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КЛАСТЕРНАЯ СИНХРОНИЗАЦИЯ 
В НЕОДНОРОДНОЙ АВТОКОЛЕБАТЕЛЬНОЙ СРЕДЕ 

A.A. Акопов, T.E. Вадивасова, B.B. Acmaxos, Д.Д. Матюшкин 

В работе исследуется образование кластеров частотной синхронизации B 
непрерывной среде с линейной расстройкой собственной частоты вдоль простран- 
ственной координаты. Проводится сравнение поведения непрерывной среды, 
описываемой уравнением в частных производных, и €€ дискретного аналога B виде 

цепочки автогенераторов. 

Введение 

Одним из направлений в нелинейной динамике, активно разрабатываемых B 
течение последнего времени, является изучение ЗффеКТОВ самоорганизации в 

пространственно-распределенных системах и средах. Большое количество работ 
посвящено исследованию моделей с дискретными ПрОСТраНС'ГВбННЫМИ 

координатами. Такие модели представляют собой ансамбли  осцилляторов 
различного типа с локальным взаимодействием и широко используются в физике, 
химии и биологии [1-5]. В основе эффектов самоорганизации и возникновения 
упорядоченных пространственных структур B осцилляторных ансамблях и 
распределенных средах лежит явление синхронизации  взаимодействующих 
элементов. Имеется большое число работ, посвященных явлению синхронизации, 
образованию кластеров и других упорядоченных структур в цепочках и решетках 
автогенераторов периодических колебаний [6-15], хаотических систем [16-25] и 
стохастических осцилляторов [26-30]. 

Большой интерес вызывает поведение распределенных автоколебательных 
сред, описываемых уравнениями в частных производных. ОДНЗКО явление 

синхронизации в непрерывных средах исследовано гораздо в меньшей степени. 
Обычно рассматриваются условия полной синхронизации в однородной среде 
[1,31]. Другие эффекты синхронизации в распределенных средах, такие как 
вынужденная синхронизация внешним БОЗДСЙС‘ГВИСМ и взаимная синхронизация 

двух ВЗЗИ.МОДЕЙСТВУЮЪЦИХ сред, нашли отражение лишь B небольшом количестве 

работ [32-36]. Практически не исследованы эффекты частичной (кластерной) 

синхронизации в неоднородной непрерывной среде. Однако в ряде случаев 
пространственно-непрерывные распределенные модели дают более адекватное 

описание наблюдаемых явлений (например, в гидродинамике). Актуальным



является  BONPOC, насколько существенным может оказаться NEpexof K 
непрерывному пределу с точки зрения наблюдаемых в распределенных системах 
эффектов самоорганизации и какие новые явления могут при этом возникнуть. 

В реальных физических, химических и биологических распределенных 
системах и средах всегда имеется некоторая зависимость параметров от 
пространственных — координат. В — условиях — частичной — синхронизации 
пространствен-ная  неоднородность служит одной W3 причин  образования 
различных кластерных структур. Кластерные структуры были обнаружены и 
исследованы в различных дискретных моделях распределенных систем [9,15,19,37- 

41]. Так, в цепочках и решетках автогенераторов зависимость собственной 
частоты от пространственной координаты при наличии достаточно сильной связи 
приводит к образованию так называемых кластеров частотной синхронизации, 
которые существуют в широкой области вариации параметров и являются 
устойчивыми к действию шума [15,22,38,39]. 

Целью настоящей работы является исследование кластеров частотной 
синхронизации в — модели — автоколебательной — среды с — непрерывной 
пространственной координатой. Сделана попытка ответить на следующие 
вопросы. Во-первых, являются ли результаты, полученные ранее для модели с 
дискретной пространственной координатой [15,38], справедливыми в непрерывном 
пределе, то есть сохранится ли сам эффект образования частотных кластеров, 
какова будет их структура и как она будет зависеть от параметров среды? Во- 
вторых, если в непрерывной неоднородной среде возникают частотные кластеры, 
то будут ли они характеризоваться какими-либо особенностями по сравнению с 
кластерами, наблюдаемыми в дискретной модели? 

1. Исследуемая модель 

Исследуемая в работе модель распределенной неоднородной автоколе- 
бательной среды описывается одномерным нелинейным уравнением в частных 
производных вида 

, 2 а, =io(x)a+r(1-ld%a+ га 1) 

где i=(-1)"2; a(x,r)- комплексная амплитуда колебаний, зависящая от времени г и от 
пространственной координаты х; @, - первая производная по времени; а,, - вторая 
производная по пространственной координате. Параметр нелинейности / и 
коэффициент диффузии г полагаются постоянными. Функция о(х) характеризует 
расстройку собственной частоты вдоль пространственной координаты. В работе 
рассматривается линейная частотная расстройка по пространственной координате: 
o(x)=xA_ /I, где | - длина системы. 

`Уравнение (1) представляет собой частный случай уравнения Гинзбурга - 
Ландау, являющегося одним M3 основных уравнений теории нелинейных 
неравновесных сред и описывающего большое разнообразие нелинейных явлений 
[42-47). Параметры г’и g в (1) полагаем действительными, TO есть ` пренебрегаем 
нелинейным — смещением  частоты и  пространственным — взаимодействием 
реактивного типа. Следует отметить, что данная модель среды получается из 
неоднородной цепочки квазигармонических автогенераторов [15,38,39] при 
предельном переходе к непрерывной пространственной координате. 

