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Цель. Целью работы является исследование развития метода неподвижной точки и теории степени отображе-
ния, связанных с именами П. Боля, Л. Брауэра, К. Борсука, С. Улама и др. и его применения к изучению поведения
траекторий динамических систем и устойчивых состояний упорядоченных сред. Метод. Исследование основано на
анализе фундаментальных работ перечисленных математиков 1900–1930 гг., а также более поздних результатов Н. Ле-
винсона, Т. Воловика, В. Минеева, Дж. Толанда и Х. Хофера прикладного характера. Результаты. Работы Брауэра
внесли существенный вклад в теорию разрешимости нелинейных уравнений вида f(x) = x в конечномерной по-
становке. Этому предшествовало изучение сингулярных точек векторных полей, предпринятое А. Пуанкаре, а также
доказательство теоремы Боля о невозможности отображения круга на свою границу. Первым математиком, использо-
вавшим метод неподвижной точки в изучении систем дифференциальных уравнений, был Боль. Эта тема получила
своё продолжение через 40 лет в работах Левинсона, который показал наличие в детерминированных диссипативных
динамических системах хотя бы одного периодического решения. Введённое Брауэром фундаментальное понятие сте-
пени отображения (deg f) «заиграло» в самых неожиданных ситуациях. Исследования Воловика и Минеева выявили
прямую зависимость дефектов упорядоченных сред от топологического инварианта deg f , характеризующего отоб-
ражение f окрестности особой точки на сферу. Другое нестандартное применение степени отображения обнаружили
Толанд и Хофер при изучении некоторых гамильтоновых систем. Вычисление deg f для отображений специального
вида помогли им доказать существование периодических, гомоклинических и гетероклинических траекторий указан-
ных систем. Обсуждение. Метод неподвижной точки и степень отображения – основные инструменты качественных
методов решения нелинейных уравнений. Они оказались востребованными не только в рамках математики, но и в
приложениях, причём эта тенденция, по-видимому, будет сохраняться и при переходе к бесконечномерному случаю.
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Aim. The aim of the paper is investigation of the development of the fixed-point method and mapping degree
theory associated with the names of P. Bohl, L. Brouwer, K. Borsuk, S. Ulam and others and its application to study of the
trajectories of dynamical systems behavior and stable states of ordered media. Method. The study is based on an analysis of
the fundamental works of the mentioned mathematicians 1900–1930’s, as well as later results of N. Levinson, G. Volovik,
V. Mineev, J. Toland and H. Hofer of an applied nature. Results. Brouwer made an essential contribution to the solvability
theory of nonlinear equations of the form f(x) = x in a finite-dimensional statement. This was preceded by the study
of singular points of vector fields undertaken by H. Poincaré, as well as the proof of Bohl theorem on the impossibility
of mapping a disk onto its boundary. The first mathematician who used the fixed point method in the study of systems of
differential equations was Bohl. This theme was continued 40 years later in the works of Levinson, who showed the existence
at least one periodic solution in deterministic dissipative dynamical systems. The fundamental concept of the mapping degree
(deg f ) introduced by Brouwer «began to play» in the most unexpected situations. Investigations of Volovik and Mineev
revealed a direct dependence of ordered media defects on the topological invariant deg f , characterizing the transformation
f of a neighborhood of a singular point onto the sphere. Another non-standard application of the mapping degree was
discovered by Toland and Hofer in the study of some Hamiltonian systems. Calculating deg f for mappings of a special
kind helped them to prove the existence of periodic, homoclinic, and heteroclinic trajectories of these systems. Discussion.
The fixed point method and mapping degree are the basic tools of qualitative methods for solving nonlinear equations. They
proved to be in demand not only within the framework of mathematics, but also in applications, and this trend, apparently,
will persist even in the transition to the infinite-dimensional case.
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Введение

Качественные методы, общая постановка которых была дана в работах А. Пуанкаре (см.
ниже), получили свое естественное продолжение в теории динамических систем. Росту интере-
са к этой теории предшествовали, во-первых, мемуар самого Пуанкаре 1912 г., содержащий его
последнюю геометрическую теорему, и, во-вторых – работа Дж. Биркгофа 1927 г., посвящённая
самим динамическим системам. Указанные исследования Биркгофа и Пуанкаре достаточно пол-
но проанализированы в историко-математической литературе, чего нельзя сказать про работы их
предшественников и про результаты их последователей.

Известно, что Анри Пуанкаре является родоначальником топологии (Analysis Situs), с точ-
ки зрения которой любое тело (область в трёхмерном пространстве) можно считать эквивалент-
ным, «качественно не отличимым» от шара, если его можно превратить в шар путём непрерыв-
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ной деформации [2, c. 635; 3, c. 100] 1. Данная идея была развита голландским учёным Л. Брау-
эром в 1911 г., который пришёл к определению топологически (точнее говоря, гомотопически –
см. ниже) эквивалентных функций и, как следствие, уравнений2 с областью определения в ко-
нечномерном пространстве.

Вокруг этих соображений и будет строиться изложение материала данной статьи. Точнее
говоря, основной своей задачей автор считает поиск ответа на следующие вопросы:

• что предшествовало вышеуказанным научным достижениям;
• какая между ними причинно-следственная связь;
• чем были мотивированы данные исследования;
• какое они нашли продолжение в работах отечественных и зарубежных учёных;
• какое они нашли применение в изучении устойчивых состояний упорядоченных сред и

динамических систем.
Относительно последнего вопроса отметим, что существование дефектов в некоторых сре-

дах есть следствие их внутренней симметрии (например, наличие дислокаций является следстви-
ем периодичности кристаллической решётки). Однако прямая зависимость между структурой
вещества и типами персистентных дефектов в нём была установлена лишь в 1976 г. (советски-
ми физиками Г. Воловиком и В. Минеевым [5]) с помощью степени отображения, на которой и
будет, по существу, сосредоточено внимание.

