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EXACT CALCULATION OF EFFECTIVE DIFFUSION CONSTANT
IN FLUCTUATING PERIODIC POTENTIALS

A.A. Dubkov

Exact formula for diffusion coefficient of Brownian particle moving in modulated by
white noise periodic field is obtained. As it is shown the acceleration of diffusion in
comparison with a free diffusion case takes place for an arbitrary potential profile.
Calculations of effective diffusion constant for different periodic potentials are performed.

Introduction

The problem of diffusion in periodic potential is related to a rich variety of physical
situations such as diffusion of atoms in crystals, «ad-atom» moving near a solid surface,
synchronization of oscillations, fluctuations of a Josephson supercurrent and so on.
During the 1970’s, an exact expressions for diffusion constant was independently obtai-
ned in the overdamped limit by various methods for an arbitrary periodic potential [1] and
for sinusoidal potential [2]. Recently the mean velocity and effective diffusion coefficient
of Brownian particle moving in a tilted periodic potential have been found in [3].

At the same time, the case of time-varying periodic potential is also of interest to
practice. So, diffusion in fast fluctuating periodic field was the subject of investigation in
[4]. Author derived the exact result for effective diffusion constant in the serrated
potential. Present paper is generalization of results [4] on the case of arbitrary potential
profiles.

Derivation of effective diffusion coefficient

We consider an overdamped Brownian particle in fluctuating periodic potential
U(x) whose dynamics is governed by the Langevin equation

dxldt = -¢(t)dU(x)/dx + E(r) (1)

where x(r) is the displacement in time r, §(r) and €(r) are statistically independent
Gaussian white noises with zero means and intensities D and D, respectively. Further we
assume that potential U(x) is even function with period L and place the origin in one of
potential minima.

Following [1], [2] we determine the diffusion constant as the limit
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D, =lim__(x*(2))/t = lim,_,_d(x*(r))/dt (2)
because in considering case (x(¢))=0. It is easy matter to write from Eq. (1) the Fokker-
Planck equation for probability density W(x,r)!

AW/t = (DJ2)(U'()/ax) (U’ (x)W)/dx) + (DI2)PWIox. 3)

Since we interest an asymptotic behaviour of mean square coordinate of Brownian
particles the initial condition for Eq. (3) may be chosen arbitrarily. With this possibility
we place all Brownian particles in the origin at =0: W(x,0)=3(x). In view of evenness of -
potential U(x) the diffusion will go symmetrically in both directions of x-axis and the
probability flow at the point x=0 will be equal to zero. This means that for calculation of
D_ we can place the reflecting boundary in the origin and consider a diffusion in a
positive direction of x-axis only.

Let introduce into consideration the Laplace transform of probability density

Y(x,5) = f,” W(x,)exp(-st)dt.

As a result Eq. (3) becomes the second-order ordinary differential equation for function
Y(x,s)

(DI2)(dPY! dx?) + (D2)(dU' (x)/dx)(d(U'(x)Y)/ dx) - sY =0 (x>0). (4)
In addition to Eq. (4) we should write the normalization condition for probability density

Jy” Y(x5)dx = 1s. (5)

Upon Floquet’s theorem [5] linear homogeneous differential Eq. (4) with periodic
coefficients has the next finite solution in the area x>0

Y(x,5) = exp(-u(s)x)@(x.5) (6)

where ®(x,s) is periodic function with the same period L and u(s) is the characteristic
exponent of solution. The positive exponent p(s)—0 when s—0 by virtue of the fact that
Eq. (4) has periodic solution at s=0.
Based on the limiting theorems of Laplace transform we obtain from Eq. (2)
D_=lim_, %7 (7)
where

o O

x2=[, ;ZY(x,s)dx = 9%ou? J mexp(-p.r)tb(x,s)dx. (8)

L)
Because the value x? enters into the limit (7) it is sufficient to find an approximate
expression for the integral in Eq. (8) at s—0 (i.e. u—0). Taking into account the
periodicity of function ®(x,s) in Eq. (6) and the normalization condition (5) we have
o (n+l)L
Us=Z _,J, exp(-px)®(x,s)dx =
L ® L
=J, exp(-ux)®(x,s)dx I, _, exp(-unL) = 1/(uL)f, exp(-ux)®(x.s)dx.
Thus,

