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Оптические системы с двумерной обратной связью демонстрируют широкие возмож-
ности по исследованию процессов зарождения и развития диссипативных структур. Об-
ратная связь позволяет воздействовать на динамику оптической системы посредством
управляемого преобразования пространственных переменных, выполняемых призмами,
линзами, динамическими голограммами и другими устройствами. Нелинейный интер-
ферометр с зеркальным отражением поля в двумерной обратной связи является одной
из наиболее простых оптических систем, в которых реализуется нелокальный характер
взаимодействия световых полей.

Математической моделью оптических систем с двумерной обратной связью является
нелинейное параболическое уравнение с преобразованием поворота пространственной
переменной и условиями периодичности на окружности.

Исследуются вопросы бифуркации рождения стационарных структур типа бегущей
волны, эволюции их форм при уменьшении бифуркационного параметра (впервые в ка-
честве бифуркационного параметра был взят коэффициент диффузии) и динамики их
устойчивости при отходе от критического значения параметра бифуркации и дальней-
шем его уменьшении. В работе используются метод центральных многообразий и метод
Галеркина. На основе метода центральных многообразий доказана теорема о существо-
вании, форме и устойчивости решения типа бегущей волны в окрестности бифурка-
ционного значения коэффициента диффузии. Получено представление первой бегущей
волны, рождающейся в результате бифуркации Андронова–Хопфа при переходе бифур-
кационного параметра через критическое значение. Согласно теореме о центральном
многообразии первая бегущая волна рождается орбитально устойчивой.

Поскольку доказанная теорема дает возможность исследовать рожденные решения
только в окрестности критического значения бифуркационного параметра, то для изу-
чения динамики изменений решения типа бегущей волны при отходе бифуркационного
параметра в область надкритичности был использован формализм метода Галеркина. В
соответствии с методом центральных многообразий составлена галеркинская аппрокси-
мация приближенных решений поставленной задачи. При уменьшении параметра би-
фуркации и его переходе через критическое значение, нулевое решение задачи теряет
устойчивость колебательным образом. В результате от нулевого решения ответвляется
периодическое решение типа бегущей волны. Эта волна рождается орбитально устой-
чивой. При дальнейшем уменьшении параметра и его прохождении через следующее
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критическое значение от нулевого решения в результате бифуркации Андронова–Хопфа
рождается второе решение типа бегущая волна. Данная волна рождается неустойчивой с
индексом неустойчивости два.

Численные расчеты с помощью пакета Mathematica показали, что применение метода
Галеркина приводит к качественно и количественно правильным результатам. Получен-
ные результаты хорошо согласуются с результатами, полученными другими авторами и
могут быть использованы для постановки экспериментов по изучению явлений в опти-
ческих системах с обратной связью.
Ключевые слова: Параболическая задача, бифуркация, устойчивость, бегущая волна, ме-
тод центральных многообразий, метод Галеркина.
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Optical systems with two-dimensional feedback demonstrate wide possibilities for
emergence of dissipative structures. Feedback allows to influence on dynamics of the optical
system by controlling the transformation of spatial variables performed by prisms, lenses,
dynamic holograms and other devices. Nonlinear interferometer with mirror reflection of a
field in two-dimensional feedback is one of the simplest optical systems in which the nonlocal
interaction of light fields is realized.

A mathematical model of optical systems with two-dimensional feedback is the nonlinear
parabolic equation with rotation transformation of a spatial variable and periodicity conditions
on a circle. Such problems are investigated: conditions of occurrence the traveling wave
solution, how the form of the solution changes as the diffusion coefficient decreases, dynamics
of the solution’s stability when the value of bifurcation parameter is decrease. As a bifurcation
parameter was taken diffusion coefficient.

The method of central manifolds and the Galerkin’s method are used in this paper. The
method of central manifolds allows to prove the theorem on the existence and form of the
traveling wave solution in the neighborhood of the critical bifurcation value. The first traveling
wave born as a result of the Andronov–Hopf bifurcation. According to the central manifold
theorem, the first traveling wave is born orbitally stable.

