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МУЛЬТИФРАКТАЛЬНЫЙ АНАЛИЗ ХАОТИЧЕСКОЙ 
ДИНАМИКИ ВЗАИМОДЕЙСТВУЮЩИХ СИСТЕМ 

A.H. Павлов, O.B. Сосновцева, A.P. Зиганшин 

Рассматриваются методы исследования мультифрактальности и скейлинга в 
применении к явлению синхронизации хаоса в двух связанных автоколебательных 
системах. С помощью алгоритмов DFA и WTMM анализируется структура последова- 
тельностей времен возврата в секущую Пуанкаре для различных модельных систем и 
для экспериментальных данных. В терминах мультифрактального формализма 
обсуждаются типичные эффекты, к которым приводит синхронизация хаотических 
колебаний. 

Введение 

Синхронизация автоколебаний представляет собой одно из фундаментальных 
явлений природы [1,2,3]. В рамках классической теории, разработанной для 
периодических процессов, эффект синхронизации проявляется либо в захвате 

частот M, следовательно, стабилизации фазового сдвига между взаимодействую- 
щими модами, либо в подавлении собственной динамики одной W3 систем. 

Взаимодействие нелинейных систем с хаотическим поведением  способно 
демонстрировать значительно более широкий спектр явлений, которые можно 
рассматривать как частные случаи синхронной динамики. Примерами служат 
полная синхронизация [4], обобщенная синхронизация [5], фазовая синхронизация 
[6] и так называемая /аз-синхронизация [7]. 

За последние годы было разработано множество подходов, позволяющих 
диагностировать наличие синхронности хаотических колебаний. Арсенал средств, 
которые могут применяться при исследовании эффектов взаимодействия нелиней- 
ных CHCTEM, включает спектральный анализ [8], различные методы расчета 
мгновенных фаз колебательных процессов [2], функцию когерентности (или 
взаимный спектр) [8], среднее время возврата в секущую Пуанкаре, коэффициент 
диффузии разности фаз [9] и т.д. 

Взаимодействие автоколебательных CHCTEM, демонстрирующих хаотическую 
динамику, приводит к изменению структуры аттракторов, существующих B 
отсутствие взаимодействия. В свою очередь, эти изменения отражаются B 
структуре характерных временных интервалов, таких как времена возврата B 
секущую Пуанкаре. Согласно работе [10], распределение времен возврата 

динамической — системы — может — характеризоваться — мультифрактальными 
свойствами, TO есть демонстрировать различный локальный скейлинг [11,12]. 
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На практике особенности скейлинга во временной динамике могут изучаться 

при помощи разных подходов, начиная с классического корреляционного (или 
СПЗК'ГРШНОГО) анализа. К числу очевидных недостатков классических методов 

следует отнести их применимость только к стационарным данным. Поскольку 
большинство процессов в природе являются сильно — неоднородными и 
нестационарными, привлекательность выбора того или иного численного метода B 
значительной степени определяется его универсальностью и возможностью 
эффективного применения к реальным процессам различной природы. Среди 
достаточно универсальных методов обработки временных рядов можно выделить 
так называемые методы «detrended fluctuation analysis» (DFA) [13] и «wavelet 
transform modulus maxima» (WTMM) [14]. Первый подход представляет собой 
вариант дисперсионного анализа одномерных случайных блужданий, позволяющий 
исследовать эффекты длительных корреляций в нестационарных временных рядах. 
В рамках алгоритма DFA анализируется среднеквадратическая ошибка линейной 
аппроксимации — обобщенной  модели — случайных блужданий от — размера 
аппроксимируемого участка. Идеология метода WTMM базируется одновременно 
на термодинамическом формализме и вейвлет-преобразовании и предполагает 
изучение мультифрактальных свойств в терминах спектра сингулярности D(h), где 
D - фрактальная размерность подмножества, характеризующегося экспонентой 
Хелдера h. Значения — экспонент Хелдера описывают локальный скейлинг 
коэффициентов вейвлет-преобразования ¥, как правило, не совпадают для 
различных участков неоднородного процесса. 