Автор не претендует на охват эволюции всего спектра качественных методов, а только
наиболее известной и значимой его части, разработанной в первой трети XX в., относящейся к
нелинейному функциональному анализу, имеющему выход на физические приложения.

Настоящая статья является продолжением работы, начатой в [6–7].

1. Краткая предыстория. Характеристика Кронекера. Индекс Пуанкаре

В своём мемуаре «О кривых, определяемых дифференциальными уравнениями» [8;
9, c. 12–13] А. Пуанкаре определяет качественные методы решения дифференциальных урав-
нений, как такие методы, которые позволяют исследовать свойства решений (существование,
поведение на бесконечности, число нулей и т.п.), не имея в наличии самого решения, точного или
приближённого. Этот же подход, безусловно, можно применить и к интегральным уравнениям,
в том числе нелинейным.

Одним из первых учёных, которые занимались изучением нелинейных интегральных урав-
нений, был русский математик А.М. Ляпунов. Его интерес к данному вопросу проявился уже в
конце 1880-х гг.; он был обусловлен исследованиями по теории фигур равновесия вращающихся
жидкостей (подробности см. в [7, c. 87–89]).

В ряду родоначальников качественных методов выделяется немецкий математик Леопольд
Кронекер, который, в частности, осуществил развитие принципа замкнутого подхода в теории
характеристик [10].

Поясним данный принцип на простом примере, следуя, в основном, изложению Н.Г. Че-
таева [11, c. 280–286]. Пусть имеется участок суши, изрезанный водными преградами (реками,
озёрами и т.п.). Если по такому участку проделать какой-нибудь замкнутый путь, то, очевидно,
столько раз придётся выходить из воды на сушу, сколько раз входить с суши в воду. Аналогично
и в пространстве: если в нём имеются как-то расположенные тела Rα и некоторая замкнутая
линия L, то при обходе линии L в каком-либо направлении мы будем столько раз выходить из
тел Rα, сколько раз в них входили.

1На эту же, «топологическую» точку зрения стали, по существу, и художники-кубисты по инициативе соотече-
ственника и современника Пуанкаре Поля Сезанна, когда они стали рассматривать натуру как совокупность простых
форм – сфер, конусов, цилиндров [4, c. 424].

2Это привело Брауэра к теореме о неподвижной точке, см. ниже.
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Этот принцип можно формализовать в n-мерном пространстве следующим образом. Пусть
уравнение Φ(x1, . . . , xn) = 0 задаёт поверхность, а система xi = xi(t), i = 1, . . . , n задаёт
замкнутую кривую: xi(0) = xi(2π). Тогда функция Φ при изменении t от 0 до 2π, обращаясь в
нуль, может столько раз переходить от отрицательных значений к положительным, сколько раз
она переходила от положительных значений к отрицательным.

Следующим этапом обобщения явилось рассмотрение системы дифференцируемых функ-
ций F = {F0, F1, . . . , Fn} в Rn. Кронекер показал, что полуразность числа точек входа и выхода
линии (hk), образуемой системой уравнений Fj = 0, (j ̸= h, j ̸= k), через поверхность Fh = 0
есть величина постоянная (обозначаемая χ) [10, c. 161]. Он получил также интегральное пред-
ставление для χ = χ(F ), которое для случая трёхмерного пространства имеет вид [10, с. 170]:

χ(F ) =
1

4π

∫
S

(
F 2
0 + F 2

1 + F 2
2

) 3
2 [F0dF1dF2 − F1dF0dF2 + F2dF0F1] , (1)

где S – поверхность F3 = 0, а интегрирование ведётся в смысле поверхностного интеграла 2-го
рода3. Из интегрального представления χ для n-мерной системы F Кронекер вывел следующее
утверждение [10, c. 184; 12, c. 133].

Теорема Кронекера. Если характеристика χ(F ) не равна нулю, то отображение
(F0, F1, . . . , Fj , . . . , Fn) : Rn → Rn обращается в нуль в полупространствах {x ∈ Rn;Fj(x) < 0}
и {x ∈ Rn;Fj(x) > 0}.

Идеи Кронекера были развиты Пуанкаре4 в работах [8; 14]. В первой из указанных работ
основное внимание было уделено изучению характеристик дифференциального уравнения

dx

X
=

dy

Y
, (2)

где X и Y – полиномы. Для исследования сингулярных точек (X = 0, Y = 0) интегральных
кривых уравнения (2) Пуанкаре проектировал их на сферу S2 и отслеживал поведение величины
Y/X при движении вектора ā(X,Y ) по замкнутой траектории (так называемому циклу) в поло-
жительном направлении. Обозначая через h число скачков, совершённых отношением Y/X от
−∞ до +∞ и через k – число таких же скачков от +∞ до −∞, Пуанкаре определил индекс
цикла равным величине (h − k)/2, на основе значений которого делался вывод о существова-
нии сингулярной точки5 векторного поля ā (если бесконечно малый цикл содержит внутри себя
особую точку, то его индекс равен ±1, а если не содержит, то индекс равен нулю) [9, c. 39–40].
Как сам Пуанкаре впоследствии напишет [3, c. 101], изучение кривых, определяемых диффе-
ренциальными уравнениями, явилось одной из причин для появления «Analysis Situs» – науки,
в которой главная роль уделяется не количественным атрибутам фигур (формам, объёмам, чис-
лом граней или рёбер), но их качественным свойствам (взаимному расположению, размерности,
связности и т.п.).

