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RIDDLING IN THE PRESENCE OF SMALL PARAMETER MISMATCH

Serhiy Yanchuk and Tomasz Kapitaniak

Riddling bifurcation leads to the loss of chaos synchronization in coupled identical
systems. We discuss here the manifestation of the riddling bifurcation for the case of a small
parameter mismaich between coupled systems. We show that for slightly nonidentical
coupled systems, the transverse growth of the synchronous attractor is mediated by transverse
bifurcations of unstable periodic orbits embedded into the atiractor.

Introduction

Consider two symmetrically coupled identical systems dx/dr=f(x) and dy/dt=f(y)
and x, yER” which evolve on an asymptotically stable bounded chaotic attractorA,

dx/dt = {x) + C(y-x), dyldt =f(y)+ C(x-y). (1)

Complete synchronization occurs when the coupled systems asymptotically exhibit
identical behaviour, i.e., x(¢)-y(#)!—0 as t—=. The synchronous behaviour takes place on
the synchronization manifold x=y, which is invariant in the phase space of the coupled
system (1) and has half the dimension of the full system. The synchronization loss in
system (1) is initiated with the riddling bifurcation [1] when the first unstable periodic
orbit (UPO) embedded into chaotic attractor A loses its transverse stability. In this paper
we discuss the manifestation of the riddling bifurcation for the case of a small parameter
mismatch between coupled systems. We give evidence that for slightly nonidentical
coupled systems, the transverse growth of the synchronous atiractor is mediated by
transverse bifurcations of unstable periodic orbits embedded into the attractor. The
desynchronization mechanism is shown to be similar to the bifurcation of chaos-
hyperchaos transition [2]. We also note that the parameter mismatch leads to the increase
of transverse instabilities after the riddling bifurcation.

Model

Without loss of generality, a small difference between coupled systems can be
incorporated in (1) as
dxldt = f(x) + a(x) + C(y-x), dyldt =f(y) + Clx-y) (2)
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where a(x) describes parameter mismatch.

transverse directions For sufficiently small o the evolution of the
o=0 small @  system (2) can be considered as the
perturbed evolution of the system (1), so

the motion of the system can be

asymptotically close to the synchronization

manifold [x-yl<e with small e.! In these

invariant manifold cases, the attractor of the system (2) is

located in the neighborhood of the invariant

Fig. 1. Small parameter mismatch implies small manifold x=y of system (1). For

perturbation of stable and unstable manifolds of gufficiently small a, transverse stability of

saddle periodic orbits embedded in an attractor orbits embedded in A is also preserved in
system (2).

It is also meaningful to speak about transverse and longitudinal stability of saddle
periodic orbits embedded in the attractor A since a sufficiently small mismatch will cause
only small perturbation of the local unstable and stable manifolds and will not affect
stability properties of the UPOs, as sketched in Fig. 1.

Therefore, the moment of riddling bifurcation will correspond to the loss of
transverse stability of some orbit embedded in the attractor. Here, of course, the situation
may arise when the above mentioned orbit leaves the attractor before its transverse
destabilization as it was described in [5]. In this situation, we may consider the remaining
orbits that lose transverse stability with decrease of a coupling coefficient. In general, for
nonidentical systems, we are dealing with a chaotic attractor which is no longer located in
low-dimensional synchronization manifold but remains in the neighborhood of it.
Moreover, periodic orbits embedded into this attractor are proved to lose transverse
stability with the decrease of coupling [6]. Therefore, we have the same situation as for
chaos-hyperchaos transition [2,4] where the growth of the attractor is mediated by doubly
unstable orbits embedded in it. It was shown in [2] that this growth can be either smooth
or abrupt depending on the type of «riddling» bifurcation.

In the following as the numerical example, we consider two coupled Rossler
systems

drldt = flx) + @ + C(d)(y-x),

dyldt = f(y) + C(d)(x-y),
where C(d)= diag{d-0.6,1.0,-3.14+0.7}, @=(0,0,a),
f(x) = (=x, - x5, x, + 0.42x,, 2+x,(x,-4))".