В данной работе методы исследования мультифрактальности и скейлинга 
рассматриваются в применении к явлению синхронизации хаоса в двух связанных 
автоколебательных системах. С помощью алгоритмов ОЕА и \УТММ мы 
анализируем структуру последовательностей времен возврата в секущую 
Пуанкаре для различных модельных систем и для экспериментальных данных. В 
качестве модели, демонстрирующей сравнительно простую динамику, нами 
выбраны две связанные системы Ресслера. Каждая подсистема этой модели имеет 
одну четко выраженную базовую частоту (или временной масштаб). Далее мы 
исследуем особенности М'УЛЬТИфрЗКТаЛ.ЬНОГО описания динамики систем с 

несколькими характерными временными масштабами и рассматриваем связанные 

системы Лоренца и модель двух взаимодействующих нефронов почки. Хаоти- 
ческие колебания, соответствующие аттрактору Лоренца, характеризуются двумя 
частотами, первая M3 которых определяется вращением вокруг ОдНОГО W3 

неустойчивых фокусов, а вторая соответствует процессу переключений (если 
рассматривать систему Лоренца как бистабильную). Модель нефрона является 
примером системы, демонстрирующей колебания с двумя различными временными 
масштабами: медленные колебания проксимального давления и сравнительно 

быстрые колебания радиуса приносящей артериолы. Путем выбора разных 

фазовых переменных (или различного задания уравнения секущей плоскости) эти 
два масштаба могут изучаться по отдельности. Мы показываем, что в терминах 

мультифрактального формализма эффект фазовой синхронизации  может 
сопровождаться понижением степени мультифрактальности в последователь- 
ностях времен возврата и переходом от коррелированной к антикоррелированной 
динамике характерных временных интервалов. Эффекты, наблюдаемые при 
анализе модели взаимодействующих нефронов, сопоставляются с результатами 
обработки экспериментальных записей давления крови в случаях, когда нефроны 
демонстрируют синхронную и несинхронную динамику.



1. Методы исследования 

1.1. DFA. Метод DFA относится к числу алгоритмов, базирующихся на 
идеологии перехода от исходного временного ряда z(i), #=1,...„М к обобщенной 

модели одномерных случайных блужданий. В рамках этого алгоритма вначале 
осуществляется приведение данных к нулевому среднему (вычитание среднего 

значения 7 из временного ряда 2(г)) и строится случайное блуждание: y(k):E,.iI [z(i)-z). 
Затем ряд значений y(k), k=1,...,N разбивается на неперекрывающиеся отрезки 
(участки) длиной л, в пределах каждого из которых методом наименьших 
квадратов определяется уравнение прямой, аппроксимирующей последователь- 
ность  y(k). Найденная аппроксимация y,(k) рассматривается в качестве 
локального тренда. Далее вычисляется среднеквадратическая ошибка линейной 
аппроксимации 

@) =(У 25505, (OF 12 @ 
и соответствующие расчеты проводятся в широком диапазоне ‘значений л. 
Считается, что зависимость F(n) часто имеет степенной характер F(n)~n®, а 
наличие линейного участка в двойном логарифмическом масштабе lgF(lgn) 
позволяет говорить о существовании скейлинга. На практике величина @ 
(называемая скейлинговой экспонентой РОЕА-метода) может отличаться для 

разных л, что свидетельствует об изменении свойств скейлинга при увеличении 
масштаба. В данной ситуации целесообразно проводить анализ — локальных 

экспонент. 

Численные значения а характеризуют различные типы коррелированной 
динамики, если a#0.5, и некоррелированное поведение при a=0.5. Например, 
диапазон 0<a<(0.5 соответствует антикорреляциям (чередование больших и малых 
величин в анализируемых данных); 0.5<а<1 определяет коррелированную 
динамику (большие по сравнению со средним величины чаще следуют за 
большими, малые - за малыми). Частный случай a=1 наблюдается для 1/f~myma. В 
определенном диапазоне значений o существует взаимосвязь между скейлин- 

говыми характеристиками ОЕА-метода и законом спадания автокорреляционной 
функции (или функции спектральной плотности) [13]. 

1.2. WTMM. Другой подход K изучению скейлинга в структуре сигналов 
предполагает привлечение теории мультифракталов [11,12]. Изначально данная 
теория разрабатывалась для сингулярных мер: статистическое — описание 
особенностей их скейлинга проводилось в терминах спектра сингулярности [12]. 
Однако с точки зрения приложений более привлекательным является анализ 
сингулярных функций (сигналов). Известно несколько попыток обобщения теории 
мультифракталов на случай функциональных зависимостей; первой M3 них 
является метод структурных функций [15], часто используемый при исследовании 
турбулентности [16]. Позднее был разработан мультифрактальный формализм, 
базирующийся на вейвлет-преобразовании (метод wavelet transform modulus 
maxima или У/ТММ) [14]. В настоящее время он является наиболее популярной 
техникой для изучения особенностей сложного скейлинга в нестационарных и 

неоднородных процессах. 
Анализ некоторой функции /(х) в рамках \УТММ-метода осуществляется 

