
Изв. вузов «ПНД», т. 20, № 1, 2012 УДК 517.9

СИНХРОНИЗАЦИЯ ВОЗБУЖДАЕМЫХ
РЕАКТИВНО СВЯЗАННЫХ ФАЗОВЫХ ОСЦИЛЛЯТОРОВ

Л.В. Тюрюкина, Н.Ю. Чернышов

В фазовом приближении исследуется синхронизация внешней силой двух реактив-
но связанных осцилляторов ван дер Поля. Рассмотрены и сравниваются режимы, когда
автономные осцилляторы демонстрируют явление захвата частот и биений с несоизме-
римыми частотами. Представлены ляпуновские карты, бифуркационные диаграммы и
фазовые портреты. Обсуждаются возможные типы режимов возбуждаемой системы.
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Введение

Задача о воздействии гармонического сигнала на систему взаимно связанных
автоколебательных осцилляторов является фундаментальной для теории колебаний
и нелинейной динамики [1–5]. Она является составной частью еще более фунда-
ментальной проблематики, связанной с рождением и синхронизацией многочастот-
ных квазипериодических колебаний. В последнее время выявлен целый ряд новых
аспектов такой задачи [6–11]. Так, в работах [6,7] установлены важные особенно-
сти устройства плоскости параметров частота – амплитуда воздействия возбужда-
емых диссипативно связанных фазовых осцилляторов в случае, когда автономные
осцилляторы синхронизованы. Найдена область точного захвата фаз осцилляторов
внешней силой, области двух- и трехчастотных квазипериодических режимов. Ука-
зано, что границей между последними являются линии седло-узловых бифуркаций
устойчивой и неустойчивых инвариантных кривых. В работах [8,9] исследована син-
хронизация внешней силой при переходе автономных осцилляторов из режима за-
хвата в квазипериодический режим с несоизмеримыми частотами, дана классифи-
кация двухчастотных режимов. В работе [10] рассмотрено воздействие внешнего
сигнала на два диссипативно связанных генератора Анищенко–Астахова. В [11,12]
рассмотрено возбуждение цепочки, состоящей из трех диссипативно связанных фа-
зовых осцилляторов. Эти результаты, однако, относились к случаю простейшей –
диссипативной связи осцилляторов. Возможен другой тип связи – реактивный (ино-
гда его называют консервативным), когда связь осуществляется не через скорости
изменения переменных, а непосредственно через их значения. Реактивная связь –
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явление существенно более тонкое [1–3,5]. Так, даже в случае двух взаимно связан-
ных осцилляторов уравнения в фазовом приближении могут быть получены только
во втором порядке по параметру связи, а в первом порядке эффект синхронизации не
проявляется [5]. При этом возникает также новый эффект – фазовая бистабильность,
когда синхронизация осцилляторов возможна как в фазе, так и в противофазе [3,5].
Отметим, что задача о синхронизации многих осцилляторов в системе с реактивной
связью достаточно интересна не только в радиофизической интерпретации, напри-
мер, она возникает при изучении структурообразования в ионных ловушках [13].
В работе [14] проведено исследование исходной системы двух реактивно связанных
осцилляторов ван дер Поля с внешним воздействием в случае, когда в автономном
режиме система демонстрирует захват колебаний (резонансный предельный цикл).
Кроме того, отметим работу [15], выполненную в стиле компьютерного экспери-
мента, в которой продемонстрирована возможность двухчастотной и трехчастотной
квазипериодичности и хаоса в возбуждаемой системе связанных осцилляторов ван
дер Поля в терминах исходных уравнений. Однако детальный анализ устройства
пространства параметров не проводился, фазовые уравнения не были получены и
их бифуркации не исследовались. В настоящей работе мы, в определенной мере,
восполним указанные недостатки: получим и исследуем соответствующее фазовое
уравнение, причем рассмотрим как режим захвата, так и режим биений автономных
осцилляторов.

