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SYNCHRONIZATION, NOISE AND ELECTRORECEPTORS

Alexander Neiman, David F. Russell, Frank Moss, and Lutz Schimansky-Geier

Classical notion of synchronization, introduced originally for periodical self-sustained
oscillators, can be extended to stochastic systems. This can be done even in the case when the
characteristic times of a system are fully controlled by noise. Stochastic synchronization is
then defined by imposing certain conditions to various statistical measures of the process. We
review various approaches to stochastic synchronization and apply them to study
synchronization in the electrosensory system of paddlefish.

1. Introduction

Among other nonlinear effects, the phenomenon of synchronization is probably the
most often observed in the great variety of systems of different origins. From a general
point of view synchronization represents the relation between two objects that are
oscillating in time. The oscillators are said to be synchronized, or in «synchrony», when
there exists a fixed phase relation between them.

Besides man-made systems where synchronization is actually used [1], this
phenomenon has been observed in biological systems [2] starting from microscopic level
of cell populations [3] and single neurons [4 - 6] to large neural networks [7], human
cardio-respiratory dynamics (8] as well as external synchronization of human cardio
rythm [9], and behavior of large populations of living objects [10]. We refer to a recent
book [11] for a comprehensive review on modermn theories and applications of
synchronization.

Synchronization occurs when a nonlinear oscillator, possessing a stable periodic
motion, is subjected to an external time-dependent force or is coupled with another
oscillator. Classical theory of synchronization operates with so-called self-sustained
periodic oscillators. The characteristics of stable periodic oscillations of such systems,
represented by a stable limit cycle in the phase space, are determined by natural
properties of the oscillator and do not depend upon initial conditions [12]. When a self-
sustained oscillator is driven by an external periodic force of appropriate amplitude and
frequency, the oscillations of the system occur in phase with the external signal.
Synchronization is thus defined as phase locking and frequency entrainment. The same
effect occurs when two (or more than two) self-sustained oscillators are coupled.

Recent studies have shown that the class of systems and driving signals which
exhibit synchronization could be significantly extended. Different types of
synchronization have been found in chaotic systems, including the classic type of phase
synchronization in periodically driven and coupled chaotic systems [13 - 16].
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In this paper, we are concerned with noisy synchronization. Though originally
studied quite early [17], the theory of stochastic synchronization has only recently been
applied to biological or medical systems. As intuitively expected, noise usually acts
against synchronization. However, recently it has been shown that for a large class of
stochastic systems the phenomenon of noise enhanced phase synchronization can be
observed [18].

2. Stochastic synchronization

Synchronization of coupled periodic self-sustained oscillators is understood as
adjustment of their phases and frequencies. If ®(¢) is the phase of one oscillator and W(r)
is the phase of another oscillator (or the phase of periodic driving force), then the phase
locking condition reads:

19(¢)l < const, §(r) = nd(t) - m¥(z), (1)

where n and m are integer numbers. The phases ®({), ¥(¢) are defined on a whole real
line. In the regime of synchronization, the phase difference, ¢(¢), therefore, remains
constant forever. In the simplest case of 1:1 synchronization the response of the oscillator
is represented by one complete cycle per one period of driving force. More general case is
m:n synchronization, which means that during m complete cycles of driving signal there
occur n complete cycles of the oscillator. For periodic oscillators the synchronization

condition Eq. (1) is equivalent to the notion of frequency locking nw=n®=mQ=m¥.

The concept of synchronization for stochastic systems is not trivial. As is well
known [17] noise influence on a self-sustained oscillator results in the diffusion of its
phase. That is why the properly defined phase difference ¢ is also diffuses so that the
condition Eq. (1) never fulfills in the presence of Gaussian noise. The phase locking may
occurs only for random periods of time and is interrupted by so-called phase slips. Thus,
the definition of synchronization in the presence of noise appears to be «blurred». That is
why the conditions of synchronization should be defined in statistical way and we have to
use the notion of «effective» or «stochastic» synchronization [19,20]. It can be defined by
imposing restrictions on (i) signal-to-noise ratio, in the case of periodically driven self-
sustained oscillator; (ii) frequency fluctuations; and (iii) phase fluctuations.

