.

8. Tass P. Phase and frequency shifts in a population of phase oscillators // Phys.
Rev. E. 1997. Vol. 56, Ne 2. Pp. 2043-2060.

9. Bonifla L.L., Vicente C.J. P. , Spigler R. Time-periodic phases in populations of
nonlinearly coupled oscillators with bimodal frequency distributions // Physica D. 1998.
Vol. 113. Pp. 79-97.

10. Yeung M.K.S., Strogatz S.H. Time delay model of coupled oscillator // Phys.
Rev. Lett. 1999. Vol. 82, Ne 3. Pp. 648-651.

11. Daido N. Strange waves in coupled-oscillator arrays: mapping approach //
Phys. Rev. Lett. 1997. Vol. 78, No 9. Pp. 1683-1684.

12. Bressloff P.C., Coombes S., Souza B. Dynamics of a ring of pulse-coupled
oscillators: group theoretical approach // Phys. Rev. Lett. 1997. Vol. 79, N2 15. Pp. 2791-
2794, )

13. Bressloff P.C., Coombes S. Running waves in a chain of pulse-coupled
oscillators // Phys. Rev. Lett. 1998. Vol. 80, Ne 21. Pp. 4815-4818,

14. Pando C.L. Effects of a periodic perturbation on a discrete-time model of
coupled oscillators // Phys. Lett. A. 2000. Vol. 273. Pp. 70-79.

15. Anishchenko V.S., Aranson LS., Postnov D.E., Rabinovich M.I. Spatial
synchronization and bifurcations of chaos developing in a chain of coupled self-
oscillators // Dokl. Akad. Nauk SSSR. 1986. Vol. 28, Ne 5. Pp. 1120-1124.

16. Matias M.A., Perez-Munuzuri V., Marino L.P., Lorenzo M.N., Perez-Villar V.
Size instabilities in ring of chaotic synchronized systems // Europhys. Lett. 1997. Vol. 37,
Ne 6. Pp. 379-384.

17. Matias M.A., Guemez J., Perez-Munuzuri V., Marino [.P., Lorenzo M.N.,
Perez-Vitlar V. Observation of a fast rotating wave in rings of coupled chaotic oscillators
/l Phys. Rev. Lett. 1997. Vol. 78, Ne 2. Pp. 219-222.

18. Marino LP., Perez-Munuzuri V., Perez-Villar V., Sanchez E., Mat M.A.
Interaction of chaotic rotating waves in coupled rings of chaotic cells // Physica D. 2000.
Vol. 128. Pp. 224-235.

19, Hu G., Zhang Y., Cerdeira H.A., Chen S. From low-dimensional synchronous
chaos to high-dimensional desynchronous spatiotemporal chaos in coupled systems //
Phys. Rev. Lett. 2000. Vol. 85, Ne 16. Pp. 3377-3380.

20. Komuro M., Tokunaga R., Matsumoto T., Chua L.O., Hotta A. Global
bifurcation analysis of the double scroll circuit // Int. J. of Bifurcation and Chaos. 1991
Vol. 1, Ne 1. Pp. 139-182.

Saratov State University, Russia Recievd 28.08.2003

YIK 517.9

IJBOJNHIHA BETYIINX BOJIH
KIIPOCTPAHCTBEHHO-BPEMEHHOMY XAOCY: B3AMMOJIENCTBHE
BPEMEHHOHW U MIPOCTPAHCTBEHHOM [IMHAMHKH B KOJIBIIE
I'EHEPATOPOB C YIBOEHHUEM NNEPHOJA

A. laGynun, B. Acmaxos, A. Axonos

B panHoi pabore paccMaTpHBaeTCs MEPEXOf OT PeryaspHbIX GEryiMx BONH K
Pa3BHTOMY NPOCTPAHCTBEHHO-BpEMEHHOMY Xaocy B OEMOYEEe OCHMIUIATOPOE C
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yasoeHdeM nepuofa. Mccnegyrored THIHYHLIE OH(YPKAIHA, KOTOpPBIE MPOHCXOJAT Ha
OCHOBE BhIOpaHHOTO peskuMa Geryulefi BOMHBI OT UHMKNA NEPUONA OFUH A0 PazBHTOrO
BpeMeHHOro xaoca. OOHapyKeHo, MTO [0 Mepexofja K BpeMeHHOMY Xaocy KoneGaums
OCTAlOTCH  NPOCTPaHCTBEHHO TepHopgumdeckumu. B ofnacte  Xaoca  TodvHas
MpOCTPAHCTBEHHAA - MEPHOMWYHOCTE CMEHAETCH NEPHOMMYHOCTEIO B CPElHEM.
Paspynrenne ycpegHeHHON NpOCTPAHCTBEHHO-NEPHONMYHON CTPYKTYPHI CBA3aHO ©
NoTepel KOTEePeHTHOCTH Ha OCHOBHBIX YacTOTaX BO BPEMEHHBIX CHEKTPaX COCEHEX
reHepaTopoB B HENoYKe,
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FLUCTUATIONAL TRANSITIONS ACROSS LOCALLY-DISCONNECTED
AND LOCALLY-CONNECTED FRACTAL BASIN BOUNDARIES

A.N. Silchenko, S.Beri, D.G. Luchinsky and P.V.E. McClintock

We study fluctuational transitions in a discrete dynamical system that has two
coexisting attractors in phase space, separated by a fractal basin boundary which may be
either locaily-disconnected or locally-connected. It is shown that, in each case, transitions
occur via an accessible point on the boundary. The complicated structure of paths inside the
locally-disconnecied fracral boundary is derermined by a hierarchy of homoclinic original
saddles. The most probable escape path from a regular atiractor to the fractal boundary is
found for the each type of boundary using both statistical analyses of fluctuational trajectories
and the Hamiltonian theory of fluctuations.

1, Introduction

The stability of nonlinear multistable systems in the presence of noise is of great
importance for practical applications [1,2]. It is well known that nonlinear dynamical
systems can demonstrate sensitivity io initiai conditions, even in the absence of limit sets
with complex geometrical structure in their phase space. The reason lies in the complex
structure of the basins of attraction, which may be fractal [3-8], thus raising some
challenging and difficult problems. For example, how does a fluctuational transition take
place across a fractal basin boundary (FBB)? What is the difference, if any, in the
transition mechanism for the different types of FBB? If transitions across FBBs are
characterised by general features, a knowledge of them. could considerably simplify
investigations of stability and control for chaotic dynamical sysiems, both of which are
topical problems of broad interdisciplinary interest [3-11].

A promising approach to this problem is based on the analysis of fluctuations in the
limit of small noise intensity: the system fluctuates 10 remote states along most probable
deterministic paths [12-14] that correspond to rays in the WKB-like asymptotic solution
of the Fokker-Planck equation [15]. The approach has been extended to chaotic systems,
both continuous and discrete, [16-19]. It was shown recently that the homoclinic
tangencies responsible for fractalization of the basins cause a decrease in the activation
energy [20]. However, there are still no theoretical predictions about the mechanism of
escape in the case of an FBB. Unsolved problems include the uniqueness of the escape
path, the form of the boundary conditions on the FBB and, as already mentioned,whether
or not the mechanism of escape depends on the type of FBB under consideration.

In this paper, we describe the mechanisms of fluctuational transition for two
different types of FBB, namely, locally-disconnected (LD) and locally-connected (LC)
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FBBs. We show below that in spite of the large qualitative differences between these
types of FBB, their mechanisms of fluctuational transition are characterised by a
universal common feature.

2. Transitions across a locally-disconnected FBB

There are known to be several types of FBB in different dynamical systems [4-8].
The LD FBB represents the simplest and commonest, and.it is the only type of FBB to
have been observed in experiments [4,5]. As we will show below, the mechanism of
fluctuational transition across it is determined primarily by its deterministic structure,
which enables us to infer that the mechanism must be generic to all systems with FBBs of
this kind. To reveal the transition mechanism across an LD FBB, we take as our model
the two-dimensional map iniroduced by Holmes [21]

xu+1 = f] (JC" 5y n) =Y n :
(1)

y”"',_l =f2 x"’yﬂ’gn) = _bxn + dyn b yn3 + E,p

where E_is white Gaussian noise with (€ }=0, and (§ § )=2D¢ _ . In what follows we will
adopt the notation x, ={x .y }. f=lf,f,} and §,={0.E }. Due to symmetry, the system (1) bas
pairs of coexisting attractors for 5#=0.2 and 2.0<d<2.745. Their basins are separated by a
boundary that may be either smooth or fractal depending on the chosen parameter values.
We choose for our studies b=0.2 and d=2.65, which corresponds to there being two
coexisting stable points of period 4 whose basins are separated by an LD FBB (see
Fig.1). The fractal dimension of the boundary is equal to 1.8451.

Fig. 1. The coexisting stable points of period 4 (black crosses) and their basins of attraction, shown in grey
and white respectively. The aceessible boundary saddle points of period 3 are indicaied by the small filled
cireles S3. Their stable manifolds are drawn as solid black lines
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Fig. 2. (a} The most probable escape path (dashed line) connecting the stable point of period 4 with the
period-3 saddle cycle lying on the fractal boundary obtained from the numerical simuladons with
D=107, The optimal path found by the solution of the boundary-value problem is shown as a solid line.
{b) Two-dimensional plot of the paths presented in (a)

To find the boundary conditions on the LD FBB, and the optimal fluctuational
force steering the system (1) from one coexisting attractor to another, we will make use
of an analogy between energy-optimal contro} and noise-induced escape from a basin of
attraction. We have modelled (1) numerically, exciting the system with weak noise and
collecting both the escape trajectories between the attractors and also the corresponding
noise realisations inducing the transitions. By ensemble-averaging a few hundred such
escape trajectories and noise realisations, we have obtained the optimal escape path (see
Fig. 2) and corresponding optimal force shown in Fig. 3. In the case of the LD FBB,
these results allow us both to determine the boundary conditions near the boundary, and
to demonstrate the uniqueness of the most probable escape path (MPEP). A typical
optimal escape path is shown in Fig. 2, a. A simple analysis of the optimal path shows
that the system (1) leaves the stable point of period 4 and moves to the LD FBB, crossing
it ar a point of period 3 located near, or directly on, the LD FBB (see Fig. 2, @). Simple
calculations have shown that a saddle point of period 3, S3, in Fig. 1 and Fig. 2, b (with
multipliers p,=0.001218 and p,=6.566269) does exist for the chosen parameter values
and that it lies on the boundary. Moreover, its stable manifold (solid black line in Fig. 1)
is dense in the boundary and detaches the open neighborhood including the attractor from
the LD FBB itself, allowing us to classify it as an accessible boundary point [22]. It is

well known that the energy-optimal path is
0 e N — given by that path which minimises the

sum S = 1."2 2:; \&%,, where £ is the noise
realization moving the system from one
attractor to the other. The extremal problem
can easily be solved by taking (1) into
4 account by means of Lagrangian
7 multipliers &, [18], yielding the following

0.04

gela bl iy

0.0

0.04 Lagrangian for minimization:

N

L=16% & & +3 A T(x  A(x)5),

w:here X1 f(xn) and En.are ti?e. two-
dimensional vectors defined in (1).

Fig. 3. The optimal fincmational force ¢ obtained Further, varying L with reSPGCt t"-j' & and X,
from the Monte-Carlo simulations we get the following two-dimensional map:

08—
4 8 12 6 »n
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xn+1 = yn’

Yoy =-bx, + dy, Y +‘M

@)
At = (d-3x O b - A,
Ao’ =R
Equations (2) are supplemented by the following boundary conditions
lim _, A =0, x°&attractor, x '€ LDFBB. (3)

In fact, the unique energy- optimal trajectory along which § takes its minimal value is a
heteroclinic trajectory in the four-dimensional phase space of the system (2), connecting
the stable point of period 4 with a point on the boundary. At this stage, we are ready to
solve the corresponding boundary-value problem for (2) numerically, This can be done
via a procedure involving shooting from a very small neighbourhood of the chosen saddle
point, parametrizing the initial conditions as points lying on a two-dimensional unstable
manifold of this saddle point, characterized by the appropriate radius r and angle ¢, and
with subsequent selection of the trajectory minimizing S. Initial values for the coordinates
can be parametrised by the distance from the initial state and angular position; the initial
values for the A are obtained by using the equations for the linearised manifold. Durmg
the evolution of the system (2) far from its initial state, we collect the values S

=8 +1/2}\. ™). and plot S_ as a function of the two parameters. Thus, the global minimum
of the activation €nergy gwes us the parameters corresponding to the optimal escape path.
We emphasise that the optimal trajectory is physically real, and not just a mathematical
abstraction. In fact, when the system (1) is driven by noise whose intensity tends to zero,
the escape evenis become exponentially rare, but they take place in an almost
deterministic way following very closely the deterministic trajectory of (2). As clearly
seent from Fig. 2, the phase trajectory in (2) along which § takes its minimal value
coincides with the MPEP obtained by taking an ensemble average of successful
trajectories. Note that no action is required to bring the system to the other attractor after
it has hit the FBB, and neither is there any possibility of controlling the motion inside the
LD FEE.

Analysis of the structure of escape paths inside the LD FBB has shown that
homaclinic saddle points play a key role. In the system (1), we observe an infinite
sequence of saddle-node bifurcations of period 3,4,5,6..., occurring at parameter values
d.<d,<d,<d,... and caused by sequential tangencies of the stable and unstable manifolds
of the saddle point O at (0,0). The homoclinic orbits appearing as the result of these
bifurcations were classified earlier as original saddles, and it was also shown that their
stable and unstable manifolds cross each other in hierarchical sequence [22]. To
characterize this hierarchical relationship between original saddles it is reasonable to use
the ratio

= D (S)IA (),

where A_(S) and A (S) are the stable and unstable eigenvalues of the Jacobian matrix of
(1) at the saddle point S. Simple calculations have shown that, for the original saddles of
period 3,4,5,6... in (1), the following hierarchical sequence of index p values occurs:
n,=3.566, u,=3.301, n=3.249, p=3.142. It is known that unstable periodic orbits
embedded within a chaotic saddle define a distribution of the natural measure on it both
for hyperbolic and nonhyperbolic dynamical systems [23,24). In particular, the natural
measure 13 on a two-dimensional chaotic nonattracting set is concentrated along its
unstable mamfold and can be represented via unstable eigenvalues of unstable orbits:

n(C)== /h (x.), where C is the region of phase space contammg the chaotic saddle,
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(%) is the eigenvalue corresponding to the unstable manifold and the summation is
over all the unstable orbits x, in C [24] (cf. [23]). A statistical analysis of escape
trajectories has shown that these probabilities demonstrate a hierarchical interrelation
[25], which is in a good agreement with the distribution of the natural measure on the
chaotic saddle O forming the LD FBB.

3. Transitions across a locally-connected FBB

We now consider the same escape problem, but in a system possessing an LC FBB.

This type of FBB is generally observed in two-dimensional noninvertible analytic and

nonanalytic maps [4,26]. We take as our model a typical quadratic conformal map:

X, =%2-y +07x +E, '

(4)
=2xy +07x +0.5y +§&2

)’,,_,,1

where £ 1, £ ? are statistically independent sources of white, Gaussian, noise of zero mean
that are of the same intensity I} as each other. This map has stable points at the origin and
at infinity, separated by the LC FBB. The boundary contains an infinite set of repelling
points and, in this case, no stable or saddle poinis. Note that noise-induced escape from
the attractor surrounded by the LC FBB in (4) was considered earlier in the pioneering
work of Grassberger [18], who succeeded in calculating the optimal escape path, albeit
without finding the boundary condition on the LC FBB or the mechanism of escape.

To find the boundary condition on the LLC FBB and the optimal escape path, we use
exactly the same technique as in the case of the LD FBB, above. The results of our
calculations are presented in Fig. 4. As clearly seen from this figure, the system (4)
leaves the stable point O at the origin along the unique optimal escape path and
approaches the LC FBB at the unique point shown in Fig. 4, a. Moreover, our
calculations have shown that the optimal fluctuational force (see Fig. 4, b) becomes equal
to zero at this moment. According to our previous results, this means that the system (4)
reached the boundary at this point, and its further relaxation to infinity is noise-free and
completely specified by the deterministic structure of the FBB. Our calculations have
shown that the boundary point A corresponds exactly to the repelling boundary point of
period 9, which plays the role of the unique boundary condition on this I.C FBB. These

yn' ¥ T T T T T T T ¥ T 020 } T T T T T T T T

1.0r - 015

0.5t 1 So10

I 0

OO - . T g 00’5

05 - . :‘;L 0.0

1.0 - -0.05 | ]

-]'5 E_ L N 1 . | X L X = -0.10 L | N i . 1 . ] N ]
-15 <10 05 00 05 80 90 100 110 120 =
a b

Fig. 4. (@) The locally-connected FBB (solid closed curve), unstable nodes of period 9 (crosses) and points
of the optimal escape path obtained from the Monte-Carlo simuiations (filled circles) with D=5-10"3,
{») Components of the optimal fluctuational force: x (solid line) and y (dashed line)
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the corresponding four-dimensional extended map. To approach an understanding of why
this repelling point should play the role of the boundary condition, it is necessary to look
more closely at the structure of the LC FBB, which is the Julia set J(x). It is well known
that the Julia set contains a dense set of repelling points [27]. However, these points are
not all the same, and they may be classified in terms of their local instability. Indeed,
there are two types of repelling points forming the LC FBB in (4), namely, unstable
nodes and unstable focuses. Every unstable node on the LC FBB has a part of its unstable
manifold connecting it to the stable point O and lying fully inside its basin of attraction,
whereas this 1s not true of a focus. By definition, a point x is accessible if there is a
continuous curve y:[0,)—C for which y(r) lies in the basin of attraction of x for all # and
lim __y(n)=x This fact enable us to conclude that unstable nodes form a countable set of
accessible points on the LC FBB. The presence of a countable set of accessible points
was rigorously proven [28] quite recently. Our calculations have shown that accessible
boundary points are distributed nonuniformly on the boundary, and that their multipliers,
have different values which, in turn, may lead to a hierarchal interrelationship between
them. The quest for such a hierarchy, and further generalizations of our approach
presented above, represent goals of our future investigations.

4, Conclusions

In conclusion, we have studied fluctuational transitions between coexisting regular
attractors separated by both the LD and LC FBB. We have shown that an accessibie point
on the FBB plays the role of a unique boundary condition for both types of FBB. Our
statistical analyses of fluctuational trajectories have yielded solutions of the boundary-
value problem for both types of FBB, and have revealed the optimal fluctuational forces
moving the sysiems (1) and (4) from one attractor to the other. We were also able to find
the unique optimal escape path in both cases. The original saddles forming the
homoclinic stucture of the system (1) play a key role in the formation of the escape paths
inside the LD FBB, and the difference in their local stability defines the hierarchical
relationship between them. The results obtained can be applied directly to the other maps
and flows having the same type of FBB.

The research has been supported by the Engineering and Physical Sciences
Research Council (UK) and INTAS.
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OIYKTY AITNOHHBIE NEPEXOIbI YEPE3
JOKANLHO-HECBAZAHHGLIE U JOKAJIBHO-CBA3AHHBIE
OPAKTAJABHBIE TPAHNIBI bACCEMHOB '

A.H. Cusvuenxo, S. Beri, [.T. dywuncruii, P.V.E. McClintock

MEI H3yyaeM (PIYKTYaHOHHEIE NTepexoflbl B NUCKPETHON MUHAMIIECKOH CHCTEME,
KOTOpad HMEET IBa COCYINECTBYIOMAX ATTPaKTopa B (ha30BOM NPOCTPAHCTBE, pa3ieleH-
HBIX (PpakTanbHBIMH IpaHHIiaMM GacceliHOB, KOTOpbIE MOIYT ObITh HIM JIOKANBHO-
HECBS3aHHbIMM HNIH  JIOKAJBLHO-CBA3aHHBIMIL. B KaxpgoM cimydae mepexofbl
OCYLIECTBJISIOTCA 4Yepe3 OOMENOCTYIHYI0 TOUKY Ha rpanmue. (ClIoXHas CTPYKTypa
IyTeH BEYTPH JOKANIBLHO-HECB3aHHbIX (PaKTAILHBIX [PaHRL, ONpelenseTces nepapxuei
FOMOKJIHHHYECKEX TiepBOHAYaNbHLIX cefienl. HauGonee BepodaTHas TpaeKTOPHS BEIXONA C
PETYASIPHOrO aTTPAKTOpa K (hpaKTaNbHOH IPaHHLIC HAWIEHA JUT KasKJoro TUIA FPaHMIbl
€ HCHOML30BAHKEM KAK CTATHCTHYESCKOTO aHANN3a (PIYKTYyaHOHHLIX TPAEKTOPHHA, TaK U
I'aMuIBETOHOROH TeOpHAH ITYKTYALMI.
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OPTIMAL CONTROL OF FLUCTUATIONS APPLIED TO THE SUPPRESSION
OF NOISE-INDUCED FAILURES OF CHAOS STABILIZATION

LA. Khovanov, N.A. Khovanova and P.V.E. McClintock

Double strategy of chaos and fluctuation controls is developed. Noise-induced failures
in the stabilization of an unsiable orbit in the one-dimensional logistic map are considered as
large fluctuations from a stable state. The properties of the large flucations are examined by
determination and analysis of the optimal path and the optimal fluctuational force
corresponding to the stabilization failure, The problem of controlling noise-induced large
fluctuations is discussed, and methods of control have been developed.

Introduction

The control of chaos represents a very real and important problem in a wide variety
of applications, ranging from neuron assemblies to lasers and hydrodynamic systems [1].
The procedure used consists of stabilizing an unstable periodic orbit by the application of
precisely designed small perturbations to a parameter and/or a trajectory of the chaotic
system. Different methods of chaos control have been suggested and applied in many
different physical contexis, as well as numerically to model systems [1]. For practical
applications of these control methods, it is important to understand how noise influences
the stabilization process, because fluctuations are inherent and inevitably present in
dissipative systems. The problem has not been well studied. Typically, a method is
developed for stabilization of the orbit without initially taking any account of
fluctuations. Only then the authors do check the robustness of their method by
introducing weak noise into the system [1]. Thus, in the celebrated pioneering work of
Ott, Grebogi and York, «Controlling chaos» [2], the authors just noted that noise can
induce failures of stabilization.

In this work we consider noise-induced failures in the stabilization of an unstable
orbit and the problem of controlling these failures. The method of Ott, Grebogi and Yorke
(OGY) [2] and a modification of the adaptive method (ADP) [1] are used to stabilize an
unstable point of the logistic map. We consider the small noise limit where stabilization
failures are very rare and therefore they can be considered as large fluctuations
(deviations) from a stable state. We study the properties of large deviations by
determining the optimal paths and the optimal fluctuational forces corresponding to the
failures. We employ two methods to determine the optimal paths and forces. The first of
these builds and analyzes the prehistory probability distribution to determine the optimal
path and optimal force [3]. The second method considers an extended map (relative to the
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initial one) which defines fluctuational paths and forces in the zero-noise limit [4,5].
Furthermore we use the optimal paths and forces to develop methods of controlling the
large deviations, i.e. the noise-induced failures of stabilization. In the literature, methods
for stabilization are often referred to as a control methods too. To differentiate controlling
large fluctuations from controlling chaos, we therefore use the term «stabilization» to
indicate the control of chaos.

In section 1 we describe the procedures for stabilization of an unstable orbit of the
logistic map. The general approach to the control of a large deviation is presented in
section 2. Noise-induced failures of stabilization are considered in section 3. The results
obtained are discussed in the conclusion.

1.Chaos stabilization

For simplicity we will stabilize an unstable fixed pointx” of the logistic map:
X =rx(l-x ), (1)

where x, is a coordinate, n is discrete time and r is the control parameter that determines
different regimes of the map's behavior (1). The coordinate of the fixed point x” is
defined by the condition: x_,=x , and consequently its location depends on the parameter r:

r=1-1b (2)

We set the parameter r=3.8, a value for which an aperiodic (chaotic) regime is observed
in (1), and the point x" is embedded in the chaotic attractor.
From the range of existing stabilization methods, we chose to work with just two:
the OGY and ADP methods mentioned above.
To stabilize a fixed point by the OGY method, perturbations Ar are applied to the
parameter r, leading to the map being modified (1) in the following manner:
x o= (r+ar)x (1-x ),  Ar,=r(2¢-1)(x -x")/[x" (1-x")]. (3)

n+l T

To stabilize a fixed point by the ADP method, perturbations Ax are applied to the
map's coordinate, The value of the perturbation Ax is defined by the distance between the
current system coordinate and the coordinate of the stabilized state:

X, =re(l-x)+Ax, Ar =(x-x). (4)

We consider local stabilization procedure. During local stabilization, the
perturbations Ar and Ax differ from zero only if the following condition is satisfied:

lx,-x"l <. (5)

Here € is a small value: we fixed e=0.01. If the condition (5) is not satisfied then
stabilization is absent, i.e. Ar=0 or Ax=(0.

So, stabilization involve modifications of the initial map (1), and thus we use
another map in the form (3) or (4). The fixed point x* is an attractor of the new map.
After the stabilization is switched on, a trajectory of the map tends to the fixed point x’,
and subsequently remains there.

In the presence of noise the trajectory fluctuates in the vicinity of the stabilized
state, i.e. noise-induced dynamics appears. In addition, noise can induce stabilization
failures, i.e. breakdown in the condition (5).

Our aim is to study these noise-induced stabilization failures and analyze the
problem of how to suppress them. We therefore consider the maps (3) and (4) in the
presence of additive Gaussian fluctuations:
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v, = (r+ar)x (1-x )+ DE,  Ar, =r(2x"-1 ]{xﬂ-x')f[x'{l-:c*)], (6)
‘Y'n-i-‘l

Here D is the noise intensity; £, is a Gaussian random process with zero-average (£)=0, &-
correlation function (€ §,, )=68(k) and dispersion (€%)=1

=rx(lx)+Ax +DE, Ax =(x-x"). (7)

2. Control of large fluctuations

Large fluctuations manifest themselves as large deviations from the stable state of
the system under the action of fluctuational forces, Large fluctuations play a key role in
many phenomena, ranging from mutations in DNA to failures of electrical devices. In
recent years significant progress has been achieved both in understanding the physical
nature of large fluctuations and in developing approaches for describing them. The latter
are based on the concept of optimal paths - the paths along which the system moves
during large fluctuations. Large fluctuations are very rare events during which the system
moves from the vicinity of a stable state to a state remote from it, at a distance
significantly larger than the amplitude of the noise. Such deviations can correspond to a
transition of the system to another state, or to an excursion along some trajectory away
from the stable state and then back again. During such deviations the system is moved
with overwhelming probability along the optimal path under the action of a specific
(optimal) fluctuational force. The probability of motion along any other (non-optimal)
path is exponentially smaller. In practice, therefore large fluctuations must of necessity
occur along deterministic trajectories. The problem of controlling large fluctuations can
thus be reduced to the task of controlling motion along a deterministic trajectory.
Consequently, the control problem can be solved through application of the control
methods developed for deterministic systems [6].

Let us consider the control problem. We will follow the work [7] and consider the
control of large fluctuations by a weak additive deterministic control force. Weakness
means here that the cnergy of the control force is comparable with the energy
(dispersion) of the fluctuations (see [8] for details). In this case, the extremal value of the
functional R for optimal control, which moves the system from an initial state x' to a
target state x /, takes the form [7]:

RS =S 2aS, AS=QRIE G @)

where E,°7 is the optimal fluctuational force that induces the transition from x ‘ to x/ in
the absence of the control force; S is an energy of the transition, N, and N, are the times
at which the fluctuational force E °* starts and stops, and F is a parameter defining the
energy of the control force.

The optimal control force u ¥ for the given functional (8) is defined [7] by:

u o — :F(ZF}UZE UPI[EI. - {E;PI}E]MZ o a{x f (U}upt) (9)

where x ("7 s the optimal fluctuational path in the absence of the control force. The
minus sign in the expression (9) decreases the probability of a transition to the state x/,
and the plus sign increases the probability. It can be seen that the optimal control force
u,™ is completely defined by the optimal fluctuational force £°", and the optimal
fluctuational path x (' corresponds to the large fluctuation. Thcwfore to solve the
control pmblem it is necessary, first, to determine the optimal path x (W°" Jeading from
the state x ‘ to the state x / under the action of the optlmal fluctuational force g ™. Thus, a

solution of the control problem depends on the existence of an optimal path: it is obvious
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that the approach described should be straightforward to apply, provided that the optimal
path exists and is unique.

We consider below an application of the approach described to suppress large
fluctuations in the one-dimensional map. The large fluctuations in question are
considered here to correspond to failures in the stabilization of an unstable orbit.

The control procedure depends on the determination of the optimal path and
optimal fluctuational force and, to define them, we will use two different methods. The
first method is based on an analysis of the prehistory probability distribution (PPD) and
the second one consists of solving a boundary problem for an extended map which
defines fluctuational trajectories.

The PPD was introduced in [3] to analyze optimal paths experimentally in flow
systems. We will use the distribution to analyze fluctuational paths in maps. Note, that in
[9,10] it was shown that analysis of the PPD allows one to determine both the optimal
path and the optimal fluctuational force. The essence of this first method consists of a
determination of the fluctuational trajectories corresponding to large fluctuations for
extremely small (but finite) noise intensity, followed by a statistical analysis of the
trajectories. In this experimental method the behaviour of the dynamical variables x_and
of the random force € are tracked continuously until the system makes its transition from
an initial state x ‘ to a small vicinity of the target state x /. Escape trajectories x
reaching this state, and the corresponding noise realizations € ** of the same duration, are
then stored. The system is then reset to the initial state ' and the procedure is repeated.
Thus, an ensemble of trajectories is collected and then the fluctuational PPD p " is
constructed for the time interval during which the system is monitored. This distribution
contains all information about the temporal evolution of the system immediately before
the trajectory arrives at the final state x /. The existence of an optimal escape path is
diagnosed by the form of the PPD p ": if there is an optimal escape trajectory, then the
distribution p " at a given time » has a sharp peak at optimal trajectory x °". Therefore, to
find an optimal path it is necessary to build the PPD and, for each moment of time n, to
check for the presence of a distinct narrow peak in the PPD. The width of the peak
defines the dispersion o " of the distribution and it has to be of the order of the mean-
square noise amplitude DY [3]. The optimal fluctuational force that moves the system
trajectory along the optimal path can be estimated by averaging the corresponding noise
realizations E “* over the ensemble. Note, that investigation of the fluctuational prehistory
also allows us to determine the range of system parameters for which optimal paths exist.

To determine the optimal path and force by means of the second method we
analyze extended maps [4.5] using the principle of least action [5]. Such extended maps
are analogous to the Hamilton-Jacobi equation in the theory of large fluctuations for flow
systems. For the one-dimensional map x_,=f(x, }+DE,, the corresponding extended map
in the zero-noise limit takes the form:

I!H-'I. :ﬂ‘rn) + }J",fg(_'f”)‘
}rﬁi‘*l = }.rr;lg {"Yu)' (1 D)
8(x) = ¥ (x)0x,.

The map is area-preserving, and it defines the dynamics of the noise-free map x_ =f(x,),

if y =0. If y#0 then the coordinate x, cormresponds to a fluctuational path, and the
coordinate ¥, to a fluctuational force. Stable and unstable states of the initial map become
saddle states of the extended map. So, the fixed point x* of the ADP (7) and OGY (6)
maps becomes a saddle point of the corresponding extended map. Fluctuational
trajectories (including the optimal one) starting from x* belong to unstable manifolds of
the fixed point (x",0) of the extended map.
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The procedure for determination of the optimal paths consists of solving the
boundary problem for the extended map (10):

xo=xy ¥y =0 (11)
X2k v (12)

where x” is the initial state and x/ is a target state.

To solve the boundary problem different methods can be used. For the one-
dimensional maps under consideration, a simple shooting method is enough [11]. We
choose an initial perturbation / along the linearized unstable manifolds in a vicinity of the
point (x",0) of the map (10). The procedure to determine a solution can be as follows:
looking over all possible values {, we determine a trajectory which tends to the point
(x/,0). Note that, because these maps are irreversible there exits, in general, an infinite
number of solutions of the boundary problem. The optimal trajectory (path) has minimal

action (energy) S=X " _y? here y, is calculated along the trajectory, corresponding a
solution of the boundary task.

3. Noise-induced failures in stabilization

A breakdown of the condition (5) corresponds to a failure of stabilization, i.e. to
the noise-induced escape of the trajectory from an e-vicinity of the fixed point x°. The
target state x / corresponds to the boundaries of the stabilization region: x/=x"#e.

Instead of analyzing the maps (6) and (7) in the e-vicinity of the fixed point x™ we
can investigate linearized maps of the following form: (path) has minimal

=ax +Dg, (13)

Il':+ 1

here a is a value of derivative df{x )ox, in the fixed point x". For the map (6) the
derivative is equal to zero a,4,=0, and for the map (7) a,,,=-0.8.

Let us investigate sta%:ilizati{}n failure by considering the most probable (optimal)
fluctuational paths, which lead from the point x* to boundaries x"+e. For linearized maps
(13) the extended map (10) can be reduced to the form:

X, =ax, +yla,
(14)
}ru-e-l o yrrllra

with the initial condition (x,=x, y,=0) and the final condition x/=x"te. It can be seen
that a solution of the map (14) increases proportionally to y =const/a” [12]. This means
that, for the ADP map (7), the amplitude of the fluctuational force increases slowly but
that, for the OGY map (6), the failure arises as the result of only one fluctuation
(iteration). Because equation (14) is linear, the boundary problem will have a unique
solution [11]. Thus, analysis of the linearized extended map (14) shows that there is an
optimal path, and it gives a qualitative picture of exit through the boundary x"te.

Let us check the existence of the optimal paths through an analysis of the
prehistory of fluctuations. To obtain exit trajectories and noise realizations we use the
following procedure. At the initial moment of time, a trajectory of the map is located at
point x". The subsequent behaviour of the trajectory is monitored until the moment at
which it exits from the e-region of the point x*. The relevant parts of the trajectory, just
before and after its exit, are stored. The time at which the exit occurs is set to zero. Thus
ensembles of exit trajectories and of the corresponding noise realizations are collected
and PPDs are built.
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Fig. 1. PPDs p," of the exit trajectories (a) and noise realizations (b) of ADP map for the boundary (")
The thick dashed lines indicate e-region of stabilization. The thin dashed lines connect maxima of PPDs.
The noise indensity is D=0.0011

To start with, we will discuss these ideas in the context of the ADP map. Fig. 1,4
shows PPDs of the escape trajectories of the ADP map, and the corresponding noise
realizations for the exit through the boundary (x"-¢) are shown in Fig. 1, b, The picture of
exit through the other boundary (x"+e) is symmetrical, so we present results for one
boundary only. It is evident (Fig. 1) that there is the only one exit path. Note, that the
path to the boundary (x"-¢) is approximately 2.8 more probable than the path to the
boundary (x"+¢). This difference arises from an asymmetry of the map in respect of the
boundaries.

Because for each boundary there is the only one exit path, the optimal path and the
optimal fluctuational force can be determined by simple averaging of escape trajectories
and noise realizations respectively. In Fig. 2 the optimal exit paths and the optimal
fluctuational forces are shown for the boundaries (x*-¢) and (x"+e). The paths and the
forces coincide with a solution of the boundary problem (circles in the Fig. 2) of the
extended linear map (14). As can be seen the optimal path is long, and the amplitude of the
fluctuational force increases slowly, in agreement with analysis of the linearized map (14).

The optimal fluctuational force obtained (Fig. 2, b) must correspond [10] to the
energy-optimal deterministic force that induced the stabilization failure. We have

; b : :
i 'i* ." i !
0.74 A i
; ; ; & 0.0 4
0.70 | 4 : 51 i : | i 7
=15 -10 =5 0 n -15 -10 -5 0
a b

Fig. 2. The optimal paths (z) and the optimal forces (b) for exit through the boundary (c"-¢) (solid line)

and the boundary (x'+e) (dashed line) for ADP map. Circles indicate the optimal paths and forces
obtained by solving the boundary problem for the linearized extended map (14). The opiimal paths and
forces used in the control procedure are marked by arrows

5




checked this prediction and found that the optimal force induces the exit from ane-region
of the point x*: we selected an initial condition at the point ' and included the optimal
fluctuational force additively; as a result we observed the stabilization failure. If we
decrease the amplitude of the force by 5-10%, then the failure does not occur. It appears,
therefore, the deduced force allows us to induce the stabilization failure with minimal
energy (see [10] for details).

Using the optimal path and the force we can solve the opposite task [7,8] - to
decrease the probability of the stabilization failures. Indeed, if during the motion along
the optimal path we will apply a control force with the same amplitude but with the
opposite sign as the optimal fluctuational force has, then, obviously, the failure will not
occur. Because we know the optimal force then, in accordance with the algorithm [7]
described above, it is necessary to determine the time moment when system is moving
along the optimal path. For the ADP method the optimal path is long enough to identify
that a trajectory is moving along the optimal path, and then to apply a control force.

In the presence of control the map (7) is modified:

X, =rx(l-x,) + Ax, + DE +u,, as)
Izl.rJ'I = ('Xu -'t-} »

here u, is the deterministic control force.

We use the following scheme to suppress the stabilization failures. Initially the
control force is equal to zero (x =0) and the map is located in the point x°; we
continuously monitor a trajectory of the map (15) and define the time moment when the
system starts motion along the optimal path (x ). We assume that the system moves along
the optimal path (x ) if it passes within a small vicinity of the coordinate (x,) and then
within a small vicinity of (x ,) (see arrows in Fig, 2, a). Then on the following iteration
we add the control force u =-sign(g )(E, ), n=-1 (see Fig. 2, b).

In Fig. 3, a dependences of the mean time ( t) between the failures on the noise
intensity D are plotted in the absence, and in the presence, of the control procedure. It is
clear that the mean time (t) is substantially increased by the addition of the control, i.e.
stability in the face of fluctuations is significantly improved by the addition of the control
scheme. The efficiency of the control procedure depends exponentially [7] on the amplimude
of the control force (Fig. 3, b), and there is an optimal value of the control force, which is
very close to the value (arrow in Fig. 3, b) of the optimal fluctuational force.

T ..o. TR ian <T7 '

i s 10 i } i i ]
1.4 1.6 1.8 D03 0.0 2.0 40 w103
b

Fig. 3. (a) The dependences of mean time (t) between stabilization failures on noise intensity D in the
absence (circles) and in the presence (crosses) of the control. The size of the stabilization region is
e=0.01. (b) The dependence of the mean time {t) on the amplitude of the control force u_is presented for
the ADP method. The value of {t) corresponding to the optimal fluctuational force is marked by the arrow
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Fig. 4. For the OGY map, the optimal path () and the optimal force (») are shown for exit through the
boundary (x -g) (crosses) and the boundary (v +¢) (circles)

Now consider noise-induced stabilization failures for OGY map (6). An analysis of
the linearized map has shown that the failure occurs as the result of a single fluctuation.
We have checked the conclusion by an analysis of the fluctuational trajectories of the
map (6), much as we did for the ADP map. The optimal path and optimal force are shown
in Fig. 4 for both boundaries, (x"+¢) and (x"-¢). An exit occurs during one iteration and
there is no a prehistory before this iteration. It means that we cannot determine the
moment at which the large fluctuation starts and, consequently, that we cannot control the
stabilization failures. The existence of a long prehistory is thus a key requirement in the
control the large fluctuations.

Conclusion

We have considered noise-induced failures in the stabilization of an unstable orbit,
and the problem of how to control such failures. In our investigations, they correspond to
large deviations from stable points. We have shown that noise-induced failures can be
analyzed effectively in terms of linearized noisy maps.

Large noise-induced deviations from the fixed point in one-dimensional maps have
been analyzed within the framework of the theory of large fluctuations. The key point of
our consideration is that the dynamics of the optimal path, and the optimal fluctuational
force, correspond directly to stabilization failures. We have applied two approaches -
experimental analysis of the prehistory probability distribution and the solution of the
boundary problem for extended maps - to determine the optimal path and the optimal
fluctuational force, and we have compared their results. The two approaches give the
same results.

A procedure for the control of large fluctuations in one-dimensional maps has been
demonstrated. It is based on the control concept developed in [7] for continuous systems.
We have introduced an additional control scheme which significantly improves the
stabilization of an unstable orbit in the presence of noise. It was successful for the ADP
method of stabilization, and problematic for the OGY method. We have shown that the
control procedure has limitations connected with the presence of long time prehistory of
large fluctuation.

Qur consideration of the control problem is relevant to a continuous system which
has a one-dimensional curve in its Poincaré section, e.g. the Rossler system. For such
systems we can formulate the control task as that of control at discrete moments of time
(the moments of intersection of the Poincaré section) by using impulsive forces. The
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intervals between these moments were used to calculate and to form the necessary control
force. Note that a similar approach is widely used in control technology.

The main limitation of our present control approach lies in the necessity of
studying the fluctuational dynamices of a given system prior to consideration of its control.
Such a study can be carried out by use of an extended map of the system, if model
equations are known, and/or experimentally by analysis of the fluctuational prehistory
distribution. A system model can be easily written down by determination of the eigenvalue
of a stabilized unstable point: there are many effective methods of doing so [13].

We thank D.G. Luchinsky and V. Smelyansky for useful and stimulating

discussions and help. The research was supported by the Engineering and Physical
Sciences Research Council (UK) and INTAS (grant 01-867).

References

1. Boccaletti S., Grebogi C., Lai Y.C., Mancini H., and Maza D. // Phys. Rep. Vol.
329, 103 (2000).

2. On E., Grebogi C., and Yorke J. // Phys. Rev. Lett. Vol. 64, 1196 (1990).

3. Dykman M.1.,, McClintock P.V.E., Smelyanski V.N., Stein N.D., and Stocks N.G.
// Phys. Rev. Lett. Vol. 68, 2718 (1992).

4, Graham R. and Tel T. // Phys. Rev. Lett. Vol. 66, 3089 (1991).

5. Grassberger P. [/ 1. Phys. A. Vol. 22, 3283 (1989).

6. Pontryagin L.S. The Mathematical Theory of Optimal Processes (Macmillan,
1964).

7. Smelyanskiy V.N., and Dykman M.I. [/ Phys. Rev. E. Vol. 55, 2516 (1997).

8. Whittle P. Optimal Control: Basics and Beyond (Wiley, 1996).

9. Luchinsky D.G. /I ]. Phys. A. Vol. 30, L577 (1997).

10. Khovanov LA., Luchinsky D.G., Mannella R., and McClintock P.V.E. |/ Phys.
Rev. Lett. Vol. 85, 2100 (2000).

11. Press W.H. et al. Numerical recipes: the art of scientific computing (Cambridge
University Press, Cambridge, 1989).

12. Reimann P., and Talkner P.[/ Phys. Rev. E. Vol. 44, 6348 (1991).

13. Badii R., Brun E., Finardi M., Flepp L., Holzner R., Parisi J., Reyl C., and
Simonet J. [/ Rev. Mod. Phys. Vol. 66, 1389 (1994).

Physics Department, Saratov Received 12.09.2003
State University, Russia

Department of Physics, Lancaster
University, LAl 4YB, UK

YK 519.6: 537.86:519.2
ONTHMAJBHBIA KOHTPOJIb ®JIYKTYAILIMA B IPUMEHEHUA

K MIOJAABJIEHWI0 MHIYITHPOBAHHBIX ITYMOM HAPYITEHWM
CTABMIN3ALNN XAOCA

H A Xosanos, HA. Xosarnosa, P.V.E. McClintock
PazpabareiBaeTcs JBOHHAA CTPATErHS YIPABJIEHWS Xa0COM H (IYKTYyamdsMH.

HMHyuMpoRaKHEIE WIYMOM HApYIIEHHA CTAGUIH3AIMK HEyCTOHYWBRIX OPOHT B OJHO-
MEDHOM JIOTHCTHYECKOM OTODpakeHHH pacCMaTpPHBAIOTCH Kak DONbIHe (ayKTyaluu

54



oT ycrtoftumBoro cocroguus. CeoilcTsa Gonblmx (hryKTyaluil NMPOBEPSIOTCA MYTEM
onpefieends H aHANN3a ONTHMAILHOTO NYTH W ONTHMANLHOIO (DAYKTYalHOHHOTO
BO3[ICHCTBHS, COOTBETCTBYIOUIEro Hapyueruto crabmmuszami. Oocyxaaercs npobieMa
YIpaBneHns WHIYUMPOBAaHHBIX LIyMOM Oonbumx QUyKTyamui, # pa3pabaThBalOTCH
METOMb! YTIpaBJICHI.

Khovanov [gor Aleksandrovich was bom on October 1571, He was educated
- in Physics Department of Saratov State University, gaining his undergraduate degree
© in «radiophysics» in 1993, He got a degree of Candidate of Physical and
- Mathematical Sciences (PhD) in 1997 from Saratov University. Since 1996 he
worked Assistant of nonlinear dynamics and radiophysics chair of Saratov
University and from 1999 he is Assistant Professor of this chair. Scientific interests:
stochastic processes and nonlinear dynamics.
E-mail: igor@chaos.ssu.runnet.ro

Khovanova Natalia Aleksandrovna was bom on June 1972, She was
educated in Physics Department of Saratov State University, gaining his
undergraduate degree in «radiophysics» in 1994. She gained a degree of Candidate
of Physical and Mathematical Sciences (PhD) from Saratov University in 1997.
. Since 1996 she worked Assistant of general physics chair of Saratov University and
from 1997 she is Assistant Professor of this chair. Scientific interests: stochastic
- processes and nonlinear dynamics.

: E-mail: khovanova@chaos.ssu.runnet.ru

Peter Vanghan Elsmere McClintock was born in Omagh, N.Ireland, on 17
October 1940. After being educated in Irefand, N. Rhodesia, W.Germany and
England, he read physics at Queen's University Belfast, gaining his BSc in 1962.
His doctoral research in Oxford, under H.M. Rosenberg, was on spin-phonon
interactions in paramagnetic crystals at very low temperatures, leading to a DPhil in
1966. During his subsequent postdoctoral appointment (1966-1968) at Duke
University, N. Carolina, Henry Fairbank and Horst Meyer introduced him to the
superfluidity and other fascinating properties of liquid helium. Since 1968, when he
came (o Lancaster University, where be is now Professor of Physics, he has
£ investigated several topics related to liguid helium, including a measurement of the
Landau critical velocity, studies of the creation and decay of quantized vortices, and
helium isotopic separation. He has also contributed to the exploration of a range of fundamental problems in
stochastic nonlinear dynamics and applications to the cardiovascular system. He holds a DSc from Queen’s
University, Belfast, and is a Fellow of the Institute of Physics. E-mail: p.v.e.mcelintock@lancaster.ac.uk

33




e s i} Deterministic chaos

Izv. VUZ «AND», vol. 11, Ne 3, 2003

RECOVERY OF DYNAMICAL MODELS OF TIME-DELAY
SYSTEMS FROM TIME SERIES

V.1. Ponomarenko, M.D. Prokhorov, A.S. Karavaev,
Ye.P. Seleznev, T.V. Dikanev

We develop the method for the estimation of the parameters of time-delay systems
from time series. The method is based on the statistical analysis of time intervals between
extrema in the time series and the projection of the infinite-dimensional phase space of a
time-delay system to suitably chosen low-dimensional subspaces. We verify our method by
using it for the reconstruction of different time-delay differential equations from their chaotic
solutions.

Introduction

The present paper deals with the problem of reconstruction of nonlinear dynamical
models of time-delay systems from time series. The importance of this problem is
determined by the fact that time-delay systems are wide spread in nature. The behavior of
such systems is affected not only by the present state, but also by past states. These
systems are usually modeled by delay-differential equations. Such models are
successfully used in many scientific disciplines, such as physics, physiology, biology,
economic, and cognitive sciences. Typical examples include population dynamics [1],
where individuals participate in the reproduction of a species only after maturation, or
spatially extended systems, where signals have to cover distances with finite velocities.
Within this rather broad class of systems, one can find the Ikeda equation [2] modeling
the passive optical resonator system, the Lang-Kobayashi equations [3] describing
semiconductor lasers with optical feedback, the Mackey-Glass equation {4] modeling the
production of red blood cells, and various models describing different phenomena from
glucose metabolism to infectious diseases. The advantage of methods proposed in the
paper is that they can be applied to the systems of different nature if these systems have
similar structure of model equations.

In the most general case the time-delay systems are described by the following
equation

Xty + e, xCD(@) + L+ e, XD(0) = FG(0) (). .. x(1-3,)), (1)

where x(")(f) is the derivative of order #; €,,...,¢, , are the coefficients; and 7,,...,t, are the
delay times. To uniquely define the system (1) state it is necessary to prescribe the initial
conditions in the entire time interval [-x,.0]. Therefore, the phase space of the system has
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to be considered as infinite-dimensional. In fact, for large delay times even scalar delay-
differential equations can possess high-dimensional chaotic dynamics. Thus, the direct
reconstruction of the system by the time-delay embedding techniques runs into severe
problems. For a successful recovery of the time-delay systems one has to use special
methods. The most of them are based on the projection of the infinite-dimensional phase
space of time-delay systems onto low-dimensional subspaces. These methods use
different criteria of quality for the reconstructed equations, for example, the minimal
forecast error of constructed model [5-8], the minimal value of information entropy [9],
or various measures of complexity of the projected time series [10-14]. Several methods
of time-delay system analysis exploit regression analysis [15,16] and correlation function
construction [17,18]. In this paper we further develop the methods proposed by us
recently [19,20] for the estimation of the parameters of time-delay systems from time
series for a more wide class of time-delay systems.

Reconstruction of scalar time-delay systems

Let us consider one of the most popular first-order delay-differential equation

egt(1) = -x(1) + f(x(1-1y)), (2)

where x(¢) is the system state at time #, function f defines nonlocal correlations in time, <,
is the delay time, and parameter g, characterizes the inertial properties of the system. In
general case Eq. (2) is a mathematical model of an oscillating system composed of a ring
with three ideal elements: nonlinear, delay, and inertial ones (Fig. 1). In the present paper
we develop a technique for estimating 7, f, and ¢, from the time series.