1. Укороченные и фазовые уравнения
реактивно связанных осцилляторов

Рассмотрим систему двух реактивно связанных осцилляторов ван дер Поля,
возбуждаемых внешним гармоническим сигналом

ẍ− (λ− x2)ẋ+ (1− ∆/2)x+ ε(x− y) = B sinωt,

ÿ − (λ− y2)ẏ + (1 + ∆/2)y + ε(y − x) = 0.
(1)

Здесь λ – управляющий параметр, ∆ – частотная расстройка осцилляторов, ε – пара-
метр реактивной связи, B – амплитуда воздействия, а ω – его частота. Центральная
частота осцилляторов принята за единицу.

Будем считать малыми управляющий параметр, величину связи и отстройку
частоты сигнала от единичной. В таком случае можно применить метод медленно
меняющихся амплитуд [1–5]. С этой целью представим динамические переменные в
виде

x = aeiωt + a∗e−iωt, y = beiωt + b∗e−iωt (2)

и наложим стандартные дополнительные условия

ȧeiωt + ȧ∗e−iωt = 0, ḃeiωt + ḃ∗e−iωt = 0. (3)

Здесь a(t) и b(t) – комплексные амплитуды осцилляторов относительно внешнего
сигнала. Подставим соотношения (2) в уравнения (1) с учетом условий (3), умножим
полученные выражения на e−iωt и проведем усреднение для исключения быстро
осциллирующих членов. При этом используем, что B sinωt = B(eiωt − e−iωt)/2.
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После соответствующих преобразований получаем укороченные уравнения

2ȧ = λa+ i
1− ω2 − ∆/2

ω
a− |a|2 a+ iε(a− b)− B

2ω
,

2ḃ = λb+ i
1− ω2 + ∆/2

ω
b− |b|2 b+ iε(b− a).

Введем теперь отстройку частоты сигнала от центральной Ω, так что
ω = 1 +Ω. Тогда при ω ≈ 1 получаем (1− ω2 ∓ ∆/2)/ω ≈ −2Ω∓ ∆/2.

Кроме того, параметр λ может быть убран перенормировкой переменных и
параметров по аналогии с [8]. В результате получаем

2ȧ = a− i(2Ω + ∆/2)a − |a|2 a+ iε(a− b)− B

2ω
,

2ḃ = b− i(2Ω− ∆/2)b − |b|2 b+ iε(b− a).

(4)

Введем далее действительные амплитуды r1,2 и фазы ψ1,2 с помощью соотно-
шений a = r1e

iψ1 и b = r2e
iψ2 . Тогда из (4) получаем

2ṙ1 = r1 − r31 + εr2 sin(ψ2 − ψ1)−
B

2
cosψ1,

2ṙ2 = r2 − r32 + εr1 sin(ψ1 − ψ2),

2ψ̇1 = −2Ω− ∆
2
+ ε− r2

r1
ε cos(ψ2 − ψ1) +

B

2
sinψ1,

2ψ̇2 = −2Ω+
∆

2
+ ε− r1

r2
ε cos(ψ2 − ψ1).

(5)

Вслед за [1,5] считаем, что осцилляторы движутся в окрестности стационар-
ных орбит r1 = r2 = 1, так что r1,2 = 1 + r̃1,2. При этом возмущения r̃1,2 являются
малыми. Тогда из первых двух уравнений (5) с учетом малости возмущений находим

2 ˙̃r1 = −2r̃1 + ε sin(ψ2 − ψ1),

2 ˙̃r2 = −2r̃2 + εr sin(ψ1 − ψ2).
(6)

В этих уравнениях возмущения амплитуд сильно демпфированы, так что они
очень быстро выходят на стационарные значения

r̃1 =
ε

2
sin(ψ2 − ψ1), r̃2 =

ε

2
sin(ψ1 − ψ2). (7)

Теперь подставим в фазовые уравнения (5) выражения для амплитуд (6) и
преобразуем их, оставив члены первого и второго порядка малости по параметру
связи ε

ψ̇1 = −∆
4
−Ω+

ε

2
(1− cos θ)− ε2

4
sin 2θ+

B

4
sinψ1,

ψ̇2 =
∆

4
−Ω+

ε

2
(1− cos θ) +

ε2

4
sin 2θ.