We use here the strongest definition of stochastic synchronization based on
statistics of phase fluctuations. Statistical measures of synchronization can be based on
the stationary probability density of the phase difference wrapped into [0,27]. A well-
expressed maximum will correspond to a strong synchronization in statistical sense. This
can be further quantified by the synchronization index [7] as the first Fourier mode of the
stationary probability density of the phase difference: y*=(sing)*+(cos¢)*. The synchro-
nization index changes from 0 (no synchronization, unfirom distribution of the phase
difference) to 1 (perfect synchronization, 3-type distribution of the phase difference).

Another way to characterize stochastic synchronization is to calculate the effective
diffusion coefficient for the phase difference. The system is effectively synchronized by
external periodic force if the mean time in course of which the instantaneous phase of the
system is locked, is larger than some given value. The quantity related to this definition
which can be used as a measure of phase coherence is the effective diffusion constant
D,,, defined as D_=l/,dldif($*(2))-(¢(s)/’]- The effective diffusion constant describes
spreading of an initial distribution of the phase difference due to noise-induced diffusion.
It can be shown that the effective diffusion constant D is inverse proportional to the
mean time interval of phase locking.

Phase synchronization in conventional oscillatory systems, for instance, the van der
Pol oscillator, is usually destroyed by noise [17]. However, in systems exhibiting the
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phenomenon of stochastic resonance noise can enhance synchronization [23,18].
Periodically driven bistable or excitable stochastic systems can be considered from the
synchronization point of view. However, in order to study phase synchronization we need
to introduce instantaneous phase of the system. The problem is that for apertodic signals
the definition of the phase becomes ambiguous.

Several approaches can be used. The formal but general definition of instantaneous
phase is based on the concept of analytic signal [21], whereby the instantaneous phase is
defined as the argument of the analytic signal. The analitic signal is a complex function of
time with the real part being the original signal and the imaginary part being the Hilbert
transform of the original signal. This approach was used to study phase synchronization
of chaotic systems [16] and stochastic resonance systems [18].

In the case of bistable or excitable systems the phase can be associated with the
moments of time z when a particle crosses a barrier [18] or with occurrences of spikes in
the case of excitable systems. For such stochastic point processes the phase increases by
2n every time ¢, and linearly interpolated between ¢, ,, and ¢, [18,20]. Another approach
was recently proposed in [22] where time ¢, were associated with a level crossings. This
approach allowed to calculate analytically so-called Rice frequency and to compare it
with other approaches, for example with analytic signal approach [22].

As soon as the phase is defined we can pose synchronization problem: whether the
instantaneous phase of the switching and the corresponding mean switching frequency
can be locked by external periodic force. In [23,18] it was shown that the mean switching
frequency in periodically driven bistable systems can be locked in a finite range of noise
intensities, while the effective diffusion coefficient exhibits a minimum being plotted
versus the noise intensity. In [24] mutual synchronization of two coupled stochastic
bistable sysiems was studied. An analytical approach for calculations of the effective
diffusion constant was developed in [25]. In this way the notion of synchronization can be
extended to a wide class of systems whose characteristic time scales are completely
controlled by noise.

3. Electroreceptors in paddlefish

The paddlefish Polyodon spathula, named for its long flattened spatula-like
appendage extending in front of the head, the «rostrum» (see Fig. 1). The rostrum is
covered with tens of thousands of sensory receptors, morphologically similar to the
ampullae of Lorenzini of sharks and rays, well-known to be passive electroreceptors.
These ampullary-type electroreceptors respond to the microvolt-scale electrical signals
emitted by planktonic prey such as Daphnia, and are used by paddlefish to locate
plankton during feeding behavior [26]. The location of the rostrum, out in front of the
mouth, allows it to function as an «early warning system» for approaching prey, as the
fish swims forward continuously. Hence the rostrum functions as an antenna, carrying
arrays of electrosensors.