The mismatch is introduced via parameter c.

It was shown in [8] that the corresponding system of identical coupled oscillators,
i.e. for a=0 loses complete synchronization with the decrease of parameter 4. In
particular, the riddling bifurcation occurs at d=0.241 when the embedded period-1 cycle
becomes transversely unstable via supercritical transverse period-doubling bifurcation. At
d=0.192 the blowout bifurcation takes place when transverse Lyapunov exponent of the
synchronous attractor becomes negative. Note also, that using numerical simulation of
coupled identical systems we were unable to detect bursts from the synchronization
manifold for the parameter values d=(0.22,0.24), i.e. where synchronous attractor has
already lost its transverse stability but is still weakly stable.

3)

! This is the case, for example, when the synchronous object in system (1) is normally a hyperbolic
torus or a saddle periodic orbit embedded into the attractor. Some generic cases where such estimation holds
are also described in [3].
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In the case for systems with the
mismatch the above mentioned transverse
period-doubling bifurcation persists and for
a=0.003 it takes place at d=024.
Numerically computed Lyapunov
exponents for the system (3) are shown in
Fig. 2. In the interval I the chaotic attractor
A is located in the neighborhood of the
manifold x=y. We observe the growth of
the second Lyapunov exponent what is
connected with the riddling bifurcation at
d=0.24 and initiation of the chaos-
hyperchaos transition. As it was shown in
[2], this transition is mediated by the
transverse  destabilization of UPOs
embedded in the chaotic attractor A. In the
interval II, the system (3) has the stable
hyperchaotic attractor with two positive
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Fig. 2. Lyapunov exponents of system (3) versus d,
a=0.003: T - interval in which chaotic attractorA is
located in the neighborhood of the manifoldx=y, II -
interval in which hyperchaotic attractor exists, III -
interval where the chaotic attractor A loses stability
and solution switches into stable limit cycle (Ifa)
and torus (IIIb)

Lyapunov exponents. At d=0.21 chaotic attractor A becomes unstable and disappears.

The evolution of the system (3) switches
(interval (ITIb). Fig. 3 shows the behavior

to the limit cycle (interval Ifla) and torus
of the synchronization error x,()-y,(7) for

different values of d. We can observe transverse bursts for the parameter values after the
moment of riddling bifurcation (Fig. 3, b, ¢). More detailed information about the
transverse size of the attractor can be seen in Fig. 4, where the maximum amplitude of
bursts detected during time interval T=200000 versus coupling coefficient 4 is shown. It
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Fig. 3. Behavior of the synchronization errorx; -y,
for @=0.003; (a) d=0.25 all UPQ are transversely
stable; (b) d=0.23, period-1 UPO is transversely
unstable; (¢) d=0.22
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can be seen that the attractor grows rapidly

10 , ——— in transverse direction already after the
i 1 riddling bifurcation.

= aF 9 In the case of the ideal coupled
}L_ systems the chaotic attractor A located at
< 06F 1 the invariant manifold x=y can have locally
v or globally riddled basins of attraction. A is

x 0‘4__ 1 an attractor® with locally riddled basin if
B o2k | there is neighborhood U of A such that in
-l any neighborhood V of any point in A,

1 R S T | there is a set of points in VNU of positive
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Fig. 4. Transverse growth of the attractor with U can either go to the other attractor

decreasing of d; a=0.003 (attractors) or after a finite number of

iterations be diverted back to A. If there is neighborhood U of A such that in any

neighborhood V of any point in U, there is a set of points of positive measure which

leaves U and goes to the other attractor (attractors), then the basin of A is globally
riddled.