The theorem gives the opportunity to explore solutions near the critical values of the
bifurcation parameter. The Galerkin’s method was used by further research of traveling waves
when bifurcation parameter was decrease. If the bifurcation parameter decreases and transition
through the critical value, the zero solution of the problem loses stability. As a result, a periodic
solution of the traveling wave type branches off from the zero solution. This wave is born
orbitally stable. Further, the bifurcation parameter and its passage through the next critical
value from the zero solution, the second solution of the traveling wave type is arise as a result
of the Andronov–Hopf bifurcation. This wave is born unstable.
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Numerical calculations have shown that the application of the Galerkin’s method leads to
correct results. The results can be used by experiments on the study of phenomena in optical
systems with feedback.

Keywords: Parabolic problem, bifurcation, stability, traveling wave, method of central manifolds,
Galerkin’s method.
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Введение

В оптических системах с обратной связью реализуются два типа взаимодей-
ствия поля: локальное, связанное с диффузией частиц нелинейной среды и с само-
воздействием поля, и крупномасштабное, вызванное преобразованием поперечных
пространственных аргументов поля внутри резонатора, например, поворотом на угол
h, сжатием или отражением пространственной переменной в контуре обратной свя-
зи [1–4]. Как следует из эксперимента, описанного в работах [5, 6], наличие крупно-
масштабного взаимодействия существенно обогащает пространственно-временную
динамику фазовой модуляции. Варьированием угла поворота h аргументов в кон-
туре обратной связи можно добиться визуализации различных типов вращающихся
пространственно неоднородных структур, наблюдать изменение их количества и при
определенных условиях – переход к оптическому хаосу. Для исследования наблюда-
емых явлений могут быть использованы различные подходы. Одним из них является
метод, основанный на анализе динамики семейства траекторий, выходящих из неко-
торого ограниченного в том или ином пространстве множества начальных данных.
Отметим, что к глобальному аттрактору притягиваются множества траекторий дина-
мической системы при больших значениях времени. Однако глобальный аттрактор
динамических систем шире множества физически реализующихся при больших вре-
менах предельных режимов. Поэтому наряду с глобальный анализом поведения си-
стемы важно выделить характерные типы наблюдаемых решений, а также выяснить
причины возникновения того или иного типа решений. Один из подходов к реше-
нию намеченной проблемы – локальный анализ [7, 8], основанный на линеаризации
задачи в окрестности какого-либо известного решения, например пространственно
однородного стационарного решения. Такие автоколебания при определенных усло-
виях возбуждались из стационарного состояния при изменении параметров модели,
что свидетельствует о бифуркационной природе их возникновения. Для исследова-
ния бифуркационных автоколебаний может быть использована методика, основанная
на построении иерархии упрощенных математических моделей в окрестности точки
бифуркации. Построение разложений периодических решений в такого рода задачах
основано на методах центрального многообразия [9, 10] и методе Галеркина [1–4].
Для описания различных автоволновых процессов, протекающих в нелинейном ин-
терферометре (то есть в нелинейной оптической системе, состоящей из тонкого слоя
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нелинейной среды керровского типа и различным образом организованного контура
обратной связи), может быть использована одномерная по пространству модель

vt + v = µ△v +K(1 + γ cosQv(3, t)), t > 0, (1)

v(3+ 2π, t) = v(3, t). (2)

Краевая задача (1)–(2) моделирует динамику фазовой модуляции v(3, t),
3 ∈ (0, 2π), t > 0, световой волны, прошедшей тонкий слой нелинейной среды кер-
ровского типа с преобразованием поворота координат в контуре обратной связи в од-
номерном приближении. Здесь µ – коэффициент диффузии нелинейной среды; поло-
жительный коэффициент K пропорционален интенсивности входного поля; γ – вид-
ность (контрастность) интерференционной картины, 0 < γ < 1; Qv(3) = v(3+ h) –
оператор поворота на угол h.