(8)

Здесь θ = ψ1−ψ2. Это и есть искомые фазовые уравнения возбуждаемых реактивно
связанных осцилляторов. Отметим, что в соответствии с (8), амплитуда сигнала B
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порядка ε2, так что исключение члена, пропорционального амплитуде сигнала, при
выводе уравнения (6) обосновано.

Отметим, что, вычитая уравнения (8) друг из друга, при отсутствии внешнего
сигнала B = 0 получаем уравнение для относительной фазы двух реактивно связан-
ных осцилляторов

θ̇ = −∆
2
− ε2

2
sin 2θ. (9)

Оно описывает возможность биений при |∆| > ε2 и захвата при |∆| < ε2, а
также возможность синфазной (θ ≈ 0) и противофазной (θ ≈ π) синхронизации
автономных осцилляторов.

2. Различные типы режимов на плоскости параметров

Рассмотрим динамику полученной фазовой системы (8). Исследуем устрой-
ство традиционной для неавтономных систем плоскости частота – амплитуда воз-
действия (Ω,B). Сначала обратимся к методу карт ляпуновских показателей [8–9].
Будем вычислять оба ляпуновских показателя Λ1,Λ2 системы (8) в каждой точке
плоскости параметров. Затем эту плоскость окрашиваем в разные цвета в соответ-
ствии с величиной показателей так, чтобы визуализировать следующие режимы:

• P – периодический режим: Λ1 < 0,Λ2 < 0;
• T2 – двухчастотный квазипериодический режим: Λ1 = 0,Λ2 < 0;
• T3 – трехчастотный квазипериодический режим: Λ1 = 0,Λ2 = 0.

Полученная карта показана на рис. 1. Выявляются два качественно разных
случая. Первый (рис. 1, а) относится к ситуации, когда при отсутствии внешнего
сигнала осцилляторы демонстрируют режим биений (частотная расстройка между
осцилляторами велика, условие |∆| > ε2). В этом случае можно видеть систему
языков двухчастотных режимов, основания которых лежат на оси частот, и которые
погружены в область трехчастотной квазипериодичности. А область периодических
режимов имеет порог по амплитуде воздействия.

Второй случай (рис. 1, б) отвечает ситуации, когда автономные осцилляторы
демонстрируют режим захвата (частотная расстройка мала, условие |∆| < ε2). Теперь
область трехчастотных режимов имеет порог по амплитуде воздействия, а область
периодических режимов касается оси частот в двух точках. В случае малых амплитуд
наблюдается только двухчастотная квазипериодичность.

3. Бифуркационное устройство области полной синхронизации

Обсудим более подробно устройство области P , которой отвечают отрица-
тельные ляпуновские показатели, и которая физически ассоциируется с захватом
внешней силой фаз обоих осцилляторов. В случае диссипативной связи за пол-
ную синхронизацию отвечает устойчивое состояние равновесия фазовых уравне-
ний [6–8]. Одновременно с ним в системе сосуществуют одно неустойчивое равно-
весие и два седла. При этом за разрушение полной синхронизации отвечает специ-
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фический вариант седло-узловой бифуркации, когда все четыре равновесия одновре-

менно попарно сливаются и исчезают, а из их многообразий возникают устойчивая
и неустойчивая инвариантные кривые [6–8].

В случае реактивной связи механизмы полной синхронизации и ее разруше-
ния изменяются и усложняются. Прежде всего, возникают две возможности захвата
осцилляторов внешним сигналом. Первый случай аналогичен диссипативной связи
и определяется устойчивым равновесием системы (8) (рис. 2, фрагмент 1). При этом
фазы обоих осцилляторов фиксированы и не меняются во времени. Это точный

захват фаз, когда в фазовом приближении спектр колебаний каждого осциллятора
содержит всего одну линию, отвечающую частоте воздействия.

Другой случай не имеет аналога для диссипативной связи и отвечает устойчи-
вому предельному циклу системы (8), который топологически может быть стянут в
точку (рис. 2, фрагмент 6). Эти режимы также отвечают захвату обоих осцилляторов
внешней силой, однако фазы осцилляторов не являются константами – они осцил-
лируют около некоторого равновесного значения. Поэтому даже в фазовом прибли-
жении спектр осцилляторов содержит уже не одну линию, и зависит от временного
масштаба осцилляций фазы.