Продвигаясь в этом направлении [14], Пуанкаре переходит к системам дифференциальных
уравнений вида

dx

X
=

dy

Y
=

dz

Z
, (3)

где Z также является многочленом переменной z и определяет индекс поверхности F (x, y, z)=0
решений (3) через интеграл Кронекера (1) [9, c. 221]. Данный индекс оказался равным разности
между числом положительных и числом отрицательных особых точек, принадлежащих этой
поверхности [9, c. 227].

3Более полную информацию о развитии понятия характеристика Кронекера и его предыстории см. в [12].
4Об этом достаточно подробно написано Ж. Мавэном, см. [13].
5Соответствующая теорема (существования) доказана для дифференцируемого векторного поля [8, c. 405].
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2. Исследования П. Боля. Теорема о неподвижной точке.
Применение к динамическим системам

Одним из первых математиков, на практике реализовавших подходы качественного ха-
рактера к решению задач механики и теории дифференциальных уравнений, был латвийский
учёный Пирс Боль. Он закончил магистратуру физико-математического факультета Дерптско-
го университета в 1890 г., а в 1900-м защитил диссертацию «О некоторых дифференциальных
уравнениях общего характера, применимых к механике»6 (она была выполнена под руковод-
ством ученика Вейерштрасса А. Кнезера) [16, c. 21–22]. Рассматривая в диссертации систему
двух нелинейных дифференциальных уравнений 1-го порядка на предмет существования огра-
ниченных в некотором круге решений, Боль доказывает следующую геометрическую теорему о
неподвижной точке [17, c. 98; 18, c. 9]:

Если дано непрерывное преобразование u круга с центром O в плоскость этого круга, причём

для каждой точки M окружности угол между
−−→
OM и

−−−−−→
Mu(M ) всегда острый (или тупой), то

по крайней мере одна точка круга отображается в себя.

Из этого утверждения, как следствие, у Боля получилась теорема о невозможности непре-
рывного отображения круга B (x2+ y2 ≤ r2) на свою границу (теорема о «неретрагируемости»7

круга на свою границу): не могут существовать две функции ξ и η от x и y, непрерывные в
круге, удовлетворяющие на границе этого круга условию ξ = x, η = y [17, c. 99].

Последняя теорема применяется для доказательства существования по крайней мере од-
ного решения динамической системы

dx

dt
= f(x, y, t),

dy

dt
= h(x, y, t), 0 ≤ t < ∞, (4)

если известно, что граница круга B пересекается траекториями (4) изнутри наружу [17, c. 100–
101].

Глава I диссертации Боля заканчивается следующими замечаниями.
¾. . .Ìû ìîãëè áû î÷åíü ïðîñòî äîêàçàòü ýòó òåîðåìó8 äëÿ òð¼õ ïåðåìåííûõ, åñëè áû äîïóñêàëè

ñîîáðàæåíèÿ ãåîìåòðè÷åñêîãî õàðàêòåðà. Â òàêîì ñëó÷àå äëÿ íàøåé öåëè áûëî áû äîñòàòî÷íî, íàïðè-

ìåð, ñëåäóþùåãî çàìå÷àíèÿ. Ïðåäñòàâèì ñåáå øàð, ïîêðûòûé ñåòüþ, ëåæàùåé íà øàðå áåç ñêëàäîê.

Ïåòëè ïóñòü áóäóò ïåðåìåííûìè, ïðè÷¼ì èõ ìîæíî ïðåäïîëàãàòü ñêîëü óãîäíî ìàëûìè. Òîãäà íåëüçÿ

óäàëèòü øàð èç ñåòè òîëüêî ñäâèãàìè è ñêëàäûâàíèåì ñåòè íà øàðå. Íî äîêàçàòåëüñòâî, äåéñòâèòåëüíî

ïîëíîå, ñòðîãîå è ÷èñòî àíàëèòè÷åñêîå, ìîæåò áûòü, íå èìååò ïðîñòîãî âèäà¿.

В качестве примера приложения полученных результатов Боль приводит анализ движе-
ния механической системы вблизи положения равновесия под воздействием возмущающих сил
при условии, что потенциал сил имеет там грубый минимум (то есть около положения полной
неустойчивости) [17, гл. IV, § 25–27]. Применение теоремы о разрешимости системы вида (4)
позволило ему прийти к выводу о том, что для малых возмущений существует движение, кото-
рое во все моменты времени происходит вблизи рассматриваемого положения равновесия. Для
заданного начального положения существует такая начальная скорость, при которой движение
продолжает оставаться вблизи положения равновесия с возрастанием времени.

Дальнейшее развитие метод неподвижной точки получил в исследовании Боля «О движе-
нии механической системы вблизи положения равновесия», опубликованном в 1904 г. в известном
европейском Журнале Крелле [20]. В этой работе он впервые доказал ряд важных топологиче-

6Работа была переведена на французский язык и издана в 1910 г. в Известиях французского математического
общества [15].

7Данное понятие в более общем виде было введено и использовано в конце 1930-х гг. К. Борсуком (см. [19]).
8Имеется в виду теорема о неретрагируемости, см. выше.
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ских теорем о непрерывных отображениях и применил их к исследованию динамических систем
специального вида.

Самостоятельно доказав аналог теоремы Кронекера9 для системы функций, заданных в
параллелепипеде, Боль вывел на её основе следующую теорему10 [17, с. 205]:

Пусть задана область G, определённая неравенствами −ai ≤ xi ≤ ai, i = 1, . . . n. В этой
области определены непрерывные функции f1, f2, . . . , fn от x, не исчезающие одновременно.
Тогда на границе G имеется точка (u1, u2, . . . , un) такого рода, что fi(u1, u2, . . . , un) = Nui,
N < 0, i = 1, . . . n.