Особенностью данной задачи является наличие пространственно однородного
решения, описывающего невозмущенное распределение фазовой модуляции. При из-
менении параметров модели, например, уменьшении коэффициента диффузии нели-
нейной среды и, соответственно, изменении коэффициента µ, это решение теряет
устойчивость. Наличие поворота координат позволяет промоделировать ситуацию,
когда такая потеря устойчивости происходит колебательным образом. В результа-
те возбуждается бегущая волна, скорость вращения которой и ее пространственный
масштаб могут быть предсказаны и проанализированы на основе теории бифурка-
ций. При определенных условиях на параметры задачи будут рассмотрены вопросы
существования, единственности и устойчивости периодического пространственно
неоднородного решения, ответвляющегося от пространственно однородного стацио-
нарного решения в результате бифуркации Андронова–Хопфа. Это пространственно
однородное решение v(3, t) = ω определяется из уравнения

ω = K(1 + γ cosω). (3)

С ростом K количество корней этого уравнения неограниченно растет, причем при
K → ∞ их состав постоянно меняется: возникают новые состояния равновесия и
исчезают старые. Поэтому фиксируем гладкую ветвь решений

ω = ω(K, γ), 1 +Kγ sinω(K, γ) ̸= 0 (4)

уравнения (3). Затем линеаризуем (1)–(2) на выбранном ω(K, γ): v = u+ ω.
В результате получаем уравнение с краевыми условиями на окружности S1

ut = µ△u− u− ΛQu+
Λ

6
Qu3, (5)

u(3+ 2π, t) = u(3, t), (6)

где Λ = Λ(K, γ) = −Kγ sinω, Qu(3) = u(3 + 2π/3) – оператор поворота на угол
h = 2π/3. Здесь µ – бифуркационный параметр, △ – одномерный оператор Лапласа
(△u = u33).
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Лемма. Собственными функциями оператора L(µ)u = µ△u − u − ΛQu, рассмат-

риваемого в качестве линейного оператора на пространстве L2(S
1) и областью

определения в H2(S1) (норма задается формулой ∥u∥22 = ⟨(−△)2u, u⟩+⟨u, u⟩), явля-

ются функции eik3, k = 0,±1,±2, . . . с соответствующими собственными числами

λk(µ) = −1− k2µ− Λeik 2π
3 , k = 0,±1,±2, . . ..

Интерес представляет случай, когда при уменьшении бифуркационного пара-
метра µ знак собственных чисел λk(µ) может измениться. Поэтому фиксируем усло-
вие: Λ > 1.

Существует такое значение параметра µ = µ∗, что при µ > µ∗ нулевое решение
задачи (5)–(6) экспоненциально устойчиво. При уменьшении µ и его прохождении
через µ∗ нулевое решение задачи (5)–(6) теряет устойчивость. Пара комплексно-
сопряженных точек спектра проходит через мнимую ось с ненулевой скоростью.
В результате от нулевого решения бифурцирует однопараметрическое семейство пе-
риодических решений типа бегущих волн.

1. Использование метода центральных многообразий

Воспользуемся для построения бегущих волн и их представлений методом
центральных многообразий [11,12]. Построим решение (5)–(6) в виде

u(3, t) = zei3 + ze−i3 + σ3(ze
i3, ze−i3) + . . . , (7)

где z = z(t), z = z(t) удовлетворяют уравнениям

ż = (λ1(µ) + c3|z|2 + . . .)z, (8)

ż = (λ1(µ) + c3|z|2 + . . .)z (9)

(черта над символом обозначает комплексное сопряжение). Слагаемое σ3(zei3, ze−i3) –
форма 3-й степени относительно z, z. Обозначим z(t, µ) = z(µ), z(t, µ) = z(µ). Под-
ставим (7), (9) в (5) и затем в полученном равенстве сделаем замену zei3 → z.
В результате относительно σ3 приходим к уравнению

