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CHARACTERIZATION OF THE PARAMETER-MISMATCHING
AND NOISE EFFECT ON WEAK SYNCHRONIZATION

Sang-Yoon Kim, Alexei Jalnine, Woochang Lim, Sergey P. Kuznetsov

We investigate the effect of noise and parameter mismatching on the loss of chaos
synchronization in coupled one-dimensional maps. Due to existence of positive local
transverse Lyapunov exponents, the weakly stable synchronous chaotic attractor demonstrates
sensitivity with respect to variation of the mismatching parameter or noise intensity. In order
to characterize such parameter and noise sensitivity quantitatively, we introduce new
quantifiers, called the parameter sensitivity exponent and noise sensitivity exponent. The
values of these exponents are determined by local stability multipliers of the chaotic
trajectories, and by the properties of the noise signal (for the noise sensitivity exponent). For
the case of bounded uniform noise, the values of the parameter sensitivity exponent and noise
sensitivity exponent coincide. In terms of these exponents, we characterize the effect of
parameter-mismatching and noise on the intermittent bursting and basin riddling occurring in
the regime of weak synchronization.

Introduction

In recent years, the phenomenon of chaos synchronization in coupled dynamical
systems attracts attention of the researches. Synchronous chaotic attractor (SCA) exists
on the invariant subspace [1]. If the SCA is stable against perturbations transverse to the
invariant subspace, it may become an attractor in the whole space. Such a transverse
stability is closely associated with properties of unstable periodic orbits, embedded into
SCA [2,3]. If all the orbits are transversally stable, then the SCA becomes asymptotically
stable, and strong synchronization occurs. However, as the coupling parameter passes
through a threshold value, periodic orbit first becomes transversally unstable through a
local bifurcation, and trajectories in vicinity of such orbit may be locally repelled from
the invariant subspace (diagonal). Thus, weak synchronization arises; for this case,
transient intermittent bursting or basin riddling may occur depending on existence of the
absorbing area, controlling the global dynamics, inside the basin of attraction.

In a real situation, some small noise and parameter mismatch between subsystems
exist, which destroy the invariant diagonal. A typical trajectory leaves the diagonal and
undergoes transversal repulsion in vicinity of periodic repellers, embedded into the SCA;
as a result, the typical trajectory may have segments exhibiting positive local (finite-time)
transverse Lyapunov exponents. Thus, for the case of bubbling, permanent intermittent
bursting occurs; for the riddling case, trajectory goes to another attractor or infinity. The
both bubbling and riddling regimes of weak synchronization demonstrate sensitivity with
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respect to variation of the noise intensity and mismatching parameter. In order to measure
the «degree» of such sensitivity quantitatively, we introduce new quantifiers, called the
parameter sensitivity exponent (PSE) [4] and noise sensitivity exponent (NSE) [5]. In
terms of PSE and NSE, we characterize the effect of noise and parameter mismatching on
intermittent bursting and basin riddling. We show that the average escape time from the
diagonal (interburst interval for bubbling regime and average lifetime of the chaotic
transient for riddling regime) can be characterized quantitatively using the PSE and NSE.
We also show, that the bounded noise and parameter mismatch have essentially the same
effect on the power-law scaling behavior of the escape time, although their properties
such as probability distribution and temporal correlation are in general different.

Characterization of the parameter sensitivity
of the synchronous chaotic attractor

We investigate the parameter-mismatching effect on the weak synchronization in
two coupled 1D maps:

X, =Fx,y)=f(x,a)+ (1-a)cg(x,.y,)
yu+l . G(x",y") =f(yn’b) i C‘g(yﬂ ,I").

Local dynamics in each subsystem with a control parameter p(p=a}) is governed by the
1D map f(x, p)=1-px%, c is a coupling parameter, and g(x,y)=y*-x? is a coupling function.
The parameter a tunes the asymmetry of coupling.