Соответственно увеличивается и количество механизмов, отвечающих за раз-
рушение синхронизации двух осцилляторов. Для их описания обратимся к более
подробной картине устройства плоскости параметров, которая выявляется бифурка-
ционным анализом (рис. 3). На этом рисунке также представлены два случая: бие-

Рис. 1. Карты ляпуновских показателей системы фазовых уравнений (8) на плоскости параметров
(Ω, B), построенные для ε = 0.3 и ∆ = 0.3 (а), 0.05 (б)
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ний и захвата автономных осцилляторов. В случае биений имеются две ветви линий
седло-узловых бифуркаций SN (рис. 3, а). Одна из них образует «восьмерку», отрез-
ки которой ограничивают область синхронизации снизу, и две вертикальные линии,
которые отвечают за ширину полосы синхронизации. Эти две ветви касаются друг
друга в вырожденных точках сборки DC. Линии седло-узловых бифуркаций содер-
жат отрезки SN1, которые отвечают слиянию устойчивого равновесия и седла, и от-
резки SN2, отвечающие слиянию неустойчивого равновесия и седла. Возможна так-

Рис. 2. Фазовые портреты системы фазовых уравнений (8), построенные для ε = 0.3 и следующих
значений параметров:

1 2 3 4 5 6 7 8 9

∆ 0.3 0.3 0.3 0.3 0.05 0.05 0.05 0.05 0.05
Ω 0.21 0.21 0.22 0.17 0.15 0.15 0.16 0.29 0.35
B 0.8 0.75 0.67 0.66 0.5 0.355 0.23 0.07 0.11

Точки, в которых построены фазовые портреты, отмечены на рис. 3 соответствующими цифрами
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же бифуркация Андронова–Хопфа H, которая может быть как прямой, и отвечать за
возникновение устойчивого предельного цикла (сплошная линия), так и обратной,
и отвечать за возникновение неустойчивого предельного цикла (пунктирная линия).
Линии бифуркации Андронова–Хопфа имеют общие точки с линией седло-узловых
бифуркаций – точки Богданова–Такенса BT.

На рис. 3 даны примеры фазовых портретов в некоторых характерных точ-
ках, обозначенных цифрами на рис. 2. Простейший механизм разрушения полной
синхронизации связан с седло-узловой бифуркацией состояний равновесия, когда
сливаются устойчивое равновесие и седло, в результате чего возникает устойчивая
инвариантная кривая, отвечающая за возникновение квазипериодических колебаний
(переход от точки 1 к точке 4 на рис. 2, 3). Отличие от случая диссипативной связи
[6–8] состоит в том, что при этом вторая пара равновесий сохраняется. При умень-
шении амплитуды сигнала они также могут слиться, но теперь уже на нижней ветви
линии седло-узловой бифуркации.

Второй механизм наблюдается при переходе от точки 1 к точке 4 через точ-
ки 2 и 3 на рис. 2, 3 и состоит в следующем. Сначала в результате нелокальной
бифуркации рождается неустойчивый предельный цикл, который затем стягивает-
ся к устойчивому равновесию, которое исчезает в результате обратной бифуркации
Андронова–Хопфа.

Обратимся теперь к более сложному случаю, когда в системе наблюдается
захват автономных осцилляторов, рис. 3, б. Здесь возможен еще один механизм раз-
рушения синхронизации (переход от точки 5 к точке 7 через точку 6 на рис. 2, 3).

Рис. 3. Бифуркационные линии и точки системы фазовых уравнений (8) на плоскости (Ω,B), постро-
енные для ε = 0.3 и ∆ = 0.3 (а), 0.05 (б). Сплошные линии отвечают бифуркациям устойчивых
режимов, пунктирные – неустойчивых. SN – седло-узловая бифуркация неподвижных точек, H – би-
фуркация Андронова–Хопфа, SNC – седло-узловая бифуркация предельных циклов, DC –вырожденная
точка сборки, BT – точка Богданова–Такенса, GH – обобщенная точка бифуркации Андронова–Хопфа
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В этом случае при уменьшении амплитуды внешнего сигнала на линии H происхо-
дит прямая бифуркация Андронова–Хопфа, в результате которой устойчивый фокус
становиться неустойчивым, а в системе рождается устойчивый предельный цикл.
Он, в свою очередь, исчезает на линии SNC седло-узловой бифуркации предельных
циклов, где сливается с неустойчивым циклом, возникшим в результате нелокаль-
ной бифуркации. Таким образом, в фазовом пространстве остается неустойчивый
фокус, который, превратившись в неустойчивый узел, сольется с седлом и исчезнет
на линии SN.