Из последнего утверждения вытекает теорема о наличии неподвижной точки при непре-
рывном отображении f куба в себя: достаточно рассмотреть отображение f(x) = x − 3(x), где
3(x) – отображение куба в себя (см. комментарий Л.Э. Рейзиня и И.А. Хенинь в [17, c. 504]).

Считаем уместным привести здесь ещё одно высказывание Боля.
¾. . . Ýòà òåîðåìà11 ìîæåò áûòü ëåãêî ïåðåíåñåíà è íà ñëó÷àé äðóãèõ ïîâåðõíîñòåé; âîçìîæíî

òàêæå ðàñïðîñòðàíåíèå å¼ íà ñëó÷àé ìíîãîîáðàçèé íå÷¼òíîé ðàçìåðíîñòè. Êàê ïîñëåäíÿÿ òåîðåìà, òàê

è ïðåäûäóùàÿ ìîãóò áûòü èñïîëüçîâàíû äëÿ îòûñêàíèÿ ïåðèîäè÷åñêèõ ðåøåíèé äèôôåðåíöèàëüíûõ

óðàâíåíèé. Â ÷àñòíîñòè, ñ ïîìîùüþ ïîñëåäíåé èç óêàçàííûõ òåîðåì ìîæíî äîêàçàòü ñóùåñòâîâàíèå

ïåðèîäè÷åñêèõ äâèæåíèé (â øèðîêîì ñìûñëå) òÿæ¼ëîãî òâ¼ðäîãî òåëà. . . ¿ [17, с. 205].
Обратим внимание на то, что Боль не только сформулировал теорему о неподвижной точ-

ке для n-мерных поверхностей, но и использовал её для исследования динамических систем.
В частности, он исследовал движения механической системы вблизи положения равновесия,
описываемые неавтономной системой дифференциальных уравнений, если коэффициенты в вы-
ражении для кинетической энергии и силовая функция являются достаточно гладкими. После
замены переменных уравнения Лагранжа этой системы приобрели у Боля следующий вид [17,
c. 220–221; 16, c. 52] {

ẍ1 + p2ixi = Xi(x, ẋ, y, ẏ), i = 1, . . . ,m,

ÿj − q2j yj = Yj(x, ẋ, y, ẏ), j = 1, . . . , n,

x = (x1, . . . , xm), y = (y1, . . . , yn),

(5)

где Xi и Yj – непрерывно дифференцируемые функции своих переменных, определённые вблизи
x = y = 0 для всех ẋ и ẏ и при x = y = ẋ = ẏ равные нулю вместе со своими первыми
производными.

Целью данного его исследования явилось изучение многообразия тех видов движения,
которые остаются вблизи начала координат при неограниченном возрастании t. Результаты, по-
лученные Болем при использовании теоремы о неподвижной точке, можно описать следующим
образом [17, с. 276; 16, с. 15].

Пусть x, y, ẋ, ẏ – достаточно малые величины. Если задать при t = 0 величины x, ẋ, ẏ
произвольно, то для этих заданных значений существует одно и только одно движение (рассмат-
риваемое в фазовом пространстве x, y, ẋ, ẏ), проходящее через фиксированную точку y0 = y(0) и
остающееся при всех t ∈ [0,+∞) в заданной фиксированной достаточно малой окрестности W
начала координат. Если же задавать x0 и ẋ0, то существует один и только один набор значений
y0 и ẏ0, для которых движение остаётся в W при −∞ < t < ∞.

9По-видимому, Боль не был знаком с работой Кронекера [10], поскольку при использовании интеграла вида (1) он
не даёт никаких ссылок и комментариев (см. [17, с. 209–213]).

10Это утверждение является аналогом теоремы Борсука–Улама, доказанной почти на 30 лет позже (см. ниже).
11Имеется в виду теорема, эквивалентная теореме о неподвижной точке. После Боля теорему о неподвижной точке

для исследования разрешимости дифференциальных уравнений первыми, по-видимому, применили Дж. Биркгоф и
О. Келлог [21].
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3. Результаты Брауэра. Степень отображения

Ещё одним учёным, создававшим качественные методы решения дифференциальных урав-
нений (в данном случае вида dy/dx = f(x, y)) был голландский математик Лейтен Брауэр. Мо-
тивированный своим философским интересом в области оснований геометрии, он начал работу
над пятой проблемой Гильберта после окончания университета, что привело его к изучению то-
пологии [22, с. 951; 23, с. 127–128]. Как и Пуанкаре, Брауэр изначально задался целью доказать
существование сингулярной точки ā векторного поля, определяемого непрерывной функцией
f(x, y) на сфере S2.

Брауэр был в какой-то степени «самородком», поскольку не принадлежал к ведущим евро-
пейским математическим школам того времени – немецкой, французской или итальянской. Как
отмечают биографы Брауэра, первоначальный его замысел развивался на протяжении нескольких
работ. Так, особые точки векторных полей исследовались им в работах [24–26] в 1909–1910 гг.12,
итогом которых явилось доказательство теоремы о том, что любое непрерывное векторное поле
на сфере имеет хотя бы одну точку сингулярности [24, c. 858]. Как следствие, появились теоремы
о том, что непрерывное отображение сферы S2 в себя имеет неподвижную точку [26, c. 184].

Отметим, ссылаясь на Г. Фрейденталя [27, с. 302], что в работе [25, с. 733] Брауэр выделяет
класс непрерывных векторных полей с конечным числом сингулярных точек, которые (поля) мо-
гут быть трансформированы друг в друга непрерывным образом. Данное действие привело его
позднее к идее гомотопных преобразований непрерывных функций, аналогичных гомеоморф-
ным (непрерывным в обе стороны и однозначным) преобразованиям областей, фигурирующих в
топологии. Эта идея сыграла положительную роль, в частности, в обобщении теоремы о непо-
движной точке на n-мерный случай.