следующим образом. На первом этапе проводится расчет коэффициентов вейвлет- 
преобразования X 

Tw[/](xu,a) = Ма] © оф ((x-xp)/a)dx. (2) 
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Часто в качестве f(x) выбирается функция распределения; а служит параметром 
масштаба; р - базисная функция вейвлет-преобразования, которая может иметь 
произвольную форму, но должна быть солитоноподобной и с нулевым средним 
значением. В данной работе мы использовали МНАТ-вейвлет, представляющий 
собой вторую производную функции Гаусса 

лр = @[ехр(-х?/2)|/ах?. (3) 

Наличие локального сингулярного поведения /(х) B точке X, приводит K 
возрастанию [T, [f](x.a)| при x—x, и может быть описано экспонентой Хелдера 
h(x,), которая определяет скейлинг вейвлет-коэффициентов для малых значений а: 
Т,Й Ссъа)-@“о. 

На втором этапе \УТММ-алгоритма проводится статистическое описание 
локальных сингулярностей с использованием понятий слектра сингулярности 
D(h) и частичной функции 2(а,а) [14]. Функция Z(g,a) представляет собой сумму 
д-х степеней локальных максимумов модулей вейвлет-коэффициентов, соответ- 
ствующих масштабу а. Как правило, ожидается, что при малых значениях а 
частичная функция демонстрирует степенную зависимость 

Z(q.a) ~ a9, @ 

которая количественно характеризуется скейлинговыми экспонентами t(g). 
Выбирая различные ¢, можно получить линейную функцию т(д) с постоянным 
значением экспоненты Хелдера h(g)=dt(q)/dg=const в случае монофрактальных 
объектов и нелинейную функцию с большим числом локальных экспонент B 
случае мультифракталов. По аналогии с термодинамическим формализмом спектр 
сингулярности вычисляется на основе преобразования Лежандра 

D(h) = qh(q) - <(4). 5) 

Расчеты функции Z(g,a) позволяют отслеживать по отдельности скейлинг 
для больших флуктуаций (¢>0) и для малых (g<0). Tak ke как и в рамках 
предыдущего метода, значения экспонент Хелдера дают возможность делать 
выводы о наличии антикоррелированной динамики (0<h<0.5), коррелированном 
поведении (7>0.5) или об отсутствии корреляций (h=0.5) [17]. 

2. Динамика времен возврата 

2.1. Связанные системы Ресслера. Рассмотрим систему двух связанных 
моделей Ресслера 

& = - 05y, а 7 21 + 1(537 ), 

@у@ = w, %, › + Ay, ,, (6) 

@_ = В + z,,(x, э-М), 

в которой параметры A, В и и определяют режим динамики каждой подсистемы, у 
- параметр связи, w,=w;+d и w,=w-d представляют собой базовые частоты и & - 
расстройка между ними. В нашей работе расчеты проводились при следующих 

значениях параметров: А=0.15, В=0.2, y=0.02, и=6.8, w;=1.0. Система (6) 
демонстрирует многообразие сосуществующих синхронных режимов, а также 
различные типы несинхронной динамики. Детальный анализ модели (6) был 
проведен в статье [18]. В соответствии с этой работой, мы будем обозначать 
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синхронные хаотические аттракторы как СА, а несинхронный хаотический режим 
(тор-хаос) как СА, Строго говоря, внутри области синхронизации существует 
целый набор хаотических режимов с различными сдвигами  фаз  между 
колебаниями во взаимодействующих подсистемах. Поэтому было бы более 
корректным приписать СА некоторый индекс, который характеризовал бы 
принадлежность тому или иному семейству аттракторов. Однако режимы фазовой 
мультистабильности демонстрируют очень похожие свойства скейлинга [19], B 
связи с чем данный аспект не является существенным для проводимого 
исследования. 

Tlepexon через границу области синхронизации (от СА к CA ), который 
происходит при увеличении параметра расстройки ё, приводит к изменению 
структуры  последовательностей характерных временных интервалов. Для 
иллюстрации рассмотрим секущую плоскость X,=0 и проанализируем форму 
спектров сингулярности D(h), вычисленных для двух аттракторов (рис. 1, а). 
Очевидно, что зависимость D(h) в случае несинхронного режима СА, значительно 
шире, чем для СА (в последнем случае спектр сингулярности состоит из одной 
точки). Это означает, что фазовая синхронизация хаотических колебаний для 
рассматриваемой — модели — сопровождается — потерей — мультифрактальности 
(сложного скейлинга) в динамике времен возврата: особенности скейлинга в 
структуре последовательностей временных интервалов несинхронного аттрактора 
описываются большим числом экспонент Хелдера (рис. 1, 6). Однако, динамика 

времен возврата в секущую плоскость для синхронного режима характеризуется 
постоянным (B пределах ошибки вычислений) значением h(q). 