It should be ngted tha_t available for | [y 2 [MNommem] 3 :
measurement dynamical variable could be | | tine' | | device .| Filter
obtained from different points of the time- |[x(f)| T, |x(t%)| fx) | Ax(ET)| €
delay system (2), indicated in Fig. 1 by the
numerals 7-3. Let us consider first the case <
when the observed dynamical variable is Fig, 1. Delayed nonlinear feedback system. Arabic
x(f) measured at the point /. To estimate numerals designate points where a dynamical
the delay time 7, we exploits the features of variable is measured
extrema shape and location in the system (2) temporal realization x(¢). The peculiarities
of extrema location in time are clearly illustrated by N(t) plot in Fig. 2. To construct it
one has to define for different T values the number N of pairs of extrema in x(z), that are
separated in time by 7. If N is normalized to the total number of extrema, then for
sufficiently large extrema number it can be used as an estimation of probability to find a
pair of extrema in x(¢) separated by the interval t. Let us explain the qualitative features
of N(x) for various values of parameter e,

In the absence of inertial properties (g,=0) time differentiation of Eq. (2) gives

X(1) = x(t-vp)df(x(t-1y) Yax(t-t). (3)

From Eq. (3) it follows that if 55(:40):0, then x(£)=0. Thus, for £=0 every extremum of
x(t) is followed within the time T, by the extremum'. As the result, N(tr) shows a
maximum for t=v, in Fig. 2, a.

In the presence of inertial properties (¢,>0), which corresponds to real situations,

! For chaotic temporal realizations of the systems under investigation practically all critical

points with x(£)=0 are the extremal ones, and therefore we call the points with .;c(t)=0 the extremal points
throughout this paper.
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Fig. 2. Number N of pairs of extrema in a realization of Eq. (2) separated in time by, as a function of .
N(%) is normalized to the total number of extrema in time series. (a) €;=0. N(t) has a sharp maximum at
the level of the delay time of the system. (b) e;>0. N(t) has a pronounced minimum at the level of the
delay time of the system. The location of maximum is determined by the parameter €,
the most probable value of the time interval between extrema in x(¢) shifts from T, to
larger values. This effect can be explained using the ring system shown in Fig. 1: the filter
introduces a certain additional delay in the system. As the result, the extrema in x(#) can
be found most often at the distance T +t, apart (Fig. 2, b). For instance, the computational
investigation of Eq. (2) with quadratic nonlinear function f{x)=A-x* allows us to obtain
an estimation t ~¢ /2 for large values of the parameter of nonlinearity A.

For ¢.>0 the extrema in x(¢) are close to quadratic ones and therefore X(z)=0
and x(£)#0 at the extremal points. It can be shown that in this case there are practically no
extrema in x(z) separated in time by T, To prove this let us differentiate Eq. (2) with

respect to r.
e,(8) = -H(1) + ¥ (-, )df x(t-v)) edx(t-Ty). (4)

If for .f(r)=0 in a typical case :vc'(r):t(], then, as it can be seen from Eq. (4), for ¢#0 the

condition Jé(t-ta);t(} must be fulfilled. Thus, there must be no extremum separated in time
by t, from a quadratic extremum and hence N(t))—0. For w#t, the derivatives

x(t) and :::(r—t) can be simultaneously equal to zero, i.e., it is possible to find extrema
separated in time by t. The specific configuration presented in Fig. 2, b in the
neighborhood of T=v, is duplicated at larger t in the neighborhood of v=2v,3,. ..

The procedure of the delay time estimation from the N(t) plot considered with
systems like (2) can be successfully applied to time series gained from a more general
class of time-delay systems

x(1) = Fe(£) x(t-%,))- )
Time differentiation of Eq. (5) gives
x(7) = x(1)OF (x(£) x(1-1))/ax(2) + x(t-t,)OF (x(1) x(1-10) JAx(1-y). (6)

Similarly to Eq. (4), Eq. (6) implies that in the case of quadratic extrema derivatives

x(t) and x(t-v,) do not vanish simultaneously, i.e., if x(¢)=0, then ;C(I-‘tg)io.

Thus, for 7, definition one has to determine the extrema in the time series and after
that to define for different values of time T the number N of pairs of extrema separated in
time by  and to construct the N(t) plot. The absolute minimum of N(t) is observed at the
delay time T,

To recover the parameter ¢, and the nonlinear function f of system (2) from the
chaotic time series let us rewrite Eq. (2) as
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egx(£) + x(£) = flx(t-xy)). (7
Thus, it is possible to reconstruct the nonlinear function by plotting in a plane a set of

points with coordinates (x(z-,), aofc(t)+x( £)). According to Eq. (7), the constructed set of
points reproduces the function f. Since the parameter g, is a priori unknown, one

needs to plot ex(F)+x(r) versus x(t-v,) under variation of e, searching for a single-valued

dependence in the plane (x(z-t,),ex(f)+x(¢)), which is possible only for e=e¢). As 2
quantitative criterion of single-valuedness in searching for ¢, we use the minimal length
of a line L(g), connecting all points ordered with respect fo x(z-t;) in the plane

(x(z-xy), ex(£)+x(z)). The minimum of L(e) is observed at e=g,. The set of points

constructed for the defined ¢, in the plane (x(z-t,), ex(¢)+x(z)) reproduces the nonlinear
function, which can be approximated if necessary. In contrast to methods presented in
[11,12] which use only extremal points or points selected according to a certain rule for
the nonlinear function recovery, the proposed technique uses all points of the time series.
It allows one to estimate the parameter ¢, and to reconstruct the nonlinear function from
short time series even in the regimes of weakly developed chaos.

To test the efficiency of the proposed technique we apply it to a time series
produced by numerical integration of the passive optical resonator system of Tkeda [2]

x() = -x(t) + usin(t-1y)-x,) (8)

with p=20, 7,=2, x,=n/3, ¢,=1. Note that the nonlinear function in the Ikeda equation is
multimodal one. Part of the time series is shown in Fig. 3, a. The time series is sampled in
such a way that 200 points in time series cover a period of time equal to the delay time

x L
10.0 - -
1 20
0.0 —
-100 I R . S L
0 4 8 12 16 t 0.0 1.0 £
a c
N eoX (1) +x(1)
20.0 ™
0.05 0.0 -
-20.0
0.0
I . E— S —
o 1 2 3 4 1 100 00 10.0 x(i-to)
b d

Fig. 3. (a) Time series of the Ikeda equation (8); ( &) number N of pairs of extrema in the time series
separated in time by T, as a function of t. N(t) is normalized to the total number of extrema in the time
series. N_; (1)=N(2.00); ( ¢) - length L of a line connecting points ordered with respect to x(#-t;) in the
plane (x'(t-t ), e%(1)+x(f)) as a function of & L(g) is normalized to the number P points.
Lmin(e)=L(1.lbO); d) - the recovered nonlinear function
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1,=2. The data set consists of 25000 points and exhibits about 1000 extrema. Figure 3,5
illustrates the t-dependence of the number N of pairs of extrema separated in time by <.

The time derivatives x(¢) are estimated from the time series by applying a local parabolic
approximation. The step of T variation in Fig. 3, a is equal to the integration step h=0.01.
The absolute minimum of N(t) takes place exactly at v=;=2.00. To construct the L(e)
plot (Fig. 3, ¢) the step of e variation was aiso set by 0.01. The minimum of L(e) takes
place accurately at e=e,=1.00. In Fig. 3, d the nonlinear function is shown. This recovered
function coincides practxcal]y with the true function of Eq. (8).

To investigate the robustness of the method to additional noise we analyze the data
produced by adding to the time series of Eq. (8) zero-mean Gaussian white noise. The
presence of noise in time series brings into existence spurious extrema. These extrema are
not caused by the intrinsic dynamics of a system and temporal distances between them
are random. With the extrema number increasing, a probability to find a pair of extrema
in time series separated in time by t has to increase in general. The extrema number
increasing induced by noise is also followed by the increase of probability to find a pair
of extrema separated by the interval =, However, for moderate noise levels this
probability is still less than the probability to find a pair of extrema separated in time by
1. Since the absolute minimum of N(t) is very well pronounced in the absence of
nmse, it can be clearly distinguished even in the noise presence if the noise level is not
very high. Hence, the qualitative features of the N(<) plot specified by the delay-induced
dynamics are retained for a moderate noise level, The presence of noise is more critical
for the parameter ¢, estimation and the nonlinear function recovery.

Figure 4 illustrates the results of the Ikeda equation reconstruction from the time
series corrupted with zero-mean Gaussian white noise with a standard deviation of 20%
of the standard deviation of the data without noise. The location of the absolute minimum
of N(x) (Fig. 4, a) allows one to estimate the delay time accurately, t,'=2.00. The
minimum of L(¢) (Fig. 4, b) takes place at ¢/=0.98. The nonlinear function recovered
using the estimated t,’ and ¢/’ is shown in Fig. 4, c. In spite of sufficiently high noise level
and inaccuracy of e estimation the recovery of the nonlinear function has a good quality
which is significantly higher than that reported in [21] for the same parameter values of
the Ikeda equation with noise.

In the second case, when the observed dynamical variable is x(l--a:o) measured at
the point 2 (Fig. 1), one can use the described above procedure for estimation of the
system parameters since the observable is simply shifted in time by the delay time<,. For
the third possible case, when the observed variable is f{x(#-t,)) which is measured at the
point 3 (Fig. 1), one needs another technique for reconstruction of the time-delay system.

As well as in the time series of x(¢), there are also practically no extrema separated
in time by =, in the time series of the system (2) variable f{x(-v,)), since, df(x(¢-ty))/dt=

eoX(2)+x(1)
L
| 20.0 7
§ 2.0 0.0
B -20.0 -
N E M S — Y R I — T : T
0 1 2 3 4 7 0.0 1.0 e -100 0.0 10.0 x(t-t))
a b C

Fig. 4. Reconstruction of the Ikeda equation from its time series x(r) with additive Gaussian white noise
for noise level of 20%. (@) The N(t) plot. N_. (t)=N(2.00). (b) The L(¢) plot. L . (e)=L(0.98). (c) The
recovered nonlinear function
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=x(t-t,)df(x(t-t,))/dx. Then, the delay time T, can be estimated by the location of the
absolute minimum in the N(x) plot constructed from the variable f{ (.t(t -‘to)).

To recover the parameter ¢, and the function f we filter the chaotic signal fx(t-ty)
with a first-order low-pass filter and plot f(x(t-t,)) versus u(t-t,), where u(t-ty) is the
signal at the filter output, shifted by the time 7, defined earlier. If the filter inertial
properties are characterized by the parameter e=¢,, then u(t-7y)=x(s-t,) and the set of
points constructed in the plane (x(r-t,)), f(x(2-v,))) reproduces the nonlinear function f.
Since the parameter ¢, is a priori unknown, one needs to plot f{x(1-ty)) versus u(z-ty),
under variation of the filter parameter &, searching for a single-valued dependence in the
plane (u(t-ty), f(x(t-t,))), which is possible only for e=e,. As a quantitative criterion of
single-valuedness in searching for ¢, we use the minimal length of a line Z(¢), connecting
all points ordered with respect to (¢-7,) in the plane (u(t-vy), f(x(¢-t,))). The minimum
of L() is observed at e=¢;. The set of points constructed for the defined ¢, in the plane
(u(z-vy), f(x(t-t,))) reproduces the nonlinear function, which can be approximated if
necessary.

We apply the method to a time series of the variable f(x(1-t,)) of the Mackey-
Glass equation [4]

x(2) = -bx(r) + ax(t-g )/(1+x°(t-7,)), 9)
which can be converted to Eq. (2) with e;=1/b and the function
f(x(t-1y)) = ax(t-t ) (b(1+x (-1,))). (10)

The parameters of the system (10) are chosen to be @=0.2, b=0.1, ¢=10, 7,=300 to
produce a dynamics on a high-dimensional chaotic attractor. The sampling time is set by 1.

Figure 5 illustrates the reconstruction of the Mackey-Glass system parameters.
Figure 5, a shows the number N of pairs of extrema in the time series of flx(t-7,)),
separated in time by t. The step of © variation in Fig. 5, a is equal to the integration step
h=1. The location of the absolute minimum of N(t) allows us to estimate the delay time,
7, =300. To construct the L(¢) plot (Fig. 5, b) we use the step of e variation equal to 0.1.
The minimum of L(e) takes place at g,/=10.0 (e;=1/6=10). The nonlinear function
recovered using the estimated 7, and ¢, is shown in Fig. 5, c¢. This recovered function
coincides practically with the true function (10).

N L SCe(rT)

0.08 12 -
0.1 4 i 08

0.04 )

- 0.4
0.0 — —T T 0.0 47— 0.0 T i T
0 200 400 600 7 7.0 10.0 £ 0.0 0.8 u(t1h)

a b ¢

Fig. 5. Reconstruction of the Mackey-Glass system from the variable f{x(t-t,)). (a) The N(z) plot.
N_..(T)=N(300). (b) The L(e) plot. L_, (£)=L(10.0). (c) The recovered nonlinear function

Reconstruction of nonscalar time-delay systems
The method of ¢, definition from time series described above for scalar time-delay

systems can be extended to high-dimensional time-delay systems having the following
form
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() + e, () + L g (1) = F(8),x(8-p)), (1)
Differentiation of Eq. (11) with respect to ¢ gives

X + e x() + ...+ 81-\.7'(?) =
(12)

= x()IF (1) (1) )x(t) + x (b=t )OF (x(1) x(tx,))/Ax(t-,).

The condition r(t'-r )0 for v(r)-O will be satisfied if the left-hand side of Eq. (12) does
not vanish. In gcneral a probability to obtain zero in the left-hand side of Eq. (12) is very
small and therefore, the N(t) plot qualitatively must have a shape similar to that inherent
in the case of first-order delay-differential equations like (2) and (5).

The proposed method of estimation of the parameter ¢, and the nonlinear function
can be also applied to a variety of time-delay systems of order-higher than that of (2). For
instance, if the dynamics of a time-delay system is governed by the second-order delay-
differential equation

e,x(£) + £,x(2) = -x(7) + Ax(txy)), (13)
the nonlinear function can be reconstructed by plotting in a plane a set of points with

coordinates (x(r-t,), € 'é(r)+s x(£)+x(t)). The constructed set of points reproduces the
function f. Since the parameters ¢ and ¢, are a priori unknown, one needs to plot

£,%(£)+2,1(¢)+x(t) versus x(z-v,) under variation of ¢, and &, searching for a single-valued
dependence in the plane (x(¢-ty), Ez,'.c.(t)+gl,{:(t)+x(t)), which is possible only for ¢ =¢,,
¢,=¢,. As a quantitative criterion of single-valuedness in searching for g, and ¢, we use
the minimal length of a line L( EI,EZ) connecting all points ordered with respect to x(-t)
in this plane. The minimum of L(e"l,ﬂz) is observed at E:el, %2=sz. The set of points

constructed for the defined e, and ¢, in the plane (x(¢-t;), e,%(¢)+e,x(£)+x(1)) reproduées
the nonlinear function. Howwer the quality of reconstructlon detenorates since the
procedure-involves numerical calculation of the second derivative.

Recovery of the delay times for time-delay systems
with two coexisting delays

Let us consider now a time-delay system with two different delay timest, and <,

(1) = F(e(1) x(2-v,) x(1-v,)). (14)
Time differentiation of Eq. (14) gives
{(2) = x(£)oF/0x(t) + x(t-v,)oFI0x(t-x,) + x(t-v,)OF/dx(t-,). (15)

Similarly to temporal realization of Eq. (5), the realization x(¢) of Eq. (15) has
mainly quadratic extrema and therefore x(1)=0 and x(¢)#0 at the extremal points. Hence,
if x()=0, the condition must be fulfilled,

a:r(r-tl) + bx( t-t,) #0 (16)

where a=0F (x(t)x(t-t)),x(t-1,))/0x(t-x) and b=0F(x(1).x(t-7).x (t -t,))/0x(t-%,). The
condition (16) can be satisfied if %(¢-t,)#0 or/and x(z-t,)=0. By this is meant that in the
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case of quadratic extrema derivatives (1)
and i(r-'cl), or x(f) and x'(r—rz) do not
vanish simultaneously. As the result, the
number of extrema separated in time by <,
and v, from a quadratic extremum must be
appreciably less than the number of
extrema separated in time by other values
of t and hence the N(z) plot will
demonstrate minima at t=7, and v=t,. But
these minima are not so pronounced as in
the case of a single delay time, since only
one of the terms of Eq. (16) is necessary
not equal to zero.

0.08

1
0.04 4

0.00 T T T T
0 100 200 300 400
Fig. 6. Number N of pairs of extrema in a realization
of Eq. (17) separated in time by <, as a function of

7. N(t) is normalized to the total number of extrema
in time series. N_. . (v)=N(70), N_, -(€)=N(299)

T

As an example, we demonstrate the method efficiency with a generalization of the
Mackey-Glass equation by introducing a further delay,

x(2) = -bx(2) + Uy ax(t-v ) (14x(t-v,)) + Upax(t-1,) (1+x°(¢-1,)) (17)

with a=0.2, b=0.1, ¢=10, 7,=70, and 7,=300. The N(z) plot is presented in Fig. 6. The
most pronounced minima of N(t) are observed at t=70 and ©=299 providing a good
estimation of both the delay times T, and ..

Conclusion

We have proposed the methods for reconstructing different time-delay systems
from time series. These methods are based on the statistical analysis of time intervals
between extrema in the time series and the projection of the infinite-dimensional phase
space of a time-delay system to suitably chosen low-dimensional subspaces. The methods
allow one to estimate the delay time, the parameter characterizing the inertial properties
of the system, and the nonlinear function even in the presence of sufficiently high noise.
The method of the delay time definition uses only operations of comparing and adding. It
needs neither ordering of data, nor calculation of approximation error or certain measure
of complexity of the trajectory and therefore it does not need significant time of
computation. The proposed techniques of the nonlinear function recovery and estimation
of the parameter characterizing the system inertial properties use all points of the time
series what allows one to apply the method to short time series even in the regimes of
weakly developed chaos.
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BOCCTAHOBIEHUE TUHAMIYECKUX MOJIEJEN CUCTEM
C SAITA3ZIBIBAHHUEM 10 BPEMEHHBIM PANAM

B.YU. Iloromapenro, M./1. I[Ipoxopos, A.C. Kapaéaee,
E.I1. Cenesnes, T.B. /luxanes

PaGora mnochsileHa pasBATHIO METONA OLUEHKH NAPAMETPOB CHUCTEM C
3arasfgblBaHHEM MO BPEMEHHBIM psifiaM. MeTon ocHOBaH Ha CTAaTHCTHYECKOM aHAJIM3E
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SMALL-WORLD NETWORKS:
DYNAMICAL MODELS AND SYNCHRONIZATION

Viadimir N. Belykh, Igor V. Belykh, and Martin J. Hasler

This paper provides a short review of recent results on synchronization in small-world
dynamical networks of coupled oscillators. We also propose a new model of small-world
networks of cells with a time-varying coupling and study its synchronization properties. It is
shown that such a time-varying structure of the network can ensure more reliable
synchronization than the conventional small-worlds. The term «small world» refers to a
network of locally connected nodes having a few additional long-range shortcuts chosen at
random. The addition of the shortcuts sharply reduces the average distance between the nodes
and therefore provides the so-called smali-world effect. Discovered first in social networks,
the small-world effect appeared to be a characteristic of many real-world structure both
human-generated or of biological origin. For social networks, this property implies that
almost any pair of people in the world can be connected to one another by a short chain of
intermediate acquaintances, of typical length about six. However, the structure of social
networks is not homogeneous, there are always key persons that provide distant out-local-
world connections between people. This paper is written in honor of the 60th birthday of our
friend and colleague, Wadim S. Anishchenko, who is one of such key persons in the
Nonlinear Dynamics community.

1. Introduction

The study of networks pervades all of science, from physics and neurobiology to
engineering and social sciences. From the perspective of nonlinear dynamics, we would
like to understand how a huge network of interacting dynamical systems be they neurons,
computers connected in Internet or power stations will behave collectively, given their
individual dynamics and coupling structure [1]. This paper contributes to elucidate the
relation between the network dynamics and graph theory and to apply mathematical
theory of synchronization to networks of different nature. Ordinarily, the connection
topology is assumed to be either completely regular or completely random. However,
many biological, technological, and social networks lie somewhere between these
extremes. In 1998, Watts and Strogatz found a simple model of networks that can be
tuned through this middle ground: regular coupled networks with the addition of
increasing amounts of disorder (a few additional randomly arising connections). These
coupled systems were called «small-world» networks [2], by analogy with the small-
world phenomenon.

This famous phenomenon was discovered in 1967 by the american social
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psychologist Milgram [3]. He performed a simple experiment as follows. He sent roughly
300 letters to randomly selected people in Omaha, Nebraska with the instruction to get
the letter to a single «target» person in Boston using only personal contacts. Milgram
gave each «sender» some information about the target including name, location, and
occupation, so that if the sender did not know the target (and it was extremely unlikely
that they would), they could send the letter to someone they did know who they thought
would be «closer» to the target. Thus began a chain of senders, each member of the chain
attempting to zero is on the target by sending the letter to someone else: a friend, family
member, business associate, or casual acquaintance. Milgram’s surprising finding was
that for the 60 chains that eventually reached the target, the average number of steps in a
chain was around six, a result that has entered folklore as the phrase «Six degrees of
separation». From this experiment, Milgram concluded that six was the average number
of acquaintances separating any two people in the world. Given the form of Milgram’s
experiment, one could be forgiven for supposing that the figure six is probably not a very
accurate one. The experiment certainly contained many possible sources for errors.
However, the general result that two randomly chosen human beings can be connected by
only short chain of intermediate acquaintances has been subsequently verified, and is now
widely accepted. This small-world property of social networks, that the average distance
between the nodes is relatively short, has been shown to be widespread in many other
real-world structures including the WWW connections [4], scientific networks [5],
epidemiological models [6], electrical power grid [7], electronic circuits [8] and neural
and biochemical networks [9,10}.

The semi-random model of Watts and Strogatz, that reproduces remarkably well
main characteristic of many real-world networks, is the following. It starts from a ring
lattice with n vertices (the pristine, original, world), each node is connected to its 2k
nearest neighbors (periodic boundary conditions are applied just for convenience and not
strictly necessary). Then shortcuts links are added between random pairs of nodes with
probability p per link. Watts and Strogatz conjectured that dynamical systems coupled in
this way would display enhanced propagation speed, synchronizability and computation
power, as compared with regular lattices of the same size [1]. The intition is that the
short path could provide high-speed communication channels between distant parts of the
system, thereby facilitating any dynamical process (like synchronization or computation)
that requires global coordination and information flow.

This model has been the subject of significant recent interest within the physics,
mathematics, and engineering community. Most theoretical studies were concerned with
statistical and combinatoric properties of small-world networks (graphs) where the cells
do not have the individual temporal dynamics [1]. Dynamical processes on small-world
networks were studied relatively little and mainly by means of computer simulation
[7,10-12]. In particular, it was numerically shown that small-world connections may
essentially improve synchronization properties of networks of limit-cycle and chaotic
oscillators. In turn, synchronization in networks of periodic and chaotic oscillators with
different regular and random coupling configurations has been intensively studied [13-21].

More recently, significant progress in the study of the relation between the addition
of random shortcuts and the synchronization properties of networks was made by
Barahona and Pecora [22]. They applied the Master Stability function approach [18] to
the study of local synchronization in small-world networks and showed, through
numerics and analysis, how the addition of random shortcuts improves network
synchronizability. The connectivity matrices G were once chosen at random and then
fixed forever. This is the usual approach of defining the small-world networks. Within
this approach, statistics of the connectivity matrices G was translated into statistics of the
synchronization thresholds. .

In this paper, we propose a new model of dynamical small-world networks where
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the shortcuts change as a function of time [23]. Instead of randomly choosing the
shortcuts and leaving them fixed, we randomly choose the shortcuts, leave them only for
an interval of time = fixed, then randomly choose another set of shortcuts, leave them
again for a lapse of time < fixed, etc. More precisely, our probabilistic model is the
following, During each time interval of length <, every possible shortcut is turned on with
probability p, independently of the switching on and off of the other shortcuts, and
independently of whether or not it has been turned on during the previous time interval.
Furthermore, we assume that the switching time © is small with respect to the intrinsic
time constants of the dynamics of the individual cells.

This way of transforming a network with fixed couplings, the «pristine world», into
a time-varying small-world network can always be applied. We call it the «blinking
model» [23]. In this paper, we shall concentrate on global synchronization in the
important example where the pristine world is a ring of Zk-nearest neighbor coupled
chaotic oscillators. The methods developed here, however, are more generally applicable.

The blinking model is actually of practical importance. In practice, often
collections of subsystems that are organized into a network actually interact only
sporadically. This is true in biology as well as in technology. Neurons in the brain send
out electrical signals in the form of spikes and most of the interaction with the other
neurons takes place during the arrival of the spikes at the connection points, the synapses.
Since the spike duration is usually small with respect to the interspike intervals, this is an
important example of «blinking» interaction. Of course, here the occurrence of spikes of
different neurons and at different times are not just independent random variables, and the
spike durations are actually caused by the dynamics of the individual neurons.
Nevertheless, the distant node interaction is of intermittent nature.

In technology, practical systems exist that can be modelled rather precisely by the
blinking model. Packet switched networks such as the Internet are an important example.
Dynamical processes in the computers that are networked through Internet interact by
sending messages that are subdivided into packets and sent over the network. Both in the
network links as in the computers themselves, they have to share the available
communication time slots with many other packets that belong to communications
between different computers and/or different processes. The occurrence of the other
packets can be considered as independent, and the timeslots available for the
communication between specific processes can also often been considered independent
due to the congestion of the links by the other packets. Thus, the blinking model may be
appropriate in many different situations.

The model of small-world networks, that we propose, consists of the pristine world
(the regular locally coupled lattice of oscillators) and time-dependent on-off coupling
between any other pair of cells. Hence we consider the network

£=F(x)+Z _18,J(tfu)Px, i=1,..n, (1)

where x=(x!,....x7) is the d-vector of the coordinates of the i-th oscillator, and u is a
scalar parameter. The matrix P determines by which variables the oscillators are coupled.
The nxn connectivity matrix G=e, J(r) is symmetric and has vanishing row-sums and

nonnegative off-diagonal elements such that g, =€, & 20 for i#j, and ¢, = Zﬂ i
i=1,...,n. The number of non-zero off-diagonal elements of the matrix G equals m.

As the pristine world, we take a conventional network, a ring of 2k-nearest
neighbor coupled oscillators. In this case the connectivity matrix G, ,, corresponding to
the blinking model, has the 2k adjacent diagonals with the coupling constants ¢ and on-
off tmle-depcndent small-world connections parameters e, . (¢/ u) standing in all remaining
places of the matrix G, ,, where r=1,2,... n(n-2k-1)/2.

We assume the nctlons g, ,(/n) to be binary signals that take the constant value ¢
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with probability p and the value 0 with probability g=1-p in time interval of length <.
Therefore the random variables ¢, , (mv) are independent and identically distributed for
different m and t. We assume that u=1/T<<1, where T is a characteristic transient time of
the individual oscillator, and v can be also interpreted as a characteristic interval of the
time-varying connectivity matrix G.

Typically, in networks of continuous time oscillators, synchronization becomes
stable when the coupling strength between the oscillators exceeds a critical value. In this
context, a central question is to know the bounds on the coupling strengths such that the
stability of synchronization is guaranteed. In this paper, we obtain the conditions for the
stability of the synchronous state in the blinking model and reveal their dependence on
the coupling configuration, probability p of reswitchings, and properties of the individual
oscillators.

2. Synchronization in the pristine world

We start off with the study of global synchronization in the blinking model by
considering first synchronization in the pristine world.

To calculate analytical bounds for the synchronization threshold value of coupling
in the ring of 2k nearest neighbor coupled oscillators, we apply our Connection Graph
Stability method, developed in [24], to this network. This general synchronization method
combines the Lyapunov function approach with graph theoretical reasonings and allows
us to tackle the problem of global stability of synchronization in rather irregular
complicated networks.

Hereafter, we omit the proofs [24] and describe only the main results. For the
pristine world, sufficient conditions of global synchronization are:

e 6" = (al)R{kA), | @)

where g is a parameter defined by the individual node dynamics and introduced similar to
[19,21], and R (k,n)=(n/2k)*=L*(0), where L(0) is the average path length of the pristine
world [2]. Consequently, we obtain the following bounds on the synchronization
thresholds of global synchronization in the pristine world with the 2k diagonals:

e>¢" = an¥(8k). 3)

One can check the effectiveness and generality of the estimate (3) for different £. For one
extreme case where k=1, the network is a ring of diffusively coupled oscillators and the
estimate takes the form

* —~

et = and,

where a=a/8. This estimate presents a quadratic law of the dependence of the
synchronization threshold of global synchronization on the number of oscillators. For
another extreme case where k=int(n/2), all oscillators of the ensemble are globally
coupled and the estimate presents the law e'=b/n that is well-known for the oscillators
with the mean field coupling. Here, b is a new constant. Note that between these extremes
there is a case with k___=n*?, where the synchronization threshold is constant and does
not depend on the number of oscillators.

We conjecture that the real threshold for complete synchronization follows closely
the same law of dependence on n and k, but with a constant ¢ lower than a which we
obtained by stabilizing explicitly the individual oscillators. In support of this claim, we
have determined numerically the thresholds for complete synchronization as functions of
n for various values of k and we have fitted a curve of the form cn?/(8k%) to the data, by
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Fig. 1. Dependence of the synchronization thre- 1760
sholds £ on the number of oscillators r and on the

depth of nearest-neighbor interactionk in the ring of
2k-nearest neighbor coupled Lorenz systems. The
analytical curves cr?/(8) (solid lines) for different - k=1 nearest-neighbor coupling
k fit the numerical data (small circles) in a least- : : :
squares sense.

o 83
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letting vary ¢ (Fig. 1). It can be seen that
the deviation of the data from the fitted
curve is very small, indeed. Note that we
consider only the networks of oscillators
admitting global synchronization with
increasing coupling. In fact, most known 0241 Y=int(n/2) gidbal couplng
chaotic dynamical systems belong to this : . :
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3. Auxiliary regular coupling scheme

Let us now consider a regular configuration by adding to the pristine world (with
the coupling matrix G) an additional global coupling such that the coupling coefficient ve
is added to all free places of the matrix G, 0<v<l. In this extended matrix G,, the main
diagonal elements are such that they preserve vanishing null row-sums. Thus we obtain
the all-to-all regular coupling configuration with two different coupling strengths ¢ and
ve. The rigorous bound of global synchronization threshold in the network with the
extended matrix G, is calculated as follows [23]:

e" = (aln)R (k,n)/[14+v(R(k,n)-1}], (4)

where R(k,n)=(n/(2k))>.

In the context of introducing additional small-world connections with sn edges
added at random to the pristine world, where s>0 is rational, the parameter v=2s/(n-1-2k)
may be considered as the mean frequency of the appearance of shortcuts. The added
coupling parameter ve may be thought of the averaged coupling strength of the sn
connections. One can observe that the dependence (4) of the threshold ¢* on the mean
frequency of the shortcuts appearance v has a drastic diminution in the region of small v
(see Fig. 2,a).

175.0 ' 175.0
€ 1 £ 1
2 2
36.0 36.0
6.0 'l i L 1 7 0 1 C I L L H T
0.0 0.005 0010 0015 0020 0.025 0.030 0.0 0.005 0010 0015 0020 0.025 0.030

a ¥ b 2

Fig. 2. Dependence of the synchronization thresholds on the parameter v in the all-to-all coupled network
with the coupling matrix G, ( @) and on the probabilityp of the shortcut appearance in the blinking model
(b). The pristine world is a ring of 30 nearest-neighbor coupled Lorenz systems. The time step of
switchings in the blinking model ©=0.1. The analytical curves ¢ =(a/n)L(0)/[1+v(L(0)-1)] and
&*=(a/n)L(0)/[1+p(L(0)-1)] fit the data remarkable well. k=1 (1); k=2 (2)
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4. Synchronization in the blinking model

Let us now return to our blinking model of the small-world shortcut addition with
the time-dependent connectivity matrix G, . Figure 3 shows the time-varying structure
of shortcut connections in the blinking model of 30 coupled oscillators. Here, the pristine
world is a ring of locally coupled systems (k=1).

Recall that the switching time t is fast with respect to the characteristic transient
time T of the individual oscillator such that the parameter p in Eq. (1) is small. Under this
assumption, the blinking model becomes a slow-fast system. Thus, applying the
Averaging Theorem [25] to the slow-fast system (1) with the time dependent coupling
matrix G, ,, we obtain the system (1) with the averaged graph matrix G__ = with the
constant link strengths ¢, (t)=pe=const, where p is the probability of shortcut switchings
in this blinking model.

Therefore the synchronization problem within the small-world network with
blinking on-off shortcuts is reduced by averaging to the network with the constant matrix
G, that is similar to the matrix G,, where the probability p stands for the additional ali-to-
all coupling multiplicative parameter v.

Hence for this case, the rigorous bound of global synchronization is calculated as

follows:
¢" = (a/m)L*(0)/[1+p(LP(0)-1)], (5)

where L*(0)=(n/(2k))%. For p=0, the estimate (5) becomes the synchronization threshold
for the pristine world, and for p=1, it gives the synchronization threshold for all-to-all
coupling. For O<p<1, the dependence (5) of the synchronization threshold on p reveals
the sharp reduction of the synchronization threshold such that the addition of a few small-
world connections (p is small) significantly improves the synchronization properties of
the network (see Fig. 2,5 ).

Let us now present the effective path length for our blinking model and its
dependence on the probability p. Recall that for p=0, the threshold (5) becomes the
threshold (5) for the pristine world. Rewriting the dependence (5) in the form similar to
Eq. (2), we introduce the effective path length of the blinking model as follows:
L3(p)=L*(0)/(1+p(L*(0)-1)). Therefore the normalized effective path length has the
following dependence on the probability p:

1=355 D BDBaa =56

Fig. 3. The blinking model of shortcuts connections. Probability of switchings p=0.01, the time step of
switchings t=0.1
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L(p)/L(0) = V(1+(n*/(8k)*-1)p) 2.

This formula clearly manifests the sharp decrease of the effective path length under a
small increase of p from 0 in the blinking model.

5, Conclusions

A new type of dynamical small-world networks of chaotic cells has been proposed.
For the first time for such networks with a time-varying coupling configuration,
mathematically rigorous and tight bounds on the strength of coupling between the cells
have been established that are necessary to achieve complete synchronization
independently of the initial conditions. The synchronization thresholds have been
explicitly linked with the average path length of the coupling graph and with the
probability p.

In previous papers on synchronization in small-world networks a fraction of
shortcuts are chosen at random at the beginning and they remain fixed for the rest of the
time. In such an approach the synchronization threshold is the mean value of the
thresholds for all possible shortcut combinations. However, these thresholds strongly
depend on the particular choice of the shortcuts such that the addition of fixed in time
small-world links does not necessarily guarantee synchronizability. It was stated in
[11,12] that a sufficient amount of randomly chosen shortcuts will cause total
synchronization. In other words, there exists a critical value for the probability p for
which the small-world network, obtained by adding any given shortcuts, will synchronize
completely. This statement is, in general, incorrect. In fact, the addition of fixed in time
small-world links does not necessarily guarantee synchronizability. The addition of links
filling out an entire row in the coupling matrix G does produce a tremendous increase of
connectivity and a sharp reduction of the synchronization threshold. At the same time, the
addition of coupling coefficients, located in the matrix G as a dense small «spot» and
forming an all-to-all coupling within a small subgroup, does not reduce substantially the
synchronization threshold. The latter case is not very likely to happen when there are
many cells but it has nontheless a nonzero probability for a finite number of cells.

On the contrary, when the critical probability p is reached in the blinking model,
then almost surely the system will synchronize. In other words, the set of on-off shortcut
switching sequences that fail to force total synchronization has probability zero. For this
property to be true, necessarily the switching time © must be much smaller than 7, the
typical time constant for the individual cell dynamics. In this context, for many technical
applications and, probably, for the coordinating brain functioning, the blinking effect of
the shortcut appearance provides more reliable synchronization and global coordinating
properties than the networks with the small-world but fixed coupling structure.

Let us end this paper devoted to Wadim’s anniversary by a somewhat frivolous
conclusion. In the context of the blinking model of a scientific collaborating network, the
distant short-time connections can be considered as telephone calls, personal visits to
friends and colleagues, etc. The characteristic time of reswitching t in the blinking model
is a time interval between these desirable events, T is the time when the network studies a
particular problem. As we have leamed from the above study of the blinking model, to
improve synchronization properties of the network, the time ¢ of coordinating phone calls
and visits should be small with respect to T, but these desirable events should be frequent.
Consequently, we wish Wadim at the occasion of his 60-th birthday a bright scientific
future with many short and intensive interactions with his scientific friends to whom we
belong.
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CBA3AHHBIE CUCTEMBI THITA <MHUP TECEH»:
THHAMMYECKHNE MOJAEIN U CUHXPOHU3ALINA

B.H. Beawix, U.B. Beawvix, Martin J. Hasler

B pafore nmpemcraBneH KpaTKuii 00630p pe3yNbTATOB  HCCISHOBaHUs
CHHXPOHM3alMY B3aUMOCBSI3aHHLIX JUHAMAYECKHAX CHCTEM THNIA «MHp TeceH» (small-
world). IlpenmoxkeHa HOBasi MONENb CETel THIIA «MHUP TECEH» ¢ M3MEHSIOLIEHCS BO
BPEMEHHU CTPYKTypol cBsi3n. [lokazaHo, WT0 Takasl CTPYKTypa CBSI3H OOECHeYdBacT
Conee HaleXHYI0 CHHXPOHH3ALHIO, YEM TPAHIMOHHBIE CHCTEMbl THHA «MHP TECEH» C
(bHKcHpOBaHHBIMH cBa3aMH. TepMmuH «small world» (B mpsiMoM pycckom mepesoje
«MaNeHbKHH MHD» WIH, NPaBUITbHEH, «MHUD TECEH») OTHOCHMTCS K CBS3aHHOH CHCTEME,
cocrosiiell U3 JIOKAILHO CBASAHHBIX SIEMECHTOB M MMCIOINEH, B TO XK€ BpeMs,
HeBoNbIlIoe KONMUYECTBO NalbHUX BEPOSTHOCTHBIX CBs3eil (shortcuts). [leicTBHTENBHO,
nobaBnenye HECKONBKHMX JAIbHAX CBA3EH MOXET CYHICCTBEHHO YMEHBIIMTL CpPENHEE
XapaKTCPHCTUIECKOE PACCTOSHAC MEXKJY JICMEHTaMH JaXe OYcHb OONbUION NOKaIbHO
CBSI3aHHON ceTd. JdeKT THIa «MUP TeceH», OGHAPYKEHHLIH BIIEPBbIe COLHONIOTaMH
NIPH UCCJIE[IOBaHUM CTPYKTYphI OOIECTBA, ABIAETCH BAXXHONW XapaKTePHCTHKON MHOTHX
APYTHX B3aUMOJEHCTBYIOIIMX CHCTEM, HalpUMeEp, TaKUX KaK adHcaMOnM CBA3aHHBLIX
HEHPOHOB B MO3Te, KOMIILIOTEPHLIE CeTH U MIHTEpHET, B3auMOJIEHCTBYIOLIHE TTONYIIALMA
“ T.J. B npuMeHeHUM K CTPYKType oflecTBa 3TO CBOMCTBO O3HA4aeT, ITO [{Ba JIHOOBIX
YeloBEKa B MHpPE CBS3aHBI MeEXOy co0Oi uepe3 HeOOMbMOE KOMMYECTBO
TIPOMEXYTOYHBIX 3HaKOMCTB. CumraeTcs, YTO CpefHee 4HCJIO 3BEHbEB TaKOH IenH
paBHO miecTH. OfHAKO CTPYKTypa TaKuX CBs3ell HEeO[JHOpO[HA, M BCErjla B oblnecTse
€CTb KIIOYeBble JIFOAM, OOECIEeYMBaIOIIUE peallbHOe B3aUMONEHCTBHE MEX[Y
pasIMYHBIMK TPYINIaMK JIFOjieit, DTa cTaThs HamucaHa B yecTh 60-eTus Hammero gpyra u
Komnern, Bamuma CemeHoBAuYa AHMIINEHKO, KOTOpPBIA SBISETCS HMEHHO TakKHM
KJIFOUEBBIM YENIOBEKOM B HAYYHOM COQOLLECTBE JIFOHEH, 3aHMMAOIIUXCSA HEHMHEHHON

JTIHHAMMKOH,
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CHAOS IN THE BRAIN AND IN SENSORY NEURONS

Hans A. Braun, Karlheinz Voigt, and Frank Moss

The brain is a complex organ, possibly among the most complex in the universe. The
possibility exists therefore that chaotic dynamics is one of its characteristics. But sensory
neurons are also complex and such processes also may be found in them. Here we show some
experimental data from electroreceptors of caifish and hypothalamic neurons from the
paraventricular nucleus of rat brain slices. The data show the presence of unstable periodic
orbits, one of the signatures of low dimensional chaotic dynamics. Professor Vadim S.
Anishchenko was a very early pioneer of fundamental studies of chaos and continues to make
innovative, inspiring and original contributions to the science of complexity in ali fields.

1. Introduction

Studies of chaotic dynamics date to a time just prior to the turn of the last decade
with Vadim S. Anishchenko having made early fundamental contributions [1]. Moreover,
Anishchenko was an early pioneer in the essentially experimental technique of exploring
chaos in electronic circuits specifically designed for that purpose [2,3]. And he continues
today actively providing inspiration to young researchers in dynamical systems theory
and experiment the world over [4]. On this, the occasion of his sixtieth birthday, it is an
honor and pleasure to contribute the following modest paper devoted to experimental
searches for chaotic signatures in two biological preparations.

Unstable Periodic Orbits (UPQOs) are a characteristic signature of low dimensional
dynamical chaos [5,6] and have been experimentally demonstrated and quantitatively
measured originally in an electronic circuit [7]. UPOs are the quintessential instability
evident in complex systems. A trajectory encounters a saddle-shaped potential,
approaches its unstable fixed point along a stable manifold and departs along an unstable
manifold. The speeds of approach and departure are governed by the Lyapunov
exponents, a positive exponent being the hallmark of chaos. Chaotic systems show
spectra of UPOs of various orders. Here we confine our discussions to those of the lowest
order, that is period 1. '

2. Data analysis: How Unstable Periodic Orbits are detected in neural spike trains
Biology is fraught with instabilities at all levels from single cells to systems of

whole organs. Thus we might expect to find UPOs in biological preparations. The
information flow in neurons is encoded in the sequences of time intervals between action
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Fig. 1. (@) Complete record of time intervals called a scatter plot. { b) Single example encounter extracted

from the record shown in (d). The 45-degree line shows all periodic orbits. The unstable fixed point is the

intersection of stable (inward pointing arrows) and unstable (outward pointing arrows) manifolds
potential occurrences, or «spikes». These time series are called «spike trains». So it is in
particular patterns of time interval sequences within the trains that we must seek the
signatures of UPOs. Indeed, we seek to describe and detect an «encounter» with the
unstable fixed point in the aforementioned saddle. -

As we have shown previously for some sensory neurons, these encounters can be
detected in 2-dimensional time interval plots, where a time interval between a pair of
action potentials is plotted versus the immediately preceding time interval [8-10]. An
example is shown in Fig. 1, @ where a complete neural recording is plotted in this way. In
Fig. 1, b we show an example encounter extracted by an appropriate algorithm as
described below from all the data shown in Fig. 1, a. In Fig. 1, b, the squares show the
approach to the unstable fixed point, marked by the crossing of the two straight lines that
indicate the manifolds. Inward-pointing arrows mark the stable and outward-pointing
arrows mark the unstable manifolds. As the points converge on the fixed point, they feel
the instability and start to diverge along the unstable manifold as shown by the circles.
Thus a particular sequence consisting of 3 points approaching followed immediately by 3
points departing identifies an encounter with a period 1 UPO. Of course, such systems
often display more complex structures of higher order UPOs than detected here. These
have been further investigated in Hodgkin-Huxley-type neuron models [11,12].

Moreover, biological systems are almost always contaminated with high-
dimensional random processes, or «noise». Thus we must seek to find (and hopefully to
count) the UPOs in the noisy chaotic systems that are usual for biology. In systems
contaminated by some high dimensional noise, UPOs spend much of their time in high-
dimensional phase space, but occasionally execute trajectories with detectable signatures
on 2-dimensional projections. The number, N, of encounters with UPOs in the complete
record measures the «strength» of the instability. The problem is that in systems
contaminated with noise, there are also «false encounters» that happen just by chance
even in completely random data sets. These are taken into account by analyzing
«surrogate» data sets for the number N, of false encounters. These are detected and
counted in exactly the same way as for the actual data. In fact, the simplest surrogates are
constructed by just randomly scrambling the locations of the time intervals in the actual
data set. A statistical measure of the strength of the instability is the following:

K = (N-(N)/a.

One must repeat the false positive count many times in order to get a good
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statistical average <‘N$>’ and the standard deviation of the determinations of N, in the
surrogates is o. Thus in Eq. . K has units of standard deviations. For K23, the statistical
precision of the determination, that is the presence of UPOs in the data set, is at the 95%

confidence level.
3. Results

We will not repeat here the details of the experimental preparations as those have
been presented previously [10]. Figure 2 shows results for a catfish electroreceptor
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Fig. 2. Scatter plots, histograms of UPO counts, the complete time interval record, mean firing rate and
temperature step recorded for the electroreceptor of a catfish
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subject to a temperature step at a certain time. The top panel shows 4 scatter plots with
the encounters indicated by squares (stable) and circles (unstable) movements along the
manifolds, The K-values are shown, the maximum being around 10. The next panel down
shows a histogram of the numbers of encounters counted in segments of the data set
marked by the solid lines in the panel below. That panel shows the complete record of
time intervals plotted against time. The mean firing rate and temperature step are shown
in the bottom panels. Note that a bifurcation takes place about 75 s after the temperature
step. The transition to period-2 is accompanied by a substantial increase of the UPO
count. Note also that the appearance of large numbers of UPOs anticipates the bifurcation
as shown by the bar marked with K=9.9 in the middle panel. These occurrences are called
«precursors» and have been previously developed as tools for predicting the approach of
bifurcations [13].

We turn now to the hypothalamus, a part of the brain involved in temperature
regulation of the body. We have found that hypothalamic neurons from the
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Fig. 3. Histograms of UPOs (top panel), the complete time interval record, mean firing rate and
temperature scan (bottom panel)} for a hypothalamic neoron in a rat brain slice
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paraventricular nucleus in rat brain slices are indeed temperature sensitive, and that UPOs
can track and anticipate the onset of bifurcations. Well-characterized rats were executed
humanely, their brains extracted and slice preparations obtained following previously
detailed procedures [10]. The neurons were then identified and extracellular recordings of
their firings made while the temperature of the bath was slowly swept upward. The results
are shown in Fig. 3. The upper panel shows histograms of the encounters for the
recording segments shown by the solid bars below. The K-values are marked on the bars.
The complete record of time intervals is shown in the second panel down. The mean
firing rate and temperature sweep are shown in the bottom two panels. Encounters are
again identified by squares (stable) and circles (unstable) in the complete record. The
first part of the record (time <100 s) shows stable period-1 activity with no significant
numbers of UPOs. Later, at around 150 s, we can easily see the precursors marked by
K=3.09 just prior to the period doubling bifurcation. Just after the bifurcation at the
beginning of the period-2 regime, large numbers of UPOs again occur with K=2.41. Note
that in the fully developed period-2 regime after about 300 s, the neuron again becomes
stable with K=0.82 indicating no detectable UPOs. Thus we can track the transitions from
stable period-1 to unstable period-2 and back to stable period-2 again using our technique
for detecting and counting UPOs.

All animals used in this study were treated humanely and in strict accordance with
the appropriate German Federal Requirements in effect at the time of the experiments.

4. Summary

We have shown how UPOs can be detected and counted in biological preparations
of sensory neurons. The two preparations used were electroreceptor neurons in the catfish
and hypothalamic neurons in the paraventricular nucleus of a rat brain. In all cases the
neurons sense temperature changes by first anticipating then executing period doubling
bifurcations. The sudden increase of the density of UPOs can be used to anticipate these
bifurcations. We have here addressed the general topic of instability and stability in
biological electrosensory neurons and in the thalamus of the rat brain.

This work was supported by the INTAS grant 01-2061 and by the US Office
of Naval Research. F.M. is grateful to the Alexander von Humboldt Foundation for
continuing support.
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XAOC B MO3I'E M B CEHCOPHBIX HEMPOHAX
H.A. Braun, K. Voigt, F. Moss

Mosr siBAseTCs CNOXHBIM OpPraHOM, OTHOCHTCA K YHCIy Haubojee CIOXKHbIX
O0BEKTOB MUpO3NaHUs. [103TOMY CYILIECTBYeT BEpOSTHOCTH, 4TO OfHOH H3 €ro
XapaKTepUCTHK SBJISETCA XaoTHyecKast fuHaMuKa. OJfHAKO CEHCOpHbIE HEHPOHbI TaKXKe
SBJISEOTCS CIOXHBIMHA, ¥ B HUX TaKXXe MOIYT GBbITh HailfleHbl Xa0THUECKNE Npolecchl. B
naHHoit paGoTe Mbl JIEMOHCTPUPYEM HEKOTOPbIE SKCIEPHMEHTAILHBIC [aHHBIE,
3aMMCAHHBIE C NEKTPOPELEIITOPOB NMONOCATON 3y0aTKX W THIIOTATaMIYECKUX HEHPOHOB
W3 [apaBeHTPUKYISPHBLIX SJEP CpPe30B MO3ra KphIChl [laHAbIe [EMOHCTPH-PYIOT
Ha/lM4yMe HEYCTOMYMBBIX IEPUONUYSCKIX OpOHT - OJHOH H3 XapakTepHbIX 4YepT
MaJloMepHO# xaoTuyeckoli miHamuku. IIpodeccop B.C. Anunienko Gbil Cpeiii caMbiX
NEPBbIX HHAUMATOPOB (DYHAMEHTANbHbLIX HCCIEJOBAHMH Xaoca W IPOJOIKaeT
OCYUIECTBJIATh HOBATOPCKMI, BIOXHOB/SIOLMI M OPHIMHANbHLIA BKJIal B HayKy
CTOXKHOCTH BO BCeX ee o6nacTsX.
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SYNCHRONIZATION, NOISE AND ELECTRORECEPTORS

Alexander Neiman, David F. Russell, Frank Moss, and Lutz Schimansky-Geier

Classical notion of synchrenization, introduced originally for periodical self-sustained
oscillators, can be extended to stochastic systems. This can be done even in the case when the
characteristic times of a systemn are fully controlled by noise. Stochastic synchronization is
then defined by imposing certain conditions to various statistical measures of the process. We
review various approaches to stochastic synchronization and apply them to study
synchronization in the electrosensory system of paddlefish.