Отметим, что при двухпараметрическом анализе количество вариантов доста-
точно велико и зависит от маршрута на плоскости параметров. При этом возмож-
ные сценарии зависят от расположения точек коразмерности два – точек Богданова–
Такенса BT и обобщенных точек бифуркации Андронова–Хопфа GH, в которых пря-
мая бифуркация Андронова–Хопфа превращается в обратную. В точку GH приходит
и линия седло-узловых бифуркаций предельных циклов SNC.

Еще одно отличие от фазовых уравнений с диссипативной связью [5–7] связа-
но с возможностью фазовой бистабильности в системе. Так, в точке 8 на рис. 2, 3
сосуществуют устойчивая инвариантная кривая и устойчивое состояние равновесия.
Состояние равновесия отвечает сдвигу фаз между осцилляторами, примерно равно-
му π. Таким образом, в этом случае внешний сигнал захватывает противофазные
колебания осцилляторов. Квазипериодические же колебания происходят для случая
примерного равенства фаз. Если выйти за пределы языка (точка 9 на рис. 2, 3), то
возникнет ситуация сосуществования двух устойчивых инвариантных кривых, отве-
чающих синфазному и противофазным захватам относительной фазы осцилляторов.
Аналогично, у второго острия на рис. 3, б внешний сигнал захватывает синфазные
колебания осцилляторов. На ляпуновской карте соответствующие значения частот
отмечены стрелками и обозначены, как Ωin и Ωout. Нетрудно показать, что они от-
вечают частотам синфазной и противофазной мод автономных осцилляторов.

Заключение

При выводе фазового уравнения для двух реактивно связанных автоколеба-
тельных осцилляторов необходимо учитывать эффекты второго порядка по величине
связи. Система демонстрирует периодические, двух- и трехчастотные квазипериоди-
ческие режимы, которые выявлены на плоскости параметров с помощью метода карт
ляпуновских показателей. Наблюдается ряд существенных отличий от случая дис-
сипативной связи. Так захват обоих осцилляторов внешней силой может быть как
точным, чему отвечает устойчивое равновесие в фазовых уравнениях, так и не точ-
ным, чему отвечает предельный цикл на плоскости фаз. Основные бифуркационные
механизмы разрушения синхронизации состоят: в слиянии устойчивого и неустой-
чивого равновесий, обратной бифуркации Андронова–Хопфа, в результате которой
исчезает устойчивое равновесие, и в возможности седло-узловой бифуркации устой-
чивого и неустойчивого предельных циклов. При этом картина бифуркаций вклю-
чает также бифуркации коразмерности два: точки Богданова–Такенса и обобщенной
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бифуркации Андронова–Хопфа. Особенность системы состоит в возможности фазо-
вой бистабильности, что проявляется в сосуществовании разных типов устойчивых
режимов (равновесий, предельных циклов, инвариантных кривых). При малой ам-
плитуде воздействия сигнал может захватывать как противофазные, так и синфазные
взаимные колебания осцилляторов.

Работа выполнена при поддержке гранта РФФИ 11-02-91334-ННИО.
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SYNCHRONIZATION OF REACTIVELY COUPLED PHASE
OSCILLATORS DRIVEN BY EXTERNAL FORCE

L.V. Turukina, N.Yu. Chernyshov

Synchronization of two reactively coupled van der Pol oscillators with external force
is investigated in this paper. We consider and compare quasi-periodic motion of oscillators
with frequency-locked mode. The paper includes maps of Lyapunov’s exponents, two-
parametric bifurcation diagrams and phase portraits. Possible types of motion in driven
system are discussed.
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