\Ширина спектров сингулярности для различных синхронных режимов может 

варьироваться. Наиболее типичная ситуация состоит в TOM, что последователь- 
ность времен возврата не будет описываться постоянным значением /(4). Кроме 
того, вычисления экспонент Хелдера при больших значениях 4 демонстрируют 
заметную чувствительность к выбору параметров счета (например диапазона, B 
котором проводится аппроксимация t(g)). В связи с этим целесообразнее 
рассматривать степень мультифрактальности вместо того, чтобы  делать 
заключения о наличии MOHO- или мультифрактальной структуры. Проводя анализ 
особенностей скейлинга для различных режимов колебаний в системе (6), мы 
обнаружили, что степень мультифрактальности значительно меньше у любых 
типов синхронной динамики по сравнению с режимами вне области синхронизации. 
Так, на рис. 1, в приведены расчеты спектров сингулярностей для синхронной 
типерхаотической динамики и для двумерного тора. Видно, что несинхронный 

режим требует большего диапазона экспонент Хелдера для описания структуры 
времен возврата в терминах мультифрактального формализма. 

Другое отличие между спектрами сингулярности, изображенными на рис. 1, а, 
состоит в увеличении /(4) для несинхронных колебаний, что свидетельствует O 
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0.0 . НН 0 
0.2 1.6 _ -100 q 100 -5.0 5.0 

a Ё 6 в - 
Рис. 1. Спектры сингулярности (а) и значения экспонент Хелдера (6, в) последовательностей 
времен возврата синхронного хаотического аттрактора СА, несинхронного аттрактора CAI. a 
также двумерного Topa 4T и гиперхаотического синхронного режима СА, 
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смене типа корреляций. Изменения 

0.2 скейлинговых — характеристик - MOXHO 
отслеживать по смещению максимума 
зависимости  D(h), соответствующего 
значению д=0. Поскольку фрактальные 

Ё размерности D близки к 1 в обоих 
случаях (при ¢=0), достаточно знать 
набор экспонент /(4), чтобы охаракте- 
ризовать положение спектра сингуляр- 

43 ности и степень мультифрактальности, 
1.1 3.0 B связи с этим далее мы ограничимся 

lgn только зависимостями /(4) и He будем 
Рис. 2. ОЕА-анализ последовательностей времен ` анализировать форму D(h). 

ооа аннн tareero TS Изменешия корреляций в струк 
туре времен возврата можно проиллю- 

стрировать с помощью метода DFA (рис. 2). В синхронном режиме зависимость 
1gF(Ign) описывается одним числом а=2:103, которое соответствует CHIBHBIM 
антикорреляциям. Данная ситуация в целом типична для слабого хаоса, 
возникшего на базе каскада бифуркаций удвоения периода. В несинхронном 
режиме зависимость 1gF(1gn) имеет более сложный вид. В окрестности lgn=2.0 
локальное значение а. приближается к 1.0 (коррелированное поведение, близкое K 
1/f-wymy в терминах работ [13]), то есть мы наблюдаем более «гладкую» 
последовательность времен возврата по сравнению с синхронными колебаниями. В 
области длительных корреляций (большие л), так же как и для относительно 
коротких корреляций (малые л) локальные экспоненты уменьшаются. Поэтому B 
данном случае можно ввести в рассмотрение количественную характеристику, 
позволяющую оценивать диапазон локальных скейлинговых характеристик. Далее 
мы будем обозначать ширину спектра сингулярности \/ТММ-метода как А,, а 
диапазон локальных экспонент ОЕА-метода - A, . 

Отметим  одно важное  обстоятельство. Методы DFA и \ТММ 

разрабатывались для случая анализа случайных процессов C неэкспоненциальным 
характером поведения автокорреляционной функции. В частности, подход DFA 
обычно предусматривает наличие степенной зависимости огибающей АКФ от 
временного аргумента. В случае стохастической динамики нелинейных систем 
либо для реальных сигналов в природе, когда экспоненциальное спадание АКФ 
нарушается, интерпретация результатов, полученных в рамках рассматриваемых 
подходов, является вполне корректной. В более простой же, казалось бы, ситуации 

(динамика нелинейных систем без шума) возникает больше проблем с 

интерпретацией результатов, поскольку появление сложного скейлинга может 
быть следствием особенностей степенной аппроксимации экспоненциального 