1. Introduction

Among other nonlinear effects, the phenomenon of synchronization is probably the
most often observed in the great variety of systems of different origins. From a general
point of view synchronization represents the relation between two objects that are
oscillating in time. The oscillators are said to be synchronized, or in «synchrony», when
there exists a fixed phase relation between them.

Besides man-made systems where synchronization is actually used [1], this
phenomenon has been observed in biological systems [2] starting from microscopic level
of cell populations [3] and single neurons [4 - 6] to large neural networks [7], human
cardio-respiratory dynamics [8] as well as external synchronization of human cardio
rythm [9], and behavior of large populations of living objects [10]. We refer to a recent
book [11] for a comprehensive review on modern theories and applications of
synchronization.

Synchronization occurs when a nonlinear oscillator, possessing a stable periodic
motion, is subjected to an external time-dependent force or is coupled with another
oscillator. Classical theory of synchronization operates with so-called self-sustained
periodic oscillators. The characteristics of stable periodic oscillations of such systems,
represented by a stable limit cycle in the phase space, are determined by natural
properties of the oscillator and do not depend upon initial conditions [12]. When a self-
sustained oscillator is driven by an external periodic force of appropriate amplitude and
frequency, the oscillations of the system occur in phase with the external signal.
Synchronization is thus defined as phase locking and frequency entrainment. The same
effect occurs when two (or more than two) self-sustained oscillators are coupled.

Recent studies have shown that the class of systems and driving signals which
exhibit synchronization could be significantly extended. Different types of
synchronization have been found in chaotic systems, including the classic type of phase
synchronization in periodically driven and coupled chaotic systems [13 - 16].
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In this paper, we are concerned with noisy synchronization. Though originally
studied quite early [17], the theory of stochastic synchronization has only recently been
applied to biological or medical systems. As intuitively expected, noise usually acts
against synchronization. However, recently it has been shown that for a large class of
stochastic systems the phenomenon of noise enhanced phase synchronization can be
observed [18].

2. Stochastic synchronization

Synchronization of coupled periodic self-sustained oscillators is understood as
adjustment of their phases and frequencies. If ®(¢) is the phase of one oscillator and W(r)
is the phase of another oscillator (or the phase of periodic driving force), then the phase
locking condition reads:

Io(r)l < const, §(z) = nd(r) - m¥(z), (1)

where n and m are integer numbers. The phases ®(f), ¥(¢) are defined on a whole real
line. In the regime of synchronization, the phase difference, ¢(¢), therefore, remains
constant forever. In the simplest case of 1:1 synchronization the response of the oscillator
is represented by one complete cycle per one period of driving force. More general case is
m:n synchronization, which means that during m complete cycles of driving signal there
occur n complete cycles of the oscillator. For periodic oscillators the synchronization

condition Eq. (1) is equivalent to the notion of frequency locking nw=n®=mQ=m¥.

The concept of synchronization for stochastic systems is not trivial. As is well
known [17] noise influence on a self-sustained oscillator results in the diffusion of its
phase. That is why the properly defined phase difference ¢ is also diffuses so that the
condition Eq. (1) never fulfills in the presence of Gaussian noise. The phase locking may
occurs only for random periods of time and is interrupted by so-called phase slips. Thus,
the definition of synchronization in the presence of noise appears to be «blurred». That is
why the conditions of synchronization should be defined in statistical way and we have to
use the notion of «effective» or «stochastic» synchronization [19,20]. It can be defined by
imposing restrictions on (i) signal-to-noise ratio, in the case of periodically driven self-
sustained oscillator; (ii) frequency fluctuations; and (iii) phase fluctuations.

We use here the strongest definition of stochastic synchronization based on
statistics of phase fluctuations. Statistical measures of synchronization can be based on
the stationary probability density of the phase difference wrapped into [0,27]. A well-
expressed maximum will correspond to a strong synchronization in statistical sense. This
can be further quantified by the synchronization index [7] as the first Fourier mode of the
stationary probability density of the phase difference: y*=(sing)*+(cos¢)”. The synchro-
nization index changes from 0 (no synchronization, unfirom distribution of the phase
difference) to 1 (perfect synchronization, -type distribution of the phase difference).

Another way to characterize stochastic synchronization is to calculate the effective
diffusion coefficient for the phase difference. The system is effectively synchronized by
external periodic force if the mean time in course of which the instantaneous phase of the
system is locked, is larger than some given value. The quantity related to this definition
which can be used as a measure of phase coherence is the effective diffusion constant
D, defined as D =l,dldt[($*(1))-(¢(1))’]. The effective diffusion constant describes
spreading of an initial distribution of the phase difference due to noise-induced diffusion.
It can be shown that the effective diffusion constant D g is inverse proportional to the
mean time interval of phase locking.

Phase synchronization in conventional oscillatory systems, for instance, the van der
Pol oscillator, is usually destroyed by noise [17]. However, in systems exhibiting the
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phenomenon of stochastic resonance noise can enhance synchronization [23,18].
Periodically driven bistable or excitable stochastic systems can be considered from the
synchronization point of view. However, in order to study phase synchronization we need
to introduce instantaneous phase of the system. The problem is that for aperiodic signals
the definition of the phase becomes ambiguous.

Several approaches can be used. The formal but general definition of instantaneous
phase is based on the concept of analytic signal [21], whereby the instantaneous phase is
defined as the argument of the analytic signal. The analitic signal is a complex function of
time with the real part being the original signal and the imaginary part being the Hilbert
transform of the original signal. This approach was used to study phase synchronization
of chaotic systems [16] and stochastic resonance systems [18].

In the case of bistable or excitable systems the phase can be associated with the
moments of time 7, when a particle crosses a barrier [18] or with occurrences of spikes in
the case of excitable systems. For such stochastic point processes the phase increases by
2m every time ¢, and linearly interpolated between ¢, and ¢, [18,20}. Another approach
was recently proposed in [22] where time ¢, were associated with a level crossings. This
approach allowed to calculate analytically so-called Rice frequency and to compare it
with other approaches, for example with analytic signal approach [22].

As soon as the phase is defined we can pose synchronization problem: whether the
instantaneous phase of the switching and the corresponding mean switching frequency
can be locked by external periodic force. In [23,18] it was shown that the mean switching
frequency in periodically driven bistable systems can be locked in a finite range of noise
intensities, while the effective diffusion coefficient exhibits a minimum being plotted
versus the noise intensity. In [24] mutual synchronization of two coupled stochastic
bistable systems was studied. An analytical approach for calculations of the effective
diffusion constant was developed in [25]. In this way the notion of synchronization can be
extended to a wide class of systems whose characteristic time scales are completely
controlled by noise.

3. Electroreceptors in paddlefish

The paddlefish Polyodon spathula, named for its long flattened spatula-like
appendage extending in front of the head, the «rostrum» (see Fig. 1). The rostrum is
covered with tens of thousands of sensory receptors, morphologically similar to the
ampullae of Lorenzini of sharks and rays, well-known to be passive electroreceptors.
These ampullary-type electroreceptors respond to the microvolt-scale electrical signals
emitted by planktonic prey such as Daphnia, and are used by paddlefish to locate
plankton during feeding behavior [26]. The location of the rostrum, out in front of the
mouth, allows it to functlcm as an «early warning system» for approaching prey, as the
fish swims forward continuously. Hence the rostrum functions as an antenna, carrying
arrays of electrosensors.

~ Electroreceptors in paddleﬁsh form a passive sensory system, meaning that
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-

Fig. 1. Photo of a juvenile paddlefish
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paddlefish only receive signals, from external sources. An external opening (pore) in the
skin, 80-210 p diameter, leads into a short canal =200 u long. The pores are organized
into clusters of 5-20 on the rostrum, but there are much larger clusters on the head, gill
covers, and near the mouth. The internal end of each canal is covered with a sensory
epithelium. An epithelium is a layer of cells, one cell thick, typically lining a hollow
organ. The epithelium contains two types of cells. It is the «hair cells» which are
considered electrosensitive. The number of receptor cells per epithelium is <400. The hair
cells are interspersed among «support cells». The support and hair cells form «tight»
intercellular junctions, or high-resistance seals, which block extracellular paths from the
canal to the interior of the body, reducing the flow of electrical current. The term
«electroreceptor» is thus refers to the entire structure of pore + canal + epithelium +
primary afferent axon. Although the hair cells are the actual sensors, the spike-train coded
output of the primary afferent is what is most often recorded, using a microelectrode
placed in the sensory ganglion (collection of nerve cell bodies), located near but outside
the brain. A key feature of the spike trains from the primary afferents of ampullary
electroreceptor is their spontaneous quasi-periodic noisy firing patterns. It was recently
discovered that the electroreceptors in paddlefish possess a novel type of organization of
being composed from two distinct types of oscillators [27]. One oscillator resides in a
population of epithelial cells and is synaptically and unidirectionally coupled with second
oscillator, located in the afferent terminal. The fundamental frequency of epithelial
oscillator is 25-27 Hz at 22°C for different electroreceptors, while the mean firing rate for
different afferents varies in a wide range of 35-65 Hz. The unidirectional coupling of
these oscillators results in a specific biperiodic firing patterns. However, only afferent
oscillator is affected by external electrical stimuli {27].

Thus, the electrorecepor can be represented by a dynamical system of two
unidirectionally coupled oscillators. Therefore, it is natural to expect that electroreceptor
cells can be synchronized by a weak external periodic field.

In vivo electrophysiological experiments has been performed with juvenile
paddlefish. A detailed description of the experimental setup can be found in [26,27].

4. Synchronization of electroreceptors by periodic electric field

We stimulated electroreceptors by a weak electric field generated by a dipole
located near the rostrum of the fish. The electric field strengths were comparable in
magnitude to those generated by zooplankton (a few tens of uV/cm). We recorded the
spike train generated by a primary afferent and the periodic electric signal from the dipole
simultaneously.

The frequency of stimulation was always significantly lower than the mean firing
rate (mean frequency) of the electroreceptors, since electroreceptors respond best at low
frequencies 4-10 Hz [26}. Thus we can expect higher order synchronization where there
are several spikes per one stimulation period. A generic model for a periodically driven
self-sustained oscillator is the circle map [2]. The circle map represents a stroboscopic
Poincaré map of a quasi-periodic motion. It has a general form of

6., =, +p +f(9,) mod2n, (2)

where the parameter p has the meaning of the ratio of fundamental frequencies of the
oscillator and the driving force without coupling between them and f{¢) is a 2r periodic
function. In our particular case we can strobe the phase of the periodic stimulus 2xf ¢ at
the moments of time ¢, when the afferent spikes occur. In other words, we calculate the
phase of a spike ¢, relative to the stimulus phase: 2rff, and then define ¢, on a unit circle:
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¢, =f,modl, (3)

n

where 7, is the stimulus frequency. In the case of perfect synchronization the circle map
(2) possesses a periodic cycle, such that the dependence of ¢, versus n (time) will be
represented by several horizontal lines. The number of lines is determined by a particular
phase locking regime. For example, in the case 1:5 synchronization we will observe 5
horizontal lines. The results of calculations using Eq. (3) are presented in Fig. 2. Three
different regimes can be clearly distinguished. At a low stimulus frequency (5 Hz) the
high-order mode-locking of 1:17 is realized during some time segments. The pronounced
1:5 phase locking occurs at f=17 Hz. The five horizontal stripes correspond to phase
locking segments, while the inclined lines correspond to phase slips. The phase locking
occurs during a few hundreds of stimulus periods. Finally, at higher frequency f=21 Hz
we observe quasi-periodic behavior with no synchronization. The synchrograms (see also
[8]) shown in Fig. 2 has qualitatively the same structure as iteration sequences of
stochastic circle map.

The statistical evidence of synchromization behavior is also presented in Fig. 2 as
the probability density of the cyclic phase difference. In the case of strong 1:5 mode
synchronization, the probability density consists of well expressed peaks corresponding to
the phase-locking patterns.

In the examples shown above synchronization occurs without significant
modulation of the firing rate of the afferent neurons, that is, spikes are uniformly
distributed over the periods of external stimuli. We observed, however, different type of
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field at 5 Hz with two different amplitudes. Corresponding calculation of the cyclic phase difference are

shown below
primary afferents responses to external stimuli in terms of bursts [28]. In such a case
external stimulus induces qualitative change in the firing patterns of afferent neurons:
transition to bursting mode, when spikes concentrated in groups of bursts. With periodic
stimuli we again observed synchronization, but now the firing rate is modulated
significantly by the stimulus. An example of such synchronization is shown in Fig. 3,
where an electroreceptor was stimulated by 5 Hz electric field. For a small amplitude
(Fig. 3, a) the afferent already exhibits bursts, but synchronization is very poor: there is
only one short phase locking segment. For a larger amplitude of periodic stimulus
synchronization is clearly observed (Fig. 3, b): spike train is organized in bursts of 10-11
spikes. Moreover, individual spikes inside bursts are locked to specific positions on the
stimulus period, which reflects phase synchronization.

5. Synchronizatien due to common noise

In paddlefish electroreceptors, the individual afferents usually possess different
mean frequencies (mean firing rates) and different degrees of frequency variability [27].
Moreover, they are noncoupled. It appears, however, that all the electroreceptors have
similar slow dynamics, which was revealed by synchronization of noise-induced bursts
[28] in different receptors. :

We simultaneously recorded the single-unit spikes from pairs of electroreceptor
afferents in vivo, using metal microelectrodes. One receptive field was on the left side of
the rostrum, the other on the right side. Their locations on opposite sides of the rostrum,
which are innervated by different nerves, guaranteed that the pairs of afferent neurons
were not coupled. We used uniform-field stimulation of all the electroreceptors: stimulus
currents were passed between 15x5 cm chlorided silver plate electrodes at the ends of the
experimental chamber (see [28] for experimental details). A computer-generated zero-
mean Omstein-Uhlenbeck (OU) noise process was used. The correlation time was set to
be 0.002 sec, corresponding to a 500 Hz bandwidth. We generated a sequence of 30
segments of OU noise with incrementing intensities. Each noise segment was 180 sec
Jong, and segments were separated by 5 sec of no stimulus. For comparison, we also used
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computer generated white noise, high-pass filtered OU noise, or noise from a General
Radio model 1390 B generator which was lowpass filtered by an 8-pole Bessel filter set
to 50 Hz.

Stimulation with weak noise (<2.5 wV/cm rms) did not change the firing mode of
an electroreceptor afferent, but rather led to the well-known effect of widening the peak
in the probability density of interspike intervals and, correspondingly, the power spectrum
peak at the mean frequency of the afferent [27]. When noise of a certain intensity (>2.5
uV/cm rms) was applied, the firing patterns of the afferents changed drastically such that
afferents produced bursts: spikes were concentrated in clusters of bursts which were
separated by quiescent epochs. The interspike intervals within a burst decreased towards
the center of the burst [28], indicating a parabolic type of bursting [29].

A new slow time scale is introduced by the noise, and can be expressed as the
mean interburst interval (r,). The mean interburst interval declined exponentially with
increasing noise intensity, which was well fitted by the Arrhenius law, (t,)=vexp(A%/c?)
[28]. This implies that burst generation is excitable, and has a well-defined threshold, A,
estimated as =3 uV/em, which is only 3-fold higher than the limit of electroreceptor
sensitivity [28].

One of the functional implications of bursting regimes is synchronization [30].
Indeed, the existence of bursts implies a slow time scale which makes synchronization of
burst onsets easier in comparison with synchronization of individual spikes.

A representative example of data from two different afferents, recorded
simultaneously, is shown in Fig. 4. In the absence of stimulation, the individual spikes in
these neurons were not synchronized or correlated, since their mean firing rates were
different; afferent #1 fired faster (45.1 Hz) than afferent #2 (33.4 Hz). With noise
stimulation switched on, each burst started almost simultaneously in the two neurons,
even though the number of spikes inside a burst was different for the two neurons.

We characterized the coincidence of bursts in pairs of neurons in terms of
stochastic synchronization, measuring the phases ¢, 2(!) of burst onsets in each neuron,
which increases by 2m every time a burst occurs, and interpolates linearly between two

sequential burst onsets:
¢,(8) = 2 (=t Yt V-5, V) + 2k,

4,(0) = 2n(t=x, D)(x, @t @) +2qm,

where ©,()) and T, @ are bursts onsets in the first and the second neurons, respectively, and
T W<t<r,, D, <, "Dcicr P When stochastic synchronization occurs [17], constant
segments of the. phase "difference Ap(r)=¢,(1)-9,(z) (phase locking) are interrupted by

afferent 1
TR T T A A 01

. 1 TN | Lor i i i B

afferent 2

0.4 sec TStimulus start
Fig. 4. Example of simultaneous recordings of spike trains from a pair of electroreceptor afferents. The

onset of stimulation with computer-generated OU noise of 16.8uV/cm rms amplitude is marked by the
arrow .
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abrupt 2z phase slips. This is illustrated in Fig. 5 for noise-induced bursting, where the
phase differences for three different noise intensities are presented. For a large noise
intensity (curve 3), the burst onsets are synchronized, which is expressed in the existence
of horizontal epochs of phase locking lasting several seconds. The probability density of
the phase difference, P(A¢) (see Fig. 5) characterizes the degree of synchronization: a
well-expressed peak in P(A¢) indicates synchronization, while a uniform distribution
indicates its absence. The probability density is nearly uniform for weak noise, when
bursts in the two neurons are not synchronized. With increased noise intensity, the
probability density of the phase difference developed a well-defined peak, indicating
strong synchronization between the bursting neurons.

6. Conclusion

In this paper we demonstrated the phenomenon of stochastic synchronization on a
living «model», the electroreceptor system of paddlefish. Two types of synchronization
were considered. The first, synchronization of a single electroreceptor by periodic stimuli.
And the second, synchronization of two electroreceptors by a common noise field. Young
paddlefish use electrosensitivity to feed zooplankion and synchronization mechanism
might be responsible for extreme sensitivity of the paddlefish to weak periodic electric
field generated by plankton and also for nearly 100 % successful prey capturing.
Synchronous burst responses of a population of sensory neurons may be a neural
mechanism for coincidence detection, and may substantially simplify the neural
operations that a fish’s brain must perform to detect prey and to calculate their position
and velocity [31]. The impulse-like electrical signal emitted by an individual plankton
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prey (e.g. Daphnia) moving along the rostrum, or the exponentially correlated Gaussian
electrical noise generated by swarms of Daphnia [32], may be adequate stimuli for
evoking synchronized bursting of different electroreceptors during feeding behavior,
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CHHXPOHM3AIIUA, IIYM U 3JNEKTPOPELEITTOPLI
A, Heiiman, D.F. Russell, F. Moss, L. Schimansky-Geier

Knaccuyeckoe [MOHsATHE CHHXPOHHW3AUMM, IEPBOHAYANLHO BBEJICHHOE 4
TIEPHOJIMYECKHX aBTOKOICOaHN, MOXKeT ObITb PACIIMPEHO Ha CTOXaCTHYCCKHE CHCTC-
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Mbl. 3TO MOXKHO OCYUICCTBHTH JIAXKE B TOM Cly4ae, KOTJIA XapaKicpHbiC BRCMGHA
CHCTEMbI HOJHOCTHIO YIPABIAIOTCH HIVMOM. CroxacTHieckas CHHXPOHH3AUHS NPH 3TOM
OTIPEJIeNISETCHA KAK YCTAHOBICHHS HEKOTOPBIX YCIOBUHN JIT8 PA3aiHbIX CTATHCTHUECKHX
mep npouecca. Mbi nposoapM 0030p PasHbIX [IOHXOA0B K CTOXACTHYECKOH CHHXPOHH-
3aUHH H OpUMEHACM HX JIAA H3YUCHHS CHHXPOHM3alki B 3NEKTPOCCHCOPHON CHCTEME
BCCJIOHOCA.
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NOISY NEURAL RHYTHM GENERATORS

E. Mosekilde, O.V. Sosnovtseva, D. Postnov, H.A. Braun, and M.T. Huber

The dynamical features of spike train generation in the presence of noise are
investigated for three different models of neural rhythm generatoss: a single neuron model
that simulates impulse pattern modulation for temperatureé encoding in mammalian cold
receptors, a minimal neural network that describes transitions between beta and gamma
rhythms in the brain and an electronic switching device that represents a simple breathing
rhythm generator for a snail. We show that noise can explain a number of peculiarities in the
observed spike trains, cause coherent switchings between different states, and induce new
rhythms in small neural ensembles.

1. Introduction

Noise can introduce multivarious effects especially in nonlinear and chaotic
systems and makes the dynamics of such systems still more difficult to understand.
Vadim S. Anishchenko, together with his group, has made major contributions towards a
better understanding of nonlinear and chaotic systems under the influence of noise [1,2].
Such approaches can become of particular value for the understanding of pattern
generation in neuronal systems because neurons are inherently nonlinear, often chaotic
and inevitably contaminated with noise.

The spatiotemporal characteristics of neural firing patterns in connection with brain
function have received considerable interest, and many studies have been performed in
order to understand the origin and role of various forms of synchronized neural activity
(e.g., [3.4]). Even single functional units demonstrate flexible neuronal patterns, and
experimental recordings of peripheral sensory receptors and central neurons show more
or less continuous transitions between different types of oscillatory patterns as a function
of physiologically relevant stimuli [5,6]. In accordance with experimental observations on
mammalian cold receptors, the Huber/Braun model [7], for example, reproduces tonic
activities or bursting discharges due to slow oscillation cycles each triggering a group of
impulses during its suprathreshold phase. Moreover, there exist irregular patterns of
apparently chaotic origin [8,9] while other patterns that can be explained only with
essential contributions of noise are typical for thermosensitive neurons [6].

The complex and multifarious effects of noise on neural firing have not yet been
fully understood. Neural activity is known to be noisy [10], and this stochastic feature is
observed during both information transmission and spontaneous firing. At the same time,
noise can play a constructive role in neural systems. In the presence of a subthreshold
signal, the excitation threshold may be crossed when noise is superimposed onto the
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signal. This happens with high probability when the signal has its maximum and, hence,
allows the biological system to detect signals that without noise would remain
subthreshold [11,12], demonstrating the effect of stochastic resonance [13]. An excitable
neuronal system can exhibit the related phenomenon of coherence resonance [14]. In this
case, there is no underlying periodic signal, and the resonance phenomenon is controlled
by the noise intensity and the time of relaxation. Stochastic synchronization phenomena,
i.e., the synchronization of noise-activated or noise-induced rhythms, have been studied
in electrosensitive cells of the paddlefish by Neiman et al. [15]. Different types of noisy
phase-locked regimes were observed.

Many neural systems can perform oscillations in different modes. Hence, the
interesting questions arise: How is the dynamics of neural firing with multimode behavior
affected by noise, and under what conditions can noise activate new rhythms? In this
paper we focus on the following aspects:

(i) how can the presence of noise interfere with the spike generating mechanisms
and the subthreshold oscillations in peripheral pattern generators, and under what
conditions can it completely change the spiking pattern? The intrinsic dynamics is
characterized by oscillatory changes in the membrane potential that are below or close to
the spike threshold. In this situation naturally occurring stochastic influences due to
membrane or synaptic noise can be an essential component in signal encoding. The
reason is that the noise actually determines whether a spike is friggered during an
oscillatory cycle or not. Hence, mixed patterns typically result, consisting of random
sequences of spike-triggering and subthreshold oscillations;

(ii) how is the switching process between coexisting rhythmic activities in the
brain influenced by noise? Brain oscillations are normally divided into different types
based mainly on their frequency. Rhythms in the § (12-30 Hz) and the y (30-80 Hz)
ranges are found in many parts of the nervous system and are associated with attention,
perception and cognition. Recently Kopell et al. [16] demonstrated that a model including
both inhibitory interneurons and excitatory pyramidal cells can produce § as well as y
oscillations that employ different dynamical mechanisms to synchronize. The p mode is
able to synchronize with long conduction delays corresponding to signals traveling over a
significant distance in the brain. Similar distances can not be tolerated by the y thythms
that are used more for local communication. It has been noted in electroencephalogram
signals that rhythms of different frequencies can be found simultaneously [17]. In this
connection we describe noise-induced activities in terms of regularized switching events;

(iii) how can noise control the appearance of additional time scales in small neuron
ensembles? In contrast to previous studies we investigate noise-induced rather than
noise-activated oscillatory modes, i.e., we focus on time scales that are produced and
controlled by noise and that do not exist in the deterministic case. We provide
experimental observation of such multimode behavior and investigate the conditions for
generation and entrainment of the various modes.

2. Tuning cold-receptor discharges

2.1. The Huber/Braun model. Mammalian cold receptors are particularly
interesting in connection with the present analysis, both because of the complicated
impulse patterns that they generate and because of the clear influence of noise. The
impulse patterns are generally characterized by regular and relatively frequent burst
discharges at intermediate temperatures with irregular and less frequent bursting patterns
occurring at lower temperatures and irregular single spike discharges observed at higher
temperatures. The stationary frequency vs temperature characteristic typically displays a
maximum at intermediate temperatures (25-30°C). This lack of monotonicity implies that
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the temperature encoding must be associated with the firing pattern as such and not only
with the average firing rate. The Huber/Braun model of mammalian cold receptor was
described in detail in Refs [7,18]. In brief, it consists of two interacting minimal sets of
ionic conductances, each including simplified de- and repolarizing Hodgkin-Huxley-type
currents with sigmoidal steady state activation kinetics. For simplicity, inactivation is
neglected. The two sets operate at different voltage levels and time scales. High
threshold, fast activating currents are for spike generation (marked by indices d and r);
low threshold, slow activating currents generate subthreshold potential oscillations
(indices sd and sr). Including a leakage current /, and the applied current [, . the
membrane potential V is given by:

CV i -!l - Id_ lr - Isd_ Isr - !app!’ (l)

with ¢ denoting the membrane capacitance. In our generalized approach we do not refer
to specific ionic currents but to the de- and repolarizing components of the two
subsystems, the spike generator and the subthreshold oscillator. /, is the fast depolarizing
- current and /_ is the fast repolarizing current which reflect the classical Na*- and K*-
currents in the spike generation. The physiological basis for the two other currents,/ , and
I_, may be different in different neurons.

The leakage current is given by

I,= 8(V-E) )
and the voltage-dependent ionic currents are expressed in the form:
I,=pg;a,(V-E), 3)
a, = 1/(1+exp(s, (V-V, ), (4)
a,=o¢(a, -a)l. (5)

with i=d, r, sd, and sr. Here, E, are the equilibrium potentials, g, the maximum
conductances at the reference temperature T, and g, the voltage and time-dependent
activation parameters. p allows for the temperature scaling of the ionic currents. V| ; and s,
are half-activation potentials and slopes, respectively, of the steady state activation
curves.
Exceptions to the above formulations are the assumed instantaneous activation of
the fast depolarizing current
a,= a., (6)

and the direct coupling of the slow repolarizing current to the slow depolarizing current:

a=oMl,- ka )l (7)

Here, 1 denotes the coupling constant and  is a relaxation factor.
The temperature dependences are expressed in terms of the scaling parameters p
and ¢ for the maximum conductances and the time constants, respectively:

p=130Ts =3 0TToA, (8)

Here, T is the temperature at which the receptor cells operate, 7,=25°C is the reference
temperature, and A=10°C is a scaling temperature. Each time T increases by A, the
maximum conductance increases by a factor 1.3 and the time constants by a factor 3.

To account for the effect of random dynamics we have applied Gaussian white
noise according to the Fox-Mueller algorithm [19]:
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g, = (-4Dhlna)cos2mb ©)

with a and b being random numbers between 0 and 1; 4 denotes the integration step, and
the noise intensity is adjusted by the dimensionless parameter D. The noise is directly
added to the membrane potential.

With the above simple temperature scaling and with noise implemented in the
model equations, the full variety of experimentally observed impulse pattern evolves
almost naturally. Increasing the temperature speeds up the ionic kinetics and leads to a
faster dynamics of the subthreshold oscillator. This is associated with a decrease in the
number of spikes that can be triggered per oscillation cycle.

2.2. Role of noise in pattern formation. Fig. 1 reproduces some of the most
characteristic patterns from experimental recordings for rat cold receptors [7] for direct
comparison with the results of our modelling studies which are shown in the traces below.
It can be seen that the model almost perfectly mimics all types of cold receptor
discharges, but it also becomes evident that at least one type of pattern can be simulated
only with the addition of noise. This is the pattern that consists of a mix of spike-
generating and subthreshold oscillations (skippings) that typically occurs in the upper
temperature range and can be seen in both experimental and modelling data (35°C, left
diagrams) but not in the lowest diagram which is from a completely deterministic
simulation (D=0). In this situation only the presence of noise allows the subthreshold
oscillations to randomly exceed the threshold for spike-generation.

‘The second row shows the tonic firing patterns that typically can be seen in
experimental recordings at normal skin temperatures around 30°C and which also occur
in our simulations with the appropriate temperature scaling. Noise does not seem to have

EXPERIMENT
T=35°C T=30°C T=15°C T=10°C
MODEL

v T=35°C 7=30°C T=20°C

0
-40
-80

D=0.50

mV

0
-40
-80 .

LE
U |
i1E
FE

Fig. 1. Typical impulse patterns for cold receptors at different temperatures. Comparison of experimentally
recorded spike trains (upper traces) and modelling results from deterministic simulations (D=0, lowest
traces) and with addition of noise ( D=0.05 and D=0.5, intermediate traces). The parameters of the
numerical simulations are given in Ref. [20]
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major influence on the patiern generation. There is a regular tonic discharge because each
oscillation cycle succeeds to trigger a spike - with a single exception: at D=0.5 one of the
oscillation cycles obviously fails to produce a spike. The upper trace indicates that a
similar phenomenon may occur in the experimental recordings: a spike is missing within
an otherwise regular tonic discharge. (Note that the simulation for D=0.5 and T=30°C has
been shifted along the time axis for the missing spike to occur at the same time as the
spike in the experimental sequence.) Although the missing spikes represent singular
events, their occurrence suggests that noise cannot only induce spiking in otherwise
completely subthreshold oscillations (as shown in the left traces) but can also prevent
impulse generation in otherwise regularly spiking sequences. Such situations can cover a
broad range of stimulus encodings.

In the third row of the figure we are comparing electrophysiological recordings and
model simulations of different noise levels in the range of bursting discharges. More
random input simply seems to induce more random fluctuations of spike-generation
without any qualitative change of the pattern. This appears to also be the case at the
lowest temperatures where the experimental recordings often exhibit irregular tonic
discharges. The deterministic simulations generate completely regular discharges and the
addition of noise is needed to produce the more realistically appearing irregular spike
sequences.

With the addition of noise the model successfully reproduces the major types of
experimentally recorded impulse patterns and it explains how these patterns can be
related to the resonance behavior between slow subthreshold oscillations and spike
generating mechanisms. The Huber/Braun is valuable not only because it successfully
simulates stationary cold receptor discharges, but also as a generalized neuronal pattern
generator of significant flexibility.

3. Transitions between {§ and y rhythms

3.1. The Kepell model. In a neural system, the individual neuron is generally
located in an excitatory or inhibitory network that provides a variety of inputs to the
neuron, primarily via the synaptic currents. In the present section we consider a minimal
model for a neural network capable of producing both  and vy oscillations. Developed by
Kopell et al. [16], the model includes two excitatory pyramidal neurons and one
inhibitory  interneuron. The network
architecture is illustrated in Fig. 2 where
open and filled arrowheads represent
excitatory and inhibitory connections,
respectively. Solid lines indicate fixed
connections, and dofted lines represent
connections that are varied during the
simulations. By contrast to the single
neuron considered in Sec. 2, the interesting
features of the present system are
connected with the interaction of the
different neurons. Many factors contribute

to making the environment of the network Fig. 2. Architecture of the Kopell oscillatory net-

noisy. All of these factors are regarded as
random external fluctuations. As we have
seen in the previous section it is likely that
neurons can use such external fluctuations

to process their input signals more

work. E1 and E2 are excitatory cells, and I3 is an
inhibitory cell. Open and filled arrowheads represent
excitatory and inhibitory connections, respectively.
Solid lines indicate fixed connections, and dotted
lines represent synapses whose efficacies are varied
in the simulations
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effectively. Here, we shall see how the presence of noise can generate transitions between
different rhythmic modes in the network.

The Kopell model is based on Hodgkin-Huxley type neurons [21] which are
modelled in accordance with the original formulation (rather than the simplified form
used in the Huber/Braun model). There are no currents for subthreshold oscillations.
Instead, there is an additional slow potassium current that accounts for after-
hyperpolarization (ahp) in the excitatory neurons. The voltage of an excitatory neuron is
controlled by the following differential equation:

CP = 'g;'(V-EI) = gNamsh(V' ENa) - gK nd(V-EK) (10)

“Sanpw(V‘EK) - i"m + i"appr

One recognizes the leak current g(V-E), the sodium current g, m°h(V-E, ), the
potassium current g.un*(V-E,), and the additional potassium current for after-
hyperpolarization g, w(V-E,). There is also a synaptic current input i° and a term for
external current appﬁcation i°,pr V is the membrane potential, £, (j=Na or K) is the
Nernst (or reversal) potentiafs for the respective ions, and g the corresponding
conductances; ¢ is the membrane capacitance.

The gating variables are assumed to obey the standard dynamical equations:

i =a,(V)(1-m) - B, (V)m, (11)
h = a,(V)(1-h)-B,(V) (12)
n=a,V)(1-n) - B,(V)n, (13)

W= a, (V)(1-w) - B, (V)w, (14)

where the o and B - functions describe the voltage-dependent opening and closing rates
for the various channels. For each excitatory neuron, a single equation controls the state
of the synapses going from this neuron to others:

e a, (V)(1-s,) - B,s,. (15)
Synaptic input to an excitatory neuron (here, E1) results in a current
isyn.lile = geese.EZ(V‘Ee) s ga‘e‘rf,IS(V_ Er) (16)

In this expression, the s-variables refer to the presynaptic neurons (E2 and I3,
respectively), whereas the voltage V refers to the postsynaptic neuron (El). E, and E,
denote the reversal potentials associated with excitatory and inhibitory synapses. A
similar equation is used for the synaptic current of E2.

The inhibitory neuron I3 is very similar to E1 and E2, only the after-hyperpo-
larization-current is not included:

cV = -g(V-E) - gym*h(V-E,) - g n(V-E) - i’ +i°, . (17)

Noting that w does not appear, the remaining gating variables for the inhibitory neuron I3
are controlled by Egs (11-13).
Inhibitory synapses are governed by the equation:

5,= a,(V)(-s) - B,s; (18)
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The inhibitory neuron receives inputs from E1 and E2 as well as from a mechanism of
self-inhibition: .
i l‘.\}rn.lﬂa = (ger‘se,El-l-gefse,EZ)(V-Ee) + gi:' Sf,IS(V'Ei)' (19)

The detailed description of the various functions and parameter values can be found in
the original paper [16]. Two parameters are varied in the present study: g, , the strength of
the connections between E1 and E2, and 8t the maximal conductance for the slow
potassium ion channels.

The Kopell model demonstrates three main network modes.

* For low values of the two parameters, the three neurons spike in synchrony with a
frequency in the y band;

* If g, is increased, the E1 and E2 neurons start to miss every other spike,
lowering their individual frequencies into the § band. However, since E1 and E2 are out
of phase, the population of excitatory neurons as a whole continues to produce y
oscillations;

» Increasing the connection strengths between E1 and E2 makes the excitatory
neurons spike simultaneously, thereby producing B oscillations.

The results of scanning over a two-
dimensional parameter space are shown in mecmz
Fig. 3. Here, one can distinguish four to
five different oscillatory modes. For low
values of g, . the region denoted vy
corresponds to parameter values that high-order solutions
generate y rhythms where all neurons (EI1, 0.5 : <B
E2, and I3) spike in every cycle. The « [ Y
population» state y, is located to the left 0.0 ,
with intermediate values of g, . In this 0.0 0.1
region, the neurons El1 and E2 both

no spiking‘i“a—"—“‘_

0.2 g,,,mS/cm?

demonstrate p rhythms of 16-17 Hz, but
their overall behavior is found to produce
oscillations in the y band. There is a large
region B occupied by B oscillations where
El and E2 are in full synchrony with half

Fig. 3. Different oscillatory modes as functions of
g,, (the coupling between excitatory neurons) and
8,1, (the conductance for the slow K-channel in
excitatory neurons). In the gray region the y op and
f modes coexist. In the region denoted higph-order
solutions we find a great variety of frequency-locked
states

the frequency of the y rhythm. With
decreasing g, , they evolve into the B population 3, v This state produces a 3 rhythm, but
only half as powerful as the p state described earlier since only one excitatory neuron
(E1) spikes. Within a range of parameters one can observe high-order solutions with
different combinations of spiking and silent states in the two excitatory neurons [22]. The
dynamics seems to be limited in the g, direction by the appearance of a silent-state, in
which E1 and E2 never spike due to the effects of the after-hyperpolarization current in
combination with the spontaneous spiking of the I3 neuron. In the gray region, they
and the B modes coexist. The observation of a large region with coexisting solutions may
have important inferences with respect to brain function. The question is: Can the Kopell
model switch between the coexisting states? Physiologically, the externally applied
current i ¢, , together with ionic and synaptic currents, could represent the influence of
other neurons of the brain. As previously noted, this influence may be considered in many
instances as stochastic. Let us, therefore, examine the influence of fluctuations on the
switching process.

3.2. Stochastic dynamics. Since noise may have different origins and can
contribute in different ways, we assume that our network operate in a noisy field (Fig. 2).
We represent this as Gaussian noise §(7) with intensity D added to the first equations of

each neuron.
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Switchings between coexisting y,, and B modes. With noise of sufficient intensity,
the system switches between two states. This can be characterized in different ways. First,
we can introduce a phase shift between the spiking events in E1 and E2 as Ap=2n/T. In
this case, the system can be considered as bistable where a trajectory alternates between
Ap=0 and A¢=n. With increasing noise intensity, hopping becomes more frequent.
Secondly, the system can be described via the overall dynamics of the excitatory neurons.
Let us choose the parameters to be in the region wherey,  and p oscillations coexist
(point A in Fig. 3). In the noiseless case, with the applied initial conditions, the resulting
output oscillations is a p rhythm. This corresponds to a sharp peak at fz=17 Hz. With
noise, an additional peak appears at £,=34 Hz. With increasing noise, the peak at fg
becomes broader and smaller in amplitude.

To describe the switching dynamics we can evaluate different characteristics.
Fig. 4, a illustrates the behavior of the residence time (solid and dotted curves) in the
bistable system with A¢=0 and A¢=r. With vanishing noise, the system remains in the
A¢p=0 state and the residence time tends to infinity. When noise is introduced, the system
can switch to the other state. With increasing noise, the residence times in the two states
tend to become equal.

A quantitative measure of coherence is the so-called regularity coefficient which

can be calculated as [14]:
R = (o/((@)-(1P)'"?, (20)

where 7 is specified as the switching time between the states (Fig. 4, a, dashed carve) or
as the interspike interval (Fig. 4, b). The time averaged duration identifies the mean
period and, hence, the mean frequency (f)=1/(x) of the noise-activated oscillations. Figure
4, @ illustrates how the coherence of the switching events (dashed curve) grows
monotonically when the noise intensity is increased. Very strong noise causes fast
switching, The residence time then becomes less than two interspike periods, and our
two-state approach no longer applies. The spike train provides an efficient way to code a
sequence of action potentials with nearly the same shape since the most important
information in neuronal systems is widely believed to be coded in the time sequence of
action potential generation [23]. The spike train is a binary time series with a value 1 at
the time of action potential generations and 0 at other times. We analyzed the coherence
properties for spike trains in the presence of noise. The results of a calculation of the
regularity coefficient (20) as a function of noise intensity are shown in Fig. 4, b. The
curve is seen to display a maximum for noise intensities around D=0.4. For weak noise,
the contribution of y__to the whole spike train is small. At the optimal noise intensity p
and y,,, contribute equally to the spiking train. Strong noise destroys the § rhythm, and
the regularity decreases. This represents an example of coherence resonance in the noise-
induced switching between different modes of the neural system.

<8, —
R
12000 wlis ;R4_
8000 1 » f”“a-a-r“'&“rmﬁd - . A
4000 L% “ 0.9 1.2
0 £l ot ronnl(.6 1.0 . ;
010 0.14 018 022 026 D b 0.1 1.0 D
a

Fig. 4. () Residence time (B, ,) for A¢=0 (solid curve) andA¢=n (dotted curve) and regularity coefficient
R of the switching time (dashed curve) as functions of the noise amplitude; (b) regularity coefficient R
calculated from the interspike intervals;g . =1.25 mS/cnt, g 2.=0.05 mS/cm®. A¢ represents the phase
shift between the spiking events in the excitatory neurons E1 and E2
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Hopping between y and B regimes. In
the diagram presented in Fig. 3, regions of y
and p rhythms are separated by the region
of high-periodic solutions. Fixing the
parameters at the point B of the diagram,
when adding noise we observe a direct
transition between the main rhythms. The
residence time in the  regime now grows
with increasing noise intensity. Our
measure of coherence calculated over the
interspike intervals indicates a well-
pronounced maximum at some optimal
noise intensity at which g and y spike trains
alternate in a regular way (Fig. 5). Here, we
observe another example of regularized
hopping events induced by applied noise,
but now with one of the involved states
being unstable for the considered parameters.

117 |

113 7 4

1.09

]
P |

].05 L 1 ' 1 iR | f 1
0.0

Fig. 5. Coherence dynamics of interspike intervals in
the Kopell model for g , =0.5 mS/cm® and g o=
=0.2 mS/cm®. As before, D represents the noise
amplitude

Onset of spiking dynamics. Let us hereafter see how noise can cause firing events
in this local network. (Parameter values corresponding to point C in Fig. 3.) It is known
that the behavior of spike trains can exhibit coherence resonance at an optimal noise
intensity, as described for a single Hodgkin-Huxley model by Lee et al. [24]. In this case,
noise affects the dynamics of the system in two ways: (i) increasing the noise intensity
decreases the silence (activation) time so that the contribution of the spiking dynamics
increases. This enhances the regularization of spiking dynamics of the membrane
potential. (ii) noise also produces amplitude and phase fluctuations of the firing
dynamics, destroying the periodicity in spiking events. The competition of these two
mechanisms produces the phenomenon of coherence resonance, i.e. a maximal degree of
coherence for an optimal noise level. This phenomenon is responsible for the first peak of
coherence for E1 (Fig. 6). With vanishing connection between the excitatory cells
(g,,=0.0), B2 demonstrates coherence of spiking events at a higher noise intensity
because of its different internal parameters. Due to inhibitory synapses (controlled
directly in the Kopell model by varying g, and g, ), the first neuron adjusts its spiking train
and demonstrates a secondary coherence resonance at higher noise intensity (Fig.6, ).

R [ T ——
20 1 ] 20
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16| 11|
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0.1 1.0 100 D 0.1 1.0 10.0 D
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Fig. 6. Regularity for () g, =2.0 mS/em?, g,,=0.0 mS/em® and (b) 8any=20 mS/en??, g,,=0.2 mS/cm?,
Note, how the two peaks observed in @) are closer to one another in (b)
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When the E1-E2 connection is introduced (g, =0.2 mS/cm?), the two peaks approach one
another and the excitable units demonstrate a well-pronounced peak of coherence at the

same noise intensity. This is illustrated in Fig. 6, b. Because of the synchronization
effects, the maximal value of R is higher than in the previous case [25].

4, Noise-induced rhythms

Let us hereafter focus on noise-induced rather than on noise-activated oscillatory
modes. This implies that we focus on time scales that are generated and controlled by
noise and do not exist in the deterministic case. We provide experimental observation of
such multimode behavior and investigate the conditions of generation and entrainment of
the specified modes.

The purpose of this section is to
describe the two-mode stochastic behavior

Q ' of an electronic system that has been
i constructed as a hard-wired version of the
R simplest breathing rhythm generator for a

snail (Fig. 7) [26]. A single monovibrator

circuit [27], being the functional unit in our

electronic experiment, captures the essential

aspects of excitable systems generating a

single electric impulse whenever the input

@ voltage exceeds the threshold level. The

implementation of interacting excitable units

shown in Fig. 8, a contains self- and

Fig. 7. Schematic presentation of a breathing rhythm mutually inhibitory coupling chains that can

generator for a snail increase the threshold voltages of the first

(V,) and second (V,,) units. Each coupling chain contains a rectifier and a low-pass

filter with coupling strength g, and time constant t;, where i, j denote the unit numbers.

Note that the self-inhibitory time constants were chosen to be equal and to be greater than
the mutually inhibitory time constants, i.e.,7,,=7,,> T;,= Ty

With a small noise intensity D (which is the same for the two units), both excitable

units keep silent most of the time, and their threshold voltages remain equal (V, =V, ).

For intermediate noise levels, the coupling influence on the threshold voltages becomes

GO — [ &0
| J'l- = = J'l s
¢ AL DAL AN 0 A (0 ARG | (R0 o L
» AL B AL AR

20 ms

Fig. 8. (a) Two monovibrators with delayed inhibitory couplings imitate the simple neural circuit. ¢)
Stochastic spike trains generated by the first and second excitable units. Antiphase behavior is indicated on
the average
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significant. At the same time, since mutual inhibition makes the in-phase regime unstable,
one of the two units gets the upper hand with respect to its ability to suppress the firings
of the other. However, with intensive firing, the slow self-inhibitory chain with rate
(or 7,,) comes into operation and suppresses the activity of the stronger unit. This creates
better conditions for excitation of the other unit, and the process continues in an
alternating manner, producing a behavior with time-varying firing rates for the two
excitable units (Fig. 8, b).

In this operating regime, two peaks in the power spectrum are clearly distinguished
(Fig. 9, a). The high frequency peak corresponds to noise-induced oscillations in the
single system while the low frequency peak reveals a new noise-induced oscillatory
mode. Hence, the system of coupled excitable units generates a new oscillatory mode that
is characterized by the values of 7, and by the relation between the noise intensity and the
initial threshold voltages (V,,,,V,,,)- Fig. 9, b demonstrates how the frequencies of these
oscillations (open circles) depend on the noise intensity. Inspection of the figure clearly
shows that with increasing noise strength, both frequencies grow (i.e., they are noise-
controlled), but the growth rates are different (i.e., they operate independently of each
other). For strong noise, an excitable systerh can be immediately pushed out from the
equilibrium state in spite of the threshold voltage. The low frequency peak in the power
spectrum disappears, and the additional time scale no longer exists.

The regularity of the low-frequency stochastic oscillations is related to the process
of pulse generation in the-state of each excitable unit. Hence it is determined by the effect
of coherence resonance [27]. Fig. 9, b illustrates how the output regularity R (filled
circles) is suddenly increased when low frequency oscillations appear, but the peak at the
noise-induced eigenfrequency f, becomes washed .out because of the threshold
modulation.

+f,Hz
S . - . : . } R | f
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Fig. 9. Two-mode dynamics in the excitable system presented in Fig. 8 4. (a) Power spectrum with well-
pronounced peaks (D=0.34V?) and (b) peak frequencies (open circles) and measure of regularity R
(filled circles) vs noise intensity D

5. Discussion

We considered noise-activated and noise-induced rhythms in models representing
three different neural systems: (i) a single-neuron model of a peripheral pattern generator
(a mammalian cold receptor); (ii) a small neural network (the Kopell model) that can
account for the coexistence of p and y rhythms in the brain, and (iii) a coupled
monovibrator system that can serve as a model of a simple breathing rhythm generator.
Our results indicate that the interaction between stochastic phenomena and complex
deterministic dynamics may lead to a variety of different phenomena of importance for

neural rhythm generation.
The single neuron model mimics the discharge pattern of peripheral cold receptors

where impulse generation is determined by slow-wave oscillations which trigger one or
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more impulses during their depolarizing phases. This holds true for both deterministic
and stochastic simulations with the exception that noise can induce spiking as well as
skipping around the onset of period-one activity. In the regular bursting range noise does
not produce any qualitative effects on the pattem but mainly smoothens the
deterministically abrupt transitions. In the chaotic regime noise destroys the fine structure
of the bifurcations. Thus, noise is assumed to play as essential role in sensory neurons:
spike generation is clearly phase-locked to the underlying oscillations but noise
determines the threshold crossings and hence the times at which spikes are generated. In
addition to serving as cellular substates for synchronization in neuronal networks,
subthreshold oscillations can also serve as cellular substates for a sensitive and
differential neuromodulatory control based on the intrinsic oscillatory dynamics as
optimized by naturally occurring noise sources. Further studies on subthreshold
oscillating neurons should encompass the interesting neuromodulatory and encoding
properties which arise from cooperative effects of oscillations with noise.

The neuronal network model also displays spiking patterns that are modified in an
essential manner by the presence of noise. Especially in the area with coexisting
solutions, noise causes the network to jump from one state to the other. There is a sharp
transition between the oscillatory mode and a hopping state between the coexisting
solutions, and this transition is controlled by the noise intensity. The output signal
demonstrates quite «regular» switchings for a certain noise intensity. Moreover, noise can
initiate switchings in the region where the main p and y oscillations are separated by high-
periodic solutions in the parameter space. In this case, we again observe an optimal noise
intensity at which the jumping behavior becomes coherent. A particularly interesting
finding is that, due to synaptic inhibitory interaction, the excitatory cells can demonstrate
double coherence resonance [28]. With the introduction of a coupling between these
neurons, the two peaks of regularity merge together, giving rise to further gain of
regularity by virtue of synchronization.

We also showed that a simple system of coupled excitable functional units can
generate a few oscillatory modes that are induced and controlled by noise [29]. Possible
advantages of multimode dynamics may include: (i) increased sensitivity via coherence
resonance; we have found multiple coherence resonance phenomenon related to different
frequency entrainments and to the appearance of additional time scales; (ii) expanded
flexibility. The presence and interaction of two distinct oscillatory modes enrich the
dynamical patterns. The electronic approach involving excitable stochastic units with
self- and mutually inhibitory couplings can be applied to simulate neuron systems with a
priory given phase relations.