Conclusions

In conclusion, we investigated the effect of riddling bifurcation on the chaotic
attractor of the coupled systems with the parameter mismatch. After the onset of
bifurcation, the system trajectory shows intermittency-like behavior with bursts away
from the manifold x=y. These bursts grow rapidly resulting in the growth in size of the
chaotic attractor. Contrary to the case of the coupled ideal systems we have not observed
globally riddled basins of the chaotic attractor located in the neighborhood of the
manifold x=y.

References

1. Lai Y.-Ch., Grebogi C., Yorke J.A., and Venkataramani S.C. /| Phys. Rev. Lett.
1996. Vol. 77. P. 5361; Astakhov V., Shabunin A., Kapitaniak T., Anishchenko V.S. 1/
Phys. Rev. Lett. 1997. Vol. 79. P. 1014.

2. Kapitaniak T., and Steeb W.-H. /| Phys. Leit. A. 1991. Vol. 152. P. 33;
Kapitaniak T. // Phys. Rev. E. 1993. Vol. 47. P. R2975; Stefanski K. // Chaos, Solitons
and Fractals. 1998. Vol. 9. P. 83; Harrison M.A. and Lai Y.-Ch. I/ Phys. Rev. E. 1999.
Vol. 59. P. R3799; Kapitaniak T., Maistrenko Yu., Popovich §. // Phys. Rev. E. 2000.
Vol. 62. P. 1972; Yanchuk S. and Kapitaniak T. // Phys. Lett. A. 2001. Vol. 290, Ne 3-4.
P. 139.

3. Johnson G., Mar D., Carroll T., Pecola L./l Phys. Rev. E. 1998. Vol. 80. P.
3956; Yanchuk S., Maistrenko Yu., Lading B., Mosekilde E. [/ Int. J. Bifurcation and
Chaos. 2000. Vol. 10. P. 2629.

4. Yanchuk S. and Kapitaniak T. // Phys. Rev. E. 2001. 056235.

5. Astakhov V., Kapitaniak T., Shabunin A., Anishchenko V. [/ Phys. Lett. A.
1999. Vol. 258. P. 99,

? Here we assume the attractor in the sense of Milnor [9].

188



6. Nagai Y. and Lai Y.-Ch. // Phys. Rev. E. 1997. Vol. 55. P. R1251; Nagai Y. and
Lai Y.-Ch. Il Phys. Rev. E. 1997. Vol. 56. P. 4031.

7. Lai Y.~Ch. I/ Phys. Rev. E. 1997. Vol. 56. P. 1407.

8. Yanchuk S., Maistrenko Yu., Mosekilde E. // Physica D. 2001. Vol. 154. P. 26.

9. Milnor J. // Commun. Math. Phys. 1985. Vol. 99. P. 177.

Institute of Mathematics, Received 08.08.03
Academy of Sciences of Ukraine

Division of Dynamics,

Technical University of Lodz, Poland

YK 534.015

PHI[JIHHI‘ B IIPHCYTCTBI/IH MAJION PAcchOﬁKn
110 NAPAMETPY

C. Anuyx, T. Kapitaniak

Pupymanr-6udypkains NpHBOIHT K MOTEPE CHHXPOHM3AIMH Xa0Ca B CBSI3aHHBIX
HIEHTHYHBIX cucTeMax. B craThe oOcyXjjaeTcs NpOosBIeHHEe pHANHHT-OndypKanud A7s
Cly4as MAJIOM PacCTPOMKH 10 MapaMeTpy MeXy CBS3aHHLIMH cHcTeMamH. IlokasaHo,
YTO [/l HEMHOrO HEHJEHTHYHBIX . CBf3aHHbIX CHCTEM VIIMpPEHHEe CHHXPOHHOTO
aTTpakTOopa OOyCHaBIMBAaeTCs TPaHCBEpCaNbHOM Oudypkanmeil  HEYCTONUHMBBIX
IIEPHOIAYECKHX OPOUT, BCTPOSHHEIX B aTTPAKTOP.
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