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CHARACTERIZATION ОЕ ТНЕ PARAMETER-MISMATCHING 
AND NOISE EFFECT ОМ WEAK SYNCHRONIZATION 

Sang-Yoon Kim, Alexei Jalnine, Woochang Lim, Sergey P. Kuznetsov 

We investigate the effect of noise and parameter mismatching оп е loss оЁ chaos 
synchronization in coupled one-dimensional maps. Due (0 existence of positive local 
transverse Lyapunov exponents, the weakly stable synchronous chaotic attractor demonstrates 
sensitivity with respect 10 variation of the mismatching parameter ог noise intensity. In order 
to characterize such parameter and noise sensitivity quantitatively, we introduce new 
quantifiers, called the parameter sensitivity exponent and noise sensitivity exponent. The 
values of these exponents are determined by local stability multipliers of the chaotic 
trajectories, and by the properties of the noise signal (for the noise sensitivity exponent). For 
the case оЁ bounded uniform noise, the values of Ше parameter sensitivity exponent and noise 
sensitivity exponent coincide. In terms of these exponents, we characterize the effect of 
parameter-mismatching and noise оп the intermittent bursting and basin riddling occurring in 
the regime of weak synchronization. 

Introduction 

In recent years, the phenomenon of chaos synchronization in coupled dynamical 
systems attracts attention of the researches. Synchronous chaotic attractor (SCA) exists 
оп the invariant subspace [1]. If the 5СА is stable against perturbations transverse 10 the 
invariant subspace, it may become an attractor in the whole space. Such a transverse 
stability is closely associated with properties of unstable periodic orbits, embedded into 
5СА [2,3]. 1Ё all the orbits are transversally stable, then the SCA becomes asymptotically 
stable, and strong synchronization occurs. However, ав the coupling parameter passes 
through a threshold value, periodic orbit first becomes transversally unstable through a 
local bifurcation, and trajectories in vicinity of such orbit may be locally repelled from 
the invariant subspace (diagonal). Thus, weak synchronization arises; for this case, 
transient intermittent bursting ог basin riddling may occur depending оп existence оЁ the 
absorbing area, controlling the global dynamics, inside е basin оё attraction. 

In а real situation, some small noise and parameter mismatch between subsystems 
exist, which destroy the invariant diagonal. A typical trajectory leaves the diagonal and 
undergoes transversal repulsion in vicinity of periodic repellers, embedded into the SCA; 
ав а result, the typical trajectory may have segments exhibiting positive local (finite-time) 
transverse Lyapunov exponents. Thus, for the case of bubbling, permanent intermittent 
bursting occurs; for the riddling case, trajectory goes to another attractor or infinity. The 
both bubbling and riddling regimes of weak synchronization demonstrate sensitivity with 
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respect 10 variation оё the noise intensity and mismatching parameter. In order (0 measure 

the «degree» оЁ such sensitivity quantitatively, we introduce new quantifiers, called the 
parameter sensitivity exponent (PSE) [4] and noise sensitivity exponent (NSE) [5]. In 
terms of PSE and NSE, we characterize the effect of noise and parameter mismatching on 
intermittent bursting and basin riddling. We show that the average escape time from the 
diagonal (interburst interval for bubbling regime and average lifetime of the chaotic 
transient for riddling regime) can be characterized quantitatively using the PSE апа NSE. 
We also show, that the bounded noise ап parameter mismatch have essentially the same 
effect on the power-law scaling behavior of the escape time, although their properties 
such ав probability distribution апа temporal correlation are in general different. 

Characterization of the parameter sensitivity 
of the synchronous chaotic attractor 

We investigate the parameter-mismatching effect оп the weak synchronization 1 
two coupled 1D maps: 

- { х„ = РС„у,) = fx,0) + (1-0)cg(x, .y, ), 

Y = G(x,,) =f0,0) + cg(,x,)- 
Local dynamics in each subsystem with а control parameter p(p=a}) 15 governed by the 
1D тар f(x, р)=1-рх?, с is а coupling parameter, and g(x,y)=)*-2 15 а coupling function. 
The parameter а. tunes the asymmetry оё coupling. 