For the case of identical 1D maps (i.e., a=b), there exists an invariant
synchronization line, y=x, in the (x;y) phase space. However, in presence of a
mismatching between two 1D maps, the diagonal is no longer invariant. To take into
consideration such a mismatching effect, we introduce a small mismatching parameter e
such that b=a-e, and consider an orbit [(x ,y )} starting from an initial point on the
diagonal (i.e., x;=y,). Due to local transverse repulsion, the weakly stable SCA is
sensitive to the variation of the mismatching e. In order to characterize such sensitivity of
the SCA at e=0, we calculate the derivative of the transverse variable u [=x -y, ], denoting
deviation from the diagonal, with respect to . Using Eq. (1), we may obtain a recurrence
relation

(1)

du, [9el _, = [f(x,".a) - (2-a)ch(x,")1u /oel _, +f(x,".a), (2)

where f_ and f, are the derivatives with respect to x and a, {(x,", y,")} is the synchronous
orbit with x "=y * for e=0, and A(x) is a reduced coupling function defined by
h(x)=0g(x.y)/dyl,_,. Hence, starting from an initial point (x;",y,") on the diagonal, we
may to obtain the derivatives at all points of the orbit as

N
Ouy10el, g = Sy(%y") = 2y Ry, (6 W (3" ), 3)

since du/de=0, and where
M-1

R, (x,)=11_ [f(x,, ) - (2-0)ch(x,, )] (4)
One can easily see that the factor R, (x, ") is associated with a local (M-time) transversc
Lyapunov exponent o, "(x, ") of the SCA as o,,"(x, ")=(1/M)InlR,(x,*)I. Thus, R, (x, )
becomes a local (stability) multiplier. When a typical trajectory visits neighborhoods of
repellers embedded into SCA, it has segments experiencing local repulsion from the
diagonal. Thus, the distribution of local transverse Lyapunov exponents o,,” for a large
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ensemble of trajectories and large M may have a positive tail. For the segments of
trajectories exhibiting positive local Lyapunov exponents (o,,”>0), the local multipliers
R, [=texp(c," M)] can be arbitrarily large, and hence the partial sums S, may be
arbitrarily large. This implies unbounded growth of the derivatives du,/del,_, (3) as N
tends to infinity, and consequently the weakly stable SCA may have a parameter
sensitivity.

As an example, we consider the SCA that exists in the interval of ¢, [=-2.963]<
<c<c,, [=-0.677] for a=1.82 in the unidirectionally coupled case (u=1$. When the
coupling parameter ¢ passes through c,, or ¢, , the SCA becomes transversally unstable
through a blow-out bifurcation. A strongly stable SCA exists for c,, [=-2.789]<c<
<c,, [=-0.850]. For the case of strong synchronization, there is no parameter sensitivity,
because all the periodic saddles embedded in the SCA are transversally stable. Hence, in
presence of a small parameter mismatching ¢ the strongly stable SCA becomes only
slightly perturbed. However, when the coupling parameter ¢ passes through ¢, and c,,
bubbling and riddling transitions occur through the first transverse bifurcation of periodic
saddles, respectively; for this case, the weakly stable SCA exhibits parameter sensitivity.
However small mismatching €, a persistent intermittent bursting, called the attractor
bubbling, occurs in the regime of bubbling. On the other hand, in the riddling regime the
weakly stable SCA with a riddled basin is transformed into a chaotic transient with a
finite lifetime. To quantitatively characterize the parameter sensitivity of the SCA, we
consider the behavior of the partial sums S, (x,") of Eq. (3). The quantity S, becomes
very intermittent, as it is shown in Figure (:1). However, looking only at the maximum
¥y (%,)=max,_ IS (x,")l, one can easily see the boundedness of S, . Figure (b) shows the
function y,, ?S'} both cases of strong and weak synchronization. For the case of strong
synchronization with ¢=-1.5, y, grows up to the largest possible value of Idu/del along the
SCA and then saturates. Thus, the strongly stable SCA has no parameter sensitivity. On
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Figure, Parameters are fixed ata=1 and a=1.82. (a) Intermittent behavior of the partial sums  for c=

=-0.7. (b) Two functions y,, for c=-1.5 (strong synchronization) and c=-0.7 (weak synchronization). (c)
Paramecter sensitivity functionT,, at c=-0.7. (d) The plot of the PSEs$ versus ¢ in the regime of weak
synchronization. (¢) The plot of the LPEs u (circles); they agree well with the reciprocals of the PSEs
(crosses). (f) The plot of the CTEs v (circles); they agree well with the reciprocals of the PSEs (crosses)
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the other hand, for weak synchronization at c=-0.7, y,, grows unboundedly and exhibits
no saturation. Consequently, the weakly stable SCA has a parameter sensitivity.