~ Electroreceptors in paddlefish form a passive sensory system, meaning that

Fig. 1. Photo of a juvenile paddlefish
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paddlefish only receive signals, from external sources. An external opening (pore) in the
skin, 80-210 u diameter, leads into a short canal =200 p long. The pores are organized
into clusters of 5-20 on the rostrum, but there are much larger clusters on the head, gill
covers, and near the mouth. The internal end of each canal is covered with a sensory
epithelium. An epithelium is a layer of cells, one cell thick, typically lining a hollow
organ. The epithelium contains two types of cells. It is the «hair cells» which are
considered electrosensitive. The number of receptor cells per epithelium is <400. The hair
cells are interspersed among «support cells». The support and hair cells form «tight»
intercellular junctions, or high-resistance seals, which block extracellular paths from the
canal to the interior of the body, reducing the flow of electrical current. The term
«electroreceptor» is thus refers to the entire structure of pore + canal + epithelium +
primary afferent axon. Although the hair cells are the actual sensors, the spike-train coded
output of the primary afferent is what is most often recorded, using a microelectrode
placed in the sensory ganglion (collection of nerve cell bodies), located near but outside
the brain. A key feature of the spike trains from the primary afferents of ampullary
electroreceptor is their spontaneous quasi-periodic noisy firing patterns. It was recently
discovered that the electroreceptors in paddlefish possess a novel type of organization of
being composed from two distinct types of oscillators [27]. One oscillator resides in a
population of epithelial cells and is synaptically and unidirectionally coupled with second
oscillator, located in the afferent terminal. The fundamental frequency of epithelial
oscillator i1s 25-27 Hz at 22°C for different electroreceptors, while the mean firing rate for
different afferents varies in a wide range of 35-65 Hz. The unidirectional coupling of
these oscillators results in a specific biperiodic firing patterns. However, only afferent
oscillator is affected by extemal electrical stimuli {27].

Thus, the electrorecepor can be represented by a dynamical system of two
unidirectionally coupled oscillators. Therefore, it is natural to expect that electroreceptor
cells can be synchronized by a weak external periodic field.

In vivo electrophysiological experiments has been performed with juvenile
paddlefish. A detailed description of the experimental setup can be found in [26,27].

4. Synchronization of electroreceptors by periodic electric field

We stimulated electroreceptors by a weak electric field generated by a dipole
located near the rostrum of the fish. The electric field strengths were comparable in
magnitude to those generated by zooplankton (a few tens of uV/icm). We recorded the
spike train generated by a primary afferent and the periodic electric signal from the dipole
simultaneously.

The frequency of stimulation was always significantly lower than the mean firing
rate (mean frequency) of the electroreceptors, since electroreceptors respond best at low
frequencies 4-10 Hz [26). Thus we can expect higher order synchronization where there
are several spikes per one stimulation period. A generic model for a periodically driven
self-sustained oscillator is the circle map [2]. The circle map represents a stroboscopic
Poincaré map of a quasi-periodic motion. It has a general form of

41 = 0, + p +/(9,) mod2x, (2)

where the parameter p has the meaning of the ratio of fundamental frequencies of the
oscillator and the driving force without coupling between them and f{¢) is a 2r periodic
function. In our particular case we can strobe the phase of the periodic stimulus 2xf t at
the moments of time ¢, when the afferent spikes occur. In other words, we calculate the
phase of a spike ¢, relative to the stimulus phase: 2xiff, and then define ¢, on a unit circle:
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q}n =fsln ]TlOdI. (3)

where f, is the stimulus frequency. In the case of perfect synchronization the circle map
(2) possesses a periodic cycle, such that the dependence of ¢, versus n (time) will be
represented by several horizontal lines. The number of lines is determined by a particular
phase locking regime. For example, in the case 1:5 synchronization we will observe 5
horizontal lines. The results of calculations using Eq. (3) are presented in Fig. 2. Three
different regimes can be clearly distinguished. At a low stimulus frequency (5 Hz) the
high-order mode-locking of 1:17 is realized during some time segments. The pronounced
1:5 phase locking occurs at f=17 Hz. The five horizontal stripes correspond to phase
locking segments, while the inclined lines correspond to phase slips. The phase locking
occurs during a few hundreds of stimulus periods. Finally, at higher frequency f=21 Hz
we observe quasi-periodic behavior with no synchronization. The synchrograms (see also
[8]) shown in Fig. 2 has qualitatively the same structure as iteration sequences of
stochastic circle map.

The statistical evidence of synchronization behavior is also presented in Fig. 2 as
the probability density of the cyclic phase difference. In the case of strong 1:5 mode
synchronization, the probability density consists of well expressed peaks corresponding to
the phase-locking patterns.