For е case оЁ identical 1D maps (1.е., a=b), there exists ап invariant 
synchronization line, y=x, м the (x,y) phase space. However, т presence of а 
mismatching between two 1D maps, the diagonal is no longer invariant. To take into 
consideration such а mismatching effect, we introduce а small mismatching parameter е 
such that b=a-e, and consider an orbit {(x,,y,)} starting from ап initial point оп the 
diagonal (i.e., x,=y;). Due to local transverse repulsion, the weakly stable 5СА is 
sensitive to the variation оё е mismatching . In order 10 characterize such sensitivity оЁ 
the 5СА а! е=0, ме calculate the derivative of the transverse variable u,[=x -y, ], denoting 
deviation from the diagonal, with respect to e. Using Eq. (1), we may obtain а recurrence 
relation 

()] 

A, 19l _o = [f,(x,",a) - (2-a)ch(x,)1du, Joel o + £,(x,"a), (2) 

where f, апа / are the derivatives with respect 10 х and а, {(x,", y,")} 15 the synchronous 
orbit with x =у,” for е=0, and h(x) is а reduced coupling function defined by 
h(x)-ag(x‘y)/fiyly ., Hence, starting from ап initial point (x,",y,") оп the diagonal, we 
may 10 obtain е derivatives аг all points оё the orbit а5 

N 
Ouy el = Sy(%y") = 2y Ry, () (%, ), (3) 

since du,/de=0, and where 

M-1 

Ry(x,) =Ty б а) - 2-a)ch(x,, ). ) 
One can easily see that the factor R, (x *) 15 associated with а local (M-time) transversc 
Lyapunov exponent o,,"(x,,*) оЁ the SCA as 6,/ (x,)=(UM)InIR (x,)I. Thus, R, (x,") 
becomes а local (stability) multiplier. When а typical trajectory visits neighborhoods оЁ 

repellers embedded into SCA, it has segments experiencing local repulsion from the 
diagonal. Thus, the distribution оЁ local transverse Lyapunov exponents а, ог а large 
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ensemble of trajectories and large M may have a positive tail. For the segments of 
trajectories exhibiting positive local Lyapunov exponents (o,,">0), е local multipliers 
R, [=texp(c,” M)] can be arbitrarily large, and hence the partial sums S, may be 
arbitrarily large. This implies unbounded growth оЁ the derivatives du/del,_, (3) а5 N 
tends to infinity, and consequently the weakly stable SCA may have a parameter 
sensitivity. 

As ап example, we consider the 5СА that exists in the interval оЁ c, [~-2.963]< 
<c<c,, [=-0.677] Юг а=1.82 in the unidirectionally coupled case (u.=ls. When the 
coupling parameter с passes through с ог с , the 5СА becomes transversally unstable 
through а blow-out bifurcation. A strongly stable SCA exists for с,, [~-2.789]<c< 
<c,, [=-0.850]. For the case of strong synchronization, there 18 no parameter sensitivity, 
because all the periodic saddles embedded in the SCA are transversally stable. Hence, in 
presence оЁ а small parameter mismatching е the strongly stable SCA becomes only 
slightly perturbed. However, when the coupling parameter с passes through c,, and с 
bubbling and riddling transitions occur through the first transverse bifurcation of periodic 
saddles, respectively; for this case, the weakly stable SCA exhibits parameter sensitivity. 
However small mismatching ¢, а persistent intermittent bursting, called the attractor 
bubbling, occurs in the regime оё bubbling. On the other hand, in the riddling regime the 
weakly stable SCA with a riddled basin is transformed into a chaotic transient with a 
finite lifetime. To quantitatively characterize the parameter sensitivity оЁ the SCA, ме 
consider Ше behavior оЁ the partial sums $ (x,") оё Eq. (3). The quantity S, becomes 
very intermittent, as it is shown in Figure ё). However, looking only аг the maximum 
(% )=max,. IS, (x,")l, one can easily see the boundedness оЁ $. Figure (b) shows the 
function уу {Ё' both cases of strong and weak synchronization. For the case of strong 
synchronization with c=-1.5, уу grows ир 10 the largest possible value of 1ди/де! along the 
SCA and then saturates. Thus, the strongly stable SCA has no parameter sensitivity. On 

50 120 

8 5 

00 00 
00 N 10 #М 70 

a с 

20T i l з8 Г. 60 т я 

! | Я : 
i - 

6 В, mess [Ч° Ц И Ы, 1v Ё 
i i . ° 
i { ^ иа 

001 e | 00 ** а1 00 [. ** 
298 2908 — 066 079 й 067 2% Е 28 

e 

Figure. Parameters are fixed ata=1 and a=1.82. (a) Intermittent behavior of the partial sums  for c= 
=-0.7. (b) Two functions уу for c=-1.5 (strong synchronization) and c=-0.7 (weak synchronization). (с) 
Parameter sensitivity function T аг c=-0.7. Ed) The plot оё с PSEs $ versus с in the regime оЁ weak 
synchronization. (¢) The plot oF the LPEs ц (circles); they agree well with the reciprocals оЁ the PSEs 
(crosses). (f) The plot of the CTEs v (circles); they agree well with the reciprocals of the PSEs (crosses) 
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the other hand, for weak synchronization аг ¢=-0.7, уу grows unboundedly апа exhibits 
no saturation. Consequently, Ше weakly stable 5СА has а parameter sensitivity. 