This work was partly supported by INTAS grant 01-2061 and RFBR grant
01-02-16709. O.S. acknowledges INTAS (Grant YSF 01/1-0023) and the Lundbeck
Foundation.
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DYNAMICS OF GLOBALLY COUPLED NOISY FITZHUGH-NAGUMO
NEURON ELEMENTS

J.A. Acebron, A.R. Bulsara, and W.-J. Rappel

We study the noisy FitzHugh-Nagumo model in the presence of an external sinusoidal
driving force. We derive a Fokker-Planck equation for both the single element and for the
globally coupled system. We introduce an efficient way to numerically solve this Fokker-
Planck equation and show that the external driving force leads to a classical resonance when
its frequency matches the underlying systems frequency. This resonance is also investigated
analytically by exploiting the different timescales in the problem. Agreement between the
analytical results and numerical results is excellent and reveals the existence of a stochastic
bifurcation.

To Vadim Anishchenko, on the occasion of his sixtieth birthday
1. Introduction

The FitzHugh-Nagumo model (FHN) is a simplified version of the celebrated
Hodgkin-Huxley model [1], which describes the firing mechanism in a excitable nerve
cell. In the FHN, the dynamics of the nerve cell has been reduced to two variables: a fast,
activation, variable and a slow, recovery, variable [2]. Due to its relative simplicity, the
FHN and its extensions has been studied extensively. Both single neurons and
populations of diffusively coupled neurons have been investigated. In addition, the
periodically driven FHN, where either the slow or the fast equation contains a time-
periodic driving term, has received considerable attention [3-7]. Moreover, as the FHN
displays a rich phase diagram that includes excitable, oscillatory and bistable regimes, it
has become a «workhorse» in the field of pattern formation (see e.g. [8,9]).

In this paper, we investigate the FHN in the presence of noise and a probe signal.
In addition to studying the single element, we examine the effect of coupling the FHN
elements in a global fashion. Particular attention is paid to the classical resonance effect
that can arise when a system with an underlying frequency is driven by a probe signal
[4,10]. :

2. Model equations

Let us start with the most general form of the FHN model:
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dxldt = Ax® + Bx*+ Cx+ Hy + [ + &,
a’y/d:=Ex+Fy + G,

where &’s are Gaussian white noises, with (§(1))=0, (E(1)&(#'))=2D8(z-t') and where A
through G are parameters that determine the dynamics of the system. To make the
treatment in this paper as general as possible all relevant expressions will be derived
using the above set of equations. However, when presenting the results of numerical
calculations, we have chosen to limit ourselves here to the investigation of the FHN in its
more conventional notation:

adx/dt = x(x-a)(1-x) - y + E,

1)

(2
dyldt = x - py - b, :

where a is typically taken to be small.

In order to study the properties of the stochastic differential equation in (1), we
start by deriving the Fokker-Planck equation (FPE) for the density probability, which is
given by: '

0p/ot = D?plox? - 0/ox[(Ax® +Bx*+Cx+Hy +I)p] -
©)
- 0/9y[(Ex+ Fy+G)p],

which has to be accompanied by initial and boundary data (decay to zero as x—>to,
y—stoo, with sufficiently high rate), and the normalization condition

ST dvdyp(x, y.0) =1. (4)

In the following, we are interested in finding solutions of the FPE for large time. This
search is greatly facilitated by the fact that the FPE has a unique stationary solution. This
can be seen by noting that there exists a Lyapunov function (see [11] and references
therein). It then follows that such a stationary solution is unique and globally stable. For
parameters values for which analytical progress is difficult to achieve one has to resort to
numerics. Direct simulation of the Langevin equations (1), as has been commonly done
in the FHN repertoire, can be computationally intensive. For reasonably accurate results
one typically has to average over many realizations. This is particularly the case for
systems close to a bifurcation point where one has to distinguish between different stable
solutions and for systems where the noise is large. Numerical solutions of the FPE, on the
other hand, can be obtained much faster. Rather then using a finite difference scheme we
have used an efficient spectral method for which we expand the density probability p
using a basis of Hermite polynomials

p(6y.t) = Z, o M(OH (O H, ()e e, ()

Note that this expansion satisfies the boundary conditions, and the normalization
condition with r,°=1/r. -

Let us insert Eq. (5) into the FPE (3). We then obtain the following hierarchy of
coupled ordinary differential equations for r "(f).

i‘n"; = 3/2 An? + Cn+ Fmlr" + [B(n - 1/2)+I]rn_]‘“ +
+[D+3,A(n - 1) + Yy Clr, " + (BI4)r, " + (A/8)r, ;» + Bn(m+l)r, " +
+ An(n+1)(n42)r, " + Grml + (FR)r 2+ HYo(H+E)r, ™ + E(n+1)r, "1, (6)

n=01..,90 m= 0.1...,0,
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where (x), and (y) are given by

(0= f_:f: dxdyxp (x,y,t) = mr ),

Oy =J S dedyyp(xy,0) =g,

<X>
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Fig. 1. Comparison between the numerical sclution
of the Langevin equations (dashed line; averaged
over m=500 realizations) and the solution of the
Fokker-Planck equation (solid line) by the spectral
method with N=M=7 coefficients. Parameters are

D=0.01, b=0.5, p=1, 0=0.05

)
(8)

The numerical method consists of
truncating the infinite hierarchy of first-
order, coupled nonlinear differential
equations, for a reasonable number of
modes #=0,....,N, and m=0,....M, setting
Ty 7=0. We have compared the
numerical solution obtained via the Fokker-
Planck approach, to the solution of the
Langevin equations, obtained by averaging
over a large number of realizations. In Fig.
1, we plot the first moment (x) as a function
of time, obtained numerically by solving
the Langevin equations (1) and by solving
the FPE using the above-described spectral
method. The spectral method (with
N=M=7 moments) is seen to provide
excellent agreement with ‘the more
conventional and time-consuming

‘technique based on numerically integrating
the coupled stochastic differential equations (1).

Following this preamble, we start with an extension of the model equations (1) to
describe a system of globally linearly coupled FitzHugh-Nagumo elements. Global
coupling is also most amenable (of all the possible coupling schemes) to theoretical
treatment. We will couple the elements in the following global fashion:

dx,ldi = Ax? + Bx? + Cx, + Hy, + [+ KIN 2, (x-x,) +&, )

dy,/di = Ex.+ Fy. +G, N (10)

With this type of coupling, the FPE for the perfectly synchronized system is identical to
the FPE of a single element. ;

We are interested in the analytical investigation of the Langevin dynamics above,
for the case of very large N. A neat picture of such a case can be given by the limiting-
model obtained when N—co (thermodynamic limit). In this limit, it is well known [12,13]
that models with mean-field coupling are described by an evolution equation for the one-
particle probability density. This can be seen by noting that the hierarchy of equations for
all the multiparticle probability densities can be closed by assuming molecular chaos. In
such a way, the one-system probability density p(x,y.t) is asymptotically in the limit,
N—x, the solution of the following nonlinear Fokker-Planck equation:

i= ..

dp/dt = Dd*p/0x? - dlox[(Ax® +Bx?+Cx+Hy+K(¥ - x) + I)p] - Ry[(Ex+Fy+G)p], (11)

where

x=J_.J. . dvdyxp (x,,0). (12)
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The hierarchy (6) now becomes:
Fim=(lyAn? + Cn+ Fm - Kn)r," + [B(n -1y ) + 1+ 2Kr,"]r, /" +
+[D+3yA(n-1)+ Y, C-K12]r, )" + (BI4)r ;" + (AB)r, " + Bn(m + 1)r " +
+ An(n+1)(n42)r " + Gr,m s+ (FI2)r ™2 + 1/2 (H+E)r, ™ + E(n+1)r, ", v

n=0,...,0 m=0,...,%

<X>

Note that now the hierarchy consists of a
system of coupled first-order nonlinear 51
differential equations. '
In Fig. 2, we have compared the
numerical solution obtained via the 0.0
nonlinear Fokker-Planck approach to the
solution of the Langevin equations for a
large number of FHN oscillators
(N=5000). The solution of the FPE,
corresponding to N—>o, provides excellent 1 g . .
agreement with the finite N case and shows 0 5 10 15 {
that N=5.000 is already close to infinity for Fig. 2. Comparison between solution obtained by
all practical purposes. means of FPE (solid line), and direct numerical
simulation of the Langevin equations (dashed line)

for N=5000 oscillators. Parameters are as in Fig. 1,
and K=1

3. Bifurcation analysis

-0.5

To investigate the bifurcations in the noisy case it is worthwhile to determine the
underlying frequency of the system. One way of determining this frequency is to compute
{x) from the Langevin equations and evaluate its time dependence. Unfortunately, this is
computationally very costly. On the other hand, {x) calculated from the FPE, which offers
a computationally superior way to characterize the system, does not display a time-
dependent behavior for a single FHN oscillator. Therefore, an alternative way of finding
the frequency needs to be employed. Fortunately, as we will see below, including an
external time-sinusoidal «probe» signal leads to a classical resonance which can be used to
determine the underlying frequency [4]. We will consider an external signal that has a time-
sinusoidal component G=G+¢sin(a 1) in (1) (or, equivalently, b=bytgsin(w pr) in (2)).

To illustrate the effect of the probe signal, we first performed Langevin simulations
and calculated (y). In Fig. 3 we have plotted the power spectrum of this quantity, for three
different probe signals; two of them with frequencies «  that differs significantly from
and one that is very close to the underlying frequency. The power spectrum was obtained
by averaging 100 timeseries of 22 timesteps each. The figure illustrates clearly that for a
probe signal frequency that matches the broad peak (corresponding to the, in general,
non-sinusoidal running oscillations) in the power spectrum of the unprobed system, the
signal is amplified. Thus, adding a probe signal gives us a tool to investigate the
dynamics of the noisy system. On the other hand, it is worthwhile to exploit such a result
to study the bifurcations in our noisy system. In Fig. 3, a, and b, we show the results for
two different values of the noise strength. For small noise strength (Fig. 3, a), the peak in
the powerspectrum reaches a maximum for non-zero values of the probing frequency
while for larger noise strengths (Fig. 3, b) this peak is reached for (op=0. Thus, there is a
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Fig. 3. Power spectrum of the variabley for three different values of the probe signal, and noise strength;
(a) w =2.0,3.5,7.0,D0=0.003, and (b) UJP=O.5, 2.0, 3.5,D=0.005. Simulations done by using the Langevin
equations. Other parameters are by=0.5, p=1, ¢=0.01, and 0=0.05
qualitative change in the powerspectrum and in the dynamics of the system, which can be
interpreted as the signature of a bifurcation.

Analytical progress by means of the Fokker-Planck equation can be made if we
consider a small amplitude signal, g=eQ, where e<<l. The resulting FPE can then be
analyzed via the method of multiple scales. Thus, Eq. (3) contains terms with two
different time scales. It is then to be expected that an appropriate asymptotic method will
be able to capture the long-time behavior of p. This may be achieved by introducing fast
and slow timescales as follows:

t=tl, 1=t (14)

We look for a distribution function satisfying the boundary condition according to the
Ansatz:

2
plxytie) =Z  p®(xy.1,x)e"+ O(?). (15)
From (15), the average of x is given by
(x) = ()0 4 e} + O(e?), (16)
where
@0 = [ drdyx p0Dxy,1). (17)

The average of y is given by similar equations. Inserting (15) into (3), we obtain the
following hierarchy of equations for p®:

3p9/3c =0, (18)
dpW/dr = DI?pV/0x? - 0/0x[(Ax® +Bx2+Cx+Hy+1)pW] -

(19)
- Ay [(Ex+Fy+G,)p®] - 9p®/ar,

dp?lot = DA*pM/ox? - 3/dx[(Ax® +Bx*+Cx+Hy+1)pM] -

(20)
- 0/0y[(Ex+ Fy+G)p™] - ap®/or - Qsin(mpt‘)ap@/ay,
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where the normalization conditions

S oyt )dedy = 8, @1)

follows from (4). Eq. (18) implies that p® is independent of ©. Then, the terms in the
right side of (19) which do not have r-dependent coefficients give rise to secular terms
(unbounded on the t-time scale). The condition that no secular terms should appear is

Dd%®/3x? - 9/0x[(Ax® +Bx* +Cx+Hy+I)p)] - -
- 0/0y[(Ex+Fy+G,)p®] - 0p©®/0t = 0.

This equation should be solved for p® together with the normalization condition and
initial condition data. Note that this problem is equivalent to solving the FPE (3) without
the probe signal as the effects of the probe signal appear first when calculating the first-
order correction, p),

To calculate these first-order corrections, we again impose the condition that no
secular terms appear and that the right-hand side of (20) vanishes. The resulting equation is:

DPp/0x? - dlox[(Ax® +Bx*+Cx+Hy+I)pM] -
(23)
- 9/0y[(Ex+Fy+G)p™M] - 9p™/0t - Qsin(w,£)p®/dy = 0.

The analysis of the equation above can be readily accomplished in Fourier space. Fourier
transforming Eq. (23), we obtain

iop™® = DPRpM/x? - 3/3x[(Ax® +Bx2+Cx+Hy+I)pW] -

(24)
- AR (Ex+ Fy +G)pV] (Q2)IB[PO(whe) - pO(w-w))],
where _
pP(xy,0) = [ Sdre ™ pO(x,y.0), (25)
WO = [ [ dxdy xp? (x,y.0), (26)
i=01 (27)

The equation (24) should be solved for p® together with | 7 ‘dxdyp®=0. Since p©
evolves to a stationary solution for long-time (i.e. p@=8(w)A(8,,,)), we find that pM=0

is the only solution of (24), unless w=tw . Then, (24),(27) imply that
p® = n*(xy)8(0-w,) + n(xy)8(w+w,). (28)
Inserting (28) in Eq. (24), we obtain two uncoupled equations forn?*, and . These

can be solved, by expanding n* in Hermite polynomials,

nt(ey) = 2,58, (T4, "H,(DH,0)e 7, (29)
and solving the corresponding nonlinear systems of equations for the coefficients (1*) ™.

Once we obtain (7*) ", we can calculate )@ from Eq. (27). Notice that p(+w )=p"(- ),
by taking the complex conjugate in (24), and (27). Then it follows from (28), and (fQ)

that (T%) "=((T"),™)". Therefore we conclude that (;r)m(-mp)=((;)m)*(+wp), and the
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Fig. 4. Comparison between the theoretical results Fig. 5. (x) versus the frequency of the probe signal
and the numerical simulations, marked by symbols. for different values of the noise strength: D=0.002
Parameters are D=0.05, b,=0.3, p=1, ¢=0.01, and (solid line); 0.003 (dot line); 0.005 (dashed). Results
«=0.05 obtained by means of the theory for a single FHN.
Parameters are b=0.5, p=1, 4=0.01, and a=0.05

inverse Fourier transform yields

(D (y) = 2Re((xA)(”(wp)) cos(w,f) - 21m((£}‘”(cop))sin(mpt). (30)
Knowing (x)V)(¢), its amplitude can be readily computed, and the result is
Ay = 2A@OEROYT + O). (31)

In Fig. 4, we plotted the numerical solution and the theoretical approximation (31),
showing a remarkable agreement with the theoretical results corresponding to the first-
order expansion. It should be noticed, however, that the amplitude of the probe signal
considered here is small, g=0.01. For increasing strength of the amplitude, higher orders
in the expansion may be required. Once p(!) is known, it is also straightforward to find the
successive terms in the expansion. Without entering into a detailed study, some general
features can easily be drawn from the hierarchy of equations for p@¥. Similarly to the

analysis for @, and by taking into account that p® is a function exclusively of wko,, it is

<xX> ; ’ " 08
0.75
A 06
0.50 | 5
0.25 E 0.4
4 4 =
= 0.2
—0.25
-(.50 0.0 :
0 20 40 60 t 2.0 3.0 4.0 K
a b

Fig. 6. (a) (x) versus time for two different values of the coupling K=2 (solid line) and K=3 (dot line),
showing a clear bifurcation. (b) Amplitude of {x) vs coupling for a fixed level of noise. Parameters are as
in Fig. 5
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straightforward to prove that p@=0 is the only solution unless w=0; +20,. In general,
successive terms will depend on higher harmonics of the main frequency W,

By applying the theory above, we were able to obtain the amplitude of (x) as
function of the frequency of the probe signal, shown in Fig. 5, It should be noticed that
for increasing noise levels, the peak moves to smaller values of w and then disappears.
This was already observed in Fig. 3 and can be interpreted as a sign of a stochastic
bifurcation.

We now investigate the case of coupled FHN elements for which the dynamical
response exhibits bifurcations, even in the absence of a probe signal. The bifurcation, of
the Hopf-type, is shown in Fig. 6 where we have plotted the amplitude of (x) vs coupling
for a fixed level of noise. Below some critical coupling strength, the system is not
synchronized and the solution of the FPE is stationary. On the other hand, above this
critical coupling strength, the system synchronizes and exhibits a time-dependent
behavior.

The inclusion of a probe signal will elicit a time-dependent solution of the FPE,
even when the system without the probe signal has a stationary solution. The amplitude of
the response ((x)) depends critically on the frequency of the probe signal as is shown in
Fig.7. In contrast to similar coupled
systems (see e.g. [10]), increasing the
coupling does not lead to the «death» of
the oscillatory region and the optimal
frequency actually increases as the
coupling is increased. The position and
amplitude of the peak in Fig. 7 depends on
the coupling strength. For K=0 the
response curve does not exhibit a peak
showing that there is no underlying
frequency in the problem. Increasing K
produces an underlying frequency which
appears as a peak in the curve. Notice that
for K>2.9 the system will synchronize in

0.06 ' i

.........

Amplitude <x>

8.0 ®p

6.0

the absence of a probe signal. This, then,
leads to a response that has two principal
frequencies: the frequency arising from the
Hopf bifurcation and the probe frequency.

Fig. 7. Amplitade of (x) versus the frequency of the
probe signal for three different values of the
coupling strength K=0 (solid line) and K=1 (dot
line), K=2 (dashed line), Parameters are as in Fig. 5

4. Summary

In this paper, we have investigated the single and globally coupled FHN model in
the presence of noise and an injection signal. We have derived a FPE for the system and
have shown that we can solve this FPE efficiently by using a suitably chosen expansion.
We find that there is a classical resonance effect when the frequency of the probe signal
approaches the one of the underlying system. We also characterize this resonance by
separating the fast and slow time scales in the problem and find that, for small driving
amplitudes, the agreement between numerical and analytical results is excellent. Finally,
we reveal the existence of a stochastic bifurcation (see Fig. 1 and Fig. 3), manifested by
the qualitative change of the peak location in the curves of A g VS,

Future work will include the further charactenzatlon o% the bifurcation we
observed. Note that the bifurcation we found is different from the one found in earlier
work [14]. We plan to address these differences in a future publication. In addition, we
plan to investigate further the response of the globally coupled system to a probe signal.
Particular attention will be paid to the possibility that, upon inclusion of an input signal, a

117




population can become synchronized and can produce a large output signal. By varying
the intrinsic parameters, including the coupling constant, the response can thus be
«tuned» at different frequencies. Whether or not real neurons make use of this mechanism
remains to be seen.

This work has been supported by the Office of Naval Research (Code 331).
We also thank the National Partnership for Advanced Computational Infrastructure at
the San Diego Supercomputer Center for computing resources.
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JIUHAMUKA TTIOBATBHO CBA3AHHBIX HEMPOHHBIX
JJIEMEHTOB ®UTHXEI0 - HATYMO B IIPUCYTCTBUM ITYMA

J.A. Acebron, A.R. Bulsara, W.-J. Rappel

Msbi usydaem Mmopmens ©OutnXnio - Harymo npu Hammyuu MiyMa ¥ BHEUIHETO
CHHYCOM/]afTBHOTO BO3JEeMCTBHA. 3anuceiBaeM ypaBHenue QPokkepa - [Inanka pns
OTHENLHOro 3neMeHTa U IS rofanbHO ¢BA3aHHOW cucTeMbl. IIpepcraBisiem
s(ppexTUBHBI crnocof YHCIEHHOIro pellieHHs 3TOr0 ypaBHeHust Pokkepa - [Inaska u
OKa3bIBaeM, YTO BHEIIHEE BO3JCHCTBHE NPMBOOHMT K KJACCHUECKOMY PE30HAHCY, NpH
KOTOPOM €r0 YacToTa COBNafacT C COGCTBEHHOM YaCTOTOH CHCTEMbL. DTOT PE3CHAHC
TaKXe€ MCCAEMYeTCs AHATUTHYECKM IIyTeM HCIONb30BAHMA pAasMYHBIX BpPEMEHHBIX
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INDICES OF CARDIORESPIRATORY SYNCHRONIZATION
FROM RAT BLOOD PRESSURE DATA

N.B. Janson, N.B. Igosheva, A.G. Balanov, O. Glushkovskaya-Semyachkina,
T.G. Anishchenko, P.V.E. McClintock

A recently developed method for the detection of phase synchronization between
several oscillatory processes from one-dimensional signals has been extended to allow
estimation of synchronization indices. It has been applied to blood pressure signals from
freely moving rats. Each rat underwent four stages: 1) healthy; 2) healthy but challenged by
beta-blockers; 3) with stress-induced myocardial injuries; 4) with the stress-induced injuries
challenged by beta-blockers. It is shown that cardiorespiratory synchronization plays an
essential role at each of these stages.

1. Intreduction

Synchronization is one of the most fundamentat phenomena in the physics of
oscillations. This effect can occur between self-sustained oscillators, i.e. in systems that
are nonlinear, dissipative, and able to produce undamped oscillations, given an external
energy supply. Note that the timescale of the oscillations is not equal to that of the energy
supply (which would make the oscillations forced rather than self-sustained). The motion
in such systems can be periodic, quasiperiodic, chaotic or induced by noise [1]. The
oscillators can be coupled mutually or uni-directionally. In general, synchronization
means the adjustment of basic oscillatory timescale(s) due to coupling. Several
manifestations of this effect have been identified, and they may be substantially different
in chaotic systems [2-6]. In systems whose dynamics is periodic albeit perhaps noise-
influenced, however, the varieties of synchronization are reduced to frequency, or phase
synchronization [7]. Phase synchronization seems to be the most general effect. It can
arise in all known kinds of oscillating system. Introducing individual phases ¢(7), i=1,2
for each pair of systems involved in inferaction, we may consider the generalized phase
difference A¢(r), with due account of the inferred order of synchronization n:m, where n
and m are integers [8]:

A(t) = (nlm) o,(2) - 9,(0)- _ (1)

It is said that #:m phase synchronization occurs if A ¢(¢) has plateaus of sufficiently long
duration. Phase synchronization between the main heart rhythm and spontaneous
respiration in humans in the relaxed state was established in [9]. It has recently been
shown that cardiorespiratory synchronization can serve as a diagnostic criterion in
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humans [10] and dogs [11], and that the order of synchronization can serve as a measure
of depth of anaesthesia in rats [12].

A commonly used method for the detection of n:m phase synchronization is to
record signals from each of the interacting systems, compute phases from each signal, and
then compare them using Eq. (1) [13]. This approach has been applied to the detection of
cardiorespiratory synchronization [9,12,14]. However, it often happens’ that several
processes with different timescales interact within a larger system, and that only a single
signal is available at the output, e.g. only an electrocardiogram (ECG) without a
respiration signal. Recently, a general approach was suggested for tackling such situations
[15-17]. In this paper we apply it to the detection of phase synchronization, or its
absence, between respiration and cardiac rhythm in rats, using the blood pressure signal
alone. We extend the method reported previously in order to compute the synchronization
index first introduced in [18]. We create an algorithm that allows us to find automatically
the synchronization order n:m for which the synchronization index is largest. By analysis
of data from 7 male and 6 female rats, in four different states, we show that
synchronization plays an essential role in cardiorespiratory interaction in rats, both in the
healthy state and when under the influence of drugs or stress.

2. Experimental data

Experiments were performed on 13 adult Sprague-Dawley rats, 7 males and 6
females. Each animal was instrumented with an intra-arterial catheter for direct blood
pressure recording. We note that in freely-moving rats it is difficult to make reliable
measurements of respiration because the conventional transducers cannot safely be kept
in the same position.

A series of experiments has been carried out in order to characterize blood pressure
dynamics at rest, and also to observe slow transient processes induced by the intravenous
injection of a nonselective beta-adrenoreceptors blocker, propranolol. All measurements
were made on conscious, freely-moving, rats, and each animal underwent four stages of
data acquisition: '

(I) «healthy state» at rest (90 minutes);

(IT) «healthy state», immediately after a propranolol injection (90 minutes);

(II) «unhealthy state», immediately after being subjected to stress that induced
myocardial injuries (30 minutes);

(IV) «unhealthy state», immediately after propranolol injection, that was made 30
minutes after stress termination (90 minutes).

Stages (I) and (IT) of the measurements took place one day after surgery to implant
the catheter, with stages (III) and (IV) the following day after. By «healthy state» we
mean the one with no sign of cardiovascular disease. By «unhealthy state» we denote
significant but reversible structural and microcirculatory alterations in the myocardium,
revealed by hystological analysis and resembling those observed at the initial stage of
myocardial ischemia. These injuries were induced by combination of immobilization and
intermittent sound stimuli during two hours. Injection of the beta-blocker propranolol
(concentration 1mg/kg) simulated slow, monotonic, change in some internal parameters
influencing the system. Namely, the concentration of beta-blocker in the blood influences
the average heart rate and its dynamics in time. The rate of decrease of propranolol
content in blood is much smaller than average heart rate, except for the very first minutes
after injection. Its variation in time is known from pharmokinetics to be approximately
exponential. Thus, by studying how the dynamics of cardiovascular system changes in
time, we can do a certain extent study how it depends on the concentration of propranolol.
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3. Detecting synchronization: finding the order n:m and index

The blood pressure signals were typically of the shape shown in Fig. 1, ¢, and in
more detail in Fig. 1, b. Here and in what follows values of the continuous blood pressure
signal x(¢) and its local maxima x™* and minima x™" are given in mm of Hg. Typically,
the Fourier spectrum of the blood pressure signal (Fig. 1, ¢) contains a sharp peak at the
frequency f,, of the average heart rate (AHR), a well-defined peak at the average
respiration frequency f ., their combinations and, possibly, some lower-frequency
components. We are interested in interactions between the cardiac and respiratory
processes. To find out whether they are synchronous, or not, using just the blood-pressure
signal, we exploit the approach recently developed in [15,16] and applied to human heart
rate variability data in [17,19]. To quantify the degree of synchronization, if any, we
extend this approach so as to be able to use synchronization index introduced in [18]. In
this paper we describe the technical issues of the approach used, and for theoretical
background refer the reader to [15,16]. Data-processing took place in the following
sequential steps.

Step 1. Extracting discrete data. The first step is to extract from the continuous-
time signal some discrete variables associated with a Poincaré map defined for the system
under study. Typical discrete variables can be threshold-crossing interspike intervals, or
return times 7, which are the time intervals between successive crossings of the signal
over some threshold level in one direction; successive local minima x™" or local maxima
x™ (Fig. 1, b, d). The clinical significance of these variables is that: T, are heart rate
vanablhty data; x™" is the diastolic, and x™ is the systolic, pressure durmg one heart
beat. We can apply the approach developed to any kind of discrete data, but we note (see
Fig. 1, b, d) that the amplitude variables x™" and x,™* often display more stability
compared to the temporal variable 7. In this paper we will seek possible phase
synchronization between heart rate and respiration through a study of x™".

%,
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Fig. 1. {a). (b) Blood pressure signal of a rat in mmHg. Filled circles show the pocitions of extrema which

are instantaneous systolic (maxima) and diastolic (minima) pressures: (a) Interval 20 sec; (b) Interval 4

sec. (¢) Fourier power spectrum of signal shown. fAH and £ are average heart rate and respiration

frequency, respectively. (d) Discrete variables extracted from signal shown in (@): rm‘“ (lower curve),
x ™ (upper curve), both in mmHg; T in seconds (middle curve)
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Step 2. Filtering. Next, the low-frequency floating of average level from discrete
data was reduced in order to concentrate on two higher-frequency processes: the main
heart thythm and respiration. We use two methods here. The first of these consists of
computing the analogue of the second derivative of the original discrete time series x(i):

Ny () = V5 (i) + x(i-1) - 2x(0)]. 2)

Let us refer to this method as to the method of derivatives. How it works as applied to
™ is illustrated in Fig. 2, a, where the line / indicates original data, and the line 2 those
after filtration and addition of the average value x_ .

The second method is an extension of the well-known detrending technique. A
local average is defined within a temporal window moving along the dataset, which is
then subtracted from each datapoint. The only distinction of our method is that the size of
the temporal window is not constant along the dataset. Numely, one window includes all
points between two successive extrema (maximum and minimum, etc.) of a discrete
signal, including extrema themselves. After the local average is computed within each
window, its value is attributed to the time moment of window beginning. All such
averages are then connected by straight lines by means of linear interpolation. Finally,
from each original datapoint the value of the resultant graph is subtracted. In Fig. 3,a the
line 7 shows original data, the thin black line shows the local average, and the line 2
shows the filtered data, to which total average value x_is added for the convenience of
comparison. _ :

Step 3. Delay embedding is then applied, and the set of points is plotted in the
plane x, | vs x. In Fig. 2, b and Fig. 3, b the delay plots are shown for the same dataset
that had undergone two types of filtering. In both cases, three clouds of points can be
observed in the phase portrait, hinting at 1:3 synchronization.

Step 4. Extracting angles ¢, On the delay plot (Fig. 2, b and Fig. 3, b) one defines
an angle ¢, between each phase point and the abscissa axis. The resultant time
dependences of angles are shown in Fig. 2, ¢ and Fig. 3, c. The plots of successive angle
versus the previous one are given in Fig. 2, d and Fig. 3, d. Here, the line 3 shows the
return function of the angles map derived in [15,17}:

i min_ - min T+ I i
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! 1 2 T ~.w ‘: .
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Fig. 2. lllustration of the first filtering technique: derivatives method{ a) Position of original minima x

min

(curve 1) and filicred data with added average value (curve2); (5) map of filtered £™ (¢} angles of the
map in (b) versus time; () map of angles. Curve 3 in (d) shows the return function of map (3) for g=l/;
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Fig. 3. lllustration of the second filtering technique: differences method. () Position of original minima
™1 (curve 1) and filtered data with added average value (curve 2); (b) map of filtered x™"; (¢) angles of
the map in (b) versus time; (d) map of angles. Curve 3 in (d) shows the return function of map (3) for
E=l/y

¢, = arctan(2cos2rE-cotd, , ), (3)

for the rotation number E=n:m=1:3.

Step 5. Transforming angles @, into relative phase W . This step is optional, but it
can be used to ensure the rigour of the physical meaning of the obtained synchronization
index. In [16] a relationship was established between angles ¢, of return times map or of
the reconstructed Poincaré map, and the relative phase ¥, introduced in {13]:

tang, = cos(¥ +36/2)/cos(W+0/2) =cosO - tan(¥+0/2)sin®, © = 2xE, (4)

where E is rotation number. Note, that Eq. (4) is valid only if the coupling between the
processes under study can be treated as vanishingly small. Knowledge of ¢, allows one to
use Eq. (4) to extract relative phase ¥, provided that the rotation number §, equal to n:m
in the case of synchronization, is known. Thus, one should find the suspected order of
synchronization n:m. This can be done e.g. by computing the Fourier spectrum for the
given sample of data and locating the highest peaks, namely, presumed to be those
derived from heart rate and respiration, as in Fig. 1, c. The closest rational approximation
to the ratio fn,:sp/f‘,‘H can provide one with a guess at the suspected synchronization order
n.m. Note that Eq. 114) cannot be used for E=1:2 because the latter produces a singularity.
Fig. 4, a shows the angles o, that are transformed into the relative phase W, which is
shown in Fig. 4, b, with E=1:3.

Step 6. Unwrapping the relative phase or angles to obtain n:m phase difference.
The angles ¢,, or relative phase ¥, fall by construction in the range [-m;n]. We need to
unwrap these variables into the natural interval J-;%|[ in order to obtain the conventional
phase difference at the time moment ¢, to which the original discrete variable like x™* is
attributed. The proposed algorithm is as follows. We introduce an integer &, starting with
k=0, that increases (decreases) by 1 with each phase jump in negative (positive)
direction. To detect a phase jump, we consider two consecutive values, say ¥, , and ¥,
and at each step i estimate the difference between them. If the absolute value of this
difference is larger than /2, this counts as a phase jump and the value of £ is adjusted
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Fig. 4. Ulustration of how the angles @, are transformed into the form suitable for computation of
synchronization index. (¢) angles @, of map of XM filtered by derivatives (the same as Fig. 2, c);
(b) relative phase W, reconstructed from angles by means of Eq. (4); () unwrapped relative phase W'
(d) phase difference *1»“,1’1 wrapped into [- 7t; 7] f

accordingly. The unwrapped variable is set to be W =W +2nk. In Fig. 4, ¢ the 1:3 phase
difference is shown that was obtained from relative phase in Fig. 4,b.

Step 7. Transforming the n:m phase difference into a 1:1 phase difference by
setting W =W *m-2i.

Step 8. Wrapping of 1:1 phase difference into the interval [-m;x] can easily be
effected by repeatedly subtracting 2x from each value of WL unti] the latter falls within
the required interval. Fig. 4, d illustrates this final step of data transformation and shows
the 1:1 phase difference wrapped into the interval [-m;n].

Step 9. Computation of synchronization index by application of the algorithm
introduced in [18] to the value of W,'"!. We introduce a temporal window of length L and
move it along the data in steps of a chosen size. Inside the window, for its starting point
number i, the value of p is estimated as:

L
p. = LZ,_ cos®H

-1

)

p=(o2+p2"

p being the index of synchronization sought. It is obvious that p can vary between 0 and
1, the former meaning absence of synchronization, the latter perfect synchronization, and
values in between implying various intermediate degrees of synchronization. For the
noisy processes that we deal with in real life p can never reach 1.

Note, that sfeps 5-7 require a reliable estimate of the synchronization order n:m.
One usually wants to make computations automatically, but a proper guess of n:m often
requires some manual selection of spectral peaks (although this could also be rendered
automatic in principle). To simplify the situation, we form a set of most frequently
encountered synchronization orders with reasonably small numerators and denominators,
and repeat steps 5-7 for all of them. We thus obtain a synchronization index for each

synchronization order from each data set.

L
p,= ULZ _ sin®!

i+j-1?
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4. Synchronization indices for rat data

A set of the following rotation numbers was tried for each blood pressure signal:
‘gj: 1.2, 1.3, 1:4, 1.5, 1.6, 2:5. (6)

The above numbers are rational approximations of the most frequent ratios of respiration
frequency f, . to average heart rate f, . estimated from Fourier spectra of the blood
pressure signal. A temporal window of length =500 was selected by trial and error. It is
small enough to reflect a p close to instantaneous one, and large enough to provide good
averaging for p. p, was estimated within one window for all &, indicated in Eq. (6), and
the largest p™ was selected.

In Figs 5-8 the horizontal axis is equivalent time. The data for each stage of the
experiment (I), (II), (IIT) and (IV) are placed sequentially. For additional clarity, the
different stages are separated by vertical dashed lines. Note, that the time is in fact not
continuous here, since there could be substantial time gap between stages (I) and (II), (II)
and (III). The letters «f» and «m» to the right of the plots denote female or male rats
respectively, and the numbers label different animals.
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Fig. 5. Largest synchronization index versus time for female rats. Details in text
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In Figs 5 and 6 the largest synchronization indices p™> are shown for each rat
dataset. In Figs 7 and 8 the rotation numbers corresponding to the p™* are given. One can
see that the synchronization index is generally small, indicating a low degree of
synchronism between heart rate and respiration in rats. An interesting observation is that
in conscious freely-moving rats 1:2 synchronization is quite often encountered in the
states considered, contrary to observations made on humans, for which such a regime 18
very unnatural. Namely, at stage (I) order 1:2 prevailed in 5 of 7 male rats, and in 3 of 6
female rats.

In 7 of the 13 animals (4 female and 3 male), development of stress-induced
myocardium alterations was accompanied by a decrease in synchronization index.
Propranolol administered after stress restored the synchronization index to basal values in
female rats, but not in the males.

Tt should be noted that although in most rats stress-induced alterations in the
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Fig. 7. Rotation number for largest synchronization index versus time for female rats. Vertical axis is in
logarithmic scale. Details in text
myocardium were reversible, there were three animals in which stress induced
irreversible injuries resulting in a near-death state: those marked «f2», «f5» and «ml1». In
these animals stress caused the synchronization order to be 1:2 most of the time; injection
of propranolol that was intended to cure them in a certain sense, did not change it. In
contrast, for female rats the synchronization index was markedly increased.

S. Conclusions

A method for detecting phase synchronization from one-dimensional data was
applied to the blood pressure signals of conscious freely-moving rats in different states. It
allowed us to detect the presence or absence of synchronization between the cardiac and
respiratory processes. The method was further developed in order to automatically
estimate the synchronization index from the experimental data.

13 animals of both genders were studied, in each of four different states, in order to
reveal how the order and strength of cardiorespiratory synchronization are dependant on
the state of cardiovascular system. There were two steady states: «healthy» and
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logarithmic scale. Details in text
«unhealthy», and two long slow transient processes induced by injection of a beta-blocker
into a rat in each of these basic states. It was found out that, in common with humans,
cardiorespiratory synchronization in rats is generally not very strong. However, the
typical synchronization orders seem to be higher than in humans. In particular, 1:2
synchronization - which is untypical in healthy humans at rest - was often encountered in
conscious rats at all stages including rest. It seems that no unique response to stress and/
or drugs could be revealed in rats in terms either of the order n:m, or of the index p of
cardiorespiratory synchronization. Rather, each animal responded individually to external
influence.

The work was supported by the Engineering and Physical Sciences Research
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HIIEKCHI KAPAUOPECOUPATOPHON CHHXPOHU3 AN
3 TAHHBIX JABJEHA KPOBU KPBIC

H.B. Sncon, H.B. Hzowesa, A.I'. Baaarnos, O.B. Iaywrxosckaa-CemauKuna,
T.I'. Anwwenro, P.V.E. McClintock

Henasro paspaGoTaHHBIH METOJ onpefeneHus ()a30BOi CHHXPOHH3ALMH MEX[y
HECKOJIBKIMM KoneGaTelbHbIMH IIPOLECCaMd MO ONHOMEDHBIM CHIHalaM Obll
YCOBEPIICHCTBOBAH C IENbIO IMO3BOJIMTH OHEHHTH MHJEKChI CHEXpomm3aimn. OH ObuI
NpHMEHEH K CHTHANIaM [aBJIeHUsI KPOBH CBOOOJHO JBHMraromuxcs Kpbic. Kaxpas Kpeica
WccieoBanach Ha YeThlpex aTanax: 1) 3gopoBas; 2) 310poBasi, HO C BBE[ICHHBIMM GeTa-
GnoKaTopamit; 3) ¢ MOBPEXXJCHHSMH MHOKApJa, MHIYIUPOBAHHBIMU cTpeccoM; 4) ¢
HHJIYLMPOBAHHLIMM CTPECCOM MOBPEXKJCHMAMU ¥ BBEJEHHbIMH GeTa-GlioKaTOpaMH.
ITokasaHo, 4YTO KapgHOpecHUpaTopHas CHHXPOHM3AlHMf WIPaeT BaXHYIO PpOJb Ha
Kax[OM U3 3TUX 3TalOB. '
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SYNCHRONIZATION PHENOMENA IN MULTIMODE
DYNAMICS OF COUPLED NEPHRONS

0.V. Sosnovtseva, A.N. Pavlov, E. Mosekilde, N.-H. Holstein-Rathlou

The individual functional unit of the kidney (the nephron) displays oscillations in its
regulation of the incoming blood flow at two different time scales: fast oscillations associated
with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a
delay in the tubuloglomerular feedback. The paper investigates the intra- and inter-nephron
interactions of these two modes. Besides full synchronization, both wavelet analyses of
experimental data and numerical simulations of a detailed physiological model reveal the
occurrence of a partial entraipment in which neighboring nephrons attain a state of
synchronization with respect to their slow dynamics, but the fast dynamics remain
desynchronized.

Introduction

The concept of homeostasis [1], i.e. the ability of the body to maintain a nearly
constant internal milieu despite changes in the external conditions, plays an essential role
in the description of physiological control systems. It is sometimes assumed that
homeostasis implies that the physiological variables are kept near a stable steady state by
means of effective feedback regulation. While this may be the case in certain situations,
biological systems in general should be considered as open dissipative systems that are
maintained under far-from-equilibrium conditions [2]. Regular and irregular oscillations
associated with various forms of instability are common features of behavior that can be
observed during normal functioning or arise in connection with particular states of
disease [3].

The kidneys play an important role in regulating the blood pressure and
maintaining a proper environment for the cells of the body. It is well-established that
renal autoregulation is mediated by at least two mechanisms, the tubuloglomerular
feedback (TGF) and the myogenic response of the afferent arteriole [4]. The TGF
mechanism produces a negative feedback control that regulates the nephronal blood flow
and, hence, the single-nephron glomerular filtration rate and the tubular flow rate in
dependence of the NaCl concentration of the fluid that leaves the nephron. Experiments
by Leyssac and Holstein-Rathlou [5,6] have demonstrated that this feedback regulation
can become unstable and generate self-sustained oscillations in the proximal intratubular
pressure with a typical period of 30-40 s. With different amplitudes and phases the same
oscillations are manifest in the distal intratubular pressure and in the chloride
concentration near the terminal part of the loop of Henle [7]. While for normal rats the
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Fig. 1. Regular tubular pressure oscillations from a normotensive rat (a) and irregular pressure variations
from a spontaneously hypertensive rat (b) )
oscillations have the appearance of a limit cycle with a sharply peaked power spectrum (Fig. 1
a), highly irregular oscillations are observed for spontaneously hypertensive rats (Fig. 1,5) [5].

The myogenic mechanism represents the intrinsic response of the smooth muscle
cells in the the vascular wall to changes in the TGF-signal as well as to other stimuli. This
mechanism operates at 0.1-0.2 Hz. An increase of the transmural pressure elicits a
contraction of the vascular smooth muscle causing a vasocontriction and an increase in
~ the resistance of the afferent arteriole. Since both mechanisms act on the afferent arteriole
to control its hemodynamic resistance, the actwanon of one of the mechanisms modifies
the response of the other [4].

Different forms of entrainment between the rubular pressure variations in ad_]acent
nephrons were described in a couple of recent publications [8,9]. Observation of both in-
phase and anti-phase synchronization was reported for the regular pressure oscillations in
normal rats while spontaneously hypertensive rats revealed signs of chaotic phase
synchronization.

Entrainment phenomena are of considerable interest from a physiological point of
view. It is known, for instance, that epileptic seizures are related with the synchronization
of larger groups of cells in the brain [10]. In their riormal physiclogical states, waves of
cytoplasmic calcium are known to propagate across cell assemblies such as, for instance,
smooth muscle cells and B-cells. For the kidney, the aggregate’ response of the cnsemble
of nephrons is expected to depend on their state of synchromzanon While entrainment of
single-mode deterministic or stochastic oscillations is well understood, the dynamlcs of
systems with several oscillatory modes is less studied. Living systéms often exhibit
oscillations with different time scales. The thalamocortical relay neurons, for instance,
can generate either spindle or delta oscillations [11]. It was recently found [12] that the
electroreceptors in paddlefish can be b1per1od1c: In the present paper we describe the
individual nephron as a two-mode oscillator demonstrating relatively fast oscillations
associated with the myogemc regulation of the arteriolar chameter and slower oscillations
related with the delay in the tubuloglomerular feedback. We study numerically as well as
experimentally the entrainment between these time scales both within the individual
nephron and between neighboring nephrons. We apply the wavelet-based techniques to
describe features of entrainment in nonstationary dynamics of coupled nephrons.

1. Nephron autoregulation
1.1. Mathematical model. Over the years significant efforts have been made to

develop mathematical models that can account for the observed regular and irregular
pressure variations and descnbe the physiological processes that occur along the tubular
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system [13,14]. A particular aspect of this research has been to show that the transition
from regular oscillations to irregular variations in the tubular pressure can be explained in
terms of parameter changes within the framework of well-established physiological
mechanisms. A review of the work may be found in the recent contribution by Andersen
et al. [15]. Here, a model of nephron-nephron interaction was developed and it was
shown that this model can produce a variety of different synchronization phenomena.
Autoregulation of the pressures and flows in the individual nephron may be described by
the following model [14]:

pP=(c,) (F/(P,1) - F - (PP IR},
r=v,

v = ()P, (P,r) - P, (r¥(X,.0),T) - wdv }, (1)
X, = (P,-P)IR, - 3X,IT,

X, = B3IT)(X,-X,),

X, = (3IT)(X,-X,).

The first equation represents the pressure variations in the proximal tubule in terms
of the in- and outgoing fluid flows. Here, F, is the single-nephron glomerular filtration
rate and C,, is the elastic compliance of the tubule. The flow into the loop of Henle is
determined by the difference (Pr—P ) between the proximal and the distal tubular pressures
and by the flow resistance R ;. The reabsorption in the proximal tubule F,_, is assumed to
be constant.

The following two equations describe the dynamics associated with the flow
control in the afferent arteriole. Here, r represents the radius of the active part of the
vessel and v_is its rate of increase. d is a characteristic time constant describing the
damping of the oscillations, w is a measure of the mass relative to the elastic compliance
of the arteriolar wall, and P_ denotes the average pressure in the active part of the
arteriole. P, is the value of this pressure for which the arteriole is in equilibrium with its
present radius and muscular activation . The expressions for F,, P, and P, involve a
number of algebraic equations that must be solved along with the mtegratlon of Eq. (1)

The remaining equations in the single-nephron model describe the delay T in the
TGF regulation. This delay arises both from the transit time through the loop of Henle
and from the cascaded enzymatic processes between the macula densa cells and the
smooth muscle cells that control the contractions of the afferent arteriole. The feedback
delay, which typically assumes a value of 12-18 sec, will be considered a bifurcation
parameter in our analysis. Another important parameter is the strength o of the feedback
regulation. This parameter takes a value of about 12 for normotensive rats, increasing to
about 18 for hypertensive rats [16]. For a more detailed explanation of the model and the
parameters, see Ref. [15].

Considering the model equations (1) we can identify the two time scales in terms
of (i) a low-frequency (TGF-mediated) oscillation with a period 7, =2.2T arising from the
delay in the tubuloglomerular feedback, and (ii) somewhat faster oscillations with a
period T =T, /5 associated with the inherent myogenic adjustment.

To determme T, and T, in our numerical simulations we have used the mean return

I
times of the trajectory to appropnately chosen Poincaré sections

m i -U> T m I}i’ --[)> (2)
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Fig. 2. Two-mode oscillatory behavior in the single nephron model. Black colored regions correspond to a
chaotic solution

Here, T, |, _, denotes the time between two subsequent crossings (from the same

side) of the trajectory through the plane v =0.
From these return times it is easy to calculate the intra-nephron rotation number
(i.e., the rotation number associated with the two-mode behavior of the individual
nephron)
E T T, @)

wh

With varying feedback delay T and varying slope o of the open loop feedback
curve, Fig. 2 shows how the two oscillatory modes can adjust their dynamics and attain
states with different rational relations (n : m) between the periods. The regions of high
resonances (1:4, 1:5, and 1:6) are seen to exist in the physiologically interesting range of
the delay time TE€[12 sec, 20 sec]. However, some of these regions are relatively small,
and there are neighboring regions with 2:11, 2:13, and chaotic dynamics. While the
transitions between the different locking regimes always involve bifurcations,
bifurcations may also occur within the individual regime. A period-doubling transition,
for instance, does not necessarily change 7, , and the intra-nephron rotation number may re-
main constant through a complete period-doubling cascade and into the chaotic regime [9].

1.2. Experimental data analysis. Physiological signals are generated by complex,
self-regulating systems and may be exiremely inhomogeneous and nonstationary.
Processing of data series of this type by means of conventional techniques such as
correlation and/or Fourier analysis can lead to misinterpretations of the results. That is
why special techniques based on wavelet analysis become of a high interest [17].
Wavelets provide us with the possibility of searching hidden periodicities in short,
nonstationary data and follow the temporal evolution of different rhythmic components in
the case of noisy multimode dynamics.
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The wavelet transform of a signal x() can be written as:

T, (ad) =@ [, x(u" (et O ®

Here 1 is a «mother» function that in general can have an arbitrary shape provided it is
soliton-like with zero average. T () are the wavelet coefficients, a being a time scaling
and ¢ a time displacement parameter. To investigate the presence of various rhythmic
components, the Morlet wavelet is particularly useful. The given function consists of two
terms, however, in practice one of them is small enough and can be ignored. One
typically uses the following simplified expression for the Morlet function:

Y(t) = nexp(-j2rkyt)exp[-t¥2]. (5)

This wavelet represents a harmonic oscillation with frequency f=k/a and with an
amplitude that is modified in time by Gaussian factor describing how the wave arises and
decays. For the frequency range being of interest in the dynamics of nephrons we can
take k;=1'. In such a case the frequency fis the simple inversion of time scale a, and the
expression for the wavelet transform can be rewritten as follows:

T, () =f " o 2w’ @, =1 (u-t). (6)

The wavelet transform T (f,r) measures the spectral contribution near the frequency f at
time ¢ of the observed signal.

Some authors [18] prefer to consider other complex wavelet functions because of
possible spurious effects (especially for time series with nonzero mean). To avoid such
problems we have transformed all time series to zero mean value before applying the
wavelet technique.

In addition to the wavelet transform coefficients T (f,¢) we can estimate the energy
density E (f.1)=IT (f,)/%. As the result there is a surface in a 3-dimensional space E (f.1).
Sections of this surface at fixed time moments r=f, correspond to the local energy
spectrum. To simplify the visualization of the two-dimensional spectrum E (f,f) we can
consider only the dynamics of the local maxima of E (f,¢,), i.c., the peaks of the local
spectra.