In the examples shown above synchronization occurs without significant
modulation of the firing rate of the afferent neuronms, that is, spikes are uniformly
distributed over the periods of external stimuli. We observed, however, different type of
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Fig. 2. The cyclic phase difference of spike trains, calculated using Eq. (3), for the indicated values of
dipole electric field frequency. The corresponding probability densities of the cyclic phase difference are
shown at the right sides
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Fig. 3. Examples of recordings of spike train from an electrorecepior cell stimulated by a dipole electric

field at 5 Hz with two different amplitudes. Corresponding calculation of the cyclic phase difference are

shown below
primary afferents responses to external stimuli in terms of bursts [28]. In such 2 case
external stimulus induces qualitative change in the firing pattemns of afferent neurons:
transition to bursting mode, when spikes concentrated in groups of bursts. With periodic
stimuli we again observed synchronization, but now the firing rate is modulated
significantly by the stimulus. An example of such synchronization is shown in Fig. 3,
where an electroreceptor was stimulated by 5 Hz electric field. For a small amplitude
(Fig. 3, a) the afferent already exhibits bursts, but synchronization is very poor: there is
only one short phase locking segment. For a larger amplitude of periodic stimulus
synchronization is clearly observed (Fig. 3, b): spike train is organized in bursts of 10-11
spikes. Moreover, individual spikes inside bursts are locked to specific positions on the
stimulus period, which reflects phase synchronization.

5. Synchronization due to common noise

In paddlefish electroreceptors, the individual afferents usually possess different
mean frequencies (mean firing rates) and different degrees of frequency variability [27].
Moreover, they are noncoupled. It appears, however, that all the electroreceptors have
similar slow dynamics, which was revealed by synchronization of noise-induced bursts
[28] in different receptors. :

We simultaneously recorded the single-unit spikes from pairs of electroreceptor
afferents in vivo, using metal microelectrodes. One receptive field was on the left side of
the rostrum, the other on the right side. Their locations on opposite sides of the rostrum,
which are innervated by different nerves, guaranteed that the pairs of afferent neurons
were not coupled. We used uniform-field stimulation of all the electroreceptors: stimulus
currents were passed between 15x5 cm chlorided silver plate electrodes at the ends of the
experimental chamber (see [28] for experimental details). A computer-generated zero-
mean Omstein-Uhlenbeck (OU) noise process was used. The correlation time was set to
be 0.002 sec, corresponding to a 500 Hz bandwidth. We generated a sequence of 30
segments of OU noise with incrementing intensities. Each noise segment was 180 sec
Jong, and segments were separated by 5 sec of no stimulus. For comparison, we also used

89




computer generated white noise, high-pass filtered OU noise, or noise from a General
Radio model 1390 B generator which was lowpass filtered by an 8-pole Bessel filter set
to 50 Hz.

Stimulation with weak noise (<2.5 uV/cm rms) did not change the firing mode of
an electroreceptor afferent, but rather led to the well-known effect of widening the peak
in the probability density of interspike intervals and, correspondingly, the power spectrum
peak at the mean frequency of the afferent [27]. When noise of a certain intensity (>2.5
uV/cm rms) was applied, the firing patterns of the afferents changed drastically such that
afferents produced bursts: spikes were concentrated in clusters of bursts which were
separated by quiescent epochs. The interspike intervals within a burst decreased towards
the center of the burst [28], indicating a parabolic type of bursting [29].

A new slow time scale is introduced by the noise, and can be expressed as the
mean interburst interval (r,). The mean interburst interval declined exponentially with
increasing noise intensity, which was well fitted by the Arrhenius law, (t,)=vexp(A%c?)
[28]. This implies that burst generation is excitable, and has a well-defined threshold, A,
estimated as =3 pV/em, which is only 3-fold higher than the limit of electroreceptor
sensitivity [28].

One of the functional implications of bursting regimes is synchronization [30].
Indeed, the existence of bursts implies a slow time scale which makes synchronization of
burst onsets easier in comparison with synchronization of individual spikes.

A representative example of data from two different afferents, recorded
simultaneously, is shown in Fig. 4. In the absence of stimulation, the individual spikes in
these neurons were not synchronized or correlated, since their mean firing rates were
different: afferent #1 fired faster (45.1 Hz) than afferent #2 (33.4 Hz). With noise
stimulation switched on, each burst started almost simultanecusly in the two neurons,
even though the number of spikes inside a burst was different for the two neurons.

