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ВЛИЯНИЕ СЛАБОЙ НЕЛИНЕЙНОЙ ДИССИПАЦИИ
НА СТРУКТУРЫ ТИПА «СТОХАСТИЧЕСКАЯ ПАУТИНА»

Е. В. Фельк

Исследовано влияние слабой нелинейной диссипации на устройство фазового про-
странства отображения-генератора стохастической паутины. Выявлен бифуркационный
сценарий трансформаций аттракторов при увеличении диссипации.

Ключевые слова: Стохастическая паутина, слабодиссипативные системы, консерватив-
ный хаос.

Введение

Хорошо известно, что свойства консервативных и диссипативных динамиче-
ских систем существенно различаются. В частности, хаос в неинтегрируемых кон-
сервативных системах наблюдается при любых значениях параметров, но, как прави-
ло, в ограниченной области фазового пространства. В диссипативных системах хаос
возникает только в определенном диапазоне параметров, а бассейн притяжения хао-
тического режима занимает значительную часть фазового пространства [1–3]. Если
ввести в консервативную систему малую диссипацию, то система перейдет в погра-
ничное состояние, в котором можно наблюдать характерные черты как консерватив-
ной, так и диссипативной динамики. Исследованию систем со слабой диссипацией
посвящен ряд работ [4–11], в частности, обнаружено, что для таких систем харак-
терно сосуществование очень большого числа регулярных аттракторов.

Однако почти во всех работах исследовалась динамика систем общего вида
или невырожденных в смысле КАМ-теоремы. Хорошо известно, что устройство фа-
зового пространства вырожденных систем, в которых собственные частоты не за-
висят от переменных действия, существенно отличается от фазового пространства
невырожденных систем [1,2]. В частности, в неавтономной системе с одной сте-
пенью свободы, частота которой не зависит от переменной действия, резонанс на-
блюдается во всем фазовом пространстве одновременно. При этом возникший при
разрушении сепаратрис стохастический слой покрывает фазовое пространство в ви-
де некоторой сети, в ячейках которой движение финитно. В результате образуется
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стохастическая паутина – связанная сеть каналов конечной ширины, по которой
может происходить неограниченный перенос частиц в радиальном направлении при
любой, сколь угодно малой амплитуде воздействия. Обзор примеров и свойств таких
структур можно найти, например, в [2]. Интересным является вопрос об изменении
наблюдаемой картины при введении малого возмущения, переводящего систему в
класс диссипативных. Ранее были проведены некоторые исследования, касающиеся
влияния постоянной (линейной) диссипации [12].

Целью настоящей работы является исследование влияния нелинейной дисси-
пации на структуры стохастической паутины, в частности, изучение закономерно-
стей эволюции сосуществующих аттракторов при изменении уровня диссипации.
Возмущение выбирается по типу классической модели теории нелинейных колеба-
ний – осциллятора ван дер Поля, а варьируемым является параметр, отвечающий за
уровень нелинейной диссипации.

1. Неавтономный линейный осциллятор
с малым диссипативным возмущением «автоколебательного» типа

Классическим примером динамической системы, демонстрирующей стохасти-
ческую паутину, является линейный осциллятор с внешним импульсным воздей-
ствием, амплитуда которого нелинейным образом зависит от координаты осциллято-
ра [1],

ẍ+ ω20x = −ω0K
T

cos x

+∞
∑

n=−∞

δ(t− nT ). (1)

Стохастическая паутина образуется, если наблюдается резонанс внешнего воз-
действия и собственной частоты осциллятора, то есть параметр q = 2π/(ω0T ) яв-
ляется целым. Фактически он определяет порядок поворотной симметрии, наблю-
даемой на фазовом портрете. Если его значение принадлежит множеству 3, 4, 6, то
поворотная симметрия сочетается с трансляционной, в результате образуется единая
сепаратриса. Такой тип симметрии Г.М. Заславский называет симметрией кристал-
лического типа [1,2]. При других целых q точная трансляционная симметрия невоз-
можна, однако сепаратрисы различных точек проходят близко друг от друга, в ре-
зультате при их разрушении также образуется стохастическая паутина. Такие струк-
туры принято называть квазикристаллическими. Фазовые портреты системы (1) (в
стробоскопическом сечении на плоскости (x, y), где y = ẋ), а также устойчивые
и неустойчивые многообразия гиперболических (седловых) неподвижных точек для
обоих случаев представлены на рис. 1 при различных порядках резонанса q.

Введем в систему (1) нелинейную диссипацию, аналогично используемую в
автоколебательной системе – генераторе ван дер Поля [13],

ẍ+ (γ− µx2)ẋ+ ω20x = −ω0K
T

cos x
+∞
∑

n=−∞

δ(t− nT ). (2)

Здесь параметры γ и µ определяют соответственно уровень линейной (то есть не
зависящей от значений переменных) и нелинейной диссипации. С физической точки
зрения, наиболее интересным представляется исследование системы в области, от-
вечающей автоколебательному режиму в автономной системе, чему соответствуют
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Рис. 1. Фазовые портреты системы (1) и соответствующие им устойчивые (черный цвет) и неустой-
чивые (серый цвет) многообразия при различных значениях параметра q: 4 (а, б), 5 (в, г). Амплитуда
воздействия K = 0.1

отрицательные значения этих параметров. В настоящей работе возмущение пред-
полагалось малым, поэтому использовались малые (порядка 10−3–10−5) значения
параметров γ и µ.

Далее будем исследовать устройство фазового пространства стробоскопиче-
ского отображения, соответствующего системе (2), в котором в качестве перемен-
ных выбираются координата и скорость осциллятора перед очередным импульсом.
Для исходной системы (1) такое отображение может быть получено аналитически.
Для системы (2) точное аналитическое построение стробоскопического отображе-
ния невозможно, поэтому в настоящей работе оно вычислялось прямым численным
интегрированием системы (2) в промежутке между импульсами.