Fig. 3 shows the different components detected in the time series of Fig. 1. (Here,
aiming to illustrate the complex nonstationary dynamics of real nephrons, we demonstrate
all maxima of E (f.t,) independently of their magnitudes). Inspection of the figure reveals
that the slow oscillations, whether they are periodic or chaotic, maintain a nearly constant

J Hz ' '
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Fig. 3. Wavelet analysis of the two time-series presented in Fig.1

IThe value k, allows to search some compromise between localization of the wavelet function in
both, time domain an?l frequency domain,
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Fig. 4. Power spectrum obtained from the wavelet analysis for the two time-series presented in Fig.1. Two
peaks, representing the fast myogenic oscillations and the slower tubuloglomerular oscillations, are well-
distinguished
frequency through the observation time. The fast oscillations, on the other hand, fluctuate
significantly, particularly for the hypertensive rat. This may be related to a complex
modulation of the fast oscillations by the slow dynamics or to the influence of noise
(since the fast oscillations are small in amplitude, they are more sensitive to fluctuations).

The presentation in Fig. 3 does not provide information about the dominant
spectral components. This information can be obtained, for example, from a so-called
scalogram, 1.e., a time averaged power spectrum, being an analogue to the Fourier power
spectrum. Such a scalogram is illustrated in Fig. 4 where a well-pronounced peak around
0.03 Hz, corresponding to the slow TGF-mediated mode, is distinguishable. The other
peak at 0.15-0.2 Hz derives from the fast myogenic dynamics. It is interesting to note
how clearly these oscillations can be detected from the tubular pressure variations. Since
both the above frequency components are of physiological interest we exiract them from
the original wavelet transformation for further analysis of their coherence properties.
Fig. 5 displays the relation between fast and slow oscillations in a single nephron. For the
periodic oscillations observed for normotensive rats (Fig. 5, a), the fast and slow
components adjust their periods in accordance to one another fo maintain a 1:5
entrainment during the observation time. For the chaotic oscillations observed for
hypertensive rats (Fig. 5, b), the ratio changes more randomly in time.

We conclude that besides being regular or chaotic, the self-sustained pressure
variations in the individual nephron can be classified as being synchronous or
asynchronous with respect to the ratio between the two time scales that characterize the
fast (arteriolar) mode and the slow (TGF mediated) mode, respectively. As we shall see,
this complexity in behavior may play an essential role in the synchronization between a
pair of interacting nephrons.
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Fig. 5. Ratio of the internal time-scales for a normotensive rat (@) and for a hypertensive rat (b)
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2. Entrainment of oscillatory modes for interacting nephrons

2.1. Simulation results. Neighboring nephrons can influence each other’s blood
supply ecither through vasculatly propagated electrical (or electrochemical) signals or
through a hemodynamic coupling arising via a direct redistribution of the blood flow
between the coupled nephrons. While the hemodynamic coupling depends mainly on the
flow resistances in the arteriolar network, the vascularly propagated coupling is
associated with signal transmission between smooth muscle cells. The result is that only
nephrons situated close to one another can interact via the vascularly propagated
coupling. Nephrons situated farther apart but sharing a common piece of interlobular
artery may interact via the hemodynamic coupling.

In the present work we shall focus our attention on the vascularly propagated
coupling, assuming the hemodynamic coupling to be negligible. In the single-nephron
model the equilibrium pressure in the afferent arteriole depends on the current radius r
and on the activation level ¥ of the smooth muscles surrounding the arteriole and
controlling its diameter. The muscular activation arises at the juxtaglomerular apparatus
and travels upstream along the afferent arteriole in a damped fashion. When it reaches the
branching point with the arteriole from the neighboring nephron, part of the signal may
propagate down that arteriole and start to contribute to its TGF response. The coupling is
considered nearly instantaneous since the time it takes for the vascular signal to reach the
other nephron is very small relative to the period of the TGF-oscillations. It has been
observed [19] that the signal decreases nearly exponentially as it propagates. Thus only a
fraction, y=e¢<1, of the original activation level reaches the vascular smooth muscles
close to macula densa of the neighboring nephron. In the expression for the vascular
coupling parameter y, / is the propagation length of the coupling signal, and /=500 pm is
the characteristic length scale of the exponential decay. In the model, the vascularly
propagated coupling is represented by adding a contribution of the activation level in one
nephron to the activation level in the neighboring nephron:

qjl.; =W, +YW,, (7)

with y being the coupling parameter and W, , the uncoupled activation levels of the two
nephrons as determined by their respective Henle flows. In view of the characteristic
propagation length for the signal and of measured distances between neighboring
nephrons along the arteriolar network, a typical value of y is considered to be 0.1-0.2
[19]. By virtue of the two-mode dynamics of the individual nephron, a number of new
and interesting results appear.

The individual oscillatory system has two modes that can be locked with each
other. However, an interaction between functional units can break their mutual
adjustment. It is also plausible that a coupling can act in different manners on the fast and
slow oscillations. For the interacting systems we introduce two rotation numbers as

follows:
rv = Tv 1"Tv2’ r.‘: = TJJI‘{T.’!Z' (8)

To provide more information, the variation of the phase difference is calculated
separately for the slow 4 and for the fast v oscillations.

Let us consider the case of a=30.0 corresponding to a weakly developed chaotic
attractor in the individual nephron. The coupling strength y and delay time T, in the
second nephron are varied. Two different chaotic states can be recognized as
asynchronous and synchronous (Fig. 6). For asynchronous behavior the rotation numbers
r, and r, change continuously with T, while inside the synchronization region two cases
can be distinguished. To the left, the rotation numbers 7, and r, are both equal (0 unity
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2.2. Experimental results: frequency adjustments. Using anatomical criteria,
neighboring nephrons having a high likelihood of deriving their afferent arterioles from
the same interlobular artery were identified [19]. In these nephrons 29 out of 33 pairs
(ie., 80%) were found to have synchronized oscillations. In contrast, nephron pairs not
fulfilling these criteria only showed synchronous oscillations in one case out of 23
investigated pairs (i.e., 4%). This observation shows that synchronized oscillations are
preferentially found in nephrons originating from the same interlobular artery. Fig. 7
displays the tubular pressure variations in pairs of neighboring nephrons for a
normotensive rat (a) and for hypertensive rats (b)-(d). The oscillations presented in (b),
(c) and (d) are significantly more irregular than the oscillations displayed in (a). One can
visually observe a certain degree of synchronization between the interacting nephrons. It
is difficult, though, to separately estimate the degree of adjustment for the myogenic
oscillations and for the TGF mediated oscillations without special tools.

To study interactive dynamics in coupled systems the newly developed wavelet

200 400 600 1s "0 400 800 hs

0 400 800 s

Fig. 7. Examples of the tubular pressure variation that one can observe in adjacent nephrons &) for
normotensive and (b)-(d) for hypertensive rats
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based coherence measures can be successfully used [20]. In the present paper, we modify
the approach proposed by Lachaux et al. [20] and introduce a coherence measure that is
more appropriate for the purpose of our analysis. Fig. 8 shows two examples where the
slow oscillations remain quite stationary while the frequencies of the fast oscillations vary
significantly with time (they may be non-synchronous similar to Fig. 8, a, but they may
be also synchronous for neighboring nephrons!- see Fig. 8, b). To ana]yze such situations
we introduce a formalism “Where we can adjust the control frequency of the wavelet
function rather than assuming some fixed value defined a priori [21]. This approach
resembles to well-known shdmg window analysis f22]. However, within the framework
of the wavelet technique the window size is varied depending on the frequency: We need
a small window to study high-frequency changes of the time series with good precision
and a large window to study low- frequency spectral information. To examine entrainment
phenomena between two rhythms in coupled blologlcal oscillators (e.g., between the slow
TGF-mediated motions or between the fast motions in neighboring nephrons) we have to
follow the temporal evolution of rhythmic components (i.e., maxima of local spectra
associated with these modes) and their coherence. Because such peaks (instantaneous
frequencies of rhythmic components) may show large fluctuations relative to the mean
value, we consider a coherence measure for two interacting modes that depends on both
time and frequency. --

Let E_(fit) and E, ,(f37) be the energy densities of signals x(¢) and y(#). Let also in
some range: "of frequenmes A each of the processes x() and y() has a clearly expressed
rhythm (e.g., range of slow or fast oscillations for the two nephrons). In this case
synchronization means that the corresponding frequencies for x(£) and y(#) will be locked
(comc1de) Such a s1tuat10n corresponds to the value r=1 for the functlon

T2(0) = maxe,[E,(f: f)]zl’[ A FOImax [E Ol (9)

Here, E (f t) is the mutual energy density E SHO=IT (LT, (f ). T, (¢) is a function of
time that allows us to follow the evolutlon of the interactive dynamxcs of the two
processes-in the chosen frequency range / A. The more synchronous the rhythms of these
processes are the closer I, (¢) will be to 1.

In general when two frequencies are coincide we can speak about the property of
coherence. To prove the presence of synchronization the phenomenon of phase or
frequency locking should be studied. The advantage of nonstationary dynamlcs consists
in the following. Because the frequency associated to one rhythm changes in time, using
wavelets we can clearly see whether the second frequency follow these changes or not.
That is why we can speak about the synchronization phenomena besides the coherence
propertles
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Fig. 8. Examples of nonstationary non-synchronous () and nonstationary synch:onous {(b) dynamics of
:he fast oscﬂlatory modes. In both cases slow modes demonsirate stationary synchronous state
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Fig. 9. Mutual wavelet analysis for the slow oscillations of the two time-series presented in Fig.7: @)
synchronous behavior, () nonsynchronous dynamics, () and (d) synchronous behavior but during
limited time intervals
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Fig. 10. Mutual wavelet analysis for the fast oscillations extracted from time-series presented in Fig. 7. )
and (c) illustrate synchronous behavior, (b) and (d) nonsynchronous dynamics
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Fig. 9 and 10 demonstrate different degrees of coherence for the considered modes.
For periodic oscillations (Fig. 9, a and Fig. 10, a), both the slow and fast modes of the
interacting nephrons are perfectly locked during the observation time. For a system with
complex oscillations subjected to noise one can speak about a certain degree of
synchronization if the periods of locking are large compared with the characteristic
periods of oscillations [23]. Fully incoherent behavior with respect to both oscillatory
modes can be observed in Fig. 9, b and Fig. 10, b. In many cases we can diagnose
synchronization of the slow motions (Fig. 9, ¢, @) for relatively long time intervals where
the frequencies remain almost equal. The fast motions, on the other hand, can
demonstrate different coherence properties between nephrons. The oscillations can be
locked during long periods of time together with the slow oscillations (Fig. 10, ¢). We
define this type of synchronization as full synchronization since all time scales of the
system are locked. Another case, illustrated in Fig. 9, d and Fig. 10, d, is when the fast
oscillations are incoherent while the slow oscillations are synchronized during the
considered time interval. We refer to this phenomenon as partial synchronization.

2.3. Experimental results: phase entrainments. As discussed above neighboring
nephrons influence each other’s blood supply either through electrical signals that
activate the vascular smooth muscle cells or through a hemodynamic coupling. The two
mechanisms depend very differently on the precise structure of the arteriolar network.
Hence, variations of this structure may determine which of the mechanisms is the more
important. This could be of considerable biological interest, because the effects produced
by the two mechanisms tend to be shifted in phase, and their influence on the overall
behavior of the nephron system may be very different.

In an earlier paper [8], we studied phase relations between two signals using a
Hilbert transformation. This approach works perfectly as long as we are not interested in
the separated dynamics of different rhythmic activities in the oscillatory process. In our
case, the multimode process has one dominant rhythm while the other rhythm is small in
amplitude. To account for this situation we introduce phases via wavelet-transform

coefficients:
T () = IT (f;)lexplip (fi1)], (10)

where the phase function ¢ (f,¢) depends on the considered mode. As it was discussed in
[18,20], we can calculate the wavelet coefficients for the chosen central frequency f; of
the wavelet function. The corresponding phases ¢ (f;,) are closely related to the phases
introduced via Hilbert transform of the band-pass filtered signal [18]. An approach of
band-pass filtration with the further definition of instantaneous phase was successfully
used in [22]. The process of filtration can cause some technical problems in the case of
nonstationary dynamics especially if two modes are close enough in the frequency
domain. Such problems can be solved using sliding window analysis [22] or,
alternatively, different aspects of multimode phase dynamics can be studied with
wavelets.

In general, as a result of wavelet transform we obtain two-dimensional arrays of
modulus |7 (f,)| and phases @ (f,). The latter means that the notion of phase is defined
for each frequency f at any fixed time moment 7. When considering two processes x(r)
and y(r) the wavelet transform allows us to calculate the phase differences ¢ (f;t)-9,(f.)
and various synchronization factors [18]. In the case of clearly expressed rhythmic
dynamics we don’t need to know the complete two-dimensional phase spectrum o (f.)
because we are interesting only in phases related to the rhythmic contributions. In the
case when instantaneous frequencies of modes demonstrate large fluctuations relative to
the mean value (similar to Fig. 8), it seems to be useful adjust the central frequency of
wavelet function according to these fluctuations. Hence, in this work we shall follow the
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Fig. 11. Phase differences for the slow (a) and fast (&) oscillations of the coupled nephrons. The given
results are obtained for the time series presented in Fig. 7, @ (normotensive rat)
time evolution of each mode in the frequency domain and at fixed moments of time ¢,
extract the phases related to the local peaks of the power spectrum E (f,1,) (or IT (£,2)1).
For coupled nephrons this allows us to introduce phases for the slow and fast dynamics
separately. To study synchronization phenomena in bivariate data it is possible to
calculate the phase difference or the distribution of the cyclic relative phase [22].

Fig. 11 shows an example of the (normalized) phase difference for the regular
pressure variations in a normotensive rat. One clearly observes in-phase (Ag=Q)
synchronization for fast mode and anti-phase (Ag=x) synchronization for slow
oscillations in nephrons branching from different arterioles. Note, that fast oscillation in
our analysis were always locked in phase, but there may be characteristic phase slips of
2nk because of the noisy conditions under which the nephrons operate. The case of anti-
‘phase synchronization for slow mede occurred rather seldom. More typical situation was
when both the slow and fast oscillations were synchronized in-phase. (This situation
takes place for nephrons branching from the same arteriole.)

Let us consider now how our phase approach is applied to chaotic dynamics as one
typically observes for hypertensive rats. Fig. 12 illustrates examples of phase dynamics
for time series presented in Fig. 7, b, ¢. The phase differences indicate synchronous
dynamics in Fig. 12, a and nonsynchronous in Fig. 12, b. The results for phase
entrainment correspond to the results for frequency adjustments. In the case of
synchronization for hypertensive rats we observed for all experimental data the in-phase
regime (Ag=0).

Aol2m [ T T Tl AeRr[ 1
3.0_" h -

0.0 Q

0 400 800 ts 0 400 800 i

Fig. 12. Phase differences for the fast synchronous (z) and for the fast non-synchronous dynamics (b).
The given examples are obtained for the time series of hyperiensive rats shown in Fig. 7, ¢ and b,
respectively
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Conclusions

Based on the analysis of experimental results we showed that the vascular
dynamics and the tubuloglomerular feedback mechanism are responsible for two time
scales associated with a fast and a slow oscillatory mode in the individual nephron. Both
for periodic oscillations observed in normotensive rats and for the chaotic oscillations in
hypertensive rats the two modes exhibit resonant behavior as well as nonsynchronous
dynamics. .

To investigate different types of internephron mode entrainment we developed an
approach based on a mutual wavelet transformation that allows us to easily analyze
frequency and phase adjustments between different time scales from nonstationary data.
We observed simultaneous (full) locking for the slow and fast oscillations both for
normotensive and for hypertensive rats. We also identified a state of partial
synchronization where the slow oscillations are synchronized while the fast motion
demonstrates noncoherent behavior. Such a situation is typical for hypertensive rats.

Numerical simulations for coupled nephron models demonstrate similar behavior.
With varying time delay in the tubuloglomerular feedback and varying strength of the
vascular coupling the experimentally observed forms of synchronous behavior were
recovered.
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N. SR-006-X1 of the U.S.Civilian Research & Development Foundation for the
Independent States of the Former Soviet Union (CRDF). A.P. acknowledges support
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3OPOEKTBI CHHXPOHU3ALINHA
B MHOI'OMOJAOBOM TUHAMUKE CBA3AHHBIX HEGPOHOB |

O.B. Cocrosuyesa, A.H. Hasnos, E. Mosekilde, N.-H. Holstein-Rathlou

Vumusunyanbhas (yHKUMOHANBHAS CMMHALA [0YeK (HepOH) HEMOHCTPHPYET
KoJieOaHWs B peryMiy BXONSAIIETO TIOTOKa KPOBH C ABYMS PA3JIHYHBIMK BPEMEHHBIMA
MaciiTabamu: ObICTphie KONeGaHus, CBI3aHHbIE ¢ MUOTCHHOH IUHAMPKON NPHAHOCSIIEN
apTepHONbl, W MeJyleHHble Kouebanys, OOyCHOBJIEHHBIE 3aep’KKOH B KaHaJIbLEBO-
rIIOMepyIIpHON o6paTHOU cBsizm. B ganuoi paGoTe HCCNENyroTCs B3aUMOJIECTBIS 9THX
IByX MOJ B Mpefenax OFHOrO HedpoHa W MeXny Hedponamu. IToMHMO TMOMHOM
CHHXPOHM3AIHK, BENB/IET-aHaA3 KCIIePUMEHTAJIBHBIX IaHHBIX M UHCIEHHbIE HCCIENO-
BaHHs IETANBHON (DH3HOIOrHYECKOH MOJIEH IIO3BOJSIOT OGHAPYXKMThH CYIIECTBOBAHUE
YACTHYHON CHHXPOHM3ANWM, NOpPH KOTOPOH COCEHHE He(PpPOHBI IEMOHCTPHDPYIOT
CHHXPOHHOE TIOBETIEHHE HO OTHOMIEHHWIO K WX MEIVIEHHOW THHAMHUKE, OJfHAKO ObICTpas
OUHAMHKA OCTAETCH HECHHXPOHHOM.
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SELF-CONSISTENT PARTICLE DYNAMICS IN THE GEOTAIL
MAGNETIC FIELD REVERSAL

B.V. Shulgin, S.C. Chapman, V.M. Nakariakov

Dynamics of ions in the geotail magnetic field reversal plasmas is modelled with a
hybrid code. Poincaré maps are calculated for stationary and for adiabatically changing field
configurations starting from an anisotropic pressure self-consistent equilibrium. It is shown
that the essential dynamics as found previously for single particle in prescribed fields persists
in the hybrid code simulations of self-consistent fields. The possible interplay of dynamical
processes in the Earth's magnetosphere and in the solar wind is discussed.

The Earth magnetosphere (Fig. 1) has the long magnetotail directed outwards of
the sun. The magnetotail is thought to operate as a storage of the energy accumulated
from the solar wind, i.e. from the inflow of the space plasma coming from the Sun. The
consequent releases of the stored energy can cause magnetic substorms which have
impact on the Earth inhabitants. One of the mechanisms connected with the origin of the
energy releases is thought to be the changes in the complex dynamics of charged particles
in the magnetosphere. We simulate particle dynamics with a hybrid code and calculate
Poincaré maps for the particle trajectories in a self-consistent, adiabatically changing
field.

s Tail Lobe
7\ ~~Ring Current/Plasmasheel Overlap™=—=

_ agnetoshh

Fig. 1. Earth magnetosphere [1]
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1. Method

In the magnetohydrodynamics (MHD) the plasma particle distribution function is
Maxwellian and it defines its density n, and the first and the second moments (bulk
velocity and pressure), U, p. The MHD equations can be obtained by integration of the
Vlasov equation [2,3]. But the MHD approach can not be used if the plasma distribution
function can be essentially non-Maxwellian. Then other approaches allowing for an
arbitrary distribution function could be used, such as the hybrid, particles-in-cell and
Vlasov codes. The MHD approach also cannot be used if the time and space scales of the
problem are of the order of the ion-gyromotion scales, because of appearing time
dependence in the distribution function on the scales of averaging.

In the hybrid code [4-6] the ions are considered as particles with an arbitrary
distribution function while the electrons are still considered as a massless fluid with the
Maxwell distribution function. This approach is computationally efficient, as it allows us
do not resolve the small time scales of the electron gyromotion. The particles (ions) move
accordingly to the equation of motion:

dv/dt = g/m(E+vxB), (1)
and the field can be found from the Maxwell equations in the low frequency limit,
oB/ot=-VxE, VxB=]J, vB=0 (2)
E =-UxB + (VxBxB-VP )/ng 3)
U,=J/ng -1, (4)

where U is the ion bulk velocity and U, is the electron bulk velocity. The electron
density is equal to the ion density, n, because of the plasma quasi-neutrality, and the
electron pressure, P, can be found from the electron fluid equation,

oP,lot=-UVP,-yPV U,

The moments of the ion distribution function: the density » and the bulk velocity U, can
be obtained by averaging:

n(x,0) =f flvx,0)av+&, U1 =1/n(x2) [VAVXE)dV + &y (5)

The limited number of ions, N, on the computational grid leads to appearing of statistical
errors of averaging, § , &, which makes the code noisy. The noise intensity is inversely
proportional to N*?, and proportional to the temperature. The statistical noise sources§,
and E;, can be considered as internal noise sources of the plasma. Because the considered
space plasma is collisionless with zero diffusion, it is necessary to introduce the

numerical diffusion to stabilize the code.

2. A self-consistent magnetic field reversal

A simple one-dimensional (d/dx=0d/0y=0) model for the magnetotail is the
modified Harris field reversal (Fig. 2):

B(z) = B tanh(z/L)X + B, Z. (6)

We will study the self-consistent field of form (6) created by the motion of charged
particles in that field. In order to get the reversal varying on timescale much slower than
that of the particles we want to set the reversal into initial equilibrium: dp/0:=0, 0U/0r=0,
oB/dt=0. Using (2), (3), and (6), we obtain from the condition dB/dr=0 that
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U = ((1/p)9B 3z + Cy)y, )

and dp/dt=-V(p,U)=0. From dU/9r=0 using

(7) and the MHD equation of conservation

of the momentum one gets the pressure
- balance equation:

JxB = VP + VP, (8)
which in the one-dimensional case conside-

red is: VP=xoP, faz+yaP [0z+20P_[3z [7]. T

is known that in the one-dimensional case
(6) the pressure balance can not be satisfied
with the isotropic pressure tensor [8]. In
order to obtain an anisotropic pressure tensor one can use the bi-Maxwellian distribution
function with different temperatures in the directions perpendicular and parallel to the
magnetic field [3]

Fig. 2. Harris field reversal and axes of rotated
distribution function

fxyv,t) = nl(T T, V) [m/(2nk ;)32 x %)
9
x exp[2(mv -U Y/(2k,T )-(mv U Y/(2k,T,)].

The pressure tensor corresponding to the bi-Maxwellian distribution function is diagonal
in the local field-aligned coordinates,

py=n(x0kT,, p, =n(x0kT,. (10)
It is convenient to use the cartesian coordinates rotated to the angle g(z)=arctan(-B (z)/B,)

(Fig. 2) as the local coordinates. The tensor components in these Cartesian coordinates
are:

P(z) = mn f(v-U)' ~-U)A(z,¥v)dv, dv, (11)
where f(z,v',t) is the local (rotated) ion distribution function,

Az,¥'.1) = nl 2uky) 2 [ml(T . T T_)"]exp(-m/(2k,)) x ;
' (12
x exp[(v,~U YTy -(v,-U YT ,~(v,-U )T, ],

where v ‘ and v’ are the velocity vector components in the local coordinates. Substituting
(12) into (11) and integrating, one can obtain:

P (2) = sin2q(z)/(2m)(n(2)k,T, (2)-n(z)k;T (2)), P (z) =0,
P_(z) = Um(n(2)k,T, (z)cos’@(z)+n(z)k,T ( z)sin’q(z)).

Substituting (13) into (8), integrating and using (10), one can get the components of the
equilibrium anisotropic pressure tensor:

(13)

p,(z)=P ,-P, +const, pfz)=P, ,+P, +const, (14)

m

where P =B/(2y,) is the magnetic pressure and P, =(B,+B *)/(2u,) is the maximum
magnetic pressure,

The equation of state for the plasma with anisotropic pressure tensor aligned with
directions parallel and perpendicular to the B field may be obtained in the CGL theory

(8]:

150



(de+UV)(p* p/p°) = 0. (15)

From (15) the equilibrium number density is:

n(z) = (0, X(2)py(2))"™. (16)

The obtained self-consistent equilibrium given by the functions (6), (7), (10),
(14), and (16) is stable to the local mirror-mode perturbation: (P /P )(P-P,)<B(2u,),
and neutrally stable to the local firehose-mode perturbations: P -P —B oy

To study the long-time stability of this magnetic reversal we simulated its
dynamics with the hybnd code discribed above. The simulation showed that the self-
consistent equilibrium is stable for a relatively long time, 2>100P , where P, is the ion gy-
roperiod, and it slowly diffuses later due to the numerical diffusion introducedl into the code.
The numerical diffusion can be taken into account in the pressure balance equation (8)

JxB =VP +VP_-D V’B. (17)
It leads to the appearance of an additional component of the bulk velocity,
U =-D/B (0B [dz), (18)

where the diffusion coefficient is D,=Ax*/(4Ar), where A and Ax are the time and space
steps of the grid. Then the diffusion of the equilibrium gradually decreases. '

3. The Poincaré maps

The Poincaré surface of section can be used to study the nonlinear particle
dynamics [9,10]. In the map, each crossing of a chosen surface of section in the phase
space by the phase trajectory in a chosen direction corresponds to a point. The ensemble
of these points defines a Poincaré map. In this approach, a periodical trajectory corresponds
to a finite number of points, ergodic tori correspond to a closed curves and chaotic motion
corresponds to chaotic set of points.

In general, the equation of motion for a single particle defmes a six-dimensional
phase space. In the one-dimensional case (6), the equations are:

dXldt=v, dvidt=Ffzv), X,vE R 19)

One could see that in (19) there is a partial subsystem of four equations which are
independent of the other two. That subsystem is four-dimensional. For a chosen constant
energy, H=mv*2 and a chosen direction of the crossings, e.g. dv_/dt>0, set (19) corres-
ponds to a two-dimensional map in the surface of section. There is also a transformation
of variables based on the existence of constants of the motion £, and C, [11]:

x' = (x-P/(mw,))(B,L),
(20)
= (y+C, /(mm”))/(B"L) z'=zI(B,L), '

where B, and L are as In (6) and o =¢B, /m. The transformation (20) reduces the system
(19) to a four-dimensional system with the two-dimensional map on the surface of
section z=0). If the magnetic field is prescribed, the Poincaré map can be calculated from
the particle equation of motion (19) [12]. The Poincaré maps for different energies
corresponding to different layers in the distribution function are presented in Fig. 3. In the
figure, one can observe periodic and ergodic tori, chaotic trajectories and transient
(Speiser) trajectories carrying the currents (empty areas).
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In order to calculate the Poincaré maps for the self-consistent field one should take
into account the following problems. The fields created by the particles are affected by
the statistical noise (5), that makes the maps noisy and gives them some width in the
appearing third dimension (since the energy is no longer conserved). Affected by the
noise, the particles can move into different areas of the phase space changing the
behaviour of their motion. The diffusion of the field reversals increases the particles
energy and makes the maps time-dependent. The noise and diffusion lead to development
of a small B, component that rotates and transforms [12] the Poincaré maps. The noise
intensity can be reduced by the increase of number of particles in the grid. The Poincaré
maps which were calculated for the self-consistent reversal are presented in Fig. 3. The
Poincaré maps shown that the essential dynamics of single particles in prescribed fields
[11] persists in the hybrid code simulations of self-consistent fields.
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S50¢ 1
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'1.0: : _2'0_
201 ] - . N
AR B 4.0 - - , ' '
20 <10 00 10 20 v, 20 -1.0 00 10 20 v,

Fig. 3. Poincaré maps for prescribed magnetic field (left column) and for self-consistent magnetic field
(right coluran). Dimensionless energyH is 500; 50; 2.5 from top to botiom
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Fig. 4. Screen-shots of the virtual reality representation of particle trajectories in the phase space

(v,»¥,+2)- @) Chaotic particle trajeciory, b) quasiperiodic trajectory lying on a three-dimensional projection

of afour-dimensional ergodic torus and its surface of section

“The virtual reality set at Warwick space and Astrophysics group provides us with a

useful tool for studying complex particle trajectories. The 3D semi-immersive
environment creates the effect of presence of studied objects flying in the air in the dark
room with the observers. The objects could be interactively stirred (arbitrary scaled,
moved or rotated) which allows us to analyse the geometry of the complex particles
trajectories and corresponding Poincaré maps in details as shown in Fig. 4.

4. Time dependent field reversal

During magnetic substorms the geometry of the Earth field reversal changes in
time, interacting with the charged particles. As a simple model of a time dependent field
reversal, the time dependence appearing in the reversal due to instability of the
equilibrium caused by noise and numerical diffusion was chosen. Hybrid simulations
showed that the time dependence could be well approximated by the following
€Xpressions:

B =B tanh(z/L(t)), L(#)=Ly+t/, (21)

where the value of © depends on the initial energy of particles. Chapman et al., [13,14]
showed that it is possible to introduce two dimensionless parameters: the parameter of
adiabaticity of the system a, and the phase of the process, az [13],

a = (B,/B)p/L)(Q,/2).

where p_ is the gyroradius, and Q, =1/x. The changes in the behaviour of particles motion
and time of the changes are defined by parameters o. and az. These parameters define the
dynamics of the particles moving in the slowly changing magnetic field reversal. The
detailed comparison of the self-consistent simulations with the predictions of the
prescribed field theory [13] is the aim of the further studies.

5. Discussion

A sudden destruction of the geotail magnetic reversal becausc of the ficld slow
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Fig. 5. a) D, geomagnetic index, large negative drops correspond to magnetic substorms; b) power
spectrum density of AA geomagnetic index averaged for 30 years
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Fig. 6. Signal-to-noise ratio (SNR) in AA power
spectrum (bold line), and Sun spot number, SSN
(dots) divided by 10

evolution leads to the release of the energy
accumulated from the solar wind, causing
the events of storms and substorms. The
understanding of the reversal destruction
process would allow us to link statistical
properties of geomagnetic activity with
statistical properties of the solar wind. For
example, the time dependence of the Earth
geomagnetic index D shown in Fig. 5, @
demonstrates the behaviour similar to the
behaviour of simple integrate and fire
systems affected by noise. This suggests
the idea to try to use the simple stochastic
integrate-and-fire models  for  the
magnetospheric substorm studies. There is

also periodicity in the solar wind inflow caused by the rotation of the sun around its axes
with the period of approximately 27 days [15]. That periodicity can also be seen as the
first peak in the power spectra which we calculated for the Earth geomagnetic index as
shown in Fig. 5, b. The strength of the periodic component is not constant but correlates
with the phase of the solar cycle (the number of the sun spots or solar activity) as
presented in Fig. 6. Such a behaviour may be associated with the phenomenon of
stochastic resonance [17,16] and needs to be studied.

This research was supported by PPARC. B.S. thanks A.P.Nikitin and
A.G. Balanov for useful discussions. The authors cordial greet Prof. Vadim Semenovich
Anishchenko on the jubilee with the best wishes.
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CAMOCOITTACOBAHHA S TNHAMHKA YACTMII B PA3BOPOTE
NOJSI TEOMATHUTHOI'O XBOCTA

E.B. Mlyaveun, S.C. Chapman, B.M. Haxapsakos

HuHaMiKa MOHOB B IJIasMe FEOMArHMTHOIO XBOCTa MOJENHPYETCH C IOMOILBIO
rHbpugHOro Xopma. B cnyuasx 3afjaHHOTO M CaMOCOTTIaCOBAHHOI'O pAaBHOBECHS C
MEJVIEHHO MEHSIOMIMMCS MarHUTHRIM TIOJIEM BBIYMCISIFOTCS OToOpaxkenus Ilyankape.
IToka3aHo, 4YTO B paccMaTpUBaEMOM Cly4yae CaMOCOIJIAaCOBAHHOI'O paBHOBECHS
COXPAHSIOTCSl OCHOBHBIE CBOWCTBA JWHAMHUKH 3apSKEHHBIX YaCTHI[ B 3afJaHHbIX IOJISIX.
OOGcyxkmaeTcs BO3MOXKHAS CBSI3b MeXJy pacCMaTpuBaeMbIMH  IHHAMHYECKHMH
nporeccaMy B 3eMHOI MaruuTocdepe U B COITHEYHOM BeTpe.
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COITACOBAHEASA ®UIBTPAIIMA XAOTHYECKHX CUTHAJIOB

A.C. Imumpues, I A. Kacvan, JI.B. Kyaomun

B crarbe npegnaraeTcd HORXOA K OYMCTKE XAaOTHYECKHX CHTHAJIOB OT IyMa
(bmnbTpamME XaOTAYECKAX CHTHAIOB), OCHOBAHHBNI HA HCIOJNBL30BAHHA TOr0 (haKTa, UTO
XA0THYECKIM CHUTHa/IaM, B OTIHUAE OT CyYalHBIX NPOLECCOB, CODTBETCTRYIOT B (pa3oBOM
NPOCTPAHCTBE  JIHHAMUYECKHX CHCTEM  TpEJiesbHBIE  MHOXeCTBZ  (aTTpakTOpbl)
OTHOCETEMHLHO HE3KOM pa3sMepHOCTH.

Bgenenne

O4YncTKE XaOTHYECKUX CHTHAJIOB OT IiyMa ((abTpaiyy XaoTHIECKUX CHTHAIIOB)
ylensiercst Golblnoe BHUMaHUE B Jutepartype (cM., HanpuMep, Kiurk [1, 2] u ccbiiky B
Hux). XOpouio M3BECTHO, YTO Npo0iieMa OYHCTKH XaOTHYECKHX CHTHAIOB OT IIyma
3HAYATENBHO OTIMYAeTCH OT OYMCTKM PEry/spHBIX CHTHAJOB B CHJIY HEYCTOMYMBOCTH
¢ha3oBbIX TPACKTOPHI XaOTHYCCKUX cucTeM. B wacTHOCTH, Ha NpHUMEpPEe ONHOMEPHBIX M
ABYMEPHBIX OTOOpaXXeHMH ObLIO NOKa3aHO CYIECTBOBaHHE HEKOTOPOTO IOPOroBOro
3HAYEHNs [iyMa, HUKE KOTOPOTO OYMCTKA XaOTHYECKOIO CHIHAala BO3MOXHA C JIFOOOH
CTETIEHBI0 TOYHOCTH, @ Bbllle - 3HAYMTENLHOE CHIDKEHHE YPOBHA IyMa He
TIpefCTaBIsAeTCss BO3MOXHBIM [3-5].

BONBILUIMHCTBO PE3yJIbTAaTOB MO (QUIBTPALMHA XaOTHIECKUX CHIHAIOB OTHOCATCS K
Malopa3MepHbIM crcTeMaM. B mamnoi paGoTe Mbl paccMarpHBacM HOMOJIHUTEIIHHBIC
BO3MOXHOCTH, KOTOPbIE CBSi3aHbI C TE€M, YTO Pa3MEPHOCTE (Pa30BOTO MPOCTPAHCTBA
IMHAMHYECKOM CHCTEMBI MOXET ObITh, 3HAUUTENbHO OONBINE Ppa3sMEpPHOCTA
X20THYECKOTO ATTPaKTopa.

Hpest usbTpalliil 3aKII04aeTCst B UCHOIb30BaHMK ciefyrouiero dakra. Iycrhb
WMeeTCs BbICOKOpa3MepHas JiHHaMrdecKas CuCTeMa

x=F(x), xER, (1)
o6najaroLias OTHOCATENILHO HA3KOPa3MEePHBIM XaOTUUCCKUM aTTPaKTOPOM A
A ER™, n,<<n, (2)

rje R™ - nueiHoe nonpocTpancTBo B R”; 7;<<n B CHIly HU3KOH pasMepHOCTH A.

Iycts Ha cucremy (1) BosueiicTyeT BHenmHuit myM v(f). Kaxkosa GyfieT peakius
CHCTeMBbl Ha STOT myM (TpH MAJOH, [ ONpejeleHHOCTH, MHTEHCUBHOCTH IOyma)?
[TockonbKYy BCEe TPAEKTOPUM ABTOHOMHOM CHCTEMbl  «BTATHBAIOTCH» B TO

157



MOANPOCTPAHCTBO, IAe JIeXKHT XaOTHYECKHH arTTpakTop, TPaHCBEpCalbHbIC MO
OTHOLIEHWIO K TIOJNPOCTPAHCTBY aTTPaKTOpa BO3MYIEHHS, CO3aBaeMble IIyMOM, OyIyT
nopapaThess. C Apyrofi CTOPOHBI, MPOEKUMM BO3MYUIEHHMS HA arTPakTOp MOIYT
yemmsaThes. [lociemuee 0BCTOATENLCTRBO 3aTPYHAET OUKCTKY XaOTHUECKUX CHIHAJIOB
OT UIyMa B MaJOMepHbBIX cucTemax. OHako IepBoe OOGCTOSTENBCTBO CIOCOGCTBYET
TAKOM OYMCTKE U 3a7ava JaHHOW PaBoThl ITO IPOKEMOHCTPAPOBATE.

1. Mogens (puabTpalum

Hirxe nop $a3oBbIM OPOCTPAHCTBOM NMOHHMAEM KaK «ECTECTBEHHOE» (ha3oBoe
NMPOCTPAHCTBO, B KOTOPOM KOODIMHATAMHM SBJISIOTCA TEPEMEHHBIE JIMHAMUYECKOH
CHCTeMbl, TAK M <«HUCKYCCTBEHHOe» (Da30BOe€ MNPOCTPAHCTBO, MWiA KOTOPOTro
WCKYCCTBEHHbIE MMepeMEHHbIE TIOIYy4YaloTCs M3 OJHOTO KOMIIOHCHTAa MpoLecca IyTeM
IPAMEHEHHsT ITPOLENYPhl, OCHOBAHHON HAa B3ATHU 3alCPXKAHHBIX 3HAYCHHI OIHOHN H3
(ba30BBIX TepeMeHHbIX [6]. 3ameTM, UTO 1A OJHON | TOM Xe TUHAMUYECKOH CHCTEMEI
pasMepHOCTb HCKYCCTBEHHOTO (ha3oBOro IpocTpaHCTBa (NPOCTPAHCTBA BIOKEHHS)
MOXET  3HAYMTEJBHO  TPEBLIIATL  PasMEPHOCTH  €CTECTBEHHOro  (pasoBoro
npoctpaHcTa. Ha uCIIonp30BaHIH 3TOI Pa3HHIb! H OCHOBaH paccMaTpUBAEMBIN TOAXON
K ¢unbrpammu. TIycTh m' - pasMEPHOCTH HEKOTOPOTO NPOCTPAHCTBA BIOXKEHHA R" u
nyctek d - KOppeNSLMOHHAs pa3MepHOCTh arTpakropa. Kak Obuio  IoKasaHo
TeopeTudecki [7] ¥ IOATBEPXKIEHO WHCIEHHBIM MOJENMPOBAHKEM, m' MOIDKHO
YIOBJIETBOPSTE CIEylOMeMy HEPAaBEHCTBY

m'>2d+ 1. (3)

BekTopebl MNPOCTPAHCTBA BJIOXKEHAA (DOPMUPYIOTCS IyTeM B3sTHS OTCUETOB
XaOTHYECKOl TPAGKTOPHM Yepe3 HHTepBaibl BpeMend Ar (Ar BbIGHpaeTcst 10
onpejeneHHbM npaswiam). [lepBblil BeXTOp B m'-MEPHOM NPOCTPaHCTBE 00pasoBaH U3
m' TIORPSA MAYLIMX STeMEHTOB XaoTHYecKol mociefosarensHocts (¢ 1-ro mo m'-i),
BTOpO# BeKTOp oOpa3zoBad IyTeM C[BUTA HA ONHH 3JIEMEHT, TO €CTh HCIOJb3YIoTCs
oTcyeThl co 2-ro mo (m'+1)-i u T.4.

IlycTh m - MUHMMaTLHAS Pa3MepHOCTS NPOCTPAHCTBA BJIOXKEHHS

m>m=22d+1. 4)

PaccMoTpuM mi-MEPHOE BPOCTPAHCTBO BIIOXKEHUS R™ B 0003HAWMM depes n Sm -
MHHHUMAJbHOE MOAIPOCTPAHCTBO R™, B KOTOPOM aTTPaKTOpP MOXET ObITh AlmIpOKCHMM-
POBaH C HEKOTOPO! 3aJaHHON TOYHOCTEIO €.

PaccMOTpHM TakXe TPOCTPAHCTBO BIOXeHus R™ ¢ pasMepHOCTBIO m' U 0003Ha-
UMM Uepe3 m'; - MAHEMATLHYI0 PasMEpHOCTh €ro MOMIpOCTPAaHCTBA, B KOTOPOM
ATTPAKTOP MOXET ObITh aITIPOKCAMHUPOBAH C TOH XK€ TOUHOCTHIO €.

B panbHefiineM npefmonaraeM, 9To 72, ciabo 3aBACHT OT m', TO €CTb 1’ j=m,,

OtM  06CTOSTENILCTBOM — MOXHO — BOCIONBL3OBAaThCSl A (PHIBTpAIMN
XaOTMYECKOr0 CHTHaia oT IOyma. [eldCTBHTENBHO, IYCTh HMEETCd XaoTHuecKas
MOCJIEJOBATENLHOCTD

Xps Xypeee Ko Ly pgones Xy oon (5)
TTocTpouM CHCTEMY BEKTOPOB
X = (X,
X, = Gy X0, (6)

XN = (xN xm‘+N+1)'
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Ecnu arTTpakTop NMHAMHYECKOM CHCTEMbl TPHHAIIEKUT IOAMPOCTPAHCTBY
P23MEepHOCTH M1, TO W2 m' KOMIIOHEHT KaX{oro U3 3THX BEKTOPOB JHIIh m HOIKHEBI
ObITH NMHEAHO He3aBMCHMbL OJIUMH W3 BapHAHTOB BbIGOpa CHCTEMBI m,; OasHCHBIX
BeKTOpOB Hpegnoxed B [8].

PaccMoTpHM MaTpuiy

B=N"(X,...X, ), (7)

ee paHr paseH m,. Crefiosare/ibHO, parr Marpurpl B'B Takke pasen m,. Marpuua B'B
ciMMeTpuuyHa 1 o0afaeT OpTOrOHANbHBIM 0a3s¥coM M3 COOCTBEHHBIX BEKTOPOB.
OGosHayvM 3TH BEKTOPbl KaK b, M OTCOpTHPYeM HX B HOpsfKe yObIBAHHS
COOTBETCTBYIO-I{HX 9THM BEKTOPaM COOCTBEHHBIX 3HauUeHMM A, MaTpuilbl B'B.

TTosicuim cMBIca aTOM npoueaypbL Pasnoxum Kaxaei 13 BekTopos X, o Gasucy b,

X 2 o b (8)
Torna CpEIHAA SHEPrusa Ha BEKTOD COCTABIISICT
E=(X?)= INE 20, = NS, o, ? = r(BB). 9)

[Tockonmsky b, siBnsieTca 6asucoM M3 COOCTBEHHBIX BEKTOPOB MaTpuukl BB, To B aroM
Oasuce sTa ManHlla SIBISETCS IMarOHANBHOM, Tak 4Tto (B'B), =)\, cnenosatensHO

= tr(B'B) = =3 +3,

_:—1 J=nig +l

(10)

Ecmm, kak OBLIO CKa3aHO BBIIIE, AaTTPAKTOp MEXUT B MOMIPOCTPAHCTBE
Pa3MEPHOCTH M1, B PaHT M2TPHLI PABEH TAKKe M, TO JIAb EPBLIE 7, COOCTBEHHBIX
3HAYEHAH OTIIMYHEI OT HYJs, TaK YTO BTOpas cym{a B (10) paBna HymO.

, TIpu YMCIEHHBIX pacueTax COOCTBEHHbIE uMcha A, aist i>m, He pasHbl 0, HO
cTpeMsiTcs K Hymo c poctoM I. IlosTomMy BO3HMKaeT mpoOrema OLEHKH m, 1O
HaOIIFofaeMOMY CIHEKTPY COOCTBEHHBIX 3HaueHwit A. Uucimo m; BbIGHpAcTCSA TaKuM,
4TOGHI YACTH MONIHOCTH, NpUXofsuasicst cornacHo opmyie (10) Ha (m'-m;) BekTOpOB
C ManbiMu A, Obula [JOCTaTOYHO MAaNOM, TaK YTO MNEpBbIE M, BEKTOPOB HafyT
HeoOXOIUMYI0 HaM anTIPOKCAMAITHIO aTTPaKTOPa JHHAMAYCCKON CHCTEMBI.

Bribpas 1, Mbl TOJTy4YiM HAGOP U3 17, OPTOHOPMUPOBAHHBIX 0a3UCHBIX BEKTOPOB b,

1, ecrmi=j,
(b; BE (11)
J .
0, ecmai #j.
W xakpmeit u3 BexTopoB X, MOXeT ObITh NpENCTaBi€H B BUE Pa3lnOXKEHUs: [0
yKa3aHHOH JIMHEWHO He3aBUCUMOH CHCTeME

! m
X =2 ab. (12)
IIyCTL Teneph Ha XaoTHYECKHH CUTHAN B KaHaJle BO3JEHCTBYET rayccoB IIyM ),
Yi =X+ M (13)
[fie y, - OFCUETR, IPHHAMaeMble IPHEMHHKOM. BBEfleM cucTeMy BEKTOPOB
Y=X+N, (14)

rae N=(n, . My )-
‘B ormume or BBKTOpOB X., KoTopble NpHHA[IeKaT NpocTpancTBy R™
PasMEpPHOCTH M1, BEKTOPHI N, ﬂpHH&I.[J]EH(&T IIPOCTPAHCTBY R™ pasmepHocTd m’,

ITOCKOJIBKY KOMIIOHEHTHI B HUX - HE3aBHCHMBIC CJI}"'-IElﬂHbIC BEJIWYHHBI,
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Pasnoxnm BexTophi Y, 1m0 Gasucy (OpTOHOPMMpOBaHHOH CHCTEME BEKTOpOB)
b,i€l...my

 =(,.Y, )=, X,+N,)=(bX,)+ (b, N,) =0, +8,. (15)
O6o3saunM yepes Y, mpoekmmio BexTopa Y, Ha IOAmpOCTPaHcTBO R
:2 By b; E: (a, +8, )b, (16)
OTa NPOeKIUs HCHOIB3YETCS KaK CHTHAN-OLEHKa HCXOJHOIG CHTHANA, TO €CTh
}E! =Y,. ' (17)
Cpassum BekTophl X, B Y, X, # AX!
Y -X, Il = (N,N,) = 2; ;0,2 (18)
rzie |l - [l o3HavaeT KBafpaTHIHYIO HOPMY.

Iocrymast ananorayHo BBoAy opMyinbl (10) u cHOBa BOCTIONB30BABIIUCEH TEM,
yTO B 6a3@ce BEKTOPOB b, BrmomHeHo (B'B), =\, monyyum

be_E 62+E

IX X | = 1Y, X )| = IZ"%(ct, +8,)b, - £, et b, SN (19)

Tagmm 006pa3oM, €ciy YpOBEHB IIyMa AOCTAaTOYHO BBICOK, TaK YTO Mbl MOXKEM
IpeHedpeys BTOpbIM wieHoM B cymme (19), To MOIUHOCTE mIyMa B CHrHaje Tocle
(bAIBETpALEE HIDKE, YeM MOIHOCTS HeXofHoro myMa (18).

O6o03HaunM OTHOILIEH}E curHal/iym Ha Bxofie ¢uibrpa kak C/II u Ha BbIXOfE
dunprpa Kag C/IE, . Ecnm mym pacripefieieH paBHOMEPHO MEX]y OpTOTOHAIBHBIMH
KOMITOHEHTaMH, TO BbIUT'PBII B YPOBHE IIyMa COCTABUT

K = (C/I)/(C/II__) = m'/m,. (20)

Benmuuny K 6yjiem Ha3bIBaTh KO3 OHIMEHTOM OYHCTKM CHT'HANA OT IIyMa.
[TpencraBnennoe B genubenax, STO BbIpaskeHHE IIPUHAMAET BUI:

= (C/L, - /ML ), = 10 lg(m'/m,). (21)

BBIX
Taxum 06pa3’oM, BEIMIPLII B IOABAECHHH 1TyMa PONOPLKMOHAJIEH JIJIHHE BEKTOPa
m' ¥ 0GpaTHO TMPONOPLUHOHATEH MHHEMAIBHON Pa3sMEPHOCTH ITPOCTPAHCTRA BIOXKEHUS
Mg, a CIENOBATEILHO, PA3MEPHOCTH aTTPakTopa.

(dB)

2. KoMubBIOTEpHOE MOJETHPOBaHHE

AmnpoOauus aropurMa Oblia IPOBecHa Ha IpuMepax cucteMbl Peccrepa
X=-Y-2
Y=X+aY, (22)
Z=b+(X-c)Z

npu 3HayeHusix napameTpos a=0.15, b=0.2, ¢=10 u gns xomwueBoro reseparopa c 2.5
CTEIIEHsIMU CBOGOJBI [9], OMUCHLIBAEMOTO CUCTEMOM YPAaBHEHUH
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TX + X = mF(Z,)
7 vad +0Z, =0,
Zy+0yZy + 02, = 0,’Z,

npu 3uaveHusix napamerpoB o,=0.06, o,=0.28, o =1, w,=0421, T=0.8, m=33 u
HenmHewnocTr F(Z) Baga

F(Z) = |Z+e,| - 1Z-¢ )| + 0.51Z-¢,| - 0.51Z+e,).

(23)

(24)

PesynbTaThl YHCHEHHOIO MOJIENMPOBAHUs NpeficTaBIeHbl Ha puc. 1-3.

Ha puc. 1 noka3asbl cneKTphl COOCTBEHHBIX 3HAYSHUH KOBapHAIIMOHHOM MaTpHITbI
B'B mnst cucrem (22) u (23).

Y3 puc. 1 BujHO, YTO BenmuMHa COOCTBEHHBIX 3HAUeHM} A, OBICTPO CHajaeT ¢
pocToM i. TToaToMy pasnoxerue o nepsBbM 5-10 cOOCTBEHHBIM BEKTOPAM MO3BOISET
HONYYHTH TOCTATOYHO TOYHYIO AIMIPOKCHMALHIO ATTPAKTOPA CHCTEMBI.