The growth rate ов the function y,(x,") with time N represents the degree of the 
parameter sensitivity, апа can be used as а quantitative characteristic оё the weakly stable 
SCA. However, y,(x,") depends upon the particular trajectory. To obtain а representative 
quantity, ме consider ап ensemble оё randomly chosen initial points (x,".y,") оп the 
diagonal, апа take the minimum value of y, with respect to the initial orbit points, 

T, = minl".yN(xo'). ) 

Figure (с) shows the parameter sensitivity function Г for с=-0.7. Note, that T, grows 
unboundedly with some power: I',~N°. Here the value .58 is а quantitative 
characteristic of the SCA, and we call it the PSE. In each regime of bubbling or riddling, 
ме vary the coupling parameter ¢ from the bubbling ог riddling transition point to blow- 
out point, and obtain е PSE. For obtaining а satisfactory statistics, ме consider 100 
ensembles for each ¢, each оЁ which contains 100 randomly chosen initial points, and 
choose the average оЁ the 100 PSEs obtained in the 100 ensembles. Figure () shows the 
plot оё фе PSEs versus с. Note that the PSE & monotonically increases а5 с is varied from 
bubbling ог riddling transition point, and tends to infinity as с approaches е blow-out 
transition points. This increase is caused by the increase in the strength of local transverse 
repulsion оё the periodic repellers, embedded into the SCA. After the blow-out 
bifurcation, the weakly stable SCA transforms into chaotic saddle, which has exponential 
parameter sensitivity. 

We characterize the parameter-mismatching effect on the bubbling and riddling in 
terms оЁ PSEs for а=1.82 and a=1. The quantity оё interest in the both cases is the 
average time T that а typical trajectory spends пеаг the diagonal. For the case оЁ bubbling, 
this is an average interburst interval. The trajectory is supposed to be in laminar phase if 
the magnitude of deviation from the diagonal is less then а threshold value u,” (ie., 
lu|<u,”); otherwise, it 15 т а bursting phase. For each ¢, we obtain 50,000 laminar 
phases, and еп get the average laminar length т, which scales with е а$ t~¢™ [6], where 
и is referred 10 а$ the laminar phase exponent (LPE). The plot оё the LPEs ц versus с is 
shown т Figure (е). On the other hand, the scaling relation for time т can be obtained 
from е power-law growth оЁ T, а$ t~e'®. Hence, we obtain а reciprocal relation 
between the PSE апа LPE: и=1/6. The plot оё the reciprocals оЁ & 15 also shown т Figure 
(e), апа they agree well with the values of . This reciprocal relation 15 also valid in the 
riddling regime. For the riddling case, we consider the average lifetime of chaotic 
transient process, obtained over an ensemble of 1,000 initial conditions on the diagonal. 
This average lifetime t_ scales with е а$ T ~e™ [6], where v is referred 10 а5 the chaotic 
transient exponent (CTE). Hence, the same reciprocal relation (v=1/8) is valid for the 
case of the CTE. The plot of the CTEs v versus с is shown т Figure (f). They coincide 
well with the reciprocals оЁ the PSEs 8. 

Characterization of the Noise Effect on the SCA and Discussion 

We also investigated the effect of additive noise on weak synchronization in the 
same system of two coupled 1D maps: 

ха = Flx,.y,) = f(x,.4) + (1-a)cg(x,.y,) + o8, V, 
- (6) 