Дальнейшие продвижения Брауэра можно отследить, изучая его неопубликованный учеб-
ник по векторному анализу [28], как это сделал Д.М. Джонсон [23, c. 143–145]. Логика постро-
ения и подачи материала в Potentiaaltheorie en Vectoranalyse позволяет выделить два уровня
обобщения. Вначале Брауэр определяет индекс поверхности для векторных полей, заданных на
n-мерной гиперсфере, в терминах (n-мерного) телесного угла, «пробегаемого» вектором поля по
малому элементу поверхности. В дальнейшем он осознал, что результат перемещения вектора
вдоль поверхности есть не что иное, как алгебраическое число «окутываний» или, (по выраже-
нию П.С. Александрова [29, c. 154]), кратность покрытия поверхности S её образом f(S) с
учётом ориентации.

Поясним сказанное на примере для n = 2. Пусть на окружности S1 задано положитель-
ное направление. Тогда её отображение в себя можно считать выполненным в два этапа (см.,
например, [30, c. 136]). Сначала окружность отображается в некоторую кривую, которая затем
стягивается в S1 (рис. 1). Кратность покрытия, соответствующая рис. 1 (с учётом ориентации),
равна 2.

Во избежание трудностей, связанных с разглаживанием возможных складок f(S) = S′ и
определением границ образа, Брауэр разбивает сферу на конечное число малых областей Si, ко-
торые переходят при отображении f в малые области S′

i. Тогда суммарная кратность p покрытия
Si с положительной ориентацией минус кратность q покрытия с отрицательной ориентацией (см.
иллюстрацию13 на рис. 2) не зависит, как оказалось, от разбиения S и S′ и от номера i.

12Для лучшего понимания роли указанных работ весьма полезными представляются комментарии Г. Фрейденталя
в [27].

13На рис. 2 изображены фрагменты симплициального разбиения сферы S2 – симплексы S1, S2, S3, имеющие
определённую ориентацию – «закрученность» вихря в положительную или отрицательную сторону. При отображении
f они покрывают ориентированный симплекс S∗.
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Рис. 1. Отображение окружности в себя

Fig. 1. Transformation of a circle to itself

Рис. 2. Отображение сферы в себя [30, c. 135]

Fig. 2. Transformation of a sphere to itself

Полученное число γ = p − q Брауэр назвал сначала, в учебнике [28, c. 15] индексом (оче-
видно, под влиянием работ Пуанкаре [8, 14]), а затем, в письме к Гильберту, – степенью отоб-
ражения (Der Grad Abbildung) f [27, с. 421–422].

Строгое изложение результатов, относящихся к степени отображения (deg f ), было дано
Брауэром в его фундаментальной работе Über Abbildung von Mannigfaltigkeiten, опубликованной
в 1912 году в журнале Mathematische Annalen [31]. В этой статье Брауэр определяет deg f для
непрерывного отображения f , как степень приближающих его симплициальных отображений,
опираясь на тот (доказываемый им) факт, что непрерывно «деформируемые» друг в друга (то
есть гомотопные) отображения имеют одинаковую степень.

В качестве одного из важнейших приложений степени, принесших Брауэру мировую из-
вестность, была теорема о неподвижной точке [31, с. 115]:

Если deg f ̸= (−1)n+1, то непрерывное отображение сферы Sn в себя имеет хотя бы одну
неподвижную точку.

Следствием явилась теорема о существовании неподвижной точки при непрерывном пре-
образовании произвольного n-мерного элемента в себя [31, с. 115]. Кроме того, понятие степени
отображения было использовано Брауэром при решении проблемы инвариантности размерности,
поставленной ещё Пуанкаре [23, c. 146–152; 32].

Один из конечномерных вариантов обобщения теоремы Брауэра принадлежит представи-
телям польской математической школы Каролю Борсуку и Станиславу Уламу. В упрощённом
варианте теорема Борсука–Улама выглядит так (см., например, [33, с. 21]):

Теорема B-U. Если функция f непрерывна на n-мерной сфере Sn и обладает свойством анти-
симметрии (то есть f(P ′) = −f(P ), где P и P ′ – концы одного и того же диаметра сферы),
то на этой сфере найдётся точка P0, в которой функция f обращается в нуль.

Данная теорема была сформулирована Уламом и доказана Борсуком в 1933 г. [34, с. 178].
Из неё сразу следует существование неподвижной точки у нечётного отображения F на сфе-
ре Sn, а также более наглядная «теорема о погоде» [35, с. 20].

В каждый момент времени на Земном шаре имеется пара диаметрально противоположных
точек, в которых одинаковы как температура, так и давление.

Развивая указанное направление, Борсук доказал ещё два утверждения, равносильных тео-
реме B–U.
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1. Теорема об антиподальном отображении. Любое сферически симметричное f(P ′) =
= f(P ) отображение сферы Sn в себя является существенным (не гомотопно посто-
янному отображению).

2. В любом замкнутом покрытии сферы Sn, состоящем из множеств M1, . . . ,Mn+1, по
крайней мере одно из этих множеств содержит пару антиподальных точек.

При этом вторая теорема была сформулирована и доказана советскими математиками Лазарем
Люстерником и Львом Шнирельманом в 1930 г. как лемма (это произошло в контексте доказа-
тельства гипотезы Пуанкаре о трёх геодезических [36, с. 30]).