! We interpret Eq. (1) in symmetrized Stratonovich form in order to obtain parametric effects.
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X2 = (L), ‘exp(-ux)d(x.s)dx = 2(syd). )

Substitution of Eq. (9) into Eq. (7) leads to a new expression for diffusion coefficient in

the form of limit
D_=2lim_, s/(u?(s)). (10)

As it is obvious from Eq. (10) the problem is reduced to calculation of the
characteristic exponent u(s) of Eq. (4). This calculation, as a rule, presents a certain
difficulties associated with a zero condition for infinite determinant [5]. But in this
situation we can derive the exponent u(s) directly from Eq. (4) based on small value of p.

First of all, let us replace the variable Y(.x,s) by Z(x,s)=[D+D,(U"(x))*]'"?Y (x,s)
and rewrite Eq. (4) in the form

(DR)dZldx* + (D /2)U'(x)dU' (x)/dx dZldx - sZ = 0. (11)

Since the multiplier [D+D, (U'(x))*]' is a periodic function the characteristic exponent of
Eq. (11) coincides with p(s). By above-mentioned Floquet’s theorem the characteristic
exponent of Eq. (11) for an even functions U(x) can be found from the equation

coshuL = Z, (L,s), (12)
where Z, (x,5) is the particular solution of Eq. (11) which satisfies the conditions
Z(0s)=1, Z/'(0,5)=0. (13)
Using a small value s we can expand Z, (x,s) in power series
Z,(x,5) = z;(x) + 52, (x) + ... (14)

and obtain the next expressions after substitution Eq. (14) into Eq. (11) and equating the
terms with the same powers of s

(DI2)dz/dx* + (D 12)U'(x)dU'(x)/dx dzyldx = 0,
(15)
(DI2)d’z,ldx* + (D 2)U'(x)dU'(x)/dx dz,ldx = z,.
The conditions for functions z(x) and z, (x) can be found from Eqs (13), (14)
z,(0)=1, z/(0)=0, z(0)=0, z'(0)=0. (16)

The solution of the first Eq. (15) with conditions (16) is very simple: z,(x)=1.
Substituting the expansion (14) in Eq. (1) we find approximately the characteristic
exponent u?(s)=2sz,(L)/L* and after substitution in Eq. (10) get the exact result

D_ =L%z(L) (17

where the value z,(L) has dimension of time and must be calculated from the second Eg.

(15)

(DI2)dz,ldx? + (D 2)U' (x)dU" (x)ldx dz,/dx = 1 (18)
with condition (16).
Rewriting Eqs (16)-(18) in terms of new variable v(x)=z, (L)-z,(x) we obtain
D, = L*(0) (19)

where t(x) satisfies well-known equation for the mean first-passage time
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V(X)D2 + 7 (X)(D2)U'(x)dU"(x)/dx = -1 (20)

with boundary conditions
©(0)=0, =(L)=0. (21)

Thus, we arrive at the conclusion that the problem of calculating the diffusion
coefficient D_ reduces to determining the mean first-passage time of an absorbing
boundary x=L for Brownian particles starting from the reflecting boundary at the point
x=0. It should be noted that the equivalence of the definitions (2) and (19) was first
demonstrated in paper [6] for fixed periodic field. By analogy with the expression for free
diffusion (U(x)=0) the diffusion coefficient (19) was called in [6] as effective constant.

Solving Eq. (20) with conditions (21) we obtain the exact formula finally for
diffusion coefficient of Brownian particle in fast fluctuating periodic potential U(x)

D, = D[UL J, (1+D (U'(x))YID) 2] (22)

As it is obvious from Eq. (22) D_<D for arbitrary potential profile U(x), i.e.
diffusion of Brownian particles accelerates in comparison with the case U(x) = 0. This
result fully confirms the assumption previously proposed in [4]. We emphasize that the
value of diffusion constant depends not on a height of potential barriers as for fixed
potential [1,2], but on its gradient U'(x).