The growth rate of the function y,(x,”) with time N represents the degree of the
parameter sensitivity, and can be used as a quantitative characteristic of the weakly stable
SCA. However, y,(x,") depends upon the particular trajectory. To obtain a representative
quantity, we consider an ensemble of randomly chosen initial points (x,",y,") on the
diagonal, and take the minimum value of y, with respect to the initial orbit points,

r,= mi“;-,,-"’w(xn‘)' (5)

Figure (¢) shows the parameter sensitivity function T, for c¢=-0.7. Note, that I', grows
unboundedly with some power: I',~N°®. Here the value §=2.58 is a quantitative
characteristic of the SCA, and we call it the PSE. In each regime of bubbling or riddling,
we vary the coupling parameter ¢ from the bubbling or riddling transition point to blow-
out point, and obtain the PSE. For obtaining a satisfactory statistics, we consider 100
ensembles for each ¢, each of which contains 100 randomly chosen initial points, and
choose the average of the 100 PSEs obtained in the 100 ensembles. Figure (d) shows the
plot of the PSEs versus c. Note that the PSE & monotonically increases as ¢ is varied from
bubbling or riddling transition point, and tends to infinity as ¢ approaches the blow-out
transition points. This increase is caused by the increase in the strength of local transverse
repulsion of the periodic repellers, embedded into the SCA. After the blow-out
bifurcation, the weakly stable SCA transforms into chaotic saddle, which has exponential
parameter sensitivity.

We characterize the parameter-mismatching effect on the bubbling and riddling in
terms of PSEs for a=1.82 and a=1. The quantity of interest in the both cases is the
average time T that a typical trajectory spends near the diagonal. For the case of bubbling,
this is an average interburst interval. The trajectory is supposed to be in laminar phase if
the magnitude of deviation from the diagonal is less then a threshold value u,” (i.e.,
lu |<u,”); otherwise, it is in a bursting phase. For each ¢, we obtain 50,000 laminar
phases, and then get the average laminar length T, which scales with & as T~¢™ [6], where
u is referred to as the laminar phase exponent (LPE). The plot of the LPEs u versus ¢ is
shown in Figure (e). On the other hand, the scaling relation for time t can be obtained
from the power-law growth of I, as t~¢'® Hence, we obtain a reciprocal relation
between the PSE and LPE: u=1/6. The plot of the reciprocals of & is also shown in Figure
(e), and they agree well with the values of p. This reciprocal relation is also valid in the
riddling regime. For the riddling case, we consider the average lifetime of chaotic
transient process, obtained over an ensemble of 1,000 initial conditions on the diagonal.
This average lifetime t_scales with e as T ~e™ [6], where v is referred to as the chaotic
transient exponent (CTE). Hence, the same reciprocal relation (v=1/8) is valid for the
case of the CTE. The plot of the CTEs v versus ¢ is shown in Figure (f). They coincide
well with the reciprocals of the PSEs 8.

Characterization of the Noise Effect on the SCA and Discussion

We also investigated the effect of additive noise on weak synchronization in the
same system of two coupled 1D maps:

T: { xn+l - F(xn’yn) =f(xn’a) + (1‘0)08(1,,-}’,,) o+ GE"“)a (6)
| Yuur = G(x,,) =fy,.a) +cg(y,x,) + & ®,

where € (!?) are independent uniformly distributed random variables with zero mean
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(€,(*¥)=0 and unit variance ((§,("?)?)=1, and o controls the «strength» of such a random
noise. In order to characterize the noise sensitivity of the SCA, we calculate the derivative
of the transverse variable u, with respect to the noise intensity o at o=0: du /dol__.
Following the same arguments as in the case of parameter sensitivity, we introduce the
noise sensitivity function I',™, which exhibits the power-law growth in the regimes of
weak synchronization, and the noise sensitivity exponent (NSE) 8®), which measures
quantitatively sensitivity of the SCA to variation of the noise intensity. For the case of
bounded noise signal, the values of NSEs coincide with the same of PSEs, and hence, we
can expect, that the bounded noise has the same effect on the power-law scaling of the
escape time from the diagonal, as the parameter-mismatching effect. Indeed, the values of
scaling exponents LPE and CTE for the both cases of the parameter mismatch and noise
with bounded distribution are shown to be the same [5,6).