4. Применение теории степени отображения
в изучении устойчивых состояний упорядоченных сред

Рассмотрим области вырождения изотропных ферромагнетиков (веществ, обладающих спон-
танным магнитным моментом M), следуя Григорию Воловику и Владимиру Минееву [37]. Рав-
новесное значение M обеспечивает минимум магнитной энергии при данной температуре. Если
пренебрегать энергией магнитной анизотропии, то все состояния ферромагнетика, отличающи-
еся направлением момента M, обладают одинаковой энергией (они являются вырожденными).
Откладывая все возможные векторы намагниченности из одной и той же точки O, мы получим
сферическую область вырождения S2.

Если направление намагниченности совпадает с направлением радиуса-вектора r в каждой
точке изотропного ферромагнетика, то в начале координат имеется особая точка «ёж». Поле M в
«еже» сопоставляет каждой точке сферы Σ произвольного радиуса, окружающей особую точку,
одну точку сферы S2, на которой меняется M. Образ сферы Σ на сфере S2 можно представить
в виде эластичной плёнки, один раз обтягивающей эту сферу. Таким образом поле M(r) зада-
ёт отображение f : Σ → S2 степени γ = 1. При этом, если «иголки ежа» направлены внутрь,
то deg f = −1. В изотропном ферромагнетике классы особых точек находятся в однозначном
соответствии с классами отображений f : Σ → S2. Каждый класс отображений характеризу-
ется индексом γ = deg f , играющем роль топологического заряда (при слиянии особых точек
степени отображений складываются). Указанные классы образуют группу, называемую гомото-
пической группой размерности 2.

Воловик и Минеев также установили, что при рассмотрении дефектов одноосных нема-
тических жидких кристаллов [38, с. 156–157] и особых точек À-фазы 3He [39, c. 87] возникает
похожая ситуация. Ими было замечено, что сами сверхтекучие свойства фаз легкого изотопа
гелия в значительной мере диктуются топологией14 [37, § 15].

5. Применение метода неподвижной точки
к исследованию диссипативных систем

Теория преобразований поверхностей, как метод исследования дифференциальных урав-
нений также восходят к Пуанкаре. В работе «Об одной геометрической теореме» (1912) [40], [41,
c. 775–807] он рассматривает траектории движения точек динамической системы, как кривые на
трёхмерном многообразии M . Пуанкаре представлял, что данные кривые отсекаются некоторой
поверхностью S, лежащей в многообразии M . С течением времени движущаяся точка P ∈ M

14В 2014 году российские физики Г. Воловик и В. Минеев были награжены премией им. Ларса Онзагера (Lars
Onsager Prize) Американского физического общества «за вклад во всестороннюю классификацию топологических
дефектов конденсированных фаз вещества с нарушенной симметрией, что привело к предсказанию половиных кван-
товых вихрей в сверхтекучем 3He и связанных с ним системах».
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описывает некоторую дугу и встречает поверхность S в последующих точках P1, P2, . . . , Pn.
Тем самым осуществляется отображение поверхности S в себя (которое переводит точку P в
единственную точку P1) [41, c. 781].

В 1944 г. американский математик, ученик Норберта Винера, Норман Левинсон ввёл по-
нятие детерминированных диссипативных систем (систем класса D) [42, c. 724]. Динамическая
система {

ẋ = F (x, y, t),

ẏ = G(x, y, t)
(6)

с периодическими с периодом L по t правыми частями была названа им системой класса D,
если существует такое положительное число R, что любое решение (x(t), y(t)) этой системы
остаётся в круге BR радиуса R с центром в начале координат.

К системе вида (6) сводится, например, уравнение колебания маятника с вибрирующим
подвесом, рассмотренное Н.Н. Боголюбовым

ÿ + λẏ + f(t, y) = 0

(подробности см., например, в [43, c. 75]).
Соответствующая динамическая система имеет вид{

ẋ = −λx− f(t, y),

ẏ = x.

Левинсон представил решение системы (6) в виде{
xn = x(x0, y0, t0 + nL),

yn = y(x0, y0, t0 + nL), ∀n ∈ N.

Тогда в силу периодичности F и G получается{
xn+m = x(xm, ym, t0 + nL),

yn+m = y(xm, ym, t0 + nL).
(7)

Обозначив (xn, yn) через Pn и следуя Пуанкаре, Левинсон определяет преобразование
плоскости (x, y) в себя вида TP0 = P1. При этом Tn переводит точку P0 в Pn и система (7)
равносильна

Tn+mP0 = TnPm = TnTmP0.

Поскольку решения (6) непрерывны по отношению к изменению начальных условий, отоб-
ражение T непрерывно. Таким образом, изучение поведения решений (6) заменяется исследо-
ванием непрерывных преобразований T плоскости (x, y) в себя. Левинсон показал, что при
многократном применении оператора T к шару BR существует инвариантное множество I , опре-
деляемое (при подходящем k) следующим образом [42, c. 725]:

I =
∞∩
n=1

Tnk(BR).

Тогда мы оказываемся в рамках применимости теоремы Брауэра о неподвижной точке, что дало
Левинсону возможность доказать следующую теорему:
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Теорема. Каждая система класса D имеет по крайней мере одну неподвижную точку преобра-
зования T .

Из данной теоремы следует, что система (6) имеет хотя бы одно периодическое решение.
Отметим, что Левинсон был хорошо знаком с работами Боля и включил некоторые его

результаты в учебник по дифференциальным уравнениям [44, с. 454].

6. Применение теории степени отображения
к исследованию хаотической динамики

Интенсивное развитие теории динамических систем в 1960–70 гг. опиралось на матема-
тический аппарат функционального анализа и топологии. Одно из ярких применений теории
степени отображения к доказательству существования периодических, гомоклинических и ге-
тероклинических траекторий гамильтоновой динамической системы было получено Хельмутом
Хофером15 и Джоном Толандом16 в 1984 г. В работе [45] они рассмотрели гамильтонову систему{

q̇ = Sp(t),

−ṗ = V ′(q(t)), t ∈ R,
(8)

для которой функционал энергии имеет вид

H(q, p) =
1

2
(Sp, p) + V (q), (q, p) ∈ E × E.