закона поведения. Кроме того, известно, например, что метод WTMM позволяет 

получать структуру спектра сингулярности, соответствующую мультифракталь- 
ным объектам, даже при отсутствии фрактальных свойств у анализируемого 
процесса [20]. Поскольку основной целью нашего исследования является 
привлечение методик анализа структуры сигналов к изучению динамики реальных 
(биологических) систем (где идеология рассматриваемых алгоритмов не вызывает 
нареканий), и простые математические модели HAC интересуют лишь с точки 
зрения выявления основных эффектов, которых можно ожидать при исследовании 

явления синхронизации в реальной жизни, далее мы He будем акцентировать 
внимание на наличии некоторых нюансов в возможной интерпретации результатов 

для модельных систем B отсутствие флуктуаций. Заметим, однако, что для режима 
несинхронного хаоса (рис. 3) наблюдается наличие двух четко выраженных 



экспонент в поведении автокорреляци- 
онной функции. Для синхронного хаоса 
поведение автокорреляционной функ- 05 
ции можно описать одной экспонентой й 

(при не слишком больших т АКФ -1.0 
практически не спадает). В этом смысле 
можно говорить O потере мультискей- — .1,5 
линговой структуры. 

Характеристики, вычисляемые в — -2.0 
рамках рассматриваемых алгоритмов, 
четко диагностируют границу перехода — -2.5 
от несинхронного к синхронному режи- 0 50 100 150 200 т 
му (рис. 4). Видно, что  фазовая 
синхронизация устраняет различия B Рис. 3. Зависимость логарифма нормированной 

корреляционной функции от временной задерж- 
динамике взаимодействующих ПОДСис- ки, демонстрирующая наличие двух наклонов в 
тем: вне области синхронизации скей-  режиме несинхронного Xaoca CA: 

линговые — характеристики — несколько 
отличаются, в синхронном режиме они совпадают. Рассмотрим кратко влияние 
флуктуаций на структуру последовательностей времен возврата. В нашей работе 

мы добавляли B первое уравнение системы (6) слагаемое /Е(г), где Е(г) - нормально 
распределенный случайный процесс, а / - его интенсивность. Поскольку шум 
может приводить к «перескокам» между сосуществующими аттракторами в 
области фазовой мультистабильности, ожидается, что скейлинговые характерис- 

тики стохастической динамики будут отличаться от детерминированного случая. 
Проведенные расчеты подтверждают это. В частности, сильная чувствительность 
к внешним флуктуациям наблюдается в случае сосуществующих периодических 
колебаний. Данные режимы не имеют фрактальных свойств в детерминированном 
случае, однако процесс перемежаемости между различными режимами, вызванный 
внешними флуктуациями, индуцирует мультифрактальность в динамике после- 
довательностей времен возврата (рис. 5, а). Хаотические синхронные режимы 
также демонстрируют чувствительность к флуктуациям, поэтому может быть 
сложно диагностировать различные типы стохастической динамики. Однако, если 
интенсивность шума не очень велика (например, /<10") и мы He рассматриваем 
окрестность границы области синхронизации, то скейлинговые характеристики 
\/ТММ-метода не совпадают для синхронных и несинхронных режимов при 

nC 
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Рис. 4. Изменения скейлинговых характеристик при переходе через границу области синхронизации` 
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Рис. 5. Анализ скейлинговых характеристик в случае воздействия флуктуаций. Здесь 4С. и СА \, 
обозначают вызванную шумом перемежаемость между сосуществующими периодическими” и 
хаотическими аттракторами B области фазовой мультистабильности. 

отрицательных д (рис. 5, а). При больших интенсивностях шума режимы динамики 
становятся неотличимы (рис. 5, 6). 

2.2. Связанные системы Лоренца. Динамика модели Ресслера характери- 
зуется одним временным масштабом (базовым периодом колебаний или базовой 
частотой). Рассмотрим более сложную ситуацию: одновременное наличие 
нескольких временных масштабов. В качестве первого примера нами была 
выбрана модель связанных систем Лоренца 

dx, /а = 0y, 7%, ) + ¥(x37%1.)s 

Ф@ = %= %5715 10 ™M 

@й =X, 5915 - 2150 

где 0=10, r,=28.8, r,=28.0, b=8/3. Каждая из подсистем может рассматриваться B 

качестве бистабильной системы, демонстрирующей переключения — между 

состояниями «+1» и «-1», которые можно ввести следующим образом: 

N +1, %,>0 
.\11_2= 

-1, x,<0. 
®) 