На рис. 2 приведены фазовые портреты стробоскопического отображения при
значении порядка резонанса q = 5 и постоянном значении параметра линейной дис-
сипации. Видно, что при малых уровнях нелинейной диссипации (рис. 2, а) наблю-
дается довольно большое число аттракторов, являющихся неподвижными точками
типа «фокус». При увеличении нелинейной диссипации устойчивые фокусы превра-
щаются узлы, а их количество уменьшается, поскольку они попарно сливаются с
седловыми точками (рис. 2, б), а образовавшиеся в результате узлы исчезают через
седло-узловую бифуркацию (рис. 2, в). Процесс эволюции аттракторов завершается
образованием устойчивой инвариантной кривой вблизи начала координат (рис. 2, г).
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Рис. 2. Фазовые портреты системы (2) при q = 5, K = 0.1, γ = −1 · 10−4 и различных значениях
параметра µ: −5 · 10−5 (а), −5 · 10−4 (б), −2 · 10−3 (в), −5 · 10−2 (г). Серыми кружками обозначены
устойчивые неподвижные точки, квадратами – неустойчивые

При существенном значении нелинейной диссипации она остается единственным
аттрактором в системе, что соответствует квазипериодической динамике.

Рождение инвариантной кривой иллюстрирует рис. 3, на котором представле-
ны устойчивые и неустойчивые многообразия ближайших к началу координат сед-
ловых точек. Видно, что с увеличением параметра µ происходит нелокальная би-
фуркация: в некоторый момент устойчивые и неустойчивые многообразия седловых
точек замыкаются, образуя гетероклинический цикл, после чего от него отделяет-
ся инвариантная кривая, на которую теперь и приходят неустойчивые многообразия
седловых точек (рис. 3, б).

Для системы с симметрией кристаллического типа (q = 3) сценарий эволю-
ции в целом совпадает с описанным выше (рис. 4), однако завершается процесс
образованием не инвариантной кривой, а устойчивого фокуса в начале координат
(рис. 4, г).

Предполагая, что наблюдаемое отличие является следствием некоторого вы-
рождения системы, введем дополнительный параметр 3, характеризующий направ-
ление действия импульса,

ẍ+ (γ− µx2)ẋ+ ω20x = −ω0K
T

cos(x+ 3)

+∞
∑

n=−∞

δ(t− nT ). (3)
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Рис. 3. Устойчивые (черный цвет) и неустойчивые (серый цвет) многообразия при q = 5, K = 0.1,
γ = −1 · 10−4 и различных значениях параметра µ: −1 · 10−4 (а), −2 · 10−4 (б)

Рис. 4. Фазовые портреты системы (2) при q = 3, K = 0.3, γ = −1 · 10−3 и различных значениях
параметра µ: −1 · 10−5 (а), −5 · 10−4 (б), −5 · 10−2 (в), −5 · 10−1 (г). Серыми кружками обозначены
устойчивые неподвижные точки, квадратами – неустойчивые

76



Эволюцию аттракторов системы (3) в случае кристаллической симметрии (q = 3) и
при значении параметра 3 = π/2 иллюстрирует рис. 5. Видно, что в этом случае
процесс эволюции аттракторов, как и на рис. 2, завершается образованием инвари-
антной кривой (рис. 5, в). Сценарий ее рождения (рис. 6) также аналогичен проил-
люстрированному на рис. 3. Единственное отличие заключается в том, что в случае
квазикристаллической симметрии все седловые точки являлись элементами одного
цикла периода 5, здесь же они принадлежат к двум разным циклам периода 3.

Рис. 5. Фазовые портреты системы (3) при 3 = π/2, q = 3, K = 0.3, γ = −1 · 10−3 и различных
значениях параметра µ: −1 · 10−5 (а), −5 · 10−2 (б), −5 · 10−1 (в). Серыми кружками обозначены
устойчивые неподвижные точки, квадратами – неустойчивые

Рис. 6. Устойчивые (черный цвет) и неустойчивые (серый цвет) многообразия при 3 = π/2, q = 3,
K = 0.3, γ = −1 · 10−3 и различных значениях параметра µ: −1 · 10−4 (а), −3 · 10−4 (б), −4 · 10−4 (в),
−5 · 10−4 (г)
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Рис. 7. Фазовые портреты системы (3) при µ = −5 · 10−2, q = 3, K = 0.3, γ = −1 · 10−3 и различных
значениях параметра 3: π/2 (а), 0 (б)

Интересно, что при плавном изменении параметра 3 инвариантная кривая ис-
чезает в результате бифуркации Неймарка–Сакера (рис. 7). Соответствующее значе-
ние параметра можно ориентировочно оценить численно, как 3 = π/1.35.

Заключение

В работе рассматривается модель, представляющая собой автоколебательную
версию генератора стохастической паутины. Исследовалось влияние диссипативного
возмущения на картину стохастической паутины. Был выявлен основной бифурка-
ционный сценарий эволюции аттракторов в стробоскопическом отображении при
увеличении нелинейной диссипации. Он заключается в том, что сосуществующие
аттракторы попарно сливаются с седловыми точками (бифуркация «вилка»), а об-
разовавшиеся в результате узлы впоследствии исчезают в результате седло-узловой
бифуркации. Завершается процесс, как правило, образованием инвариантной кривой
через нелокальную бифуркацию. Также обнаружено, что в случае кристаллической
симметрии третьего порядка при введении дополнительного параметра, характеризу-
ющего фазу нелинейной зависимости амплитуды импульсов от координаты, возмож-
но исчезновение инвариантной кривой в результате бифуркации Неймарка–Сакера.
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