Ha puc. 2, 3 npejictaBies pe3y/ibTaT NpUMEHEHUs alropuT™Ma (puibTpaiyy (Ipu
pasmepHocTsx my=10 u m'=40) k currany, resepupyemoMy cuctemamu (22) u (23),
noABepriieMycs BO3JICHCTBHIO aIiTHBHOrO rayccoBa nyma. KpuBele Ha pmc. 2
IOKa3b[BAOT 3aBHCHMOCTL OTHOMICHHS CHIHA/IIYM IIOCHe TpUMEHEHHS HpOLEeypsl
(hunbTpaMU OT OTHOILEHAA CUrHAn/iuyMm fo dunbrTpaumd. Ha puc. 3 mpepcrasieH
KO3(hQUITMEHT OUUCTKY, TIOIyYeHHbIH B pe3ylbTaTe (PUIbTpaIyu.

OrTHONIEHUE CUTHAN/IIYM Ha BbIXofe (DUIILTPa onpefenseTcs OBYMS (akTopaMu.
Bo-nepBhIX, TOYHOCTEIO aNNPOKCHMALMY CHTHANIA IIPH €0 Pa3fokKeHHH 10 HECKOIbKHM
BekTOpaM OGasuca. DTO INyM  ammpoKCAMAlwH. Bo-BTOphIX, IIyMamMH B KaHaje,
MOCTYTIAFOIIMA BMECTE C CUTHATIOM. ANTOPUTM (PHIBLTpAIMuU ROOABMISICT K CUT'HATY LIYM
aImpOKCHMAIH 1 OCYIIECTBISET OYMCTKY CHI'Hala OT ImyMoB B Kanane. Ilycts S -
MOLIHOCTb XaOTHYECKOTO CHTHANA, N - MOIIHOCTh IIyMa B KaHale, N, - MOIIHOCTb
myma ommOoK amipokcuManmy. Torja OTHOMIEHHE CHIHAN/IIYM Ha BXope (puibTpa

pPaBHO
C/,, = S/N.,.

OTHOWICHAE CHrHAJ/MIYM Ha BhIxofie (PUIBTpA IIpH OTCYTCTBHE HIyMa B KaHAlle
WJTH TIPY TIOJTHOM OUMCTKE OT HEro CHTHala paBHoO

/L, = SIN,. (26)

B o6meM ciyyae ypOBeHB IIyMa Ha BeIXofie HEIbTpa OyfeT yHKIMEH OT YpOBHS
nIyMa B KaHaJle ¥ YPOBHS IIyMa allliPOKCHMAaIlHU

Nnux (Nx ’NQ ) ; (27)

Kak BugHO H3 pHC. 2, OTHOLICHUE
CHTHAN/yM Ha Bxofle WwibTpa IpH
YMEHBIIEHUY YPORBHS IIyMa B KaHaJle cTpe-
MUTCA K (PAKCHPOBAHHOH BENWYUHE, KOTO-
pasi onpenensAeTcs ypOBHEM IIyMa arpok-
civamy, IIpx manoM ypoBHE IIYMOB B
KaHalle KO3(h(pMUKCHT OUMCTKA TafaeT o
MOXET CTaTh OTPHIATENLHEIM (pHC. 3).

3T0 MOXHO OOBSCHATE CICAYIOLUIAM
ofpasoM. PaGoTa anropurMma HuILTpanui

(25)

N
=

10°¢
0 10

20 30 i

OCHOBaHA Ha TOM akrte, YTO My<<m’ H
9TO MO3BOMSET CHH3UTL VPOBEHL NIyMa

Puc. 1. 3apucEMocTs BeMMuMHBI COOCTEEHHOTO
3HaYeHHus A, OT ero Homepa i
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Puc. 2. SapucumocTs oTHomeHuss C/III mocne  Puc. 3. 3apuciMocTe XoaddmmenTa OUHCTKH OT
NpuMeHenms — anropuT™a  mmbTpammm  or  orTHouwlenus C/II B xanane. I - KoblueBad CHCTEMa

otromerms C/III B kaHane. I - KonbUepas cucTeMa € 2.5 crenensmit cBoGosiel, 2 - cuctema Péccaepa

¢ 2.5 crenensmvu cBofopel, 2 - cHcTeMa PEccrepa

OpUONMSHTENLHO B m'/m,, pa3, IPaKTHIECKH He BIHSA HA MOLIHOCTb chrHanma. OfHako
OpY 3TOM IIpH TpuUMeHeHMH (UAbTPA MCHOJIL3YETCS AMNpOKCHMAlls CHIHalla ero
nMpoeKiMell Ha HEKOTOpbLA 6asuc, NPUBOXAIAS K BOSHUKHOBEHMIO OMMOKM (mIymy)
ammpokcuManuu. Ecnu 3Ta ommOKa CTaHOBHTCS CPaBHEMOMN C BENIUMHON OLIMOKH,
BHOCHMOI} IIIyMOM, TO OTHOIIEHNE CHTHAJ/ITYM GyIeT ONPENesIAThLCS He YPOBHEM IIIyMa B
KaHajle, a YypOBHeM OLIMOKA aNlIPOKCHUMaIWH, BHOCHMOM IIPH MNpPOCUHPOBAHUU
TPaeKTOPUH Ha M, - MEPHOE HOATIPOCTPAHCTBO.

[TosToMy mMpH BBICOKWX OTHOUIEHHMAX CHTHa#/IryM TpebyeTca Oosice BBICOKas
cTefieHb aIMIPOKCHMAIMK, KOTOpas, B NpHHUMIE, MOXET OBITh JOCTHUTHYTa IyTeM
MCKYCCTBEHHOTO 3aBbIIUEHAS Pa3MEPHOCTH 11y, TO €CTh BEIGOPOM GOTIBIIETO KOMMIECTBA
BEKTOPOB B KauecTBe OasucHbIX. OJHaKO B 3TOM CJy4yae CHIDKAETCS 9(P(EKTHBHOCTH
(bHIILTpAIHIL, TIOCKOTIBKY, YMEHbIIAs OTHOMICHAE 171’ /n1;, Mbl YMEHbIIaeM BO3MOKHOCTH
mis cumkends yposus myma (cm. rakske (18)). 3ameTuM, UTO B COOTBETCTBHH C
chopmyoit (21) MaKCHMANBHBII BBIATPBIII B OTHOLIEHHH CUTHAJ/IIYM, HOJy4aeMblil NIpH
m'=40 u m =10 ponxeH GbITH OKONO 6 nb. Ha puc. 2 MOXHO BURETH, YTO TNPH OOJBLIUX
[IyMax 3TO 3HayeHHE MPaKTHYEeCKH JocTHraercs NI obeuX cHcTeM. C NMOHMXCHHEM
YPOBHS IIyMa B KaHalle BbIUTPhIUI YMEHLIIAETCH.

3akayenne

IMpo6neme QUAbTPAUIMH XAOTHUECKUX CHTCHANIOB YENAETCS 3HAUHTENBHOE
BHMMaHMe B JinTeparype. OfHaKo pa3sBHUTBIE METO[bI, KaK NPaBUIIO, NpeHa3Hade bl 11
o6paboTku 1160 3anHCcaHHBIX JAHHBIX, MO0 MEJIeHHBIX TOTOKOB NaHHbIX. [losToMy HX
CJIOXHO TIPHMEHHUTH B TEIEKOMMYHHKALUMOHHLIX cucteMax. Ilomxon, paccMOTpPEHHbIH B
HACTOSAIIEH CTaThe, TPUHAIVICKHUT K Ki1accy cy0onTUMaNbHRIX MOAXON0B. Ero OCHOBHBIM
NPEHMYLIECTBOM SBIISIETCS TO, 4TO OH MOXeT OBITb NPUMEHEH B CHTYalHsX, KOIZia
CKOPOCTh (QUILTPYEMOrO CHTHAa BbicOKa. KOHIENTYallbHO 3TOT IOEXON OIHM30K K
cxeme 06paGOTKY IaHHBIX TP NOMOUH (PUILTPOB B KOMMYHUKAIMOHHBIX CHCTEMaX.

3aMeTHM, YTO, XOTS [IaHHLIHA aJTOPUTM H IOXO0X Ha aJlfOPUTMb], PACCMOTPEHHbBIC
B [8, 10], pe3yibTaThi HX NPHMEHEHHS CYLIECTBEHHO Pa3yaloTcs. B NPelIOKeHHOM
QIrOPHTME MNPOCUHPOBAHHG OCYLISCTBIACTCA Ha 3apaHce NpPHIOTOBJIEHHBLIH Gasme,
IIOTYYEHHbIH Osarogaps HalleMy 3HAHUIO ITHAMUKY CHCTEMbI, B TO BPEMsL KaK B CTAThAX
[8] 1 [10] 6asuc nonyyaercst Ha OCHOBe HaG/MIOfaeMbIX 3HaueHNH peanu3ayuu. [loaromy,
B OTIIMYHME OT METONoB, paccMoTpenHbiXx B [8, 10], Ham nopxopn, Grarogaps 3HAHHIO
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YHCTO# (pa30BOH TPAEKTOPHM CHCTEMA, IPUMEHHM B CHTYaLHsX, KOIJa YPOBEHL IIyMma
IIPEBBIIAET YPOBEHE CHIHAJA.
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MATCHED FILTRATION OF CHAOTIC SIGNALS
A.S. Dmitriev, G.A. Kassian, L.V. Kuzmin

In this paper an approach to cleaning chaotic signals from noise (filtration of
chaotic signals) is proposed that is based on the fact that, in contrast to random processes,
chaotic signals are related in the phase space to limit sets (attractors) of relatively low
dimension.
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THREE SUBPROBLEMS OF GLOBAL MODEL RECONSTRUCTION
FROM TIME SERIES AND THEIR PECULIARITIES

T. Dikanev, D. Smirnov, V. Ponomarenko, and B. Bezruchko

We consider three main subproblems of global reconstruction of dynamical models
from time series: selection of dynamical variables, selection of model function, and estimation
of model parameters. Special techniques for their solution are presented. Their applications
and prospects of the further development of empiric modeling methods are discussed. The
approaches are illustrated in numerical and acoustic experiments.

1. Introduction

A traditional way of obtaining a mathematical model of a complex phenomenon
from the first principles cannot often be realized in practice. Then, experimental data may
become the main source of information about a system under investigation and problem
of an empiric model construction may arise. Since observations of real-world processes
are presenied, as a rule, in the form of time series (discrete ordered sequences of
observable values), the problem is called modeling from time series. It is important in
physics, meteorology, medicine and physiology, etc. Since 1980s various methods for
constructing deterministic low-dimensional models in the form of difference equations
(maps) [1-3] and ordinary differential equations (ODEs) [4-16] have appeared in the
framework of nonlinear dynamics. In particular, significant contribution to this field has
been made by V.S. Anishchenko and his team [8-11}.

In general, the problem of modeling from time series can be formulated as follows.

» There is a system of our interest («an object»).

* One picks out some quantities m,,...,n,, which characterize the processes
occurring in the system and which can be measured experimentally (they are called
observables).

» A time series of these quantities (i.e. the finite sequence {n(z)}

n(t)=(n,(t)m,(t)s-..m,(t,), t=iAt, At is a sampling interval) is measured.

« It is known that the object possesses a set of properties {P,,....P, ).

Based on the time series, it is necessary to construct a dynamical model capable of
reproducing this time series and as many of the properties {P,,...,P, } as possible. Models
are constructed in the form of differential equations (1) or discrete maps (2):

dx/dr = F(x(r),c), ; (1)

N where

=1
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=F(x,.c), )

where x=(x,,...,x,)ER? is a state vector of the model, F is a smooth function, cER” is a
parameter vector, ¢ is continuous time, » is discrete time. If the function F 1s expressed
analytically in terms of elementary functions (in a closed form) for the entire phase space,
then the model is called global. Further we consider only global models.

The success of modeling depends on several factors. It is exceedingly important to
select properly a model structure that involves the choice of dynamical variables x, (that
is the relations between dynamical variables x, and observables 1]) and choice of the
form of the function F.

So, the first subproblem of time series modeling is selection of dynamical variables
and reconstruction of their time courses from the observed time series data. If there are
too many observables then one should specify a subset of them to be used as model
variables. If the number of observables is not sufficient for model construction or they
cannot be used directly, then different combinations of available data are employed. Very
popular methods are sequential derivatives and time delays ([S] and [6], respectively),
both of them rest upon the celebrated Takens' results and their generalizations [17].
However, different ways of obtaining dynamical variables realizations, which are based
on a priori information about the system under investigation or some peculiarities of its
dynamics [8], may prove to be more appropriate for modeling. In Section 2 we present a
technique for the selection of the best set of dynamical variables for modeling, which
allows simultaneous convenient testing for nonlinearity.

The second subproblem is to specify the form of function F. Algebraic polynomial
is a standard recommendation [6], even though often inefficient [13]. To make
polynomial more feasible different methods for spurious terms detection and exclusion
were suggested which work well for a special situations [2,14,18-20]. In Section 3 we
present a new method for spurious terms detection.

Third subproblem is technological: to estimate model parameters ¢ (usually the
least-squares routine is used). Finally, an obtained model should be validated. But even if
the model is not sufficiently adequate, model coefficients may have their own value and
serve for the characterization of the system. In Section 4 we consider such a situation
where coefficients of a model map describing phase dynamics are used to solve an
important problem of coupling characterization [21] and suggest extension of the known
technique for the case of short and noisy time series.

:r+1

2. Selection of dynamical variables

As it has been already mentioned to construct model equations in the form

y(9)=F(x(¢)) from a time series [n(r )}, one forms, first of all, the series of state vectors
{x(z)}. Then, the time series of quantities to enter the left-hand side of model equations
[y(r )} is obtained from the time series {x()} according to the chosen model type:

e via numerical differentiation of [x(r )} for ODEs, since y(t)—dx(r)/dr

» via the shift of {x(z)] along the time axis for discrete maps, since y(z)=x(z,, ).
Finally, the form of the funct:on F is specified and its parameters are cstn‘nated

Voluntary dynamical variables selection can make approximation of the
dependencies y(x) with a smooth function extremely problematic [22,23] or even make
these dependen(:les many-valued. Here, we describe the method for assessing suitability
and convenience of the selected vanables 2y for constructing a global dynamical
model. It is based on testing the time series [y( )? and {x(z,)} for single-valuedness and
continuity of each dependency y(x) in the entire region of an observed motion. It is
crucial here that we use local characteristics rather than the averaged ones as in [24].
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2.1. Description of technigue. If a dependency y{x) is single-valued and
continuous in a domain V, then the difference |y(x)-y(x,)! tends to zero when llx-x/I—0
for each x, €V In practice, violation of this condition may be viewed as a sign of many-
valuedness or discontinuity of the dependency y(x). Since the length of an observable
time series is finite, the above-mentioned limit cannot, strictly speaking, be found.
However, it is possible to trace a tendency in variations of the quantity iy(z)-y(z)! when
the vectors x(z;) and x(tj.) are made closer and closer, down to a certain finite distance.
Given sufficiently large amount of data N, high accuracy of measurements, and low noise
level, the distance Ilx(z)-x(#)!l can be made sufficiently small for each local region of
observed motion.

The technique of testing consists in the following (Fig. 1, a). The domain V
containing the set of vectors {x(z,)},_,"° is partitioned into identical hypercubic boxes of
the size 8. All boxes containing at least two vectors are selected. Let us denote them
8155528~ The difference between the largest and the smallest values of y inside a box s,
is called local variation e=max, (x)-minxssky(x). The largest local variation
€. =MaxX, €, and its graph am@)y are used as the main characteristics of the
investigated dependency. Suitability of the considered quantities x and y for global
modeling is assessed using the following considerations [25].

. If a dependency y(x) is single-valued and continuous, e___is sufficiently small for
small & and tends to zero for -0 (Fig. 1, b, filled circles). The following statement is
often correct: the less the slope of the graphe__(6), the better are the dynamical variables
for modeling.

e
LO[ .evpmosiiiiis g
0.5+
1 ,ao.‘.'...’
0-O-IEH"..:.:::—::::
*1 1.8 0.0 0.05 8

a b
Fig. 1. (a) Illustration for a technique of testing a dependency y(x) for single-valuedness and continuity in
the case D=2. (b) Possible appearance of plots ¢ __(d) for different variants of dynamical variables
. If a single-valued and continuous dependency has a region of very steep slope (a
«jump»), then ¢ remains rather big even for sufficiently small 6. However, further
decrease in 8 leads to decrease in¢_,, and the graph e (3) exhibits a «kink» at the value
of & roughly equal to the size of the steep slope region (e.g., Fig.1,b, white circles). In
such a case, the dependency y(x) is difficult to approximate with a smooth function.
-Ife__ remains large and does not diminish for 3—0 (Fig. 1, b, filled squares) then
the considered variables are not appropriate for global modeling. Such situation may be
related both to nonuniqueness of the dependency and high noise level.

2.2. Numerical example, refinement of technique and testing for nonlinearity.
The above technique was already published and sufficiently illustrated previously [25].
Here, we describe briefly an approach to refinement of the technique and its use for
assessment of nonlinearity of a dependence y(x). Besides, we present the application of
the refined technique to the analysis of a biological time series.
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The procedure described in Section 2.1 is a technique with a fixed-location set of
nonoverlapping boxes (independent of the distribution of data points). It has the
disadvantage that a vector X lying near a box boundary is never compared to the close
vectors from the neighboring boxes, but it may be compared to more distant vectors from
its own box. It can lead to intensive oscillations in the e__ () for small 8 in the presence
of noise. The nonmonotony makes the assessment of the considered dynamical variables
more difficult. An example of such situation is illustrated in Fig. 2, ¢, where the results of
testing are presented for chaotic regime of the logistic map x  =A-x 2 at A=2.0. The
observable is m =x +E , where § is a sequence of independent identically uniformly
distributed random values. We test the dependencies corresponding to the first iterate
1,.1(n,), to the second one n,,,(n,), and to the third one n_,.(n,) using the time series
containing 1000 data points (see Figs 2, a, b for noise-free data).

The disadvantage of the technique may be obviated by using the set of overlapping
boxes centered at the vectors of the time series (data-dependent location) instead of the
fixed-location set of boxes. In other words, for each vector x(r,) one should consider all
its 3-neighbors, i.e. to calculate local variation of y in the box with the side 28 centered at
x(t). The number of considered boxes is then equal to the number of vectors N,. The
largest value of local variation obtained in such a way (let us denote it e_ ')
monotonically decreases with decrease in 8. This advantage of the modified procedure is
illustrated in Fig. 2, ¢, d for the above mentioned case of the logistic map.

Due to this advantage, the plot ¢ ‘() is more reliable and informative. Note also,
that the plote__ '(8) is a straight line if the system under investigation is linear. Therefore
the plot ¢__'(8) can serve as a test for linearity. Its concavity indicates nonlinearity of the
system under investigation (Fig. 2, d). As an example of the proposed techniques
application to a complex real-world system, let us briefly consider testing of an acoustic
time series. This is a digitized recording of the human voice (in fact, air pressure
variations), which was done when a man was pronouncing the sound [a:]. Sampling
frequency is 44.1 kHz. The recording length is 10000 data points. A dependence
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Fig. 2. Comparison of testing techniques in a numerical experiment. (a) The first, the second, and the
third iterations of the chaotic logistic map. (b), ( ¢) Results of testing with the fixed-set-of-boxes technique
from noise-free and noisy data, respectively. (d) Results of testing with the modified technique from noisy data
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Fig. 3. Testing vocal time series described in Section 2.2. (@) The fixed-location set of boxes technique
indicates many-valuedness. (b) The modified techniques indicates also nonlinearity

.MMM, ,) is tested. We present the plot e (8) in Fig. 3, g; it does not indicate
single-valuedness. Other conclusions can hardly be drawn from the figure because of the
above-mentioned disadvantages of the fixed-location set of boxes technique. The
modified technique leads to the monotone plote_ '(6) (Fig. 3, b). It is easily seen that the
dependence e__'(8) is significantly concave that allow a conclusion about nonlinearity of
the system under investigation.
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3. Detection of spurious polynomial terms

Choice of the model function F is also very important problem, which comes into
play after selection of dynamical variables. In the typical case of absence of detailed a
priori information about proper function form, one usually uses algebraic polynomials
relying upon many rigorous mathematical results (Weierstrass’theorem). But model with
polynomials are often inefficient because of their very bad extrapolation properties that
are determined by the presence of «spurious» terms (basis functions).

Theoretically, polynomial terms should be regarded as spurious if «true» values of
their coefficients (coefficients of the «true» function expansion in a power series) are
equal to zero., Detection with subsequent exclusion of several spurious terms from the
model polynomial can lead to significant refinement of the model. But, different
approaches to detection of spurious terms have been suggested: small absolute values of
the corresponding coefficients [2], small values of the coefficients with respect to their
standard deviation (Student’s criterion), intensive variation of coefficients around zero
when different parts of a transient time series are used for reconstruction {14], slight
change of the approximation error when the term is excluded from the model [19]. Here
we develop a new (and, in our opinion, more general) approach to detection of spurious
terms.

Again, theoretically, rather typical situation is such that neither of terms is
spurious. If the true function is, e.g., exponential, its expansion in a power series involves
nonzero coefficients at each power of a variable. In such a situation, when time series is
analyzed, adding of each term to a model structure would lead to decrease of the
approximation error. Nonetheless, some of the terms are undesirable (practically
spurious). We state that those terms are practically spurious which affect approximation
errors only in a narrow domain of the phase space. We conjecture that such terms can be
detected as those terms whose coefficients depend strongly on the distribution of the data
points in the phase space. (If all coefficients slightly depend on the distribution of data
points, one may reasonably guess that such model function describe an object not only for
the domain explored by the observed training time series, but also in its neighborhood,
that is the function has good extrapolation properties.) .
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To determine how strongly a coefficient value depends on the distribution of
training data points, consider its change under variation of the weight function p(x,) if
coefficients values o, are found by minimizing the weighted squared sum of errors

N M
SZ = zizlp(x,:)[F(x;)'zkzlakgk(xi)]z' (3)
Here F(x) are true (observed) values of the approximated function; g (x,) are basis

functions (terms). Weight function p(x,) is normalized to unity Z{sz(x;):l-
If the set of basis functions is orthonormal, then coefficient values read

N
o, = I, p(0)F(x)8(x). (4)
Approximated function can be expressed as
M ~
F(t) =2 _ a,g,(x) + F(x), (5)

where F(7) is approximation error.
Let us consider now how the values of coefficients will change under slight

variations of the weight function p—p'=p+p. Because of weight function normalization
the variation satisfies

N A
Z_p(x)=0. (6)
Impose also the condition of smallness of variation in the form
N £
2z _pi(x)=¢% (7)
The change of coefficient in the linear approximation is
M -
Aoy = X 1p(x) g, (x)F(x,). ®)

To estimate the intensity of coefficient variation consider Aa, as functional of p For its
maximum with supplementary conditions {6) and (7) we have

Aty = e[Z,0 (8, () F(x) - (UNYE, g, (r)F ()22, ©)

If we suppose that at the beginning the weight function was uniform for all training
time series poiats, that is p(x,)=1/N, then as a consequence of orthogonality of basis
functions and approximation error, we have

Doty = o1Z,0,(5,(8) F ()22 (10)

As a criterion for exclusion (or inclusion) of basis function we can use the ratio
between the maximum possible change of coefficient value (10) and the coefficient value
itself

C, = [, (g, (o) F () TUE, g, (x)F(x)] (11)

Formula (11) was derived for orthonormal basis functions. In practice this is
usually not the case. However when we decide if the basis function is spurious or not we
can consider only its projection orthogonal to all other basis functions g,'(x). After this
we can freely use the method described above. We don’t need to calculate this projectionin
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explicit form. Let I':;c(x) be an error of approximation in the absence of the k-th basis
function, then the orthogonal projection of the k-th basis function is

g/ (x) = (F (%) - F())l e, (12)

where «, is coefficient for this projection, calculated with least squares method.
After substitution of (12) into (11) for coefficient instability we have

€, = [E (B ) Fo) P(F) ISy (F () FE) PG (13)

Above we talked about exclusion of spurious terms from initially large basis, but
adding the most suitable functions can also optimize the basis functions set. We can
choose them using the same methodology, according to minimal value of criterion (13).

Let us illustrate proposed method on test example. The realization of x variable
from Rassler system in chaotic regime is used as time series. Fig. 4, b shows phase
trajectory of this system reconstructed with time delay method. Model is constructed in
the form

l 1
N s *NPUG
e L}

100 f175-
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Fig. 4. (@) Comparison of test part of time series generated by Rossler system in chaotic regime with time
series generated by optimized model. Good prediction for about 6 quasi-periods is observed. ) Phase
trajectory of Rissler system reconstructed with delay method from time series of x variable. (¢) Phase
trajectory generated by optimized model. @) Error of approximation of training time series (thin curve)
and error of test time series prediction (bold curve) as a function of basis functions number, added during
process of basis functions set optimization with new method. () The same as (d) for old method
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dx,/dt = x,,
citzfd! =X, (14)
dr,/dt = f(x, %, ,%,)-

If we transform the Rossler equations into the form (14) we will have rational
function f. We will try to construct the model in universal form using polynomial of the
6th order as function f. The short part of 200 data points (about 3 quasi-periods) is used
as training time series. Let us add to initially empty basis such function for which the
relative variation of coefficient (13) is minimal.

In Fig. 4, d the dependencies of training series approximation error (thin curve)
and error of prediction of test time series (bold curve) on the number of added basis
functions are shown. Errors are normalized by the standard deviation of the third
derivative dx,/dt of training time series. One can see that training series approximation
error decreases monotonous, while the prediction error for test part of time series has
minimum when the number of basis functions is 32 and it is equal to 0,032 (3.2% of
standard deviation). At this moment the error on training series is 0.008. Before
optimization (when we use full polynomial of the 6th order) the behavior of the model
was divergent. After optimization the model generates stable trajectories and allows
prediction of about 6th quasi-periods of test time series. In Fig. 4, ¢ the phase trajectory
generated by the model is shown. One can see that the trajectory is located in the same
phase space domain as the trajectory of Rossler system, but the cycle of period 2 is
eventually established.

In Fig. 4, e for comparison purposes the results of optimization of basis functions
set with previously known method is shown. In this method we add to the basis such
functions that allows maximal decrease of approximation error. One can see that the
sequence of adding basis functions is different from proposed method. The best basis
according to test series prediction error includes 33 functions. This best error is 0.034
(slightly worse than with new method), error of training time series approximation 0.006.
The behavior of the optimal (from this point of view) model turns out to be divergent. So
we can state that in this example new proposed method of optimization outperforms the
well-known one.

4. Determining character of coupling between
subsystems from time series

The problem of determining the presence and direction of interaction between two
subsystems is very important in many fields, including physiology and medicine where
interaction between human cardio-vascular and respiratory systems [26,27] and between
different brain areas are of interest [28-30]. Thus, recently Rosenblum and Pikovsky
suggested a very delicate and nice idea for characterization of weak coupling between
subsystems from time series by estimating coefficients of a model map [21]. But their
method works well for the case of very long time series (for «reasonable» noise level,
time series should contain about 10*...10° data points). In practice, nonstationarity of
processes, impossibility to collect sufficient amount of data, and significant noise often
require estimation of the interaction (coupling) characteristics under conditions of short
observation interval. Here, we develop an extension of Rosenblum and Pikovsky
approach to the case of short” and noisy time series. For a detailed consideration see [32].

i E.g., typical quasi-stationary segments of electroencephalogram (EEG) is about 5 seconds long
[31}. EEGs are recorded at typical sampling rate of 200 Hz. Then, quasi-stationary segment contains about
10 - data points. Roughly speaking, typical length of a short time series in practice is of the order of 10° data
points,
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4.1. Evolution map approach. The technique of Rosenblum and Pikovsky is based
on construction of empiric model maps, describing phase dynamics of the subsystems,
and is called evolution map approach. Having an original time series ()1, where
ny» m, are obsetvableg, t=iAt, i=1,... N, At is a sampling interval, one calculates the time
realizations of phases {9, (1)}, and construct a global model map, which characterizes
the dependence of phase increments (over a time interval tA7) on the phases of
subsystems’ oscillations, in the form

A 1) = 45 (#4A7) - ¢, (1) = F (0 (0,5 (Da,), (15)

where 7 is positive integer; a, , are vectors of the coefficients of the functions F 2 F; jare
trigonometric polynomials:

F 1(¢1a¢’2) o z,i; au&'(‘i’] ’%)s (16)

with g,=1; g=cos(m¢,+ng,) for even i22; g=sin(mg¢,+ng,) for odd i23; L, is the
number of terms of the polynomial F,. For i22, m,=m, , are nonnegative integer,
n,=n,,, are arbitrary integer, and by definition m,=1, n,=0.

2
Using the estimates of coefficients a, ,, obtained from the time series via the least-
squares routine, one computes intensities of influence of the second subsystem on the first

one (2-1) ¢, as
oy = 12) ) I (OF (0,0,8, /00,2, dp, = 3, nd, 2. (17)

Everything is similar for the influence of the first subsystem on the second one (I—2) Ez.
Directionality index is defined as 3:(52-51)f(32+51). Since AcmZO, d takes the values only
within the interval [-1,1]; d=1 or d=-1 corresponds to unidirectional coupling (-2 or
2-»1, respectively), d=0 for ideally symmetric coupling.

4.2. Short time series. For very long time series (N—) the estimates 31, Ez, and d
are unbiased and have practically no scattering, in other words, the method gives correct
characterization of coupling. However, if the time series is short, the following important

questions arise. Are the estimates ?31_2, d biased or not? How can statistical significance of
the results be estimated? To illusirate importance of the questions, let us consider a
simple demonstrative example, when two subsystems are uncoupled and linear, that is a
system of difference equations

A, '2(1‘) == ¢1~2(t+2n) . ¢1‘2(e‘) = 21w, , + ¢ ,z(t), (18)

where ¢ , are Gaussian random processes independent of each other with variances
2aD, ,. Obviously, correct values of coupling should be c;=c,=d=0 in this case.

We have carried out numerical experiment in the following way. Time realizations
of original equations were simulated using the generator of pseudo-random numbers
realized in the subroutine DRNNOR of the library IMSL. Initial conditions for each
realization are random numbers ¢,(0), ¢,(0) distributed uniformly on the interval [0,2x].
We obtained 1000 short time realizations (1000 pairs of scalar time series) with the

length N,=10° The values of estimates 51‘2 and d are computed for each of them. From
the obtained sets of values we construct histograms.

The estimates 21 ,and d appear misleading. Their distributions are shown in Fig. 5.
Thus, in the case of identical subsystems (D,=D, and o,=w,) Acl is always positive and
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Fig. 5. Histograms for the estimates of coupling, constructed as a result of processing of 1000 time realiza-
tions of the equations (16) withw,=w,=1.0 (a), (b) 21 (a biased estimate) and d for identical subsystems
with D;=D,=0.4. (c), (d) 21, 22 (exhibit different biases) and d (exhibits negative bias) for subsystems

with different noise levels D.=0.4, D.=0.1. (e), (f), (g). and #) %1, ?;2, and & (unbiased estimates) for the
situations corresponding to (c}), (b), (¢), and (d), respectively

takes sufficiently large values (Fig. 5, a), ie. it is a biased estimate for ¢,=0; d is

unbiased, but exhibits quite a large scattering; even the values of d=+0.4 are encountered
quite often (Fig. 5, b). Thus, it is very probable to get spurious indication of the presence
of interaction from a single realization. The situation becomes even more complicated
when subsystems are nonidentical. It is illustrated in Fig. 5, ¢, d for the case D,>D,,

w,=w,. The estimates 2‘1‘2 are biased, bias in 21 being greater (Fig. 5, ¢). This leads to

biasedness of d whose values are systematically less than zero (Fig. 5, d). Hence,
predominant influence (2—1) is diagnosed, even though coupling is absent in reality.

4.3. Corrections to evolution map approach and novel unbiased estimates of
coupling. By careful analytic consideration of the problem we found out the cause of
biases and developed corrected estimates of coupling [32]. Novel unbiased estimate of ¢ *
is the quantity

;= 2’12 - EL]' n.zc;& ”2, (].9)

=1""1

where G, ? are unbiased estimates of variances 0, 2. Derivation of &, ? is not trivial.
Under some simplifying assumptions (noise ¢, ,() are Gaussian, coupling between sub-
systems and their individual nonlinearities are very weak) we obtain the following

analytic expression for o, %

o, 2= (20, N1 + 257 (L-jir)cos((ma, y+n,a, )jfe)emdannideid >1,  (20)

where o, 2 are estimates of noise variances, their derivation is straightforward.
A . u . . .
Normalized index d is replaced by nonnormalized quantity d=c,*- clz, whose unbiased

estimator is 8 = {;2- 'Fl.
To estimate reliability of numbers ;-12 and & obtained from a single realization,
one needs the estimate of variance of Ayl (we denote it as 04?). After some algebra and

174



cxpemnemauon, we derive a semiempiric formula [32] for cr‘f2 in terms of estimates

a,, and 6; * derived earlier, we do not present it here for the sake of brevity. Since y
hag a skewed distributicn for low order mgonomemc polynomials F, , typically used, we

take asymmetric expression [y,-0 -0}, y1+[30“] as a confidence interval for ¢ % We found
constants « and f empirically to provide necessary significance level; 95% confidence
interval is obtained if a=1.6, p=1.8. Conclusion about the presence of influence (2—1)
can be drawn with probability of error 0.025 provided

Y, - aoy > 0. (21)
The degree of belief can be adjusted by changing o (and, hence, confidence interval

width).
Conclusion of predominant direction of interaction can be drawn after estimation

of the variance of 8. Its «good» estimate is a¥=0y 2+0A 2. Our experiments show, that

a=1.6 also provides approximately 95% conﬁdence interval for 8 in the form § + acsa
More accurately, the values

Y,-00;,>0 and §-ag;>0 (22)

(a%lox;f)t)he statement about influence (I—2) with probability of error 0.025 (similarly for

Results of application of the proposed estimates 3'1 2 and 3 to the above mentioned

example (17) are presented in Fig. 5, e-h. Systematic errors in y and d are absent. Fig. 6
demonstrates usefulness of the interval estimates to ensure rehablc conclusions of
coupling direction.

0.8 - 0.8 -
) N LY SO.O-W
o0 .'o. ¢ e ., |
-0.8 "'I""I"?'I""I""I' -0.8 LA I R P LU LR B
0 5 10 15 20 25 @ 5 10 15 20 25
a experiment number b experiment number

Fig. 6. Estimates of coupling for example (17), results obtained for the first 25 of the 1000 time
realizations of the subsystems with different noise levels D,=0.4, D,=0.1. (a) d takes predominantly

negative values. (b) H (circles) takes negative as well as positive values, estimated confidence intervals are
shown as error bars and, as a rule, include zero

5. Summary

This paper illustrates some important details of the procedure of constructing
mathematical model from a time series. Namely, three main subproblems are selected and
their peculiarities are shown. Special techniques for better solutions of two of them are
proposed:

* preliminary testing of time series of dynamical variables, which provides the
variants which are the most suitable for modeling and allows convenient testing of
experimental dependencies for nonlinearity;

» a procedure of model structure optimization, which allows elimination of
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spurious terms from the polynomial model, whereby model performance can be
significantly refined.

Finally, we have developed an approach to estimation of intensity and
directionality of coupling between two subsystems in the case of short and noisy time
series. Under certain assumptions (nonlinearity of subsystems and coupling between them
are weak), unbiased estimates of intensity and directionality of interaction provided with
confidence intervals are derived. In our opinion, suggested estimates are applicable for
wide range of real-world processes, including signals of biologic origin when it is
important to analyze short time series segments due to nonstationarity.

The work was supported by the RFBR (grant M. 02-02-17578), CRDF (Award
REC-0006), and the Russian Ministry of education.
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INVESTIGATING THE TRANSITION TO PHASE SYNCHRONIZATION
IN EXPERIMENTAL NONLINEAR OPTICS

S. Boccaletti, E. Allaria, R. Meucci, and F.T. Arecchi

The transition route to phase synchronization in a chaotic laser with exiernal
modulation is investigated. We show evidence of the presence of a regime of periodic phase
synchronization, where phase slips occur with maximal coherence in the phase difference
between output signal and external modulation. We demonstrate that such a regime occurs at
the crossover point between two different scaling Jaws of the intermittent type behavior of
phase slips.

Synchronization phenomena in coupled chaotic systems has been a topic of great
interest over the past decade [1-5], insofar as its relevance and ubiquitousness have been
demonstrated in laboratory experiments [6], as well as in natural phenomena [7]. These
processes happen when several coupled of forced chaotic units correlate with each other a
given property of their motion, and they encompass behaviors ranging from a perfect
hooking of the chaotic trajectories [1], to the emergence of a functional relationship
relating the chaotic outputs [8], to a weaker form of correlation consisting in the locking
of the phases of the systems [3,4].

This latter behavior has been called phase synchronization (PS). There, a coupling
or a forcing induce a phase locked regime, where the amplitudes remain chaotic and
almost uncorrelated, whereas the difference between the two free running [3] phases @,
evolves in a bounded manner and obeys the synchronization relation

A=I® - @, <const (1)

PS was first demonstrated in mutually coupled [3] or periodically forced chaotic
oscillators [4], and later observed in theoretical models [8] and experiments [9,10]. In
particular, PS has been shown to play a crucial role in many physiological systems, such
as human heartbeat and respiration [11], magnetoencephalography and electromyography
of Parkinsonian patients [12], and electroencephalograms during visual stimulations [13].

Being PS the weakest stage of synchronization, a relevant issue is to understand the
transition route to such a behavior from unsynchronized motion. On the border of PS, the
dynamical evolution of the system is characterized by epochs of almost constant phase
difference intermittently interrupted by sudden 2w jumps in A, which are called phase
slips.

g For coupled or forced periodic oscillators, the transition to PS corresponds to a
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saddle-node bifurcation, and the average duration t between successive phase slips obeys
a type-I intermittency scaling law [14] t~IP-P I''%, P being the relevant parameter of the
transition (either the coupling strength or the extemal frequency), and P_ denoting its
transitional value to PS.

A different scenario emerges for chaotic systems. If one considers a forced chaonc
oscillator, and supposes that the system is phase synchronized for v<v, at forcing
frequencies v2v,, one observes another transition point v>v_such that for v>v,, the
scaling law for t is the same as the classical case (z~lv-v, R ?), while for v <v<vf, the
intermittency shifts from type-I to that of superlong laminar penocls described by In(1/)~
-tv=v |12, The theoretical picture of this transition has been described as a boundary crisis
mediated by an unstable-unstable pair bifurcation [15], and the two above scaling
behaviors have been numerically reported for coupled chaotic model systems [16].

‘Another important feature of such transition is that it can be identified by
inspection of the Lyapunov spectrum. Precisely, PS is set around the passage to a
negative value of a Lyapunov exponent that was zero in the uncoupled or unforced
regime {3]. More recently, it has been demonstrated that the transition from no
synchronization to PS is mediated by a regime, called periodic phase synchromization
(PPS), where the time intervals between successive phase slips are almost equal to one
another [17].

In this communication, we review the main features of the entire transition route
from no synchronization to PS, that were firstly observed by us in Ref. [18]. The
experimental setup is sketched in Fig. 1, a and consists of a CO, laser tube, pumped by an
electric discharge current of 6 mA and inserted within an optlca] cavity closed by a totally
reflecting mirror and a partially reflecting one. The detected laser output intensity suitably
amplified drives an intracavity electro-optic modulator that controls the cavity losses. The
feedback loop is realized by the voltage exiting a HgCdTe fast infrared diode detector,
conveyed into an amplifier together with a bias voltage B, and driving the electro-optic
modulating crystal. Under these conditions, and in the absence of any further modulation,
the output intensity consists of a train of homoclinic spikes repeating at chaotic times and
interconnected by minor oscillations [10] (see Fig. 1, b). This sequence of homoclinic
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= .® 1 for the pumping discharge; 7 - external modulation;
1.1 . 1 8- PC based classification of phase slips. (b) Laser
] . ® ] intensity (in arbitrary units) vs time for zero ampli-
104 ==unef -4  tude modulation. (c) Synchronization parameter R
T — T (see text for definition) vsv. The three circles high-

4 16 1.8 20 22 24 light the values for which phase slips are reported in
v, kHz Fig.2
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spikes can be phase entrained by an A rad —
external sinusoidal modulation [10]. By 80 [
adding a square signal modulation in the §
pumping discharge whose amplitude 40

provides a 2% perturbation in the electric I

discharge current, one enters a regime of 0 i

PS. The modulation is applied on a control 0

unit of the generator (element 6 in Fig. 1, 80 ey

a). As for phases, the phase ® of the . 1
external modulation evolves linearly in time - ]
(®,=2nvr), and the phase @_ of the chaotic 40r ]
signal is calculated by linear interpolation - y
between successive spiking times following 1] el M-S N S DI

the rule  ®=2uk+2n(+-TH(T,,T), b 20 40 60 rms
Tsi<T,,,, where T, denotes the time at g0 [T T T

which the &* spike is produced. We call R 5 ]
the ratio between the number of maxima in i

the input modulation and the number of T
output spikes, and report in Fig. 1, ¢ the i ;
route toward PS (R=1) as v approaches 00 60200300 4t% et

v ~1.62 kHz. g

We record sequences of more than s, 5 il bl B 6
150 000 interspike intervals and study the & < “¢mporal evoution ol A=Ib,-%/ for: d
occurrence of phase slips in the proximity v=2.05 kHz, () v=1.85 kitz, and (¢) v=1.70 Kz
of the transition to PS. Figure 2 reports the temporal evolution of A=I® -® | for (a)
v=2.05 kHz, (b) v=1.85 kHz, and (c) v=1.70 kHz. A sequence of 2n phase slips
characterizes the evolution of A, whose occurrence becomes rarer and rarer as v
approaches v_. We furthermore calculate the distribution of interslip time intervals (ITI)
and monitor its coherence factor C=t/0? as a function of v, where t represents the average
interslip time interval, and o the standard deviation of the ITI distribution. According to
[17], one should expect a value v,,c>v, where phase slips occur periodically in A,
reflected by a maximum in the coherence factor C close to the transition point for PS.

This is reported in Fig. 3, where a maximum of C(v) is apparent at v,,~1.84 kHz.
The further growth of C beyond v~2.1 kHz is due to the approaching of a new locking
regime, namely, 2:1 rather than 1:1. The temporal evolution of A at v, is shown in Fig.
2, b, where one can see that phase slips are

almost equispaced in time. c T — ; . .

A further question concerns how the 1 %]
occurrence of PPS is related to the cross- 1.8 7 |
over between the two scaling behaviors of | ¢ ] # ]

phase slips. These scaling properties can be 1

explained as follows. The type-I intermit- 1.4 - T 9 5 = "
tency behavior describes the classical case  , |} ite )
of periodic systems, and it characterizes the " |
intermittent phase slip duration just outside 1.0 - .
the border of PS. 1 %

For chaotic systems, the PS region ' 1.‘8 ' 2.6 ' 2..2 v, kHz

corresponds to the overlap of all the phase-
locking regions of the unstable periodic Fig. 3. Coherence factor C (see text for definition)
orbits (UPO) embedded in the chaotic Vs V. The amow at vppe=1.84 kHz indicates the

! _ frequency value for which phase slips are maximally
afiractor 1191, Bl locked UPQ 15 sso coherent. The circles surround the three points for

ciated with an attractor and a repeller in the L measurements of A() are reported in Fig. 2
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Fig. 4. Type-I intermittency scaling behavior (@) and superlong laminar scaling behavior (b) of interslip time
intervals. Dots indicate the experimental measurements. Lines are the best fits: (a) 'z=-3.4+4.2hz-vfl'm,
v=1.84 kHz; (b) log(1h)=-0.13-0.51 kv-vt_l'” 2N =1.62 kHz. The crossover point for the two scaling laws
is located at v=v=1.84 kHz, that corresponds eXactly to the valuevyeg of maximal coherence (periodic
phase synchronization) in the phase stip occurrence
direction of the phase. The repellers are periodic orbits on the basin boundary of the
attractors. As we approach the PS bifurcation point, the attractor and the repeller of each
of a few UPOs approach, coalesce, and annihilate through a saddle-node bifurcation [15].
As a consequence, these UPOs are unlocked to the external force and phase slips occur.
Just beyond the transition point, most UPOs are still attractive, and phase slips can
develop only when the trajectory of the system stays for a sufficiently long time <, in a
close vicinity of the unlocked UPQ. Due to ergodicity, the probability for a trajectory to
visit a particular UPO for a duration v, is proportional to e™™ (A being the largest
Lyapunov exponent). The average intersiip interval (the inverse of this probability) will
be given by T~e® "), where 1, has been substituted with its type-I intermittent scaling
behavior, hence the expression for the superlong laminar behavior. Such a scaling
behavior was also verified by numerical simulation of maps [20], and by direct simulation
of the chaotic Roessler oscillator driven by external forcing [15,19].

In summary, one expects a type-I intermittent scaling law only for frequencies
v>v,, where v, denotes the value for which all UPOs are in the unlocked regime, and a
superlong laminar behavior forv <v<v,

These expectations have been demonstrated by us, by making use of a series of
measurements at different values of v, obtaining the results shown in Fig. 4. The best fits
yield v =1.62 kHz and v =1.84 kHz. Fig. 4 confirms the existence of two different scaling
behaviors, and shows that the crossover point for the two scaling laws coincides withv,
of Fig. 3, thus indicating that the coherence between successive phase slips mediates the
transition from the two scaling behaviors.

We take the occasion to gratefully acknowledge the many illuminating
discussions with V. Anishchenko on the whole issue of phase synchronization of
chaotic oscillators, which have stimulated and inspired the present research, and
continue Sstimulating our main experimental efforts in the field. Work supported by EU
Contract HPRN-CT-2000-00158 (COSYC of SENS).
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MCCJIENOBAHHUE NEPEXO/IOB K ®A30B0OM CUHXPOHU3A NN
B 9KCIEPMMEHTAJILHOW HEIMHEHHOUN ONTHUKE

S. Boccaletti, E. Allaria, R. Meucci, F.T. Arecchi
Hccnenyercs myTh nepexolia K ¢a3oBoii CHMHXPOHH3ALMY B TA3epe ¢ XA0THYECKO

MAHAMHMKON TMpPHA HATMYUYM BHEUIHeH MOXyasuud. [IpUBOAWTCA MOKA3aTCIbCTBO HATHIHS
pexrMa IepHoArdecKoil Ga3oBoil CHHXPOHU3ALHH, KOIja (hazoble COOHM CITy4aloTes ¢
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Bifurcations - -
in dynamical systems -
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RIDDLING IN THE PRESENCE OF SMALL PARAMETER MISMATCH

Serhiy Yanchuk and Tomasz Kapitaniak

Riddling bifurcation leads to the loss of chaos synchronization in coupled identical
systems. We discuss here the manifestation of the riddling bifurcation for the case of a small
parameter mismaich between coupled systems. We show that for slightly nonidentical
coupled systems, the transverse growth of the synchronous attractor is mediated by transverse
bifurcations of unstable periodic orbits embedded into the attractor.

Introduction

Consider two symmetrically coupled identical systems dx/dr=f(x) and dy/dt=f(y)
and x, yER" which evolve on an asymptotically stable bounded chaotic attractor A4,

dxldt = {x) + C(y-x), dyldt=fy)+ C(x-y). (1)

Complete synchronization occurs when the coupled systems asymptotically exhibit
identical behaviour, i.e., lx(¢)-y(¢)|—0 as t—. The synchronous behaviour takes place on
the synchronization manifold x=y, which is invariant in the phase space of the coupled
system (1) and has half the dimension of the full system. The synchronization loss in
system (1) is initiated with the riddling bifurcation [1] when the first unstable periodic
orbit (UPO) embedded into chaotic attractor A loses its transverse stability. In this paper
we discuss the manifestation of the riddling bifurcation for the case of a small parameter
mismatch between coupled systems. We give evidence that for slightly nonidentical
coupled systems, the transverse growth of the synchronous attractor is mediated by
transverse bifurcations of unstable periodic orbits embedded into the attractor. The
desynchronization mechanism is shown to be similar to the bifurcation of chaos-
hyperchaos transition [2]. We also note that the parameter mismatch leads to the increase
of transverse instabilities after the riddling bifurcation.

Model

Without loss of generality, a small difference between coupled systems can be
incorporated in (1) as
dxlds = f{(x) + a(x) + C(y-x), dylde = y) + Clx-y)s (2)
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where a(x) describes parameter mismatch.

transverse directions For sufficiently small o the evolution of the
a=0 : small @  system (2) can be considered as the
perturbed evolution of the system (1), so

the motion of the system can be

asymptotically close to the synchronization

manifold bx-yl<e with small ¢.! In these

invariant manifold cases, the attractor of the system (2) is

located in the neighborhood of the invariant

Fig. 1. Small parameter mismatch implies small manifold x=y of system (1). For

perturbatic_m _of st;}ble and ux:s}:able manifolds of sufficiently small o, transverse stability of

saddle periodic orbits embedded in an attractor orbits embedded in A is also preserved in
system (2).

It is also meaningful to speak about transverse and longitudinal stability of saddle
periodic orbits embedded in the attractor A since a sufficiently small mismatch will cause
only small perturbation of the local unstable and stable manifolds and will not affect
stability properties of the UPOs, as sketched in Fig. 1.

Therefore, the moment of riddling bifurcation will correspond to the loss of
transverse stability of some orbit embedded in the attractor. Here, of course, the situation
may arise when the above mentioned orbit leaves the attractor before its transverse
destabilization as it was described in [5]. In this situation, we may consider the remaining
orbits that lose transverse stability with decrease of a coupling coefficient. In general, for
nonidentical systems, we are dealing with a chaotic attractor which is no longer located in
low-dimensional synchronization manifold but remains in the neighborhood of it
Moreover, periodic orbits embedded into this attractor are proved to lose transverse
stability with the decrease of coupling [6]. Therefore, we have the same situation as for
chaos-hyperchaos transition [2,4] where the growth of the attractor is mediated by doubly
unstable orbits embedded in it. It was shown in [2] that this growth can be either smooth
or abrupt depending on the type of «riddling» bifurcation.

In the following as the numerical example, we consider two coupled Rossler
systems

dxldt = f(x) + @ + C(d)(y-x),
aylde = (9) + C(d)(x-),
where C(d)= diag{d-0.6,1.0,-3.14¢+0.7}, @ =(0,0,0),
F(x) = (=x, - x5, x; + 0.42x,, 24x,(x,-4))".