Средний период переключений (7°) (или средняя частота (/*)=2л/(1*)) представляет 
собой один статистический временной масштаб, который описывает динамику 
каждой подсистемы. Другой статистический временной масштаб соответствует 
вращениям фазовой траектории вокруг одного из неустойчивых фокусов. 
Соответствующую частоту вращений (колебаний) обозначим (/`°). Рис. 6 демон- 
стрирует поведение этих частот в зависимости от параметра связи у. Согласно 
данному рисунку, до значения y=2.0 увеличение связи приводит к неожиданному 
эффекту - увеличению разности между соответствующими частотами обеих 
подсистем (то есть эффекту десинхронизации). Такая особенность в динамике 
систем Лоренца отмечалась в работе [21]. Дальнейший рост y приводит вначале к 
синхронизации переключений, а затем - к синхронизации колебаний, 

Рассмотрим как синхронизация временных масштабов отражается B 
структуре последовательностей времен возврата (мы выбрали секущие плоскости 
2,=30 и 2,=30). Согласно рис. 7, а, скейлинговые экспоненты ОЕА-метода умень-
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Рис. 6. Зависимости средних частот переключений и вращений от параметра связи для JIBYX 
взаимодействующих систем Лоренца 

шаются в области синхронизации (y>6). Это означает, что рост у приводит K 
увеличению вероятности чередования между большими и малыми значениями в 

структуре времен возврата (усилению антикорреляций). Мы предполагаем, что 

сложная форма зависимости среднего значения скейлинговой экспоненты @ OT 
параметра связи с «полочками» в районе y=3-4 и y>6 может быть связана с 
наличием двух временных масштабов. Согласно этому рисунку, скейлинговые 
характеристики синхронных колебаний практически совпадают для взаимодей- 
ствующих подсистем при сильной связи (y>6). 

Помимо параметра связи мы меняли расстройку между , и г„ Метод WTMM 
демонстрирует, что положение спектров сингулярности для двух подсистем не сов- 
падает вне области синхронизации B отличие от синхронной динамики (рис. 7, 6). 
Мы вновь видим, что фазовая синхронизация сближает скейлинговые свойства 
индивидуальных подсистем. Значения h(0) меняются довольно плавно с ростом 
расстройки, не демонстрируя резких «скачков». Минимальное значение /(0) 
соответствует идентичной динамике (r,/r;=1), в этом случае наблюдаются наибо- 
лее сильные антикорреляции по сравнению с другими значениями //г 

По аналогии со связанными системами Ресслера, переход от несинхронного 
к синхронному режиму может уменьшать степень мультифрактальности [22]. 
O}Il'laKO следует отметить, что ВЗШОДСЙПВИС в системах с несколькими времен- 

ными масштабами не всегда приводит к данному эффекту. В некоторых ситуациях 
изменение г/, в модели (7) устраняет различия в скейлинговых характеристиках 

0.65 1.0 

@ h(0) 
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Рис. 7. Скейлинговые характеристики последовательностей времен возврата для двух взаимо- 
действующих систем Лоренца 
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взаимодействующих подсистем и уменьшает их численные значения (a,h(0)) 
без заметного понижения степени мультифрактальности А. Таким образом, с 
помощью модели (7) мы можем обнаружить различные отражения эффекта 
фазовой синхронизации в структуре последовательностей времен возврата. 

2.3. Связанные нефроны. Сложные колебания с несколькими временными 
масштабами достаточно типичны для динамики живых систем. В качестве примера 
рассмотрим  модель нефрона [23] и проанализируем  данные — реальных 
экспериментов. 

2.3.1. Математическая модель. Нефрон представляет собой функцио- 
нальную единицу почки, играющую важную роль в процессе фильтрации крови. 
Кровь поступает в нефрон по так называемой приносящей артериоле, затем 
проходит через капсулу Боумана, выполняющую роль фильтра. Далее кровь 
попадает в выносящую артериолу, а фильтрат отводится в проксимальную трубку, 
диаметр которой порядка 20 мкм. На самом деле процесс фильтрации является 
более сложным, но в данной работе мы не будем рассматривать его детали. 
Математически авторегуляция движения крови в отдельном нефроне описывается 
следующей системой 6 уравнений: 

P=G(P,r), X, =3(F(P)-X,)IT., 
r=v, X=X~ X)T, ©) 

v, =V, (P X)), X, =3(X, -Х Т. 
Первое уравнение характеризует изменения гидростатического давления P, B 

проксимальной трубке. Следующие два уравнения моделируют процесс регуляции 
радиуса артериолы. Три последние уравнения описывают задержку Т в так 
называемой летле Хенли. Более детальную информацию о модели, ее нелинейных 
функциях и параметрах можно найти в работах [23,24]. 