Finally note, that our method of characterization of the noise and parameter
sensitivity of the SCA may be generalized to the coupled high-dimensional systems as
Henon map or oscillators.
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JTNHAMUYECKUE XAPAKTEPUCTUKHU PEXXUMOB CJIABOU
XAOTUYECKOW CHHXPOHU3AIIMHU B IPUCYTCTBUU HIYMA
U PACCTPOMKM [TAPAMETPOB

Sang-Yoon Kim, Anexceli XKaanun, Woochang Lim, Cepzeii Kyareyo6

Hccnenyercs BiuAHME IIyMa W PACCTPOMKM MapaMeTpoB Ha [MHAMUYECKHe
PEKHMMBI NPH pa3pylleHUH XaOTUYECKOH CHHXPOHH3alHH B CUCTEME M3 IBYX CBA3AHHBIX
OJHOMEPHBIX oOToOpaXKeHM#. biarofapsd HanMuuiO TIOJNOXHTENbHBIX 3HAYEHHH
JIOKa/bHBIX TPAaHCBEPCAJBHBIX MYJILTHIUIMKATOPOB XaOTHYECKHX TpaeKTOpHi, crnabo
YCTOHYMBBIA CHHXPOHHBIH XaOTHYECKHIl aTTPaKTOp [AEMOHCTPHPYET YYBCTBHTEILHOCTh
K BapHalHH{ pacCTPOHKH NapaMeTPOB H YPOBHA IIyMa. JIJisl TOro 4To0bl KOJTHYECTBEHHO
XapakTepH30BaTh MapaMeTPHYECKyI0 M IIYMOBYIO YYBCTBHUTENIBHOCTH CHHXPOHHOTO
XaOTHYECKOr0 aTTpakTopa, BBOJATCA HOBbIE MOKAa3aTeNlH, Ha3blBaEMbIE NOKa3aTeNAMI
napaMeTpHYECKOH M IIyMOBOH YyBCTBHTEIBHOCTH. VX 3HAYeHHS OINPENEIAtoTCs
JIOKAITbHBIMH TPaHCBEPCAJBHBIMH MYJIbTHIUIAKATOPAMH XaOTHYECKHMX TpaeKTOpHil H
CBOICTBAMM WIYMOBOrO CHrHana (Jyisi ToKasaTensi LIYMOBOH YyBCTBUTENBHOCTH). B
cilydae LIyma ¢ OrpaHH4eHHbIM PaBHOMEPHBIM paclpefeneHneM 3HaueHus noKasarelei
napamMeTpHYecKodl H IIYMOBONM 4YYBCTBUTENLHOCTH coBnajatoT. IlokaszaHo, uTo
XapakTepHCTHKH TEpPEMEXAlOLIErocss XaoTHYECKOro TMOBeleHusi W MEPexoHOro
npouecca, HHAYUHPOBAHHBIX PacCTPOMKOI MapaMeTpoB H ILIYMOM B pexume ciaboi
CHHXPOHM3ALMH, MOTYT ObITh BbIPAXEHLI Yepe3 IOKa3aTenu MapaMeTpUYecKol u
LIyMOBO# YyBCTBHTEJIbHOCTH.

Kysneyos Cepeeli Ilempoeu+ - popuncs B 1951 ropy. JokTtop ¢usnko-
MaTeMaTHUECKHX HayK, BefyluMil HayuHBI COTPYAHMK, 3aBeflyroumii nabGopa-
Topueit Capartosckoro otfenchus MHCTHTYTa pajMOTEXHHMKH M 3N€KTPOHHKH
PAH, npodeccop CapaToBCcKOro rocynuBepcureTa, wieH-koppecnonent PAEH.
CreunanicT no HeNMHEeHOH JHHAMUKE, TEOPHH [HHAMHYECKOro Xaoca M Teopul
KPHTHYECKHX ABMCHWH NPH mepexofie K xaocy. 3aHHMaeTcs Takxke HccleloBa-
HHsAMH B o0nacTH KBaHTOBOro xaoca. OmnyGnukosan ceeime 150 paGor B
oTevecTBeHHOH H 3apyGexHoill HayuyHoil nevatu. CoaBTop fByX MOHOrpacdmit u
OJJHON MOMyAAPHON KHUIH. ABTOP HECKONBbKHX OPHIMHAJNBHLIX y4eGHbIX KYpCOB,
NPOYUMTAHHBLIX WM B pasHbie Tojibl Ha Kadeapax 3JICKTPOHHKH, pafHO(MH3HKH H

a (akynbTeTa HeJMHedHBIX npouecco CIY, B ToM wuMchne Kypca Nexumil
«[Qunamuueckuii xaoc» (M.: @uamarant, 2001). Copocosckuit npocpeccop (2000). UneH amepHKaHCKOTO

¢usuueckoro obiectsa. E-mail: kuz@spkuz.saratov.su.
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