(c3z + c3z)|z|2 +B(µ)σ3 = Q̃(z + z)3. (10)

Здесь Q̃zαz−β = zαz−βei(α−β)(2π)/3. Оператор B(µ) на пространстве многочленов
относительно z, z является диагональным оператором

B(µ)zαz−β = (λ1α+ λ1β− λα−β)zαz−β, (11)

λ−s = λs, s > 0. Из условия разрешимости уравнения (10) следует, что

c3 =
Λ

2
ei(2π)/3, c3 =

Λ

2
e−i(2π)/3. (12)

Очевидно, что Re c3 < 0, Re c3 < 0. Уравнение (10) разрешимо следующим обра-
зом:

σ3 =
Λ

6

(
z3(µ)e3i3

3λ1 − λ3
+

z3(µ)e−3i3

3λ1 − λ3

)
. (13)
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Подставим теперь в (9) найденные, согласно (12), значения c3 и опустим затем
остальные слагаемые. Тогда периодическим решением, ответвляющимся от нуля при
переходе через критическое бифуркационное значение µ∗: Re λ1(µ∗1) = 0, является

z1 = ρ1(µ)e
iω1(µ)t,

где ρ1(µ) > 0 – непрерывная ветвь решений уравнения

Re λ1(µ) + Re c3ρ
2
1(µ) = 0,

ω1(µ) = Im λ1(µ) + Im c3ρ
2
1(µ).

В результате приближенным периодическим решением исходной задачи, от-
ветвляющимся от нуля при прохождении параметра µ через µ∗, является

u(3, t) = ρ1(µ)e
iω1(µ)tei3 + ρ1(µ)e

−iω1(µ)te−i3 +

+
Λ

2

ρ31(µ)e
3iω1(µ)te3i3

3λ1 − λ3
+
Λ

2

ρ31(µ)e
−3iω1(µ)te−3i3

3λ1 − λ3
+ . . . .

Таким образом сформулируем теорему.

Пусть выполнено условие Λ > 1. Тогда существует такое δ0 > 0, что, если

0 < µ∗ − µ < δ0, где Re λ1(µ
∗
1) = 0, то задача (5)–(6) имеет решение типа бе-

гущей волны вида:

u(3, t) = ρ1(µ)e
iω1(µ)tei3 + ρ1(µ)e

−iω1(µ)te−i3 +

+
Λ

2

ρ31(µ)e
3iω1(µ)te3i3

3λ1 − λ3
+
Λ

2

ρ31(µ)e
−3iω1(µ)te−3i3

3λ1 − λ3
+ . . . ,

ρ1(µ) > 0 является положительным корнем уравнения

Re λ1(µ) + Re c3ρ
2
1(µ) = 0,

а ω1(µ) находится из уравнения

ω1(µ) = Im λ1(µ) + Im c3ρ
2
1(µ).

Решения u(3, t) – экспоненциально орбитально устойчивы.

2. Аппроксимация решения параболической задачи с преобразованием
поворота пространственной переменной

Поскольку теорема дает возможность исследовать рожденные решения
только в окрестности критического значения бифуркационного параметра µ, то для
изучения динамики изменений решения типа бегущей волны при отходе бифурка-
ционного параметра в область надкритичности, воспользуемся формализмом метода
Галеркина.
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В соответствии с методом центральных многообразий будем использовать га-
леркинскую аппроксимацию в таком виде:

u =
N∑

k=1

(
xke

ik3 + xke
−ik3

)
. (14)

Подставим (14) в (5) и затем в полученном равенстве приравняем коэффициенты при
e±ik3, k = 1, N .

В результате получим систему дифференциальных уравнений

ẋk = λkzk + gk(z, z),

ẋk = λkzk + gk(z, z), k = 1, N,
(15)

где z = (z1, . . . , zN ), z = (z1, . . . , zN ), gk, gk – формы 3-й степени относительно
(z, z), λk = λk(µ).