Эксперименты, проведенные на крысах, показали, что давление P, демон- 
стрирует близкие к периодическим колебания с периодом 20-40 секунд; для 
крыс с повышенным артериальным давлением эти колебания становятся 
хаотическими [23]. 

Соседние нефроны часто имеют общий подводящий кровеносный сосуд. В 
этом случае имеет смысл анализировать их взаимную динамику. Мы будем 
рассматривать взаимодействие через электрические управляющие сигналы в цепи 
регуляции диаметра приносящей артериолы. С помощью модели парных нефронов 
можно проанализировать переходы к синхронной хаотической динамике для 
быстрых (v,) и медленных (P, или X, /=1,2,3,...) колебаний по отдельности. 
Выбирая секущие плоскости Р=1.6 КРа и v=0, для каждой M3 двух связанных 
моделей (9) мы проводили исследования структуры последовательностей времен 
возврата. 

На рис. 8 представлены основные результаты для слабого хаоса (В=27.3, 
остальные параметры те e, что и в работе [24]). Переход к синхронному режиму 
для быстрых колебаний уменьшает диапазон локальных скейлинговых экспонент: 
несинхронная динамика (треугольники на рис. 8, а) характеризуется различными 
наклонами зависимости lgF(lgn) и, следовательно, разными значениями а для 
1gn<2.5 и 1gn>2.5. Эта зависимость становится близкой K линейной в синхронном 
режиме (кружочки на рис. 8, а), то есть A, значительно уменьшается. 

В данном случае отличия в структуре последовательностей времен возврата 
соответствуют области длительных корреляций (большие л). Поэтому эти отличия 
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Рис. 8. Скейлинговые характеристики последовательностей времен возврата для двух связанных 
нефронов в случае слабого хаоса: а, в - быстрая динамика; 6, 2 - медленная динамика. Кружочки. 
соответствуют синхронному режиму, треугольники - несинхронному 

могут не обнаруживаться ¢ помощью \УТММ-метода (рис. 8, в), который 
представляет собой более подходящий инструмент для исследования структуры 
сигналов на меньших масштабах. 

В соответствии с методом DFA, уменьшение а и A, наблюдается и при 
синхронизации медленных колебаний (рис. 8, 6), но уменьшения степени 
мультифрактальности при этом не происходит (рис. 8, г). Заметим также, что 
скейлинговые характеристики динамики обеих подсистем достаточно близки в 
синхронном режиме в отличие от несинхронной динамики. 

В режиме развернутого хаоса (В=28.0) наблюдаются другие особенности. 
Для быстрых фазовых переменных помимо уменьшения мультифрактальности и 
возрастания  вероятности  антикоррелированного поведения,  синхронизация 
устраняет различия в структуре последовательностей времен — возврата 
взаимодействующих подсистем (рис. 9, а и в). Случай медленной динамики 
является более сложным. В соответствии с алгоритмом DFA, средние значения 

экспонент а уменышаются только для одной подсистемы при переходе K 
синхронному режиму (рис. 9, 6, черные кружочки MO сравнению с черными 
треугольниками), для второй подсистемы может наблюдаться даже некоторое 

возрастание @ (рис. 9, 6, белые кружочки). Очевидные различия в индивидуальной 
динамике подсистем наблюдаются как в несинхронном, так и в синхронном 
режиме, TO есть в отличие от быстрых фазовых переменных синхронизация может. 

не устранять различия в медленной динамике модели связанных нефронов. В то же 
время мы наблюдаем уменьшение мультифрактальности в режиме фазовой 
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Рис. 9. Скейлинговые характеристики последовательностей времен возврата для двух связанных 
нефронов в случае развернутого хаоса. Обозначения те же, что и на рис. & 

синхронизации (рис. 9, г). Иными словами, переходы к синхронному режиму для 
рассматриваемого набора параметров увеличивают вероятность антикоррели- 
рованного поведения в медленной динамике только одной из взаимодействующих 
подсистем и уменьшают степень мультифрактальнос'ги s обеих подсистем. Это 

отражает разнообразие проявлений эффекта фазовой синхронизации в сложной 
структуре  характерных  временных  интервалов. Заметим, что BO  всех 
рассмотренных примерах синхронизация сопровождается упрощением структуры 
nocnenona‘renbuoflefi времен возврата. 

2.3.2. Анализ экспериментальных данных. _ Помимо математического моде- 
лирования мы проводили анализ экспериментальных данных, полученных B 
университете Копенгагена и предоставленных нам профессором N.-H. Holstein- 
Rathlou. 