Yo = G(x,,) = f(3,,0) +cg(y,x,) + 0,2, 

where & (9 are independent uniformly distributed random variables with zero mean 
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(€,02)=0 ап unit variance ((§,('?)?)=1, and o controls the «strength» оё such а random 
noise. In order to characterize the noise sensitivity of the SCA, we calculate the derivative 

of the transverse variable u, with respect 10 е noise intensity o аг o=0: ди /dol__. 
Following the same arguments а$ т the case оЁ parameter sensitivity, we introduce the 
noise sensitivity function ("), which exhibits е power-law growth in the regimes оЁ 
weak synchronization, and the noise sensitivity exponent (NSE) &), which measures 
quantitatively sensitivity of the 5СА 10 variation оё the noise intensity. For the case оЁ 
bounded noise signal, the values of NSEs coincide with the same of PSEs, and hence, we 

can expect, that the bounded noise has the same effect on the power-law scaling of the 
escape time from the diagonal, ав the parameter-mismatching effect. Indeed, the values оЁ 
scaling exponents LPE and CTE for the both cases of the parameter mismatch and noise 
with bounded distribution are shown to be the same [5,6]. 

Finally note, that our method of characterization of the noise and parameter 
sensitivity оё the 5СА may be generalized ю the coupled high-dimensional systems а5 
Henon map or oscillators. 

Acknowledgements 

S.Y.K. thanks Prof. Ott for hospitality апа support during the visit to University оЁ 
Maryland. This work was supported by the Korea Research Foundation (Grant №. KRF- 
2001-013-D00014). A.J. and S.P.K. acknowledge support from the Russian Foundation 
оё Basic Research (Grant № 00-02-17509) апа the CRDF (Grant № REC-006). 

References 

1. Fujisaka Н. апа Yamada Т. Stability theory оё synchronized motion in coupled- 
oscillator systems // Prog. Theor. Phys. 1983. Vol. 69. P. 32-47. 

2. Гаг Y.-C., Grebogi C., Yorke J.A., and Venkataramani S.C. Riddling bifurcation 

in chaotic dynamical systems // Phys. Rev. Lett. 1996. Vol. 77. P. 55-58. 
3. Kim S.-Y. апа Lim W. Mechanism for the riddling transition 1 coupled chaotic 

systems // Phys. Rev. Е. 2001. Vol. 63. 026217. 
4. Jalnine А. апа Kim S.-Y. Characterization оЁ е parameter-mismatching effect 

on the loss of chaos synchronization // Phys. Rev. E. 2002. Vol. 65. 026210. 
5. Kim S.-Y., Lim W., Jalnine А., апа Kuznetsov S.P. Characterization оЁ the 

Noise Effect оп Weak Synchronization // Phys. Rev. E. 2003. Vol. 67. 016217. 
6. Kim S.-Y., Lim W., апа Kim Y.  Effect оё parameter mismatch and noise оп 

weak synchronization // Prog. Theor. Phys. 2002. Vol. 107. P. 239-252. 

Institute Research т Electronics апа Поступила в редакцию 18.11.02 
Applied Physics, University of Maryland, USA 
Department of Physics, Kangwon National 
University, Chunchon, Korea 

Department of Nonlinear Processes, 

Saratov State University, Russia 

Institute of Radio-Engineering 
апа Electronics о] RAS, Saratov Branch, Russia



ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ РЕЖИМОВ СЛАБОЙ 
ХАОТИЧЕСКОЙ СИНХРОНИЗАЦИИ В ПРИСУТСТВИИ ШУМА 

И РАССТРОЙКИ ПАРАМЕТРОВ 

Sang-Yoon Kim, Алексей Жалнин, Woochang Lim, Сергей Кузнецов 

Исследуется влияние шума и расстройки параметров на динамические 
режимы при разрушении хаотической синхронизации в системе из двух связанных 
одномерных — отображений. Благодаря  наличию  положительных — значений 
локальных трансверсальных мультипликаторов хаотических траекторий, слабо 
устойчивый синхронный хаотический аттрактор демонстрирует чувствительность 
к вариации расстройки параметров и уровня шума. Для того чтобы количественно 
характеризовать параметрическую и шумовую чувствительность синхронного 
хаотического аттрактора, вводятся новые показатели, называемые показателями 
параметрической и шумовой чувствительности. Их значения определяются 
локальными трансверсальными мультипликаторами хаотических траекторий и 
свойствами шумового сигнала (для показателя шумовой чувствительности). В 
случае шума с ограниченным равномерным ‚распределением значения показателей 
параметрической и шумовой чувствительности совпадают. Показано, что 
характеристики  перемежающегося хаотического поведения и  переходного 
процесса, индуцированных расстройкой параметров и шумом в режиме слабой 

синхронизации, могут быть выражены через показатели параметрической и 
ШУМОВОЙ чувствительности. 
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