При уменьшении параметра µ и его переходе через критическое значение µ∗1
такое, что Re λ1(µ

∗
1) = 0, нулевое решение (5)–(6) теряет устойчивость колебатель-

ным образом. В результате от нулевого решения (5)–(6) ответвляется периодическое
решение типа бегущей волны. Для построения указанного решения (5)–(6) восполь-
зуемся системой (15), в которой нулевое решение теряет устойчивость при умень-
шении µ и его прохождении через µ∗1. Построим это решение в виде

x1 = ρ1e
i31 , x3 = ρ3e

i(331+α3), x5 = ρ5e
i(531+α5) (16)

ρk = ρk(t, µ), 31 = 31(t, µ)

и соответствующие им комплексные переменные x1 , x3, x5. Остальные компоненты
в (15) положим нулевыми. В полученной после подстановки (16) в (15) системе
находим стационарные ρk > 0, k = 1, 2, 3, α3, α5 и 3̇1 = ω1(µ). Следовательно,
система (15) имеет периодическое решение

x1 = ρ1(µ)e
iω1(µ)t, x3 = ρ3(µ)e

i(3ω1(µ)t+α3), x5 = ρ5(µ)e
i(5ω1(µ)t+α5),

x1 = ρ1(µ)e
−iω1(µ)t, x3 = ρ3(µ)e

−i(3ω1(µ)t+α3), x5 = ρ5(µ)e
−i(5ω1(µ)t+α5).

(17)

Подставив (17) в (14) получим приближенное периодическое решение (14) типа «бе-
гущая волна». Это решение рождается орбитально устойчивым периодическим ре-
шением.

При уменьшении µ и его прохождении через следующее значение µ∗2:
Re λ2(µ

∗
2) = 0 от нулевого решения (5)–(6) в результате бифуркации типа Андронова–

Хопфа рождается второе решение типа «бегущая волна». Для построения указанного
периодического решения вновь переходим к (15) и строим эти решения в виде

x2 = ρ2e
i232 , x6 = ρ6e

i(632+β3), x10 = ρ10e
i(1032+β5), (18)

ρk = ρk(t, µ), 32 = 32(t, µ)
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и соответствующие им комплексные переменные x2, x6, x10. Остальные компоненты
в (15) полагаются нулевыми. В полученной системе относительно ρ2, ρ6, ρ10 нахо-
дим стационарные ρk = ρk(µ) > 0, k = 2, 6, 10; β3, β5 и 3̇2 = ω2(µ). Следовательно,
система (15) имеет периодическое решение при µ < µ∗2 вида

x2 = ρ2(µ)e
i2ω2(µ)t, x6 = ρ6(µ)e

i(6ω2(µ)t+β3), x10 = ρ10(µ)e
i(10ω2(µ)t+β5),

x2 = ρ2(µ)e
−i2ω2(µ)t, x6 = ρ6(µ)e

−i(6ω2(µ)t+β3), x10 = ρ10(µ)e
−i(10ω2(µ)t+β5).

(19)
Решение (19) системы (15) рождается неустойчивым с индексом неустойчивости 2.

Обратимся к вопросу о динамике устойчивости решения (19) при уменьше-
нии µ. Для этого перейдем к анализу линеаризованной в окрестности периодиче-
ского решения (19) системе (15). Для получения этой линеаризованной системы ли-
неаризуем исходное уравнение (5)–(6) на найденном периодическом решении (19).
В результате получим

u̇ = µ△u− u− ΛQu+
Λ

2
Qu22 ·Qu, (20)

где u2 – вторая бегущая волна.
Отметим, что ключевую роль в анализе динамики устойчивости играют пере-

менные x1, x3, x5 и им сопряженные x1, x3, x5. Проведенная линеаризация приводит
относительно этих переменных к системе уравнений