We characterized the coincidence of bursts in pairs of neurons in terms of
stochastic synchronization, measuring the phases ¢, ,(¢) of burst onsets in each neuron,
which increases by 2n every time a burst occurs, and interpolates linearly between two

sequential burst onsets:
o(2) = 2n(t-t, DYz, V- D) + 2k,

¢,(f) = 2n(tx @)(z, ., @< @) + 2xm,

where t,(") and t, @ are bursts onsets in the first and the second neurons, respectively, and
tW<r<r, U, v P<t<r @ When stochastic synchronization occurs [17], constant

m

segments of the phase "difference A9(r)=¢,(r)-0,() (phase locking) are interrupted by
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Fig. 4. Example of simultaneous recordings of spike trains from a pair of electroreceptor afferents. The
onset of stimulation with computer-generated OU noise of 16.8uV/cm rms amplitude is marked by the
arrow
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abrupt 2x phase slips. This is illustrated in Fig. 5 for noise-induced bursting, where the
phase differences for three different noise intensities are presented. For a large noise
intensity (curve 3), the burst onsets are synchronized, which is expressed in the existence
of horizontal epochs of phase locking lasting several seconds. The probability density of
the phase difference, P(A¢) (see Fig. 5) characterizes the degree of synchronization: a
well-expressed peak in P(A¢) indicates synchronization, while a uniform distribution
indicates its absence. The probability density is nearly uniform for weak noise, when
bursts in the two neurons are not synchronized. With increased noise intensity, the
probability density of the phase difference developed a well-defined peak, indicating
strong synchronization between the bursting neurons.

6. Conclusion

In this paper we demonstrated the phenomenon of stochastic synchronization on a
living «model», the electroreceptor system of paddlefish. Two types of synchronization
were considered. The first, synchronization of a single electroreceptor by periodic stimuli.
And the second, synchronization of two electroreceptors by a common noise field. Young
paddlefish use electrosensitivity to feed zooplankton and synchronization mechanism
might be responsible for extreme sensitivity of the paddlefish to weak periodic electric
field generated by plankton and also for nearly 100 % successful prey capturing.
Synchronous burst responses of a population of sensory neurons may be a neural
mechanism for coincidence detection, and may substantially simplify the neural
operations that a fish’s brain must perform to detect prey and to calculate their position
and velocity [31]. The impulse-like electrical signal emitted by an individual plankton
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prey (e.g. Daphnia) moving along the rostrum, or the exponentially correlated Gaussian
electrical noise generated by swarms of Daphnia [32], may be adequate stimuli for
evoking synchronized bursting of different electroreceptors during feeding behavior.
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National Institutes of Health (ROIDC004922-01), the National Science Foundation
(INT-0128974) and DAAD (D/0104610). AN., F.M. and L.S.-G. thank Prof. Vadim
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CHHXPOHU3AIIMA, ITYM U SJNEKTPOPELEINTOPHI
A. Heiiman, D.F. Russell, F. Moss, L. Schimansky-Geier

KnaccHyeckoe MOHSTHE CHHXPOHM3AlWH, NCPBOHAYATBHO BBEfieHHOE UId
TIepPHOJIMYECKAX aBTOKOIe6aHMi, MOXeT ObITh PACUIMPEHO HA CTOXAaCTHYECKME CHCTE-
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Mbl. DTO MOXKHO OCYUECTBHTHL K€ B TOM Ciyuae, KOTIQ XapaKiepHbic BRCMEHA
CHCTEMLI MOJHOCTBLIO YNPABJIAIOTCH HIVMOM. Croxacrhueckas CHHXPOHH3AUHSA TIPH 3TOM
OTPEJICAHETCH KAK YCTAHOBICHHE HEKOTOPLIX YCIOBHI JI18 PARTIYHBIN CTATHCTHUECKIX
Mmep npouecca. Mbi npoBojiM 0630p PasHbIX MOAXOAOB K CTOXACTHYCCKOH CHHXPOHH-
JAUHH M APHMEHACM HX JUIS M3YUCHHS CHHXPOHH3AWMY B 3ACKTPOCCHCOPHON CHCTeMe
BCCITOHOCA.
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