Здесь E – евклидово пространство со скалярным произведением, V (q) – потенциал системы, а
квадратичная форма (Sp, p) – индефинитна, но не вырождается17.

Точнее говоря, Хофер и Толанд предполагали, что выполняется условие{
S : E,

λ1 < 0 < λ2 ≤ λ3 . . . ≤ λn,
(9)

где E - симметричный линейный оператор, λi – собственные значения оператора S.
Условия на нелинейную часть H потребовали введения дополнительных обозначений.
Пусть e – фиксированный единичный собственный вектор S, соответствующий отрица-

тельному собственному значению λ1 и пусть F = {e}⊥. Если обозначить через T сужение S
на F , то оператор T : F → F положительно определён18. Используя это, можно показать, что
множество

Σ = {q ∈ E : (S−1q, q) < 0}
является дизъюнктным объединением двух открытых конусов Σ+ и Σ−, где

Σ± = {q ∈ Σ : ±(q, e) > 0}.

Обозначая через P замыкание конуса Σ+ авторы [45] вводят в E частичную упорядочен-
ность следующим образом:

q1 ≤ q2 ⇔ q + 2− q1 ∈ P.

15Немецко-американский математик. Член Национальной академии наук США.
16Английский математик. Член Лондонского королевского общества по развитию знаний о природе.
17Гамильтонианы подобного вида возникают в нелинейной механике, например, при моделировании распростране-

ния солитоноподобных волн в каналах с водой [46].
18В соответствующей индефинитной метрике подпространство, натянутое на собственные векторы S, будет пред-

ставлять собой световой конус.
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Рис. 3. Существование замкнутой траектории, ле-
жащей в области C и проходящей через точку неко-
торого множества γ [45, c. 398]

Fig. 3. The existence of a closed trajectory lying in the
domain C and passing through a point of certain set γ

Ключевым моментом является то, что, если
решение (8) – траектория (p, q) гамильтоновой си-
стемы – принадлежит энергетической поверхности
H = 0 и если потенциал V (q) положителен, то
Sp ∈ Σ. Таким образом, вектор скорости q̇ = Sp свя-
зан ограничением принадлежности поверхностям
Σ+ или Σ− и может проходить от одной этой по-
верхности к другой (или вообще вне Σ) только, ес-
ли V (q) = 0. Следовательно, если C – ограничен-
ная область q-пространства, где V > 0 и q(t0) ∈ C,
то величина q должна стремиться к границе C при
t → ±∞. Изучение данной монотонности и приве-
ло Толанда с Хофером к главному результату19 (см.
ниже).

Предположим для простоты, что граница C строго выпукла (за исключением, возможно,
мест, где V ′ = 0) и V > 0 во внутренности C (см. пример на рис. 3).

Тогда справедлива

Теорема. Если V ′(q) ̸= 0 при q ∈ ∂C, то у системы (8) существует периодическая орбита
{(p(t), q(t)), t ∈ R} с периодом T ∗, такая, что и (p(T ∗), q(T ∗)) ∈ ∂C × {0}.

Для доказательства было введено отображение τ = τ(q, p) времени выхода траектории
из области C и с его использованием сконструировано множество Γ+ = {q ∈ ∂C : τ(q, 0) > 0;
(SV ′(q), e) > 0}. Авторы [45] также определили несколько специальных вспомогательных непре-
рывных функций:

h – гомеоморфизм: Sn−1\{−e} → Rn−1;
θ : ∂C → Sn−1\{−e}(h(θ) : ∂C → Rn−1);
k – ретракция Sn−1 → ∂C.
Функция θ = θ(q) была составлена из двух частей, содержащих нормированные выраже-

ния −SV ′(q) и Sp(τ(q, 0)) [45, c. 394].
Оставшаяся часть доказательства была проведена в 2 этапа:

1) к суперпозиции h◦θ◦k была применена теорема Борсука об антиподальном отображении:
существует такая точка x на сфере Sn−1, для которой h (θ(k(x))) = h (θ(k(−x)));

2) из определения и свойств функции θ, а также из выпуклости ∂C было выведено, что k(x)
и k(−x) принадлежат Γ+. Таким образом, траектория T (t) = (p(t), q(t)) остаётся в C.

Специальная структура Гамильтониана позволила доказать периодичность T (t) на основе стан-
дартных аргументов, используемых в небесной механике.

Существование гомоклинических орбит {T (t), t ∈ R} системы (8), таких, что

lim
|t|→∞

(q(t), p(t)) = (a, 0)

доказывается в предположении о наличии единственной точки a ∈ ∂C для которой V ′(a) = 0, и
что C ⊂ a+ P (см. рис. 4).

Множество Γ, изображённое на рис. 4, имеет вид Γ = {q ∈ ∂C : τ(q, 0) > 0}. Орбита
остаётся в C при любом t ≥ 0, для неё выполняется условие q(0) ∈ Γ.

Наличие указанной орбиты выводится на основе соображений, использующих свойства
функции τ и вычисление степени отображения Φh = h ◦ Φ ◦ h−1 в области h(Γ), где

19Он будет приводиться в упрощённой форме и состоять из нескольких утверждений.
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Рис. 4. Существование гомоклинической орбиты,
чья траектория лежит в Ñ и проходит через точку
множества Γ [45, c. 399]

Fig. 4. The existence of a homoclinic orbit which
trajectory lies in C and passes through the point of
the set Γ

Рис. 5. Существование гетероклинической ор-
биты, чья траектория лежит в C и соединяет
точки a и b [45, c. 401]

Fig. 5. The existence of a heteroclinic orbit which
trajectory lies in C and connected a and b points

h : ∂C\{a}→Rn−1 – гомеоморфизм, а Φ – непрерывная функция, равная скорости q0 во вре-
мя выхода траектории из области Γ̄ при p = 0 [45, c. 401].