It is easily to explain the phenomenon of diffusion acceleration directly from Eq.
(19) as in [4]. The point is that potential barriers change a place through a random
modulation and Brownian particles move from point x=0 to point x=L more rapidly in
comparison with free diffusion case (in the average particles move downhill for the most
part of the distance). ]

Examples

Let us consider some particular shapes of potential U(x). For the serrated profile
U(x)=2E\xI/L at |xI< L2 we instantly arrive at Malakhov’s exact result [4]

D_ =D +DAE*L?. (23)
On the other hand, we obtain for sinusoidal potential U(x)=Esin?(nx/L) from Eq. (22)
D, = #*D(1+¢)/[4K*(v/(1+¥})'?)], 1= =aEIL(DJD)"?, (24)

where K(k) is_complete elliptic integral of the first kind (0O<k<1). We derive from Eq.
(24) at small strength D, of modulating white noise (y<<1)

D = D + D E*(2L).

This formula coincides with approximate result [4] obtained on the assumption of
Gaussian probability density W(x,t) although the real probability density is multimodal.
In opposite case y>>1 using the asymptotic formula for elliptic integral [7]

K(k) = In(4/(1-k2)'2) (k-1),
D, = D(xy)(4ln%y) ~ D/(InD,). (25)

According to Eq. (25) the effective diffusion coefficient increases with intensity D, of
modulating noise but more slow than linear law (23).
At last, for periodic potential profile representing by parabolic pieces

we find from Eq. (24)
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{ 8E(x/L)?, Il < L/4
Ulx) =
E[1-8(x/L-1,)%), L/4<x<3/,L

it is not difficult to derive from the exact formula (22) the following result
D, = Drlin*(m+(1+m?)'?),  m = 4E/L(D /D).
As it is seen at comparatively small intensity D, (m<<1)
D, =D + D16E%(3L?)

that is differed a little from formula for sinusoidal potential. Moreover, the dependence of
effective diffusion coefficient on large D, is similar to the law (25) for sinusoidal
potential profile.

Conclusion

We studied the diffusion of an overdamped Brownian particle in a fast fluctuating
periodic potential and calculated the effective diffusion coefficient. The exact formula
(22) obtained points to a diffusion acceleration in comparison with a free diffusion case
for any potential profiles. We offered an explanation of the above-mentioned
phenomenon and considered the different shapes of potentials. Our results may be of
interest in modern diffusive technologies.
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TOYHBIN PACYET
AOOEKTUBHON NOCTOSAHHOMN IUODY3UH
BO ®IYKTYUAPYIOIHUX NEPUOIUYECKUX TIOTEHIIUATAX

A.A. Llybroe

ITonyyena touynas copmyna st Koadduumenta puddysun GpoyHOBCKON
YacTULBl, [BIKyLIeHcs B MOAyIMpyemoM OelbIM ILIYMOM MEPHOAMYECKOM MOJE.
IToka3ano, uyro g do6oro noreHuuansHoro mnpoduns HaGMIOgAeTCs YCKOpPEHHE
mucdy3un N0 cpaBHEHMIO cO ciyyaeM cBoOopHO# muddy3uH. BBINOIHEHBI PacyeThI
acbdexruroit muddy3MOHHON MOCTOSHHONM U1 pPa3MuHBIX  [EPUOMYECKUX

MOTEHIHAJIOB.
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rocymapctBensioro ynusepcurera (1972). Ilocne okonuamus paGoraeT B
pomxxoctd pouenta HHIY. 3amutun pAWcceprauMio Ha COHCKAaHME YYEHOMH
CTeNeHA KaHmuaaTa (prsnko-mMaTemaTniecknx Hayk B HHIY (1981) B oGnacti
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HHT'Y u 3akaHuuBaeT paGoTy Haj loKTopcKoi ucceprauueit. Omy6nukosan 50
HAYYHBIX CTaTell B OGJIACTH CTATHCTHYECKOH (HIMKH W paTHO(H3HKH, TEOPHH
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