ẋ1 = λ1x1 +
(
(6ρ22 + 6ρ26 + 6ρ210)x1 + 3ρ22e

i2ω2tx3 + 6ρ2ρ6e
i(2ω2t+β3)x3+

+6ρ6ρ10e
i(2ω2t+β5−β3)x3 + 6ρ6ρ10e

i(−2ω2t−β5+β3)x5

)
ei

2π
3 ,

ẋ3 = λ3x3 +
(
(6ρ22 + 6ρ26 + 6ρ210)x3 + 3ρ22e

i2ω2tx1 + 6ρ2ρ6e
i(2ω2t+β3)x1+

+6ρ6ρ10e
i(2ω2t+β5−β3)x1 + 6ρ2ρ10e

i(−4ω2t−β5)x5

)
e3i

2π
3 ,

ẋ5 = λ5x5 +
(
(6ρ22 + 6ρ26 + 6ρ210)x5 + 3ρ22e

i2ω2tx1 + 6ρ2ρ6e
i(2ω2t+β3)x1+

+6ρ6ρ10e
i(4ω2t+β5)y3

)
e5i

2π
3 ,

плюс соответствующие выражения для сопряженной части. Анализ матрицы коэф-
фициентов полученной системы и ей сопряженной дает возможность ответить на
вопросы об устойчивости решения (19).

3. Численные результаты анализа параболической задачи

Для численных расчетов использовалась модельная задача (условие cosω = 0)

ut = µ△u− u− ΛQu+
Λ

6
Qu3, t > 0,
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Рис. 1. Первая бегущая волна при фиксированном
значении N = 6, рождающаяся орбитально устой-
чивой в результате бифуркации Андронова–Хопфа
при переходе бифуркационного параметра µ через
значение µ∗1 = 0.5, здесь 3 – пространственная пере-
менная, t – переменная времени, u – значение функ-
ции u(3, t)

Fig.1. The first traveling wave at a fixed value N = 6,
born orbitally stable as a result of the Andronov–Hopf
bifurcation in the transition of the bifurcation parameter
µ through the value µ∗1 = 0.5, here 3 – spatial variable,
t – time variable, u – function value u(3, t)

Рис. 2. График роста амплитуды первой бегущей
волны при фиксированном N = 6 в зависимости от
уменьшения бифуркационного параметра µ = 0.3;
0.2; 0.1; 0.05, здесь 3 – пространственная перемен-
ная, u – значение функции u(3, t)

Fig.2. Growth of the amplitude of the first traveling
wave with a fixed N = 6 depending on the decrease of
the bifurcation parameter µ = 0.3; 0.2; 0.1; 0.05, here
3 – spatial variable, u – function value u(3, t)

с условием на окружности

u(3+ 2π, t) = u(3, t),

где L = L(µ) = −1 − µ△ − ΛQ,
Qu(3) = u(3+ 2π/3).

Зафиксируем следующие пере-
менные K = 8, γ = 0.6, ω =

= −0.675132, Λ = 3.
Численный анализ показал, что

первая бегущая волна, рождающаяся
в результате бифуркации Андронова–
Хопфа, при переходе бифуркационного
параметра µ через µ∗1 = 0.5, рождается
орбитально устойчивой. Данное реше-
ние возникает, когда собственное значе-
ние нулевого решения переходит через
ноль колебательным образом. Исполь-
зуя формализм метода Галеркина, бы-
ла проанализирована динамика измене-
ний решения при уменьшении парамет-
ра µ. Так, при отходе бифуркационного
параметра от критического значения в
область надкритичности амплитуда ре-
шения незначительно возрастает; точ-
ки отрицательного спектра возрастают
и приближаются к нулю, но не перехо-
дят на положительную полуось. Макси-
мальной точкой спектра на всем проме-
жутке изменения параметра (0, µ∗1) яв-
ляется 0. Это в свою очередь позволяет
сделать вывод, что первая бегущая вол-
на сохраняет устойчивость на всем про-
межутке изменения параметра (0, µ∗1).