На рис. 10 изображен пример временных зависимостей проксимального 
давления P, (tubular pressure), которое наблюдается в динамике парных нефронов 

крыс с повышенным артериальным давлением. Рис. 10, а и 6 иллюстрируют 
примеры синхронной и несинхронной динамики (синхронизация исследовалась 
путем расчета разности мгновенных фаз на основе преобразования Гильберта и 
методами взаимного вейвлет-анализа [25]). Результаты мультифрактального 
анализа в рамках \/ТММ-алгоритма представлены на рис. 11. В связи с 
техническими проблемами корректного извлечения характерных временных 
интервалов из нестационарных данных и сравнительно небольшой длительности 
сигналов наблюдается достаточно сильная чувствительность экспонент Хелдера к 
выбору секущей плоскости и параметрам алгоритма (особенно при д<0). Поэтому 
мы проводили расчеты и представляем результаты только для положительных 4. В 

50



18.0 14.0 

8 5 
& & 

g Е. 
< < 

10.0 40 
0 1200 0 1200 

a О 6 ) 

Рис. 10. Экспериментальные данные (временные зависимости проксимального давленияР ) для 
связанных нефронов B режиме синхронной (а) и несинхронной (6) хаотической динамики. 

Рис. 11. Мультифрактальный анализ экспери- 
ментальных  данных. Треугольники соответ- (.8 
ствуют несинхронной динамике, кружочки - 
синхронной 

данном примере скейлинговые характе- 
ристики взаимодействующих подсистем 
достаточно близки в случае синхронной 

динамики (кружочки на рис. 11) и не 
совпадают в несинхронном режиме 

(треугольники). Однако, уменьшение 
степени мультифрактальности не про- 
исходит (как и для случая слабого хаоса 
в модели). 

Заключение 

В течение последних лет мультифрактальность (или сложный скейлинг) во 

временной динамике нелинейных систем активно обсуждается в международной 
печати. В данной работе мы изучали возможность мультифрактального описания 
явления синхронизации в двух связанных системах с хаотической динамикой и 
проанализировали, как переходы между различными типами синхронной и 
несинхронной динамики отражаются в структуре последовательностей времен 
возврата. Основные результаты состоят в следующем. 

Фазовая синхронизация в связанных системах Ресслера сопровождается 
значительными изменениями последовательностей времен возврата, включая: 

* уменьшение степени мультифрактальности; 
* уменьшение «гладкости» последовательностей времен возврата, которое 

характеризуется значением а; 
® сближением динамики взаимодействующих подсистем. 
Проявление эффектов синхронизации в системах с несколькими времен- 

ными масштабами является более разнообразным. В частности, скейлинговые 
характеристики могут заметно отличаться для разных фазовых переменных. 
Основные эффекты, наблюдаемые для связанных систем Ресслера, встречаются и 

при наличии нескольких временных масштабов, но в этом случае мы можем 
наблюдать их различные комбинации. Иногда они проявляются одновременно. B 

других случаях фазовая синхронизация увеличивает вероятность антикоррели- 
рованного поведения в последовательностях времен. возврата и устраняет 
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индивидуальные различия в динамике подсистем без изменения мультифрак- 
тальных свойств. Наконец, степень мультифрактальности может уменьшаться, но 

скейлинговые характеристики не будут совпадать в синхронном режиме. Таким 

образом, проявление фазовой синхронизации в структуре последовательностей 
характерных временных интервалов может быть разнообразным, но при этом 
сохраняется набор достаточно общих эффектов. Приложение методов изучения 
мультискейлинговой структуры к исследованию экспериментальных данных 
продемонстрировало результаты, сходные с результатами анализа медленной 
динамики в модели парных нефронов для случая слабого хаоса. 

Авторы выражают признательность проф. N.-H. Holstein-Rathlou за 
предоставленные экспериментальные данные и проф. В. Mosekilde за обсуждение 
результатов. А.Н. Павлов благодарит CRDF за поддержку (грант № Y1-P-06-06). 

Работа была также частично поддержана грантами INTAS 01-2061 и РФФИ 
(01-02-16709) . 
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MULTIFRACTAL ANALYSIS OF CHAOTIC DYNAMICS 
IN INTERACTING SYSTEMS 

A.N. Pavlov, О.М. Sosnovtseva, A.R. Ziganshin 

We consider methods allowing 10 study multifractality апа scaling in application 10 
the phenomenon of chaotic synchronization in two coupled oscillatory systems. Using 
DFA and WTMM techniques we analyze the structure of return time sequences for 
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different model systems and for experimental data. Typical effects caused by the 
synchronization of chaotic oscillations аге discussed in terms оё multifractal formalism. 
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