€)

The mismatch is introduced via parameter a.
It was shown in [8] that the corresponding system of identical coupled oscillators,
1.e. for a=0 loses complete synchronization with the decrease of parameter d. In
particular, the riddling bifurcation occurs at d=0.241 when the embedded period-1 cycle
becomes transversely unstable via supercritical transverse period-doubling bifurcation. At
=0.192 the blowout bifurcation takes place when transverse Lyapunov exponent of the
synchronous attractor becomes negative. Note also, that using numerical simulation of
coupled identical systems we were unable to detect bursts from the synchronization
manifold for the parameter values d=(0.22,0.24), i.e. where synchronous attractor has
already lost its transverse stability but is still weakly stable.

! This is the case, for example, when the synchronous object in system (1) is normally a hyperbolic
torus or a saddle periodic orbit embedded into the attractor. Some generic cases where such estimation holds
are also described in [3].
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In the case for systems with the
mismatch the above mentioned transverse
period-doubling bifurcation persists and for
a=0.003 it takes place at d=0.24.
Numerically computed Lyapunov
exponents for the system (3) are shown in
Fig. 2. In the interval I the chaotic attractor
A is located in the neighborhood of the
manifold x=y. We observe the growth of
the second Lyapunov exponent what is
connected with the riddling bifurcation at
d=0.24 and initiation of the chaos-
hyperchaos transition. As it was shown in
[2], this transition is mediated by ‘the
transverse  destabilization of UPOs
embedded in the chaotic attractor A. In the
interval II, the system (3) has the stable

max. Lyapunov exponents

-0.2

0.20

025 d

Fig. 2. Lyapunov exponents of system (3) versus d,
a=0.003: I - interval in which chaotic attractorA is

located in the neighborhood of the manifoldr=y, II -

interval in which hyperchaotic attractor exists, III -
interval where the chaotic atiractor A loses stability

and solution switches into stable limit cycle (Ifla)
and torus (IIIb)

hyperchaotic attractor with two positive
Lyapunov exponents. At d=0.21 chaotic attractor A becomes unstable and disappears.
The evolution of the system (3) switches to the limit cycle (interval Ifla) and torus
(interval (IIIb). Fig. 3 shows the behavior of the synchronization error x,(#)-y,(7) for
different values of d. We can observe transverse bursts for the parameter values after the
moment of riddling bifurcation (Fig. 3, b, ¢). More detailed information about the
transverse size of the attractor can be seen in Fig. 4, where the maximum amplitude of
bursts detected during time interval T=200000 versus coupling coefficient d is shown. It

1 -Nn ' ' |

¥ - ¥ ; :
0.05 0.05}
0.0 NSRS MNE 0.0
-0.05 t -0.05
-0.10 . . -0.10 . J
a 0 10000 20000 t b O 10000 20000 ¢
X0 ' !

Fig. 3. Behavior of the synchronization errorx;-y,
for a=0.003; (a) 4=0.25 all UPO are transversely
stable; (b) d=0.23, period-1 UPO is transversely
unstable; () d=0.22

-0.2
0

10000 20000
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can be seen that the attractor grows rapidly
in transverse direction already after the

10 .
; riddling bifurcation.

= U8 In the case of the ideal coupled
| systems the chaotic attractor A located at
<, 061 the invariant manifold x=y can have locally
% - or globally riddled basins of attraction. A is
g’ b4 an attractor® with locally riddled basin if
E o2 i there is neighborhood U of A such that in
-l any neighborhood V of any point in A,
0.0 . there is a set of points in VNU of positive

018 020 022 024 026 028 d measure which leaves U in a finite time.

: The trajectories which leave neighborhood

Fig. 4. Transverse growth of the attractor with U can either go to the other attractor

decreasing of d; a=0.003 (attractors) or after a finite number of

iterations be diverted back to A. If there is neighborhood U of A such that in any

neighborhood V of any point in U, there is a set of points of positive measure which

leaves U and goes to the other attractor (attractors), then the basin of A is globally
riddled.

Conclusions

In conclusion, we investigated the effect of riddling bifurcation on the chaotic
attractor of the coupled systems with the parameter mismatch. After the onset of
bifurcation, the system trajectory shows intermittency-like behavior with bursts away
from the manifold x=y. These bursts grow rapidly resulting in the growth in size of the
chaotic attractor. Contrary to the case of the coupled ideal systems we have not observed
globally riddled basins of the chaotic attractor located in the neighborhood of the
manifold x=y.
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Hactosimas xHura mpefcTaBnseT cobolt dymiaMeHTaNbHBII TPy MO OCHOBaM
HeJMHelHON {WHAMAKM XaOTHUECKHX W cToXacTHYeckux cucreM. Kwuura sxmouaer
HcYepmbIBarOUice BBEfiCHUE B TEOPMIO [HHAMHYCCKMX M CTOXACTHYECKHX CHCTEM H
HCTANbHEIH aHANA3 COBPEMCHHBIX PE3YILTATOB, B OCHOBHOM TOIYUEHHBIX ABTOPaMH.
Kaxas u3 riaB KHHTM MOCTPOEHa TakuM o6pasoM, YTO MOXKCET U3YyHaThCsl HE3aBHCHMO OT
apyrux. B uyacTHocTH, Kaxpas riaBa aMmeeT cBoi coGCeTBeHHBOI cUMCOK NHTepatyphbl. Bee
9TO 103BOJSET HCNOML30BATE OPEHMAraeMyK) KHHTY B KauecTBe yyeGHHKA NS CTYAEHTOB M
acTMpaHTOB (PU3HKO-MaTeMaTHYECKHX cllellHanbHocTel (rnasa 1), a TakKe Clel[HanHcTaM B
Ojﬁnacm BenuHelfHON THHAMAKY NeTepMAHHPOBaHHLIX (rnasa 2) U croxacTHYeckux (TnaBa
3) cucrem.

Hawm yrumeannn u Opysvam
Werner Ebeling,
0.1, Kaumonmosuw,
Frank Moss

[ipegmcioBue pegakTopa nepepona

YnraTeno npepiaraercs gopaboTaHHBI W paclIMpeHHBIH nepeBop kuurd V.S.
Anishchenko, V.V. Astakhov, A.B. Neiman, T.E. Vadivasova, L. Schimansky-Geier
«Nonlinear Dynamics of Chaotic and Stochastic Systems»", omyGmukosanroii 8 2002
TONy H3IaTeNnbCTBOM Springer. Kumra nocsineHa coBpeMeHHbIM —npoGiaeMam
HEJTHHCHHON MMHAMAKM XaOTHYECKHX M CTOXaCTHIECKUX CHCTEM M OPHEHTHPOBaHa Kak
Ha MOJIOIBbIX VYEHBIX, TaK W CHEIMAIMCTOB B OONacTH HCCNEJOBAHUA HEIMHEHHBIX
konebammij ¥ BosH. Hacrosiee m3pamie B CBOCH OCHOBE COOTBETCTBYET OPUTHHAIY.

* V.S. Anishchenko, V.V. Astakhov, A.B. Neiman, T.E. Vadivasova, L. Schimansky-Geier.
Nonlinear dynamics of chaotic and stochastic systems: Tutorial and morden developments, Springer-Verlag,

Berlin, Heidelberg, New York, 2002. 374 p.
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Ilpr nepeBojie aBTOpaMu BHECEHBI B TEKCT HEKOTOpbIC YTOYHCHHMS ¥ HCIpPABIEHBI
onmeyaTKu B psfe dopMyi. Bo BTOpYIO riiaBy KHATH OGaBIeHBI TPH HOBBIX paspena:
«KoppensauuoHHbIA aHaltH3 peXUMOB JIETEPMUHHPOBAHHOTO U 3AIIYMIIEHHOIO Xaoca»,
«D(PheKThI CHHXPOHU3AIMH B LETIOYKAX CBA3AHHBIX OCUWIIATOPOB» U « CHHXPOHH3AIML
B XHBBIX CHCTeMax». BKiroueHHe 9THX PasfeNoB €CTECTBEHHBIM 05pa3’oM BIHCHIBACTCS
B MaTepuan BTOpOﬁ I'laBbl B OTpaxKaeT Hambonee HHTEPECHLIC Pe3yIIbLTaThI aBTOpOB,
TIOJIyYEHHBIE 1TOCIIE BLIX0a aHTTHHCKOTO U3JaHHsl.

Mp1 HageeMces, 4To KHUra GyNIET ¢ HHTEPECOM BOCTIPUHATA LIMPOKOHA ayAuropHe
YATATeNIEY, HMHTEPECYIOIMXCS COBPEMEHHBIMU TIpOGIEMaMy TEOpHH HEIHHEHHBIX
KonmeGaHuid H  BOJH, [OWHAMHYECKMM XaoCOM, TEOpHell CHHXPOHW3AUMH |
WHIYIWPOBAHARIMY BHEIOHUM LIYMOM siBi€HMsMA. MBI Oynem GrnaropapHbi 33 JEOGhie
3aMevaHusi, KOTOpble MOXKHO HalpaBIATh B alpec H3aTe/IbCTBA.

Ilpodbeccop B.C. Anuwernko

IIpepucnosne

JTa KHHra NOCBAI[EHA KJIACCHMYECKMM OCHOBAM M COBPEMEHHBIM PE3YIBLTATAM
HEJINHEHHON MHAMMKH JeTEPMHHAPOBAHHBIX U CTOXACTHYECKHUX CUCTEM. SHAUNTEIbHOE
BHAMaHHE B HEH yHenseTcd WHIYIMPOBaHHLIM IIYMOM [EPEXOfaM M BIIMAHUIO
(nyKTyaumii Ha XapaKTEPUCTHKH HEIMHEHHbIX JHHAMMYECKAX CHCTEM B Pa3fIMYHbIX
KonebaTebHbIX peXuMax,

C omHOI CTOPOHBI CYLIECTBYET OGIUMPHAs MTEPATypa 110 HEJMHEHHON IuHAMUKE
M Xaocy, NPEACTAaBJICHHAA 3aMEYaTeNbHLIMM KHWTAaMH; C ApPYTrofl CTOPOHBI, HMEEeTCH
HEMaJl0 BENMKOJICNHBIX MOHOrpadMi M YYeOHHMKOB MO CTATHCTHYECKOH (hU3HKe
HEPABHOBECHBIX H CTOX4CTHYCCKHX IIPOLIECCOB. B faHHON Xe KHUre NPENNpUHATA
MONbITKa  COYETaTh HOAXO[  HEeNMMHEWHOH — [WHAMMKH,  OCHOBAaHHBLIA  Ha
[ETEPMUHUPOBAHHBIX 3BOIIOIMOHHBIX YPaBHEHUSAX, C TIONXOOM CTaTHCTHUYECKOM
(pu3nKy, GasHpYIOLIEMCS Ha CTOXaCTHYECKMX WIIM KWHETUYECKHWX ypaBHEHHsAX. [JaHHas
pabora HanelieHa IJasHbIM 00pa3oMm Ha TO, YTOOBI IOKa3aTh, KAaKyIO BaXKHYIO POJb
urpaeT myM B (JOPMUPDOBaEMY CBOMCTB JMHAMHUYECKHX PEXHMMOB (DYHKIMOHMPOBAHUS
HENMHECHHBIX AUCCHTIATUBHBIX CHCTEM.

B pamkax 97TOM KHHUIM OCBEMIAETCS OIPEAC/ICHHBLA, OTPaHMYCHHBEI KpyT
BOMPOCOB, OTHOCSIIUXCS K HWHTEPECHOM, MPONOIKAIOUICH pPasBUBAThCA 0OOJAcTH
HENMMHENHHOW [MHAaMHKW. B HacTosiliee BpeMs CYHIECTBYEeT OIDOMHOE KOJIMYECTRO
PasHOIIAHOBBIX 3afia4, CBS3aHHLIX C JCTEPMHHHMPOBAHHBIMH ¥ CTOXaCTHYECKHMH
[HaMuyecknMit cucreMaMy. C menbio oOCTOATENBHOTO M IOJHOTO HPEJCTaB/ICHHs
MarepHaa IpH HaMCAaHWH 9TOW KHWIH MBI PYKOBOJICTBOBAJHCh CIEAYIOLIMMH TpeMs
KPHTEPHAMU: BO-TIEPBLIX, MUHAMUYECKas MOJIENb HOJKHA ObITh MHHUMAILHOH, T.€.
ONTHMAJILHO NPO3pavyHOH B (DHU3MYECKOM M MaTeMaTHYeCKOM CMBIC/IAX; BO-BTOPBIX,
MOIeNb HOMXKHA ObITh NPOCTCHUIEH, HO BMECTE C TEM YETKO JEMOHCTPHPOBATh
Haubojiee BaXKHble CTOPOHBI pAcCMaTPHBAEMOrO SBJCHHUSA; HAKOHEll, B-TPEThHX,
OCHOBHOE BHMMAaHHE YJIEIseTCs TeM MOJIE/ISM M SBJICHHSM, HCCIIENysl KOTOPBIE, aBTOPkI
HAKOIMJIM 33 NOCTENHKE TOJIbI ONPEIEICHHbIN OIbIT,

Kuura cocrouT u3 Tpex riaB. [lepeas 2nasa CHYXUT KpaTKUM BBEIECHHEM MU
CONIEPXKHT (DYHJAMEHTANIBHLIC TIOJIOKEHHS TEOPHH HEJIMHEHHBIX eTePMUHNPOBAHHBIX H
CTOXaCTHYECKUX CHCTEM M KIJIACCHUECKOH TEOpHHM CUHXPOHM3AMM MNEPHOANYECKHX
KoneOanuid. Cioffa BOHLUIH BCE OCHOBHBLIE MOHATHA M ONpeAccHHs, HeOOXoMIMBIE s
TOT'0, YTOOBI H3y4aTh NOCIIENYFOMINE IVIaBbl, He 00pallasch K CreIMaibHOM IUTEPaType.

Bmopan eaaea mnocBAlleHa [€TEPMHHUPOBAHHOMY Xaocy. B Hell Mbl
paccMaTpMBaeM pa3fiHuHble CLEHapHd BO3HMKHOBEHMA Xaoca, BKMoYas INpobiemy
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pa3spyNICHHS ABYX- ¥ TPEXUACTOTHOIO KBA3HIEPHOIUUECKOr0 ABIKeH|s. Kpome Toro, B
5TOM riase o0CYXIa0TCs PA3/INYHble aCNEKThl CHHXPOHM3AMHU U YIPABICHUA Xa0COM, &
TaKXe METO[lbl PEKOHCTPYKUHH aTTPaKTOPOB ¥ [MHAMHUYECKHX CHCTEM TIO
9KCNEPHMEHTATLHBIM BPEMEHHBIM PSATIaM. '

B mpempeil w1aee 0coBoe BHHAMaHHE YHRENAETCA CTOXaCTUYECKHMM CHCTEMaM,
[MHAMAKa KOTODPEIX B 3HAUUTEIBHOM Mepe ONpefensercs BAWSHHEM LiyMa. 3[iech
OBCYKIAIOTCS ~ HEKOTOPhIe — SBIEHMS  HENMHEHHOro  Xapakrepa, Takme Kak
CTOXaCTHYECKMI pe30HaHC B IMHAMHYECKOH CHCTEME IO BO3AEHCTBUEM FApPMOHIYECKUX
W CJIOXHBIX CATHATIOB M IIyMa, CTOXacTHYecKas CHHXPOHH3allsl M CTOXaCTHUECKUM
pauer, IpefcTaBisEoe CoGOH MHAYHMPOBAHHBIA [MIYMOM YNOPANOYCHHBIM U
HAMNpPABACHHEIA TEPEHOC OPOYHOBCKMX YACTHI, MBIKYIIMXCS B OHCTaOMIBHBIX U
nepuoguueckux noreximanax. Ocofoe BHEMaHue YHCICHO POJHU lIymMa B JAHAMHKE
BO30YIMMEIX CHCTEM H CPEN.

Kuura opueHTMpOoBaHa Ha IOMPOKHH KpYyr 4YMTaTeNed, MUHTEepecyrouuxcs
eCTeCTBEHHbIMY Haykamu. IlepBas riaBa OyHeT IOjie3Ha CTYyOEHTaM M acmypaHTaM,
M3YYarolEM (pU3NKY, XUMU0, OHOJIOTHIO M 9KOHOMHKY, a TaKXe NpernojagaTelsM aTHX
NPEMETOB, TNPOABISIONMX WHTEPEC K COBPEMEHHBIM TpobnemMam —HeIMHEeHHON
muHaMuky, CnenpanucTsl N0 HEJIMHEHHOH MHHAMHKE MOTYT HCHOJIb30BATh ITOT pasfics B
KauecTBE paCUIMpeHHOTO clpaBoyHoro rmnocoCus. BTopas M TpeThd  IJIaBbl
npefHasHauyeHbl [ CHNENUATHCTOB B OONacTH MaTeMaTH4YecKOro MOACITHPOBaHUs
CJIOKHOM THHAMUKY HEMHEHHbIX CUCTEM, B TOM YHCJIE B IIPUCYTCTBUM LIyMa.

Mz nocTapanucsh COCTABHTh KHUCY TakuM oO6pa3om, YToOb! Jixo0ast U3 Tpex rias
MOria GbITh BOCHpPHMHSATA UMTATENEM NPEHMYLICCTBEHAO HE3aBHCHMO OT Jpyrux. B
YACTHOCTH, K KaXJOH IaBe NPHJIAracTCs OTHEJbHBIA CIMCOK JMTEPATypbl. Takoe
peilieHHe TIPOJUKTOBAHO JXeJIaHHEM CJeIaTh KHUTY ele 6oJiee MONE3HON I YHTATeN .
OpHako TpeAcTaBleHHYI0 HamMu Oubruorpacuro, Ge3 COMHEHHs, Henb3d Ha3BaTh
MCUEPIBIBAKOLIEH, MOCKOMBKY CYWIECTBYeT OTPOMHOE KONHYECTBO [yOiHMKauui,
TNOCBALIECHHBIX BOIPOCAM, PaCCMaTPUBAEMBIM B JaHHOM KHHTE.

Dra KHUTA HBWIACh PE3yJIbTaTOM NPOJC/KUTENBHOTO  COTPYAHHUYECTBA
naGopaTopuu HeluHeHoM uHaMuKH CapaToBCKOTO OCYIapCTBEHHOIO YHUBEPCUTETA C
HCCIIeIOBaTeIbLCKON IPYIIION IT0 H3YyYCHUIO NPHUKIIAHBIX CTOXaCTUYCCKUX NPOUECCOB B
TymGonbarckoM yHHBepcuTere B BepnuHe, a TakXke ¢ LEHTPOM HeHpOIMHAMUKH B
Yuusepcurere Muccypu B Cent-Jlynce.

Mz1 BerpakaeM TiyGokyio 6narofgaprocts W. Ebeling, 0.JI. Kimmonrosruy u F.
Moss 3a mOTNEPXKY, OOMeH HayuHOH HH(OpMaluuell ¥ MOCTOSHHLIA HHTEPEC K HalleH
paGore. MpI Takxe OmaromapHs! 3a miogoTBopHble auckyccuu C. van den Broek, P.
Hinggi, J. Kurths, A. Longtin, A. Pikovski u ¥0.M. Pomanobckomy. Kuura npuoGpena
MHOTO LIEHHOro OJarofaps y4acTHIO HAIIMX COABTOPOB MO NpEembIyLIM padoTaM. Mbl
npusuarenbiel A, bananosy, R. Bartussek, V. Bucholtz, M. lukurreiiny, J.A. Freund, J.
Garcia-Ojalvo, M. Hasler, H. Sxcon, T. Kapitaniak, V1. Xosarosy, M. Kostur, I1.C.
Janpe, B, Lindner, P. McClintock, E. Mosekilde, A. Ilasnosy, T. Poschel, [I. [ToccTHoBY,
P. Reimann, R. Rozenfeld, P. Ruszczynsky, A. llaGynuny, B. llyasruny, U. Siewert, A.
Cunbuenxo, O. Cocuosuesolt, A. 3aukuny # C. Zilicke 3a coBmecTnblie paGoThl,
qacThble INTONOTBOPHbIE AMCKYCCHH, L[EHHBbIE 3aMEYaHHsl M KPHTHKY, [MO3BOMBLOME HAM
riny6xe NPOHUKHYTH B H3yYaeMble [IPOOIeMbL

Ms! Gnaromapum pepgakropa 3toil cepuu H. Haken 3a monesHeie COBETBI MO
pykonucH, a Takke P. Talkner, J. Freund u B. Lindner 3a moniesuble 3amMeqaHus Npu
MpaBKe KOPPEKTYypbl.

Ocobyro 6rnarofapHOCTh XOTeNnoch Obl BeIpasuTh [amuse CrpenkoBoi 3a
OTPOMHYIO paBoTy N0 NOTOTOBKE PYKOMUCH ¥ TIEPEBOJ] MHOTHX Pa3/ie/iOB 3TOM KHHIH Ha
aHTTHICKHI s3bIK, @ Takxke A. KnuMmnmny 3a okazaHue TEXHHYECKON TOMOLIH.

Kpome Toro, B. Anmuenxko, T. Bapgmpacopa u B. AcraxoB Guaromapsr
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Awmepukanckuit ®onn rpaxpanckax uccaefoanuit n passuras (CRDF, rpanr REC-
006) u Poccmitckmit Poup hyHIaMeHTATBHBIX HccnenoBanui (rpantel Ne 00-02-17512,
Ne 99-02-17732). B.C. AnmimieHKo Takxe GIarofapyut 3a nomgepxxy MekgyHapoHb
donn mm. Anekcanmpa o I'ymOombara. A. HeifMan BblpaxkaeT GarofiapHoCTb
Hucturyry ®Puruepa u (pusmdecKoMy OTAeNEHHIO BOEHHO-MOPCKOIO ynpaBlIeHHs

CIIA. JI. IlMumamckuit-Taitep Onaromapur 3a oxasadme mopmaepxkm Deutsche
Forschungsgrmeinschaft (Sfb 555 u GK 268).

B. Anuyerxo, A. Hetiman, T. Badusacosa,
B. Acmaxos, JI. Wlumarckui-Catiep

Ornasnenne
1. OcuoBn IHHAMHYECKOr0 H CTATHCTHYECKOr 0 ONHCAHHA IBONOUHOHHEIX NIPOLECCOB

1.1. MumaMiiecKie CUCTEMBL.

Breenue. JlAHaMmueckast CHCTEMAa M ee MaTeMaTHieckad MoOJeNb. Y CTORUMBOCTE (muueinioe
npubmokekne). BEQYPKAIMN MHAMUYECKHX CHCTEM, KaTacTPOdbl. ATTPAaKTOPHI JIUHAMHYECKAX CHCTEM.
IeTepMHHAPOBAHHLI Xa0C. 3aKMOYCHHE.

1.2 ®dnyxryanuy B TUHAMAYECKAX CHCTEMAX.

Beenmenme. OcCHOBHBIE KOHUENIIWA TeOpHH chydaiuunix nponeccoB. IlIyM B JUHaMMUECKHX CHCTEMaX.
Vpapnemve Poxkepa - [nanka. CTOXacTHYECKHE OCUWIIATOPLL 3ajaya O BBIXONE M3 OTPaHMYEHHOH
oBnacTi. 3aKaI0YEHHE.

1.3 Cunxponm3auua nepHommieckux cucteM. Bpepenue. CHHXpOHM3AlHMA reneparopa Bar pep Ilons.
CymnxpoHU3alms B NPHCYTCTBHM Myma, JhdexTusras cHuxpornsaims. Pa3osoe onucatue. 3aKmoUYeHAE,

Jlurepatypa
2. XaoTHYeCcKHE H ¢I0KHbIe KONIeOauHsa IHHAMHYECKHUX CHCTEM

2.1 BugpypxallHoHHLIE MEXaHU3MBI TIEPEXO/A K Xa0Cy.

Beenenme. Ilepexop Kk xaocy 4epes TNOCTEJOBATENBHOCTh OHypKauuil  yIBOCHHA TEpHORA.
VumBepcarsrocTs PefirenfayMa. XKecTKue TEPEXOMBI K Xaocy. Kpuiuc H mepeMexaeMocTs. Ilepexon k
Xaocy Uepe3 paspylieHHe JBYXYAcTOTHBIX KoneGatuif, [Tepexol K Xaocy 4epes TPEXMEpHBIH TOp. Xaoc Ha
TPEXMEpHOM Tope. XaoTHYeCKHe HecTpaHHele aTTpakTopbl. Ilepexog k Xaocy depes paspymieHue
SprofEuecxoro Topa. CTpaHHble HeXaoTHUECKHe aTTPAKTOPBL. 3aKIYeHHe.

2.2 KoppensiioHHLI! aHAIN3 PEXKIMOB [IETEPMABRPOBAHHOLO | 3AMIYMIICHHOIO Xaoca.

Beefienme. IapMOHEuecKHH WyM ¥ Tenerpadbli CETHaL KOppensIMOBHO-CIEKTPA/IbHEIH aHATH3
CIMPATHHOrO Xaoca, ABTOKOPpPENANHOHHbIE (DYHKIH K CHEKTPhl MOIGHOCTA B PEXKMME BUHTOBOTO Xa0Ca.
Koppenau#oHHO-CIIEKTPATTLHBIE XapaKTEPHCTHKH X20THYECKHUX aBTOKOMeOamuil NepeknioyaTeIbHOTO THIIA
B pexXuMe KBa3HUTMnepSonmieckoro arrpakropa Jloperua. 3akmoueHne.

2.3 CurxpoHu3aua Xaoca,

Bsejenne. KnaccHueckuil OTXON K CHHXPOHM3ALHAH Xaoca. OcobeHHOCTR B3aUMONEHCTBHA OCIH/ISTOPOB ¢
(peiiTenGayMOBCKAM CLieHApHEM pasBuThsd xaoca. Pa3oBas MyIbTUCTAGMIBHOCTE B OONACTH CHHXPOHH3ALMIL
BrichypKalHOHHBIE MEXaHH3MBI Pa3PYIICHAS NOHON ¥ 9aCTHYHOU CHHXPOHU3AIMH Xa0Ca. 3akmogeHne.

2.4 DdbexThl CAEXPOHM3AIKH B LEIOYKAX CBS3AHHRIX TCHEPATOPOR.

Baejierwe. OBpasopanfe YACTOTHEIX KIACTEPOB B HEONHOPOIHLIX LEMOUKAX FeHEpaTopoB. Busiue wymMa
Ha PEXMMBI KJIACTEPHOH CHHXPDOHH3AIUH B LENOUKE KBA3HTADMOHMYECKHX TEHEPATODOB. BrmyXueHHAA
CHHXDOHM3AUAS  LENOYKM  XAOTHYECKMX  ABTOKONEOATEeNBHBIX  CHCTEM. CuMHXpOHH3alHR ¥
MYJIBTACTA0HILHOCTS B KOJbLE TEHEPATOPOB € YABOEHAAMH epAOJa. 3aKOYeHHE.

2.5 CuHxpOHU3ALHMH B KHBbIX CHCTEMaX.
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Beepemmie. CroxacTHueckas CHHXPOHM3AIHSL  SNIEKTPOPEUeNTopoB  BecnoHoca.  (CHHXpoHA3auus
KapMopuTMa. 3akIi0ucHse.

2.6 Ynpasnenue XaocoM,

Beenenne. Ynpagsnsemas npoTHBOha3Has CHHXPOHH3ALAS XAa0Ca B CBA3aHHLIX KYOHYECKUX OTOOPANKEHHUSAX.
YHpaBue}me I CHHXPOHH3aI[UA Xaoca B CHCTEME B33aHMHO CBH3AHHBIX OCLMINATOPOB. YHp&BﬂHeMaH
CHHXDOHM3ALAS Xaoca METOIOM NEepHONHUECKHX NapaMeTpHYecKuX BoaMyuleHmit. CraOmmH3aLHa
IPOCTPAHCTEEHHO-OTHOPOIHEIX IBHKEHAH NOCpeicTBOM HapDAMETPU'IECKOTO BO3ICHCTBHS. anaanerme
Xa0COM B PEIIETK4X CBA3aHHbIX 0TOOpaXeH!!. 3aKioyeHne.

2.7 PeKOHCTPYKIMS FHHAMAYECKHUK CHCTEM,

Beenenue. PekoHCTpYKUMS aTTpakTopoB @O BpeMeHHbM psagaM. [noGanbman pexonerpykimsa [IC.
PekoHCTPYKUMS [O JakHBIM GHONOMMYECKMX SKCTepEMeHTOB. MeTo) peKOHCTpYKUMH B TPHNIOXEHHH K
3afjaye 3AlMThI HepefaBaeMol HHbOpMaLMK. 3aKiioueHne.

JlurepaTypa
3. CroxacTnueckas IHHAMHKA

3.1 CroxacTHUeCKHI pE30HAHC.

Baejienme. Pmanueckne ocnorst adipexTa CP. Xapakrepucetiks atpderra CP. OTkauk Ha ciafbiii curdan.
Teoperuyeckite nouxonel. Teopus ABYX cOCTOSHHMIL ¥ CHIEHHBUI MacCHBOM CTOXAaCTHUeCKMII pe3oHaHC.
Y[BoeHHBIH CTOXaCTHYECKHH pe30oHaHC B CHCTéMaX ¢ MHNYUMPOBAaHHLIM (Da30BLIM TIEPEXONIOM.
CroxacTH4eCKHi PE3OHAHC JIS CHIHAJIOB CIIOXKHOIO CHEKTpanbHOIo cocrasa. CTOXacTHUECKUH pe3oHaHT B
XaOTHYECKHX CHCTEMAX C COCYUIECTBYIOIHMH aTTpakTopamy. PH3HYECKHI IKCIIepUMEHT. 3aKkao4YeHHe.

3.2 CHHXPOHH3AIHA CTOXACTHUECKHX CHCTEM.

Beepenwe. CuHxpoHnsauus ¥ cToXacTHAuYeckKMil pesoHaHc. BHENMSs CTOXacTHYECKad CHHXPOHM3AUHA
Tparrepa llIMutra, B3auMHas croXacTHYecKas CHHXDOHM3AlMA CBA3AHHBIX OHCTaGHILHBEIX CHCTEM.
BHenmas W B3aMMHas CHHXDOHHM3allid HEPEKMIOUeHMI] B XaOTHYecKRX cHcreMax, CroxacTHueckas
CHHXDOHM3aUHst aucamOled cToXacTHYyecKHX pe3donaTopoB. CroxacTHuecKas CHHXDOHMIAIMS Kak
AEYLMPOBAHHBIN IITYMOM HOPANOK. 3aKII0ueHHe,

3.3 KoHCTpyKTHBHASA POTE HIYMA B BOZOYIMMEIX CHCTEMAX.

Korepentieit peionanc BOmM3u Oudypramuit MepHOTHYECKHX pellieHuit THHAMMYECKOH CHCTEMbI
KorepenTheni pesoHanc B BO3CYMMMOH JMHAMUKe. YCWIEHHAS [IYMOM CHHXPOHM3AIMS CBA3aHHBIX
BO30YKIaeMBIX CHCTEM. 3aKTIONEHIE.

3.4 MapyiupoBaHibl HTyMOM TPAHCIIOPT.

Beepenne. Muraiompe u  KayalolMecs PITYeT NOTeHMUManbl, AndaGaTHuecKoe MNpHOJIHKEHUE.
HepenemndnpoBannbii KOppe/BpoBaHHblil paTdyer. COPTHPOBKA YacTHI[ B P3THET MOTEHIMANE IO
HEACTBHEM UBETHOrO myMa. [Isymepueni perder. [Iuckpernetii partder. Cpeibl ¢ MHI006pasHOi
3aBHCUMOCTBIO moTeHNBala. PopmupoBaHMe NPOCTPARHCTBEHHBIX CTPYKTYP C TIOMOWEBIO PItder
noTeHUMana. 3akrveHye,

Jureparypa
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fABnenne CHHXPOHH3ALME IIMPOKO PAcHpOCTPAHEHO B HaykKe, MPHPOJE, TEXHAKE M
obimectpe. TeHueHuns XK CHHXPOHHOMY MOBEJeHHIO HaOMIOAAeTCA B CTONb DPa3NMYHEIX
¢cHCTEMAX, KaK Yachkl, CTPEKOYYLIME Ky3HECUHKH, BONMTEM DATMA CEplla, PeHepHpYIOLIHeE
NOTEHIMATLI JIEACTBES HefipoHel W amnojupyilonme spurend. Takue addexTs
yHHBepCANbHBEL, HX MOXHO OOBACHHTL B paMKaX eIHHOTO NOMXOJd, OCHOBAHHOIO Ha
COBPEMEHHEIX IOCTHKEHHSX HEe/THHEHHON IMHAMPKH,

Hp!menemx Kayk EIaccHecHUe pesyarTaTEl o CHHXPDOHHIATIHH ]'IEPHDII;ECIECKHX
apToKoyeGaHui, TaK H IOCHEIHAEC FOCTIKEHHMS B HCCIEOBAaHWHM XaOTHYECKHX CHCTEM,
Gombumx ancaMOneit u KomeGaTenbHBIX cpell. MoHorpadms appecoBasa IMHPOKOM
ay[ATOPHHA - OT CTYIEHTOB [0 KBAIN(HIMPOBAHHbIX HCCICAOBaTENeH B obnact (hu3uKwy,
NpUKAaIHOA MATEMATHKH, MIDKEHEPHBIX H €CTECTBEHHEIX HAYK.

Moemy omuyy Camyuny  All
Cone MP
Moemy omyy I'epbepmy K

IlIpegucioBre K PYCCKOMY H3IaHHIO

Mgl pamel, YTO Halla KHWTA BRIXOMUMT B CBET HA DOMHOM sl Hac s3bIKe H
CTAHOBUTCS JOCTYITHON PYCCKOSI3BIMHOMY YHTATEN0. MBI B3S/IHCE 32 MEPEBO] IO COBETY
psfia HammX [pys3eil M KOJJEr, KOTOpble, O3HAKOMHMBIIMCh C AHTVIHACKMM H3[JaHUEM,
COYIM, YTO KHHra Obuia Gbl MOJIE3HOU JUis IUMPOKOrO Kpyra YMTarejled - CTYAeHTOB,
aCIPAHTOB, HAYYHbIX PaGOTHUKOB pa3sHbIX cliemuanerocTell - B crpanax CHI'. Mer
6narogapum F0.A. Tanunosa u JI.®. ConopeliunKa, HENOCPEACTBEHHO MONTOJIKHYBIINX
Hac K paGoTe Hal TmepeBOgoM. MbI XoTeium OBl BBIPasHTE CBOWO  0coGyio
npusHarembHocts E.M. Posesomomy u C.A. Po3eHOMIOM 33 HEOLECHUMYIO NOMOLIB B

HaGopc M KOPPCKTYPC PYCCKOTO TSKOTa,
A.C. Hurosckuil, M.I'. Pozerb.aiom
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IpenucioBre K AaHTTIHACKOMY H3[IaHHEO

CIOBO «CHHXpOHHBI» 4acTO BCTpedaeTcsi Kak B HAYUYHOM, Tak ¥ B OOBIEHHON
peun. TIPOMCXONS OT IPEUecKrX CJOB ¥povog, (XPOHOC - BpeMsi) 4 ouv (CHH - TOT ke
camblif, 0Omuil), B HPSIMOM NEPEBOJE «CHHXPOHHBIN» O3HAYaeT «pasfe/LIrouumin obiee
BpEMsI», «IIPOACXOMSIIMI B TO X€ Camoe BpeMaA». ITOT TEPMHH, Kak H POICTBCHHLIC
CIIOBA «CHHXPOHM3ALHA» ¥ «CHHXPOHH30BAHHBIH», OTHOCHTCS KO MHOXECTBY SABJICHUH,
BCTPEYAOIMXCs IOYTA BO BCEX OOJACTSX €CTECTBCHHBIX HAYK, TEXHMKYM U COLHMATBLHOM
SKM3HH, SBJIEHHH, KOTOpbIe KaXKyTCsi COBEPIUIEHHO Da3NUYHbIMH, HO, TEM HE MEHee,
MOTUUHAIOTCS YHUBEPCAIBHBIM 3aKOHOMEPHOCTSIM.

Ecmu B Kakoif-mu00 Hay4yHOi Ga3e JaHHBIX BBECTH 3allpoC Ha IOMCK CTaTed,
COMEPKAIIMX B 3ar0JIOBKE CTIOBO ¢ KOPHEM «CHHXPO», TO MbI MOJIYIMM CIIMCOK U3 COTEH
(ecau He Thicsy) nybnukanuit. Msnauameno spdexT cunxponnsaimi Obll 0OHapyXeH 1
H3y4eH B pa3NMyHBIX YCTPOHCTBAX, OT MasfTHHUKOBBIX YacOB [I0 MYy3BbIKalbHBIX
HHCTPYMEHTOB, 3JIEKTPOHHBIX TI'€HEPaTOPOB, CHJOBBIX JNEKTPHUECKHX YCTAHOBOK
1a3epoB; eMy ObLIO HalIEeHO MHOXKECTBO NPAKTHYECKHX NPUMEHECHUH B MHXCHECPHOM
gene. B HalM OHM «EHTP TSXKECTH» HCCIEQOBAHMU CMECTHICA B CTOPOHY H3YUCHHA
BHOIOTHYECKUX CHCTEM, TTIe CHHXPOHM3AlKs BCTpeYacTCs Ha CaMOM PasiyHOM YPOBHE.
CHHXpPOHHOE H3MEHEHHE KIETOYHbIX SOEp, CHHXPOHHAs TeHepauus MOTEHIHAIIOB
fleficTBHA HEHpOHAMH, MONCTPONKA CEPeYHOro PETMA K ABIXAHUIO W/WIM JIOKOMOTOP-
HBIM PHTMaM, pasHyHble ()OPMBI KOICKTUBHOIO MOBEIEHUA HACEKOMBIX, KABOTHBIX
JaKe UEIOBEUECKHX COOOLIECTB - BCE 3TO JIMILL HEKOTOPHBIE NIPUMEpPh! QyHIaMEHTAb-
HOTO SIBJICHHS PAPONBL, KOTOPOE U SBJISCTCS NPEMETOM JJaHHOM KHATH.

B maiileM OKpYXXEHHUH CIUIOIIB U PSIOM BCTPEYAIOTCA OCHHUIUIHPYIOIIHE O0BEKThI.
CucTeMbl paIMOCBSI3H M 9JIEKTPHYECKOE OOOpY[OBaHWE, CKPHIIKH B OpKeCTpe,
CBETJISUKHM, MCIYCKAIOMIUe TOCIe0BATeIbHOCTH CBETOBBIX WMITYBLCOB, CTPEKOUYIIIHE
CBEpUKHM, NTHIb!, Malllylllie KpPbIIbAMHM, XMMUUECKHE CHCTEMBI, HNEMOHCTPHPYIOUINE
KoneGaTenbHOE UBMEHEHUE KOHIIEHTPAIUH PeareHTOB, HEPBHBIC LIEHTPDI, YIIPaBIAIOIIEC
CORpAIIIEHAEM Cep/lla YeJIoBeKa, H caMO Cepfle, LEHTP NaTOJIOrHYeCKol aKTHBHOCTH,
BBISLIBAIONIEH HENPOU3BOJIBLHOE JPOXKAHME KOHEYHOCTEH  BCHCHOCTBHE  OOMC3HU
[lapkuHCOHa, - 3TH H MHOILHE JpyrHe CHCTeMbl HMEIOT ofliee CBOWCTBO: OHH
reHepupyroT puTMbl. OGBIMHO 3TH OGBEKTBI HE OTHEJNEHLI OT CBOETO OKpYXKEHH:, a,
HA060pOT, B3aUMOIEHCTBYIOT C JPYI'MMH OOBEKTAMH; HMHBIMA CJIOBAMU, OHU SBIAIOTCS
OTKpPBITBIME cHcTeMamH. [ledcTBUTENLHO, OMONOrMYECKHE Yachl, YNpaBlgroOLIHe
PUTMaMM CYTOYHOH aKTHBHOCTH (UMPKAIHGIMA DPUTMaMH), MOIBEPXEHbI BIMAHUIO
CYTOYHOTO ¥ CE€30HHOrO M3MEHEHHS! OCBELNEHHOCTH M TEMIEPATYPhl, CKPHIAY C/ILIITHT
CBOEro KOIIETY IO OPKECTPY, Ha CBETJISUYKA BO3NEHCTBYET CBETOBOE M3ITyYEHNE BCEH
TIOMYJISIMY, PA3IHYHble LEHTPbl PUTMHUYECKON AaKTUBHOCTH MO3Ta BO3[CHCTBYIOT HpYyr
Ha [pyra, ¥ Tak janee. Takoe B3aUMOJEHCTBHE MOXeT ObITh O4YeHb CnabbIM, MHOTHA
e[jBa 3aMeTHEIM, HO, TeM HE MEHEE, OHO YacTO NPUBOJUT K Ka4eCTBEHHOMY M3MEHEHHIO
cocrosiHUS: OOBEKT IOACTpaWBaeT CBOH PUTM, COrllacysi ero ¢ pHTMaMH IpPYTHX
00bekTOB. B pesynbTaTe, CKpHIIAYd HIPAlOT B YHHCOH, HACEKOMBIC B IOIYJISIHH
T€HEPHUPYIOT CBETOBBIC MM aKYCTHYECKHE UMITYNILChI ¢ OOIIEN YaCTOTOM!, NITHLLI B CTae
ONHOBPEMEHHO MAaUIyT KpbUIbSMH, Cepiue ObICTpO TaJIONHPYIOMWIEd  JIOmanH
COKpalaeTcs OfUH pa3 3a KaX[Iblil JIOKOMOTOPHBIA LIHKIL.

Takas MOACTPOHKA DUTMOB 3a CYET B3aUMOJEHUCTBHA W SBIAESTCA CYIHOCTHIO
CUHXPOHHU3ALMY, SBJICHHS, KOTOpPOE CHCTEMATHUECKH UCCIIENyeTCs B 3TON KHUTE.

Knura paccuuTaHa Ha IIMPOKYIO ayIUTOPHIO: (PU3MKOB, XMMMKOB, OGHOJIOTOB,
UHKEHEPOB, 8 TakKe Ha J[PYIHX CIEIHAINCTOB, 3aHUMAIOIINUXCA UCCIENOBaHMSIMH Ha
CTBIKE pasIMuHBIX OOnacTeill; OHa paccuuTada Kak HA TEODETMKOB, Tak W Ha

! Tax kak 4BTODEI - (PH3UKH, TO AKIEHT Heu30eXHO fefiaeTes Ha (PU3HYECKOM ONXOJIE K ONHCAHUIO
€CTECTBEHHBIX ABJICHUI,
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aKcIepuMeHTaTOpoB. [loaTOMYy H3MOXKEHHWE 3KCIEPHMEHTANBHBIX (DAKTOB, OCHOBHBIX
NPUHIMIOB W MaTeMaTHYeCKMX METO[OB B DasHbIX IJIaBaX HEONHOPOMNHO, H HHOITA
nosTopsieTcsd. PaswooOpasuwe mnpennionaraeMoH ayuTODHM OTPAXCHO B CTPYKTYpe
KHUTH.

IlepBas yacTh KaUTH, «CrHxpoHM3anus 6e3 opMyI», pacCINTada Ha YUTATENA C
MIHMMAJLHON MaTeMATHYecKoi NO[roTOBKOM (3HaHHe MaTeMaTH4YecKOro aHAM3a HE
Tpebyercs), 0 KpaiiHe#k Mepe, KHWTa TIMCANACH ¢ TAKWM HaMepeHMeM. XOTd 4acThb 1
INPaKTHYECKA HE CONEPXHUT YpaBHEHWI, B HEll ONUCHIBAIOTCA M OOBSCHAIOTCH Ha
Ka4eCTBEHHOM YPOBHE BCe OCHOBHBIC e M 3ddekTsP. 31ech MBI HIUIIOCTPUPYEM
CHHXPOHM3AUMIO 3KCIIEPHMEHTAMH K HAaOOfEeHUAMH U3 pas3nuyHblX obnmacteit. YacTh I
MOXET OBITH HpomylieHa (bU3NKaMU-TEOPETHKAMH, CHEUHANACTAMH B HEIMHEHHOH
AMHaMMKE, UM X€ OHA MOXeT OBIThb MCHONb30BaHA KaK HCTOYHHK TPUMEPOB H
NIPUTIOXKEHHH,

Hacru I u III 0XBaTHIBAIOT TOT XK€ KPYr HAcH, HO Ha YPOBHE KOIMYECTBEHHOIO
OTIHCAHMA; NPENIIONaraeTcs, YTO YUTATENb 3THX YacTell 3HaKOM ¢ OCHOBaMH HEIHHEHHON
IHAMAKKM. MBI HafleeMCsl, YTO OCHOBHAS 4YacTh MaTepuana OyHeT NOHSATHA CTYHCHTaM
CTapIMX KypcoB. B aTHX yacTdx Mbl NpuBOMAM 0630p KJIACCHYECKHX PE3YIILTATOB IO
CUHXPOHH3ALUH TIEPUOTHIECKMX OCUHIIIATOPOB, Kak 6e3 y4eTa, Tak ¥ C YUeTOM BIHSHHUS
LIYMOB; pacCMaTpMBAeM HBJCHME CHHXDOHM3AIMHM B aHCaMONSX OCUMIUIATOPOB ¥ B
pacnpefeNeHHbIX CHCTEMAax; IpeJicTaBlsieM pasiuunble 3(deKThl B3aUMONEHCTBHS
XaOTHYECKHUX CHCTEM; IPUBOIMM O0IMpHYyIo OuGnuorpaduio.

Mer! naeeMes, uTo 9Ta KHUra 3amoNHUT npober B auteparype. JeHCTBATENLHO,
XOTA TIOYTH KaKNas KHUTa 110 TeOpHH KoseOGauuil (MM, B COBPEMEHHBIX TEPMHHAX, 110
HEJTMHEHHON UMHAMEKE) PacCMATPHBAcT CHHXPOHW3ALMIO B WHC/E [IPYIHX HETMHEHHBIX
apekros, Tombko MoHorpacdum M.W. Baexmana [1971; 1981], uamucammpie B
«NOXaOTHYECKYIO» 3Dy, CIELHaIbHO NMOCBANICHR! 3TOK TeMe. B HMX riaBHBIM o6pa3om
paccMaTpHUBAIOTC MEXaHWYECKHE W 3JTIeKTPOMEXaHHYECKHE CHCTEMbI, HO OHM TaKXe
comepxkar nofpoSHbIH 0630p TEOPHH, IPUPOIHBIX SBJICHUH U IPHIOKEHUH B Pa3IMUHBIX
obnactsax. IIpy HammcaHMW Hame#d KHHTH Mbl [BITAMACH COBMECTHTHL ONUCAHNE
KNacCHYECKOH TEOPHH C JeTalbHbIM 0030pOM HEJABHHX PEe3yJbTaToB, JleJias YIuop Ha
MEXHCHUIIINHAPHBIE TPAJIOXKEHHS.

B nponecce uccaenoBanuit 0 CHHXPOHU3AIMY MBI C PaliOCTLIO COTPY/HAYANM H
obcyxpaanu pesyiabrTaTtel ¢ B.C. Adpaiimosnyem, B.C. Anmenko, B. Blasius, 1.1
Bnexmanom, H. Chate, U. Feudel, P. Glendinning, P. Grassberger, C. Grebogi, J. Hudson,
C.II. KysneuosemM, I1.C. JTargpa, A. Lichtenberg, R. Livi, Ph. Marcq, 10. Maiictpetko,
E. Mosekilde, F. Moss, A.B. Heiimanom, I'.B. Ocunosemm, E.-H. Park, U. Parlitz, K.
Piragas, A. Politi, A. ITonoeuueM, R. Roy, O. Rudzick, S. Ruffo, H.®. PynskosemM, C.
Schafer, L. Schimansky-Geier, L. Stone, H. Swinney, P. Tass, E. Toledo u A.A.
3auKuHBIM.

Mzl BrICOKO UeHMM KoMMmeHTapud A.A. Henomusinero, A.A. ITukoBckoro, A.
Politi u C. Ziehmann, KOTOpbIe YaCTHYHO IPOYIH PYKOMHCh.

O. ®yrep, HB. Hromesa m R. Mrowka TepmenmBo oTBeyai Ha HalX
MHOTOYHCIIEHHbIE BONIPOCHI, Kacaroluecs MEIHIMHCKIX 1 GHONOrHYecKuX npobieM.

Mbr xorema Obl BbIpasdThL CBOWO 0cobyw GuaropapHocTs  Muxawiy
AnekcaHpoBH4y 3akcy, KOTOpbIi NOAJEpKUBal Hac Ha BCEX CTa[MaX peanu3alyu
3TOTO MPOEKTa.

Mbr Takxe Onaromapum Philips International B.V., Company Archives
(Oinpxosen, Hupepannsl) 3a npucnaHHsle ororpaduio u Omorpadmo Banrasapa
Ban gep ITonst u A. Kurths 3a ee nomous B moAroToske Gudnuorpacpun.

2 [Inst ynpoinennst u3NOKCHAR Mbl OUYCKAEM B TIEPBOY YaCTH CCHUIKH Ha OPHTHHAINBHBIC PaGOTEL,

rie 3TH Wied ORUTH BBICKA3aHE], CCHUIKH MOTYT OBbITh HalicHb! B GuGmiorpaturicckoM pasjene Beeacnus, a
Takke B GuGnuorpaguuecknx 3aMeTkax k wactsaM I i I1L
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B zaxmrouennme MbI  XOTHM  OTMETHTDL HOGPOH&EH&TGHBHOE OTHOLUERHME

corpynrnkoB Cambridge University Press. Mol 8 ocoGentocTn Oiarogaphsl S. Capelin
3a ero mnopgepxky H Teprmenme H F. Chapman 3a ee npeBocxomayio pabory 1o
YIYYIIEHUIO PYKOIHCH.

Humepnem-cmpanu4xa kHuzu. Mbl TIPOCHM BCEX, KTO JKeJIaeT BbICKA3aTh CBOH

KOMMCHTapHH 110 [TOBOIY KHHTH, INPHUCIATE 3ACKTPOHHYIO [IOYTY IIO aipecaM:

pikovsky@stat.physik.um-potsdam.de;
mros@agnld.uni-potsdam.de;

jkurths@agnld.uni-potsdam.de.