Сходная ситуация возникает и при доказательстве существования гетероклинических ор-
бит {T (t), t ∈ R} системы (8), соединяющих точки a и b (рис. 5) lim

t→−∞
q(t) = a,

lim
t→+∞

q(t) è lim
|t|→0

p(t) = 0.

Соответствующий алгоритм состоит из двух шагов.
1. Определение семейства траекторий T λ ⊂ C ⊂ a + Pε, где Pε – конус {q ∈ P : (S−1q, q) +

+ε||q||2 ≤ 0}, проходящих через точку b и стремящихся к ней при t → +∞ по аналогии с
гомоклиническим случаем.

2. Выделение из семейства T λ траектории, проходящей через точку a и стремящейся к ней
при t → −∞, если C ⊂ (a+ Pε) ∩ (b− Pε).

Цитируемые результаты Хофера и Толанда стали классическими и вошли во многие учеб-
ники (см., например, [47]).

Заключение

Качественные методы, берущие своё начало от работ Пуанкаре, Боля и Брауэра – метод
неподвижной точки, теория степени отображения и др. нашли своё применение через многие
десятилетия как в области математики, так и вне её. Указанными выше примерами, конечно,
весь набор возможных применений этих методов не исчерпывается (см., например, [48]). Так, в
этот набор не вошли довольно интересные приложения топологических методов анализа к тео-
ретической химии [49], обнаруженные в 1980-х гг. и кристаллографии [50], полученные совсем
недавно.

«Математическим» продолжением развития качественных методов после 1930-х гг. яви-
лось распространение метода неподвижной точки и теории степени отображения на нелинейные
операторные уравнения вида Ax = 0 в бесконечномерном пространстве20. Это было осуществ-
лено силами Дж. Биркгофа, О. Келлога, Ю. Шаудера, Ж. Лере, А.Н. Тихонова, М.А. Красно-
сельского и др. (подробности см. в [51, часть 2, гл. VII, § 2; 52–55). Данные результаты также

20Указанным уравнениям, как правило, соответствуют уравнения в частных производных.
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нашли своё применение в теории динамических систем [56, гл. V, § 39], гидродинамике [57, 58],
моделировании электрических цепей [59], нелинейной механике [60], теории радиационного пе-
реноса [61, гл. 13, § 4] и других областях [62] (детальное рассмотрение данного вопроса требует
отдельного пристального внимания).
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1921. Vol. 38. P. 1–135.
4. Гомбрих Э. История искусства. М.: АСТ, 1998. 688 с.
5. Воловик Г.Е., Минеев В.П. Исследование особенностей в сверхтекучем 3Не в жидких кри-

сталлах методом гомотопической топологии // ЖЭТФ. 1977. 72:6. С. 2256–2274.
6. Богатов Е.М., Мухин Р.Р. О связи между нелинейным анализом, бифуркациями и нелиней-

ной динамикой: На примере воронежской школы нелинейного функционального анализа //
Изв. вузов. Прикладная нелинейная динамика. 2015. Т. 23, № 6. С. 74–88.

7. Богатов Е.М., Мухин Р.Р. Из истории нелинейных интегральных уравнений // Изв. вузов.
Прикладная нелинейная динамика. 2016. Т. 24, № 2. С. 77–114.
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Boston, 1989.

52. Park S. Ninety years of the Brouwer fixed point theorem // Vietnam J. Math. 1999. Vol. 27,
no. 3. P. 187–222.

53. Mawhin J. IN MEMORIAM JEAN LERAY (1906–1998) // Topol. Meth. Nonlin. Anal. 1998.
Vol. 12. 14. P. 199–206.

54. Mawhin J. Juliusz Schauder, topology of functional spaces and partial differential equations //
Wiadomości matematyczne. 2012. Vol. 48, no. 2. P. 173–183.

55. Bogatov E.M. Key moments of the mutual influence of the Polish and Soviet schools of nonlinear
functional analysis in the 1920’s–1950’s // Antiq. Math. 2017. Vol. 11. P. 131–156.

56. Красносельский М.А., Забрейко П.П. Геометрические методы нелинейного анализа. М.: На-
ука, 1975.

57. Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. М:
ФИЗМАТЛИТ, 1961.

58. Beckert H. Existenzbeweis für permanente Kapillarwellen einer schweren Flüssigkeit // Arch.
Rat. Mech. Anal. 1963. 13. P. 15–45.

59. Красносельский М.А., Бурд В.Ш., Колесов Ю.С. Нелинейные почти периодические колеба-
ния. М.: Наука, 1970.

60. Ворович И.И. О существовании решений в нелинейной теории оболочек // Изв. АН СССР.
Сер. матем. 1955. 19:4. C. 173–186.

61. Хатсон В., Пим Дж.С. Приложения функционального анализа и теории операторов. М.:
Мир, 1983.

62. Nonlinear functional analysis and its applications, Part 2. //Proceedings of Symposia in Pure
Mathematics. 1986. Vol. 45/ Ed. F.E. Browder. AMS, Providence. Rhode Island, 1986.

References

1. Bogatov E.M. On the history of the application of qualitative methods for solving nonlinear
integral equations. Science and technology: Questions of history and theory. Materials of the
XXXVII intern. annual conf. St. Petersburg Dep. Rus. Nat. Comm. Hist. Philos. Science and
Techn. RAS, 2016, November, 21–25,. Issue XXXII, SPb, 2016, pp. 102–104 (in Russian).
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