Вторая бегущая волна, рождаю-
щаяся в результате бифуркации Андро-
нова–Хопфа, при переходе бифурка-
ционного параметра µ через µ∗2 =

= 0.125. Решение рождается неустой-
чивым с индексом неустойчивости два,
так как две комплексно-сопряженные
точки спектра имеют положительную
действительную часть.
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Исследование динамики спектра при уменьшении параметра µ показывает по-
ведение максимальных точек спектра. При уменьшении µ и прохождении через µ∗2
положительная пара комплексно-сопряженных точек спектра переходит на отрица-
тельную полуось и остается там при дальнейшем уменьшении бифуркационного
параметра. Приведем в качестве примера полученные численные результаты при
фиксированных N = 6, Λ = 3, а именно три максимальные точки спектра σ(µ)
(комплексно-сопряженная часть не приводится для упрощения):

σ(0.09) = (. . . ,−4.2289 + 0.0177I,−2.0319 + 2.1080I, 0.1431− 2.1080I),

σ(0.07) = (. . . ,−3.6864 + 0.0347I,−1.6943 + 1.8196I, 0.02593− 1.8196I),

σ(0.066) = (. . . ,−3.574 + 0.0370I,−1.6268 + 1.7606I, 0.00420− 1.7606I),

σ(0.065) = (. . . ,−3.5463 + 0.0375I,−1.6099 + 1.7458I,−0.00113− 1.7458I),

σ(0.04) = (. . . ,−2.3686− 1.5242I,−1.1839 + 1.3570I,−0.1211− 1.3570I),

σ(0.005) = (. . . ,−1.1713− 0.8822I,−0.5256 + 0.5994I,−0.2993− 0.5994I).

Здесь I – мнимая единица.

Рис. 3. Вторая бегущая волна при фиксированном
значении N = 6, рождающаяся неустойчивой с ин-
дексом неустойчивости два в результате бифурка-
ции Андронова–Хопфа при переходе бифуркацион-
ного параметра µ через значение µ∗2 = 0.125, здесь
3 – пространственная переменная, t – переменная
времени, u – значение функции u(3, t)

Fig.3. The second traveling wave at fixed value
N = 6, is born unstable with an instability index
of two as a result of the Andronov–Hopf bifurcation
in the transition of the bifurcation parameter µ through
the value µ∗2 = 0.125, here 3 – spatial variable, t –
time variable, u – function value u(3, t)

Рис. 4. График роста амплитуды второй бегущей
волны при фиксированном N = 6 в зависимости от
уменьшения бифуркационного параметра µ = 0.09;
0.06; 0.03, здесь 3 – пространственная переменная,
u – значение функции u(3, t)

Fig.4. Growth of the amplitude of the second traveling
wave with a fixed N = 6 depending on the decrease
of the bifurcation parameter µ = 0.09; 0.06; 0.03, here
3 – spatial variable, u – function value u(3, t)
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Такое поведение точек спектра дает возможность сделать вывод, что в системе
реализуется бифуркация рождения семейства двупарметрических торов. Дальней-
ший анализ поведения рожденных торов является более сложной задачей и оставле-
на автором для дальнейшего исследования.

Заключение

Для параболического уравнения с поворотом пространственной переменной
на окружности рассмотрены вопросы о существовании, форме и устойчивости ре-
шений типа бегущих волн. На основе метода центральных многообразий доказана
теорема о существовании решения типа бегущих волн. Используя формализм ме-
тода Галеркина исследована динамика изменений рожденных решений, их форма и
устойчивость. Для анализа устойчивости решения типа бегущей волны использо-
валась линеаризация в окрестности периодического решения. Численные расчеты с
помощью пакета Mathematica показали, что применение метода Галеркина приводит
к качественно и количественно правильным результатам.
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