Bee onevatku 1 omuOKH 6ygyT OTMedeHbl Ha MHTEPHET-CTPAHKYKE
(URL: http://www.agnld.uni-potsdam.de/~syn-book/).

" DNekTpOHHAA 1oYTa uaflarenbeTa: knigi@technosphera.ru;
Tenedon (095) 234-01-10

Copep:xanne

Tpegucsiosne K pycexomy H3Aaninio
[penucnoBue K aHTIMIACKOMY H3JaHHED

Yacre 1. Cunxpounzanua 6e3 opmyn

I'naga 1. Bregenne

1.1.
1.2.

13

1.4,

CrHXpoRH3aIHsA B HCTOPHYIECKON NEPCICKTHRE.
CHHXPOHH3AIUA; KPATKOE ONHICANUE ABNEHAS.

Yro Takoe cHEXpoHM3alug? UTo He ABIAETCA CHHXPOHH3AITUEH.
CuHxpoHH3anusa: 0030p pasiikIHbIX CoyYaes.
TepMuUHONOTHYECKHE 3aMETaHMS.

OcuxorHas 6u6nROT padms.

I'nara 2. OcHoBHbIE TOHATHA: ABTOKONeGATEILHAN ciicTeMa | ee dha3a

2.1.

2.2,

23

24.

ABTOKORE6ATENLHEIE CHCTEMBI: MATEMATHYECKHE MOJISIH €CTECTBEHHBIX OCHHIUIATOPOB.
ABTOKONeGaTeNnbHbIE CHCTEMB! THIHYHBI B TpHpofe. T'eoMeTphueckuit o0pa3 NEPHONHYECKHX
aBTOKOJeOaHHI: [peje/IEHbIH LHKIL.

Pasa: onpefeleHne H cBOHCTRA.

@asza ¥ aMIUIHTYA KBA3HTHHEHHOro OcHuAnATOpa. AMIIKHTYNA ycToiiduea, dasza cBoGomma. OGLp
Clyvali: IpefenbHbH] KT NPOH3BOJLHON (DOPMBIL.

AprtokonefaTeNkHas CHCTEMA: OCHOBHBIE CBOHCTRA.

INuccunanyd, ycToHYHBOCTL H HeNMHEHHOCTE. ABTOHOMHBIE CHCTEMBI K CHCTEMBI HOJ KEHCTBHEM
cunbl: (hasa BRIHYKIEHHBIX Kodebauuit He ceoGopsal

ApToKonebaTelIbHbIe CHCTEMBI: ICITO/IHATENbHBIE NIPHMEDE] H 00CYRISHME,

Tuneuran aprokonefaTeNbHAad CHCTEMa ¢ KOHTYpoM o0paTHOH cBa3H. PejakcanmouHbie
aBTOKONeO0ATENbHbIE CHCTEMEI

I'nasa 3. CHHXpOHN3AUHA NEPHOTHYECKHX ABTOKOIe0aHHIT BHELIHEH CHIIOH

3,

3.2.

3.3

Cnaboe BospelicTBHE HA KBa3MIHHEHHEIE aBTOKOMEGanm.

ABTOHOMHEIE aBTOKOMeOaHmsl W CMIa BO Bpalfarollelicss CUcTeMe KOOpmMHAT. 3axsaT passl U
gactoTel. Ilepexog K cuHXpommsammd. [Ipumep: 3axBaT dYacTOThl OBIXAHHI MEXaHHYECKOM
BEHTHIANHEH.

CHHXpoHHM3aLWs BHelLHE ! cuytolt: GoJiee obLLuil NOIXON.

Crpobocrxomzuecknii  Mertop, IlpmMmep: nepuopMueckas CTEMYJSHIMS — CBeT/ITYKa.  3axsar
[IOCHEAOBATENLHOCTRIO EMITYARCOB. CUHXPOHN3AIHA BRICWIErO Nopagka. A3pxu Apsonsja. Ilpamep:
nepuomqecxésx CTHMYJISIHEA TNeHCMEKEpHBIX KJIeToK. 3axBaT pa3sl M YacTOTHL OOMIMA IOIXOf.
[Ipumep: CHEXpOHU3ALHS Ta3epa.

OcoBEHHOCTH CHHXPOHA3AIUH pellakCaNHOHHLIX ABTOKONeDa M.

C6poc BHelHUM HMITyIbCcoM. TIpuMep: KapomocTEMYISATOp. DNeKTpiUecKas Mofeh cepfiila no Ban
nep Homo m Baw pep Mapxy. Bapmamms nopora. Ilpimep: sIeKTpoHHBII penaKCANHOHHLI
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3.4.

3.5.

3.6.

aptorenepatop. UWameneHwe coGCTBeHHOH wWacToTh. Momynamus ¥ cHHXpomds3amms. IlpmMep:
CHHXPOHH3aL(HA MIECEH CBEPYKOB. :

CHUHXPOHH3aIMA B OPHCYTCTEHY IIyMa.

Huppysus daser B apToKoneGaHmaX ¢ LyMOM. ABTOKONEOGaHHS ¢ INyMOM M BHeIHeil CHIION.
TIpockokn hasel. Ilpumep: 3axpaT JbIXaHWs OPH MexXaHW4ecKoH BeHTHLumm. Ilpmvep: 3axmar
CEPAETHOro pUTMa CHAGEIM BHEUIIM CTUMYNOM.

Paznmuntle npEMEpPEL

Hupkagubie puTMbL. MeHcTpyanbHEDE UBEKI. 3axsaT NepHoguueckKnx KoneGaHMil YpOBHS MHCYJIMHA
TIEPHOMYECKUME HHbEKIHAMY I7H0K03b1, CHHXPOHA3AINS Ia3MOEd MAKcoMuIeTa Physarum.
SIBnenns, GNMH3KAE K CUHXPOHU3ALIA,

fBnenus npu Gonbmon BHemmed cuie. BosgelicrsMe Ha Bo30yguMBle cucTeMbl CToXacTHuecKuil
PE3CHAHC C TOYKH 3PEHNA CHHXPOHU3ALMA. 3aXBaT HECKOILKUX OCUMIIATOPOB o0Le CHIoH,

I'nasa 4. CaExporu3anus AByX B MHOTHX OCURLIATOPOD

4L

4.2.

4.3.

4.4,

B3anMuas CHEXpOHH3AIEA aBTOKONe0ATE/LHEIX CHCTEM.

HBa B3auMoOeHCTRYOMMX OcIMnsATOpa. IIpuMep: CHEXpOHN3aNMs TPHONHbIX reHepaTopos. [TpumMep:
YacToTa NBIXAHMA W YACTOTAa B3MaXa XpbUIbeB cBofomHo neraumx ytok. IIpamep: nepexof Mexmy
COCTOSHESME C CHH(PA3HBIME ¥ NPOTHBO(A3HLIMA IBMKEHAAMHA, SaKMOUATENbLHLIE JaMEYaHHs M
CB3aHHBIE C CHHXpoHm3auwed addekTel. Penakcauponnsle ocumuiaTopsl IIpEMep: KIeTKH
HCTHHHOIO ¥ MATEHTHOrO BOJUTENEH PUTMa CHHOATPHANLHOrO yma. CHHXPOHH3aUMA B IPACYTCTBHR
iwyma, IlpuMep: aKTHBHOCTL MO3ra H MBI 7ipa Golesnn IlapkuHcona. CHHXPOHA3AUES POTATOPOB.
IpmMep: KouTakThl [IxKo3edcona. HecKoIbKko OCIIIIATOPOE,

[Menouky, peieTky U KoAeGaTENbHLIE CPE/ILL

Cumxposmsammst B uenouxe. Ilpmmep: Lenouka nasepoB. OOpasoBamue KiactepoB. IlpmMep:
9NMEeKTPUYCCKAS AKTHBHOCTE KHInEYHHKa Miekomuramolmx. Kinacrepr! u GueHus B cpefie: nofpoGHOe
paccMoTpetve. KonebarensHas cpefa oyl NepHOIYecKAM BasfelicTsaeM. IlpaMep: BosfelicTare Ha
peaxmio Benoycosa - 2KaGoTunckoro.

I'noGaneHo cBA3aHHBIE OCIHILIATOPLL

Camocurxporuzauust B ancamGre: nepexofi Kypamoro. ITpumMep: CHHXpOHH3AWEA MEHCTPYaTbHBbIX
upKIioB. [IpuMep: CHHXPOHH3ANMS IITHKONATHYESCKHX KONeGanui B NONyNSLfH JIPOKIKEBBIX KIETOK.
OKcHepAMEHTAILHOE H3YUSHUE PHTMHUECKHIX ATIOMUCMEHTOB,

Pazmuunnie npuMepel.

Ber u npixanue y muekonurarommx. CHHXPOHH3AUHA ABYX OCHATISTOPOB «COMbL - BOJ@». 3axsar
xoneGanuil TyGynspHoro Hasnewus B sedporax. Kierounsie nomymspy. CHREXpOHA3AIMAS KOTe6anHi
CHCTEM XMIIHHK - XepTBa. CHHXpOHHM3AIHS B HEHPOHHEIX CHCTEMAX.

I'naga 5. CHHXpOHH3ALHA XA0TEYECKHX CHCTEM

5.1
52.
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XaoTHyeckHe KonebaHus.

Ipumep: Mofiens Jlopenta. HyBCTBHTSILHOCTE K HAYaIbHBIM YCIIOBHSIM.

®a3oBast CHHXPOHHA3ALHA XaOTHYECKAX aBTOKOJIEOa M.

®aza ¥ cpefHAA YaCTOTA XaOTHYECKHX aBTOKoNeOanmil, 3axear yacTOTh! BHeWHell cwioi. IIpAMep:
XaOTHIECKHH Pa3pay B rase.

ITonHag CHHXPOHH3ALMA Xa0THYECKIX CHCTEM.

Tomnasg cHHXpORH3aU®A MAEHTHYHbIX CcHCTeM. [IpAMep: CHHXpoHM3alMs JIBYX JTA3epOB.
Cunxpormsalus HemleHTHUHbIX cucreM. ITomHas cuexponmsaims B ofuiem Koertekcere. IIpnmep:
CHHXDOHH3aLFst H KJacTepbl B TJOONILHO CBASAHHEIX 2NeKTPOXHMHYECKHX OCIHJUISTOpAx.
CuHXpoHK3aLMS [IyTeM MOJIaBCHHs Xaoca.

I'nasa 6. IKCHepHMeHTAIBHOE HCCEA0BaHNe CHHXPOHAZA1IHA

6.1.

6.2.
6.3.

6.4,

Ouetika ha3pl ¥ YacTOTHL IO CHTHATY.

Paza uMITyILCHOH nocmepoBaTenbHocTd. IlpuMep: slekTpokapiguorpaMMa. ®Paza y3KONONOCHOIO
curaana. ITpumep: gsixanue, HeckolbKO HpaKTHIeCKUX 3aMedasuid.

AHau3 JaHHLIX B «aKTABHOM» U «ITACCHBROM» IKCTIEPUMEHTE,

«AKTHBHBI» 3KCIEPUMENT. «[lacCHBHEI» SKCHepAMEHT

AHaln3 B3aMMOOTHOLISHHST MeXTY dhasamu.

HenocpencTBeHHBI aHaIA3 pa3HocTH ¢pas. TIpuMep; perynsima nossi Yejioseka. Beicoxuii ypoBeHb
wyma. Crpobockommieckuii MeToy. $asosplit cTpobockon B ciywae Ilpmmep: BzammofielicTre
CeplieYHO-cocyueTOd M AbixaTentHoll crcreM. $a30Bble COOTHOHICHHMA NPHE CHIBHOW MONY/IALMH.
ITpumep: renepais NOTEHLHANOB AedCTEAA JIEKTPOPeNenTOpaMy BECIOHOCA.

3axntouerne n Gubmiorpadnueckie 3aMeTKIH.

Heckomxo 3aMeTOK O «IIacCHBHBIX» 3KciepumeHTaX. KosmuectseHHOE olieHMBaEHe (ha3oBhIX
COOTHOMICHHI ¥ €r0 CTATHCTHYECKAS 3HAYHMOCTD. HekoTophie moie3HbIe CCBUIKE.
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Yaers I1. 3axsaT (hasbl 4 4ACTOTHI

T'napa 7. CuuxpoHH3auHs NePHOTHIECKHX ABTOKOIefaHMi nepHOAHYECKHM BHELIHUM BO3XEHCTBHEM

7.1. ®PazoBasg qMHaMAKA,
Tlpenentueti mukn u da3a asroxoneGasni, Manbie BosMylieHa u uzoxponnl. Ilpamep: ypaBHeHHE
AAs KOMITEKCHOM aMILIHTYABL. YpaBHeHWe ¢a3oBodl MEHaMuKH. [IpHMep: HEaBTOHOMHOE ypaBHEHHE
[T KOMIUTEKCHOU aMIumeTyisl. MeneHHas mauammka a3nl. MeaneHHad THHAMHKA pasel: 3axpar
¢hasel M obnacts cuHXporAsanEs. MTorn paccMoTpeHust ha3z0Boil THHAMIKH.

7.2. CnaGo HenuHelHBIC aBTOKONCGaHRAS.
AmunuryjHoe ypasrerue. CBOMCTBA CHHXPOHM3AIDIH: U30XPOHHDIH ciryyali. CBOMACTBaA CHHXPOHHA3AAK
B Clyvae HeH30XPOHHBIX aBTOKO/eGamuil.

7.3. OrobpaxeHus OKPYXHOCTH H KOJ/bIa.
Otofpaxkenne OKPYXHOCTH: BbiBoJ M upmMepel. CBoiicTBa OTOOPAKEHHA  OKPYXHOCTH.
Orobpaxenne Kojela. Bombnas ciia ¥ IEpeXo] K Xxaocy.

7.4. CrHHXpOHU3aI[HE POTATOPOR ¥ KOHTAKTOR JIko3edcona.
mHamuka poratopoB u KoHTakToB [Ixosedcowna. IMepeneMmgHEpoBaHHBLE POTATOP BO BHEUIHEM
none.

7.5. Cucrems! $a30BOH aBTONOACTPORKHY.

7.6. BubmuorpauyecKie 3aMETKH.

Inana 8. BaagMyas cCHHXPOHM3AUAS ABYX B3AHMO/IEHCTBYIOIHX EPHOXHYECKHX OCHHILIATOPOB

8.1. dazopast qUHAMHKA.
YepeaseHusle ¢a3opsle ypapHeHus. Orobpaxkenne OKpYXHOCTH.

8.2. CrnaGone/HHelHbIE OCUWIIATOPEL
Obupme ypasmenud. Broivmpanne (ramieHue) xosnebammit. [lpursrusatomee H OTTajKUBarouee
B3aAMOTIeHCTBHE.

8.3. PenakcaumosHble KOMeOaHHS

8.4. BrOnmorpacuteckie 3aMeTKH

I'naga 9. CREXpOHH3ALIA B CHCTEMAX ¢ MIYMOM

9.1. ApTtokoneGaHmA B NPHCYTCTBHY 1IyMa

9.2. CusxpoHH3alUfAs B MPHCYTCTBAR LIYMa.
KauecTBenHas KapTHHa JTaHXKeBEHOBCKOU MMHAMMKE. KomMuecTBeHHOE OmHcaHHe B cayyae Senoro
myMa. CHHXPOHH3AIMA KBa3ETAPMOHHUECKOH duiyKTyupyroumlell cuaoi. BaauMuag CHHXPOHM3ALHA
aBToKONe0a il ¢ LIyMOM,

9.3. BubGauorpachrueckue 3aMCTKH

I'napa 10, dazosas cuHXpoHA3ANHA XA0THYECKIX CHCTEM

10.1. da3a xaoTHIECKOTO OCHUNISTOPA.
IToustue dasel. @azopas MMHAMAKA Xa0THYECKHX OCILHIATOPOB

10.2, CunxpoHu3aL#s Xa0THYECKEX OCIELILIATOPOB.
da3zopas CHHXpPOHK3alus BHemmel cunoil. KoceeHHoe onmcaHwe cHEXpoHm3anuH, CHHXpOHH3ANHS B
TEPMUHAX HEYCTOWYHBLIX MEpUOIHUecKMX opbmT. BianmMHas CHHXpOHM3alWSd [BYX CBA3aHHBLIX
OCLHJLTHTOPOB.

10.3. Bubsmorpaguueckye 3aMeTKU.

Faasa 11. Cunxponan3auys B OCHBANHPYIOWHX cpenax
11.1. Ienoyky ociMMISTOpOB
11.2. HenpepblBHOE MO NPOCTPAHCTBY pacnpefenenye (aibl.
InockrAe BoNHB n MuIeHH. BimudgHme 1yMa: IepoXoBATOCTS IIPOTHE CHHXPOHH3AIMH,
11.3. Cnabo HesmHeliHas RoebaTensHas cpefia.
Kommnnexcuoe ypapHenue ['uH36ypra - JTaupay. Brenrtee posfieicTBUe Ha KoneGaTembHYIO Cpefy.
11.4. BubnnorpahHyecKie 3aMeTKH

I'nasa 12. Ancam6u rno6aNbHO CBA3AHUBIX OCUHJIATOPOB

12.1. Tlepexon Kypamoro.

12.2. OcyiIATOPEL C IYMOM.

12.3. OBobimenws.
Mopens, ocHOBaHHBIE Ha ¢hazoBoM npubmkenwd. ['nmoGanbHo cpA3zaHHBle cnaCoHEMHHEHHbLIE
OCHHIINATODEL Ceasaunsie pelaKCalHOHHBIE OCHHINATODEL. CBs3aHHbLIE KOHTAKTL] D,)KOZS&Q)CUHEI.
OthheKxTEl KOBETHOCTH THCIIA 3IEMEHTOR aHcaMOms. ARCaMOIE Xa0THIECKHX OCIAILIATOPOR.

12.4. BubnuorpadHyeckHe 3aMeTKR
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Yacrts 1. CunxponH3aiHa Xa0THYECKHX CHCTEM

Inaga 13, Iloanas cuuxpounnsaund I: ocHoBRLIE CBONACTER

13.1, TpocTeiimas MOJCIIb: [iBa CBSA3aHHBIX OTOGpAXKEHUS

13.2. YcrolvHBOCTE CHHXPOHHOTO peXiMa

13.3. CraricTEuecKas TeOpHsi IEPEXOA K CHEXPOHA3AINH.
Bosmylueiine Kak ciyuatiioe Gryxpamme. [mbdysms onpepenseTcd CTATHCTHKOH FOKANBLHBIX MO
BpeMeHY JIAIYHOBCKAX NOKa3aTenelt. Moy /isiMoRHas iepeMexaeMOCTh: CTETIeHHBIC PACTIPENIHEeHA.
MonynALEORHAs IepPEMERaeMOCTh: KOPPeAIHONHbIC CROHCTEA.

13.4. Tlepexo) K CHHXPOHU3ALUU: FEOMETPUUECKOE PACCMOTPEHHE.
IMonepeurrie Gucypkaumn nepuopgudeckux Tpackropuit, Crabas M CHIBHasi CHHXDOHW3AIML.
JlokaymHbLA 1 1710GaNLHBI PUJIHHT.

13.5. BuGmuorpapuyeckue 3aMeTKH

I'napa 14, Monnan cuaxposnszauns II: 0Goduienns o cOXKHBIE CHCTEMBI

14.1. Upenruunsie oTobpaixeHHs, CBA3L ODMErO BUIA.
OnuonanpasieHyas CBI3b, ACAMMETpPUYHAs JOKanbHas CBA3b. I'00aibHAd CBA3H (uepes cpemmee
mone).

14.2. CucTeMel ¢ HEOPEPLIBHBIM BPEMEHEM

14.3. PacnpeneneHHLIe CHCTEMBI,
IIpocTpaHcTBeHHO OEHOPOJHENE xaoc. [lomepeuHas CHAXpPOHA3ALMs OPOCTPAHCTBEHHO-BPEMEHHOIO
xaoca. CHHXpOHH3AIMsA B CBA3AHHAIX KJETOYHBIX aBTOMATAX.

14.4, CunxpoHr3alfs Kak CHMMETPHIHOE cocToAHne 06NIero Brpa.
KormgpoBaHHEIE CACTEMBI.

14.5. BnGmiorpaguueckue 3aMeTKH

Tnasa 15. CEHXPOHH3ANEA C/I0XHOH AHHAMBKE BHEITHHM BO3[IeHCTBHEM

15.1. CunxpouH3auEs nepuoIEIecKol canoh

15.2. CHEXpOHHA3ALHS IMYMOBEIM BO3IEHCTBEEM.
Ilepuommueckne kKoneGamis uop peficTeHeM ImyMa. CHHXpOHHM3AIEA XaOTHYECKIX KoJebaHmi
BHEILHHM LIyMOM.

15.3. CuHxponu3alis Xa0TUIECKHX KOIeOaHH Il Xa0THIECKOH CHII0H.
TMonnas  cuuxpommzamms.  OGolmenHaa  cuHxponmsanms.  OGoOiensas  CHHXpOHM3AIMS
KBasulleprHoIAIecKol CHIIofH, '

15.4. BrGnuorpagAuecKre 3aMETKY

Mpunoxennel. OTKpbiTHE cHEXpORU3aNMA XpucTHanoM [oireHcom
I11.1. TTucsmo Xpucruana 'rotiresca ero oriy, Korcranrery [ofirency
I11.2. Mopekue uace! (cummnatus gacon). Yacte V

Ilpunoxenue 2. Mraosennsie ¢asa B 4aCTOTa CHIHAIA
112.1. Auanmarryeckuii cardan u npeobpasosarne I'wmbepTa
T12.2. Tlpamepsl

I12.3. Yncneunsie npolueMe! M HPaKTHUCCKHE PEKOMEHHAIHI
I12.4, BeruucneHne MrHOBEHHOM 9aCcTOTHL

Cuoncok Jureparypbl

IlpeameTHeld yKasaTenb
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SYNCHRONIZATION OF CHAOTIC
AND STOCHASTIC OSCILLATIONS AND ITS APPLICATIONS

The field «Nonlinear Dynamics of Complex Systems in the Presence of
Fluctuations» is one of the hottest topics of today’s physical and biological research. It is
very intriguing to see and to research the rules how a deterministic process becomes
stochastic or how a stochastic process becomes synchronized to a deterministic process
when certain parameters evolve.

This is a strongly interdisciplinary field of science. Originally, only
mathematicians and theoretical physicists dealt with these phenomena but nowadays a
wide range of scientists, including experimental physicists, biophysicists, information
scientists, engineers, biomedical scientists, etc. devote their efforts to this field.

The International scientific conference «Synchronization of Chaotic and Stochastic
Oscillations; Applications in Physics, Chemistry, Biology and Medicine» (SYNCHRO-
2002) took place in September, 22-28, 2002, in Saratov (Russia). The conference was
organized by the Laboratory of Nonlinear Dynamics of Saratov State University and the
Research-Educational Center of Nonlinear Dynamics and the Biophysics of SSU (REC-
006). The conference SYNCHRO-2002 was sponsored by the U.S. Civilian Research and
Development Foundation, the Russian Federation Ministry of Education, the Russian
Foundation for Basic Research, the Alexander von Humboldt Foundation and Project
SFB 555 (Germany).

About hundred scientists coming from fourteen countries of Europe, Asia and
America attended the meeting. Twenty-eight invited talks were held by recognized
leaders in scientific fields related to stochastic nonlinear dynamical systems.

The focus topics of the conference were synchronization phenomena and related
fundamental issues in nonlinear systems and the practical applications of the results.
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The conference proceedings is published in a special issue of the Journal «Applied
Nonlinear Dynamics» (in Russian)’ and a special selection of invited papers in the
Journal «Fluctuation and Noise Letters».

You have that gpecial selection in your hands. We wish you an inspiring reading.

Laboratory of Nonlinear Dynamics, Vadim S. Anishchenko

Physics Department, Saratov State University Chairman of organizing committee
Astrakhanskya str. 83, 410012 Saratov, Russia of the conference, Director of
vadim@chaos.ssu.runnet.rn Scientific and Educational
igor@chaos. ssu. runnet.ru Center «Nonlinear dynamics

and biophysics SSU», professor
Igor A. Khovanov, PhD
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Izv. VUZ «AND=», vol.11, Ne 3, 2003

HAYYHASA BUOIPA®HS B.C. AHUMIMEHKO

BamuM CeMeHOBHY AHMILEHKO OKOHWHN (u3nyeckuil (pakynbreT CapaToBCKOTo
rocyflapcTBeHHOro ynusepcuteta B 1966 rony. ITocne oxowyanus CI'Y oH paGoraer
mkenepom HUHUM®a, yuutcs B acnupanType, a ¢ 1970 rojia npenogaeT Ha Kadenpe
pamnodusuky. Eme Oynyud CTYEeHTOM OH 3aHUMAeTcs HCCIE[IOBaHMAMM B Hay4HOH
rpynnie nox pykosogctBom AWM. IlfTeipoBa. Kpyr €ro Hay4HelX MHTEPECOB B TO BpEMS
cBSI3aH ¢ (OIYKTYAUMOHHbIMU sBIeHusMUA B anekTpoHubx CBY ycrpoiicrsax. [lepsas
nayunas cratbsi A.W. llteipos, B.C. Anmunesxo «Koadduunest myma JIEB B pexume
HENPEPBIBHOLO W  PAaBHOMEPHOIO  TOKONEpEeXBaTa  3aMEIfiolied  CHCTEMbI»
(PaimoTexHuKa u aekTponmka, 1967. T. 12, Ne 8) sbmuna B cBetr B 1967 rogy. B 1970
rory B.C. AHFMIIEHKO 3aliMIaeT KaHAWAaTCKyio Aucceprammio Ha TeMmy «lllymoBbie
CBOWICTBA 3/IeKTPOHHBIX moTokoB CBY-ycunarene#t O-tuma». B Te Xe roipl OH
BHepsble Ha usmdeckoM (akyneTeTe paspabaThiBaeT ¥ UMTacT OOWMEA Kype JIEKLHUA
«CraTucTadeckas pagrogu3yka U Teopus MH(OpPMAaLUKW», CO3IAET COOTBETCTBYIOLIMA
naBopaTOpHLIA NpPaKTHKYM 10 craTucTyeckod pamuocusnke.CoueraHne HayuyHbIX
MHTEPECOB, JIEXKAIMX B 0GJNAcTH HeJWHeHHbIX KoneDaHMM M CIyYalHbIX [POLECCOB,
JIOTHYeCcKH TIpMBOAAT joueHTa B.C. AHHINEHKO K COBEPIIEHHO HOBOMY B TO BpEMS
(hyHIaMeHTATbHOMY Hay4HOMY HNpPAaBICHHIO - MCC/EOBAHHIO AWHAMHUYECKOrO Xaoca.
Ha py6exe 70-80 romo oH co3gact HeGOMLIUIYIO HAYYHYIO TpYMIy H3 CTYAEHTOB M
aCITMPaHTOB ¥ HAUMHAECT MCCJIEOBAHHS B HOBOH JUIsi HEro obnactu. ONHMM U3 NEpBbIX,
HO O4eHb BaKHbIX ocTiKenuit B.C. AHHIUEHKO U €ro rpymmbi 66U10 co3fanue 6a30B0kH
MOJIeTM [MHAMAYECKOrO Xaoca - pagMo(U3NUecKOro TIeHepaTopa ¢ MHEPLMOHHON
HEeJIMHEeHHOCTBIO, M3BECTHOIO B HACTOSLIEE BpEMS Kak TeHepaTop AHHILEHKO -
Acraxosa [1,2]. Dra mpocras cucrema ¢ 1.5 cremensmu cBOGOIBI JIeryia B OCHOBY
TEOPETHYECKHX M SKCIEPUMEHTANLHBIX HCCNENOBaHM, MO3BOIMBUMX OCHApYXHTh H
W3YUUTH PSAJ HOBBIX (DYHIAMEHTAILHBIX SBJICHII H 3aKoHOMepHOcTel. Briepsble GbLii
OGHapyKeHb] ¥ MCCIEIOBaHb] TAKHE ABJICHHMS, KaK NepeMekaeMOCTh THIIA «XaoC-Xaoc»
[3], Gudypkauym ygEOeHUs IBYMEpHBIX H TPeXMepHbIX TopoBs [4,5,6], mpocTpaHCTBEH-
Hele OudypKaluu yJBOEHMA W NPOCTPAHCTBEHHOE «HACHILCHHE» Xaoca B LEMOYKE
XaOTHYeCKMX aBroreHeparopoB [7,8]. Brepsble Oblza mnokasaHa ocobast ponb
dyKTyalMi B cHCTEMax ¢ HermnepOoNHYecKMMH XaOTHYECKUMH aTTPaKTOpaMu [9,10].
Brepsble NpoBefied AByXNapaMeTpHYecKiil SKCTIEPUMEHTAIbHBIA aHaNM3 paspyLICHUS
JIBYXYaCTOTHLIX KBa3HITEPUOIUMECKUX KoNeOaHUH, NPUBOJAIMA K BO3ZHMKHOBCHHIO
xaoca [4,11]. BriepBbie UMCIEHHO ¥ 3KCMEPUMEHTANLHO OCHAPYXEHO U KCCIIEIOBAaHO
ABJIEHHC YaCTOTHOW CHHXPOHM3alMM Xaoca, COCTOsIlee B 3aXBaTe WM MOAABJICHHA
6a30BBIX YACTOT, BLIIESIONUXCS B CIEKTPE XaOTHUYECKHX KoneGaumit [12,13].

Hayunbie pesynbrarhl 1980-1984 ropoB cocraBumi MaTepwalt MOHOTpadui
B.C. Ammuenko «CroxacTiueckue Koje6Ganns B pannodH3uyecKix cucremax» (Msg-so
Capar. yu-Ta, 1985, vacts 1; 1986, yacte 2). Oto Obina nepsas B PocCHi M OfHA U3
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B nayuHoit naGoparopun, 1967 ron Jlexuua pouenta B.C.AHMILEHKO 110 CTATHCTH-
Apxus B.C.Anutyernico yeckoit pamuocdusuke, 1972/73 y4. rop
Apxue O.H.Coxoaosa

e
o

Kadenpe papuoduzuxu 25 ner. B nepoM psany ciepa Hanpapo: pouent B.C. Mnnun, cT. npenopa-
sarenk [0.I1. Haymenko, nouent B.A. Cenun, 3as. kacdeppoi I'M. Tepmresin, poueht A.B. IlTsipos,
cT. npenopaparent. E.A. Poguonosa. Bo BTopoM psjly ciepa Hanpapo: naGopaut Cemensika (BTopad),
pouentel O.H. Cokonos, I'.H. Kopocrener, U.H. Camnii, B.C. Asmuenko, accuctenrT A.C. JTuctos.
B rpetheM pamy ciepa wampaBo: mukeseps! A.B. Posanor (sropoit), H.®d, demupnor (ueTBeprhii),
cT. npenonasarens B[, Jlyunaus, Hay. nabopatopuu B.H. Copokun. 1976 ron Apxus xaghedpbt

e - T S = e - s

B obmexurnn MI'Y ¢ npogeccopom 10.J1. KnnmonToBrYeM 1 ero acnmpasTami, BTopoli ciesa M.  Bownn
(spme npodeccop PocTokckoro yHuBepeuTeTa, epManus). SITIK 1980 ropa 3
Apxus B.C.Aruwenxo
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C npodeccopamu  xadempel  paguMOdU3IAKH: aypea'rm 03 Hpescm tb, cnesa-ﬂaﬁpaso.
A.B. Xoxios (csiesa) u .H. Canmit (cnipasa), 1994  niouent A.H. I1asios, e aHXenep I' Y. Crpenkosa,
rog Apxua kagpedpo:  Mpotheccop B.C. Anmmenxo, 2004 ron

TaGopaTopust HenumeliHo! AuHamMukd. B nepsoM psfy clieBa HaNpapo: aclupaHTKa O.B.CocHoBuesa,
Hayunbit pykosomurens B.C.Ammuenko, acmmpantka H.B. fncon, pouent T.E. Bamusacosa. Bo
Bropom psuy: fouent AJB. Heiman; acmpanmst  FLA. Xopanos, A.H. Tlasnos, AH. Cwiuesxo,
A.IT Huxwrun, A.T. Bananos, ponest 3. ITocTHos, ct. npenojasatens A.B. IHaGysmH, poueHT
B.B. Acraxos. 1994 rop. '

Cotpymruxu Kaceppbl paTHOU3HKH, 1994 rop. : Apxus kagedpvi
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NepBLIX B MUpe MOHOrpaduil, NOCBSINEHHBIX HCCAEHOBAHWIO NHHAMIYECKOrO Xaoca.
T'ogom cnycTs KHura Obuia msgana B I'epManuu Ha anrmmiickom ssvike, B 1986 ropy
COCTOsIach 3allMTa JOKTOPCKOU mmcceprammy «MexaHu3Mel pa3pylieHuss U CBOHCTBA
XaOTHYECKHUX KosieOaHuil B pafuodpu3HYECKHX CHCTEMAX C KOHEYHBIM YHUCIIOM CTENEHEH
cBoGoapl». [JocTmkenust Baguma CeMeHOBMYA M €0 YUEHMKOB HAXONAT NPH3HAHUE Y
OTEYECTBEHHBIX ¥ 3apyOeXHBIX YUYCHBIX. YCHEUWHOe pa3BATHE HOBOIC HAYYHOro
HampaBJeHusl TIPMBEJIO K CO3JaHMIO Ha OCHOBE HAy4HOW TIPpyIlbi AHHUIIEHKO
JlaGopartopun HemmHeiHON Munamukn CT'Y.

C 1988 r. mpodgeccop B.C. ArmMineHKO 3asenyeT Kacenpodl paguocmsuku. B
CBSI3M ¢ YCNeXamu B DPa3BUTHM HOBOTO HAYYHOTO HanpaBneHus oHa B 1997 ropa Obina
npeoGpa3zoBaHa B Kadepy pamvodu3uku ¥ HenuwHeiHo#d muHamuku. HecMoTps Ha
TSDKENOE OSKOHOMHYECKOe MonoXeHde B crpase B 90-e rompl, BO3MIapiseMas
npodeccopoM AHHMIIEHKO Kacefpa INpojilolkaeT passuBaeTca. Ha  xadenpe
pa3pabaThIBalOTCS HOBbIE JIEKLMOHHBIE KYpCchl W NpPakTHKyMbl. lIpenmopasarenn u
COTPYIHUKY MOCTOSIHHO BE[YT HAy4yHbIE HCCIENOBAHMA IO pa3sIWYHBIM HANPABJICHASIM
HeNMHEeHHOH JMHAMUKHE H pagHo(U3UKH, B KOTOPbIX aKTHBHO yYacTBYIOT aclHpaHThl U
cryieHThl. Pacrer wicio mny6iuKauuii, COTPYUHMKM Kadelpbl y4YacTBYIOT B
GONLIIMHCTBE BENYLIMX KOH(epeHIwt Mo HenuHelHof pauHamuke. IIpakTHuecku
eXerogHo Ha Kadefpe 3alMUINAlOTCs [UCCEPTAlM. YKPEIISIOTCS M PacHlpSIOTCS
MEXIyHapofHble cBsi3d. Ha JeHerd, 3apaCoTaHHbIE COTPYJHHKAMH IO HAayYHbIM
rpanTaM, kadegpa OCHAIAeTC COBPEMEHHOH BLIMUCIMTENbHOM TEXHMKOH |
paIMou3MepPUTENHLHOM annapaTypoi, co3aeTcsl JIOKaNbHast CeTh C BhIXOJIOM B HHTEPHET,
OTKphIBAaETCA [MCIUISHHbH KIace IS CTYIeHTOB Kadephl.

HoBble TeXHHYECKHE CpejcTBa NPOBEEHHsi KOMIIBIOTEDHBIX M (DH3MYECKHX
IKCIIEPMMEHTOB OTKPLUTH [IMPOKHE BO3MOXHOCTH IS ¥ccnepoBamuit. K saydyHbIM
nocTikeHnsiM B.C. AHMIIEHKO B MOCHEHHE TOObl MOXKHO OTHECTH CIEAYIOLIHE
(byHIaMeHTaIbHbIE Pe3YJIbTaThl:

o OTKpEITO fABIEHHE CTOXACTHYECKOTO PE30HAHCA B XAOTHUYECKUX OMCTaCHIbHBIX
cucTeMax, BKrouas 3¢eKT AEHAMIYECKOro CTOXaCTHYECKOro pe3oHanca Ges
BO3JIEHCTBUS BHEIIHUX IIyMOB [14-16].

e OTKpLITO SBJCHHE CTOXACTHYECKOM CHHXpOHM3alMM B OHCTaOMITbHBIX
CHCTEMaX, MpEJCTaBIgolee coBOR 3axBaT CpefHE! YacTOThbl IIEPEKIIHOYCHMI
BHELLHHAM ITeprogudecknmM curianom [17,18].

e BepBble ycTaHOBJIEH 3(M@EKT CHHXPOHM3ALMHM KapAHOPHTMa BHEUIHMM
TIEPUONMIECKUM M Xa0TH4YecKUM curHanamn [19,20].

© OKCIEPHIMEHTATBHO U YHCIICHHO MTOKa3aHo, YTO MFHOBEHHAA (Da3a XaoTHYECKHX
aBTOKONeOaHWil B peXMME CIMPANbHOTO AaTTpakTopa BeleT cebs nonobHO
BHHEPOBCKOMY IIpOLECCY M XapaKTepH3yeTCsl KOHEYHBIM KO3(P(MHUHEHTOM
adpthexTunHOM uchdy3un.

o CrieKTpanbHO-KOPPENALMOHHBIE  XapaKTEPUCTHKW ~ pasiM4HBIX  THIOB
Xa0THUECKOH [MHAMHKA MOrYyT OBITb CMOJENHMpPOBAHBI C  HOMOIUBI)
KJACCHYECKHMX CHy4YalHBIX TMPOLECCOB, TaKMX KAK TapMOHHUYECKHH HIyM H
caydaiiHsli TenerpatHbi curaan [21-23].

B nacrosiinee Bpemsi Bagum CemMeHoBrY AHMIIEHKO - OJMH U3 BEXyIX B Poccuu

H MHpE CHEHAITUCTOB B 00JIaCTH HENMHEHHOH TeOprH KoJieOaHni ¥ TCOPHH (PAYKTYaluii
B HeNnMHeHHBIX chcTemax. OH aBrop Gonee 350 Hayumbix paGoT, cpef KOTOpbIX 9
Hay4YHbIX MOHOrpadwuit.

IMox pykoBonctsoM npoceccopa B.C. AHnuieHKo 3ampiieso 4 JoKTopekux u 16
KaHTAAaTCKHX JRccepTalldif, BbIIOMHCHBI HCCNEHOBaHusA Mo 19 Hay4HbIM IpaHTaMm, U3
KOTOpbIX 7 - MexXpayHapojHble. OH SBISETCS ONHUM W3 OCHOBHBIX OpPraHU3aTOPOB U
cospareneit Hayuno-o6pasosarensuoro nesrpa (HOLI) CI'Y «HenumeitHas guHaMuKa
u Ouodusuka». HOLI 6b11 opranusosan B 2000 romy B pesynbTaTe noGenbl B KOHKYpCE
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[PaHTOB B paMKax mporpammbl «®PyHpaveHTanbHble MCCIEfOBAHHS H  BBICIIEE
oBpazopanue», unancupyemoit MO PP u AmepukaHckmv QoHIOM rpakIaHCKRX
uccnegosanmi i passurus (CRDF). C momenTa cospasms HOLL npogeccop AxnmmieHko
ssisercst ero mupexropom. B 2003 rony wM oprammsoBaH MexXTyHapOIHbIH HHCTHTYT
HeMMHEHON UHAMMKE, B pa6oTe KOTOPOTO, TOMHMO COTPYIHUKOB Kagenpsl y4acTBYIOT
HaydHble IpYNILl BENYIUX espornelickux yHuBépcutetoB. B.C. AHMIIEHKO TpOBOMAT
aKTHBHYIO paGoTy IO PasBATHIO MEXAYHApOIHBIX HayyHbIX cBaseil. Ha ceropHsmmmi
eHb CO3aHO 9 MEXIyHAPOIHBIX HAYYHBIX IPYIHI, B KOTOPhIX paGoTatOT aclupaHThl U
OKTOpaHThl Kadelphbl, NepeHnMas ONbIT W Mosbras Ksamupukammo. ITpodeccop
AHUIEHKO BXOTUT B COCTAB PENKOILIETHi 2 ClIeNUali3iPOBAHHBIX HAYYHbIX KYPHANOB,
IPHHAMAN yJacTue B paboTe OPTKOMHUTETOB 6 MEXKIYHAPOIHbIX HAYIHBIX KOH(EPEHIUHA,
OpraHM30Ball M MPOBEJl 2 MeX/IyHapo[Hble KOH(EPEHIHH 110 HeIMHeHHON JHHAMUKE B
Caparose (B 1996 u 2002 ropax). Ilpodpeccop AHMIIEHKO SBISETCH UNCHOM
KOOpP/IMHAHOHHOrO coBeTa LleHTpa ucciefopatuil cloXHbIX cucteM npu [ToTcraMckoM
yausepcutere (I'epmanms).

3a JIOCTHKEHHA B HayKe M TpenojiaBaTelbekoi gesrensHoctd B.C. AHMITIEHKO
ITh pa3 IPUCYXkpuaiock 3saHne «CopocoBCKMil Tpotcheccop», OH U3OpaH aKaleMUKOM
PAEH, eMy TpuXasl NpUCYXHanach rocyfapcTseHHas HayyHas crumenmusi PAH. 3a
BBITAIOIHECS HayuHble JOCTHXKEHUS B OONACTH HEJIMHEHHON JHHAMUKH CTOXaCTHYECKUX
cuctem B 1999 ropy B.C. Anmnienko Obl1a IpHcyxneHa npemus MexXyHapogHOro
Hayuroro conna uMenu Aunekcanapa ¢doH I'ymGoipgra mo ¢usuxe. KonnekTus,
KOTOPLIA OH BO3IJABNSET, N0 WroraM KoHKypca 2003 rona Bollea B 4HCIO BEMYIIMX
HAYYHO-TIeJarOrMYecKuX KonnekTuBoB Poccriickol depepalun.

Scientific Carrier of Prof. Dr. Vadim S. Anishchenko

Vadim Anishchenko graduated from the Department of Physics of Saratov State
University in 1966. Being a graduate student he started his scientific research in the group
supervised by Dr. Alexander 1. Shtyrov. After his graduation Vadim continued active
research under supervision of Professor Shtyrov as an engineer at the Research Institute
of Mechanics and Physics (this Research Institute belonged to the Department of
Physics). Then he entered a PhD program at the Department of Physics. The main topic
of Vadim Anishchenko’s scientific studies was related to fluctuational phenomena in
electronic microwave devices. The first paper written by A.JI Shtyrov and V.S.
Anishchenko, «Noise coefficient of a traveling wave tube in the regime of continuous and
uniform current interception of a decelerating system» was published in 1967 in the
journal «Radiotechnika i Elektronika», published by the Soviet Academy of Sciences. In
1970 Vadim Anishchenko defended his candidate of science thesis (an equivalent of
PhD) on the topic «Noisy properties of electronic flows of microwave amplifiers of the
O-type».

Since 1970 Vadim Anishchenko has been teaching at the Radiophysics Chair. He
developed and delivered a lecture course on «Statistical radiophysics and the theory of
information» at the Department of Physics. Additionally, he built the laboratory on
statistical radiophysics.

Combination of scientific interests lying in the area of nonlinear oscillations and
random processes served as a background for him to come to studies of dynamical chaos
being that time an absolutely new fundamental scientific direction. In the very early
1980’s Vadim Anishchenko, already Associate Professor, created a small research group
with students and PhD students and started scientific investigations in the new field. The
development and creation of a radiophysical generator with inertial nonlinearity
becoming a basic model of dynamical chaos were one of the first and important
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With the founder of synergetics Prof. H.Haken. Delivery of the Humboldt Research Award. Prof.
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Chairmen of the Conference ICND -96: Prof. W.Ebeling (Humboldt University, Berlin), Prof.
D.1. Trubetskov (Saratov State University), Prof. V.S. Anishchenko (Saratov State University). Saratov,
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achievements of Vadim Anishchenko and his group. This generator is known now as the
Anishchenko-Astakhov oscillator [1,2]. This simple system with 1.5 degrees of freedom
served as the basis for theoretical and experimental studies that enabled to discover and
explore a number of new fundamental phenomena and regularities. Using this system,
Vadim Anishchenko and his collaborators first revealed and studied «chaos-chaos»
intermittency [3], period-doubling bifurcations of two-dimensional and three-dimensional
tori [4-6], spatial period-doubling bifurcations and spatial «saturation» of chaos in a chain
of chaotic self-sustained oscillators [7,8]. A special role of fluctuations was first
demonstrated in systems with non-hyperbolic chaotic attractors [9,10]. A two-parametric
experimental analysis was first performed to study the mechanism of two-frequency
quasi-periodic oscillations destruction leading to the onset of chaos [4,11]. There was
first revealed and explored numerically and experimentally the phenomenon of frequency
synchronization of chaos, that consists in locking or suppression of basic frequencies
pronounced in the power spectrum of chaotic oscillations [12,13].

Scientific results obtained by Vadim Anishchenko and his group in 1980-1984
were put in the monograph «Stochastic Oscillations in Radiophysical Systems» published
in 1985 (Part I) and 1986 (Part II) by the Saratov University Publisher. This book was
one of the first in the world monographs dedicated to dynamical chaos. One year later it
was translated to English and published in Germany by Teubner.

In 1986 Vadim Anishchenko defended his Doctor of Sciences thesis on the topic
«Mechanisms of destruction and properties of chaotic oscillations in radiophysical
systems with a finite number of degrees of freedom». Scientific achievements of Vadim
Anishchenko and his research group become world wide recognized. The successful
development of the new scientific direction led to the creation of the Nonlinear Dynamics
Laboratory supervised by Prof. Vadim Anishchenko.

Since 1988 Prof. V.S. Anishchenko is the Head of the Radiophysics Chair. The
study of dynamical chaos becomes one of the leading scientific directions at the Chair
and in 1997 it was renamed as the Radiophysics and Nonlinear Dynamics Chair.

In spite of a quite difficult economic situation in Russia in 1990°s the Chair
supervised by Vadim Anishchenko continued developing. New lecture courses and
practical laboratories were established. The professors and research fellows continuously
carried out cutting edge researches on various topics and directions of nonlinear dynamics
and radiophysics, where students and PhD students participate actively.

The number of publications has grown significantly in 1990’s and the laboratory
members have attended numerous International and local Conferences on nonlinear
dynamics. These years of intensive research and of many different scientific projects
created a constant flow of PhD dissertations coming from the laboratory almost every
year. All this gained local and international recognition of the laboratory and allowed to
extend international scientific collaboration. Vadim Anishchenko and his laboratory
have organized several international conferences with proceedings published in leading
international journals.

The laboratory leading by Vadim Anishchenko has brought significant funds to the
Chair which allowed to build modern research and educational environment as well as
modern computer fascilities, including a recently established parrallel computer cluster. It
also allowed to bring world leading scientists in the area of nonlinear dynamics to give
lectures and seminars at Saratov State University.

Among very recent scientific achievements of Vadim Anishchenko the following
fundamental results are worth to be emphasized especially.

* The effect of stochastic resonance in chaotic bistable systems was discovered

including the effect of dynamical stochastic resonance without external noise
sources [14-16)].
+ The phenomenon of stochastic synchronization in bistable systems was first
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revealed that represents the mean switching frequency locking by an external
periodic signal [17,18].

« The effect of synchronization of cardiorhythm by external periodic and chaotic
signals was first established [19,20].

» It was demonstrated experimentally and numerically that the instantaneous phase
of chaotic self-sustained oscillations in the regime of a spiral attractor behaves
like a Wiener process and is characterized by a finite value of the effective
diffusion coefficient. Spectral and correlation characteristics of different types of
chaotic dynamics can be modeled by means of classical random processes such
as harmonic noise and a random telegraph signal [21-23].

Now Vadim Anishchenko is one of the leading world experts in the field of
nonlinear theory of oscillations and the theory of fluctuations in nonlinear systems. He is
the author of more than 350 scientific papers and 9 scientific monographs.

16 PhD dissertations were defended under supervision of Prof. Vadim
Anishchenko and 4 Doctor of Sciences dissertation were defended by the members of the
laboratory. He also supervised the work on more than 19 scientific research grants among
which 7 projects were international. Vadim Anishchenko is one of the main organizers
and founders of the Research and Educational Center (REC-006) on «Nonlinear
Dynamics and Biophysics» at Saratov State University. This Center was organized in
2000 as a result of the grant competition in the framework of the Basic Research and
Higher Education Program supported by the Civil Research and Development Foundation
of the U.S. (CRDF) and the Russian Ministry of Education. Prof. Vadim Anishchenko is
the Director of this Center. In 2003 he organized the International Institute of Nonlinear
Dynamics that involves both the Chair collaborators and several research groups of the
leading European Universities. Vadim Anishchenko has been leading an active work to
develop and expand international scientific linkages. At the present time 9 international
research groups were created where PhD students and collaborators of the Chair took an
active part. Vadim Anishchenko is on the Editorial Boards of two scientific journals,
namely, «Applied Nonlinear Dynamics» and «Discrete Dynamics in Nature and Society».
He also participated in the work of the Organizing Committees of 6 International
Scientific Conferences, organized and conducted 2 International meetings on nonlinear
dynamics in Saratov (1996 and 2002). Prof. Vadim Anishchenko is a member of the
Advisory Board of the Center for Complex Systems Studies at Potsdam University
(Germany). For the achievements in science and teaching Prof. Vadim Anishchenko was
awarded the Soros Professor title 5 times. He is an academician of the Russian Academy
of Natural Sciences. He was awarded three times the State Scientific grants of the Russian
Academy of Sciences. For his outstanding scientific research in the field of nonlinear
dynamics of stochastic systems Prof. Vadim Anishchenko was awarded the Humboldt
Research Prize in physics in 1999. The group supervised by Prof. Vadim Anishchenko
won the competition in 2003 and was included into the list of the leading scientific and

teaching groups of the Russian Federation.
V. Astakhov

T. Vadivasova
G. Strelkova
A. Khokhlov
D. Postnov
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