В проведенных исследованиях рассматривалась распределенная система 
конечной длины / с граничными условиями второго рода 

a (60l g, =0. @ 
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Начальное состояние среды выбиралось случайным образом вблизи 
некоторого однородного состояния. Уравнение (1) численно интегрировалось по 
неявной схеме с использованием метода прямой и обратной прогонки [48]. Неявная 
схема является абсолютно устойчивой, что дает возможность выбирать шаги 
дискретизации Аг и Ах исходя M3 желаемой точности расчета, а He из соображений 
устойчивости численного алгоритма. По результатам численного интегрирования 
системы (1) рассчитывалась зависимость средней частоты колебаний от 
пространственной координаты х 

Q(x) = ( 9) = limy._., [Ф( - 0(x:t0))T)- (9)] 

Угловые скобки означают усреднение по времени. Функция ф(х,/) представляет 
собой фазу колебаний. Она определяется как 

ф(х,) = arga(x,t) = arctg(Ima(x,t)/Rea(x,t)) + nk, k=0,1, @) 
Добавление величины £k производится исходя U3 непрерывности изменения фазы 
во времени. Анализировались также пространственно-временные диаграммы 
состояний среды. В качестве управляющих параметров в работе были выбраны 
длина системы / и коэффициент диффузии &. Параметр надкритичности 
фиксировался: r=0.5. Расстройка собственной частоты на границах среды была 
выбрана постоянной: A, =0.2. 

2. Режимы частотных кластеров 

Проведенные численные эксперименты показали, что распределенная 
неоднородная система (1) в широкой области  изменения — параметров 
демонстрирует тот же самый эффект формирования кластеров частотной 
синхронизации, который известен для цепочки автогенераторов [15,38]. Так же 
как и в дискретной модели в непрерывной среде наблюдались идеальные и 
промежуточные кластерные структуры [15,38]. В режиме идеальных кластеров в 
непрерывной среде можно выделить интервалы значений X, для которых средняя 

частота @(х) с высокой степенью точности является постоянной (рис. 1, а). Для 
промежуточных структур характерна плавная зависимость частоты © от 
координаты х с некоторыми участками более медленного изменения (puc. 1, 6). B 
этом случае — синхронизация B пределах — кластера является нестрогой 

(эффективной), так же как при воздействии шума [39]. 
На рис. 2, а, 6 представлены пространственно-временные диаграммы 

Q Q 
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Рис. 1. Изменение средней частоты колебаний © вдоль среды B случае идеальной кластерной 
структуры при g=1.0 (а) и промежуточной структуры прие=0.85 (6). Другие параметры: А . =0.2, 
1=50. Вычисление проводилось на времени T=30000 при времени установления {=120000 и шагах 
дискретизации Ar=0.01 и Ax=0.05
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Рис. 2. Пространственно-временные диаграммы состояний среды в режиме идеальных кластеров 
при g=1.0 (а) и промежуточных кластеров при g=0.85 (6). Диаграммы, приведенные слева, 
соответствуют изменениям мгновенной амплитуды |а(х,)! от 0 (белый цвет) до 1 (черный цвет); 

диаграммы справа изображают мгновенные состояния приведенной фазы б(х.г) от -л (белый 
цвет) до л (черный цвет). Другие параметры системы: А =0.2, 1=50 

состояний среды, соответствующие двум приведенным кластерным структурам. 
Слева показаны мгновенные значения амплитуды колебаний И(х,!)!, а справа - 

мгновенные значения приведенной фазы ф(х,!) © [-л.]. 
Амплитудная диаграмма на рис. 2, а, соответствующая идеальной кластерной 

структуре, характеризуется высокой степенью регулярности. Более светлые 
пятна, отвечающие значительному уменьшению амплитуды колебаний на границе 
кластеров, повторяются во времени практически периодически. Для неидеальной 
(промежуточной) кластерной структуры, приведенной на рис. 1, 6, периодичность 
на амплитудной диаграмме заметно нарушена. Соответствующие идеальным 
кластерам периодические структуры отмечались в цепочке автогенераторов 
[15,38,39]. Различие идеальной и неидеальной кластерных структур на фазовых 
диаграммах, приведенных справа, не так хорошо видно. Некоторое нарушение 
строгой периодичности состояний в режиме идеальных кластеров, заметное на 
фазовой диаграмме, связано с конечной точностью численного интегрирования, 
недостаточной для того, чтобы правильно реконструировать характер границы 
между кластерами в непрерывной среде. 

3. Особенности границы между кластерами в непрерывной среде 

В цепочке автогенераторов, служащей дискретным аналогом среды (1), 

идеальная кластерная структура соответствует строгому разбиению  всех 

67



осцилляторов на несколько групп с равными средними частотами ©, причем 

разности частот кластеров совпадают и равны наименьшей кластерной частоте 

[15,38]. На границе между кластерами средняя частота колебаний Q претерпевает 
скачок. Возникает вопрос, какова будет граница между идеальными кластерами в 
случае непрерывной среды? В отличие от модели с дискретной пространственной 

координатой (цепочки из фиксированного числа автогенераторов) при численном 
исследовании  непрерывной среды мы можем бесконечно дробить шаг 
дискретизации пространственной координаты Ах и исследовать все более 
мелкомасштабные детали среды. В этом мы ограничены только ВОЗМОЖНОСТЯМИ 

компьютера. График зависимости Q(x), представленный на рис. 1, а, получен для 
сравнительно болышого шага Ах. Не приведет ли уменьшение шага Ах K 
появлению значений частоты Q, промежуточных по отношению к частотам 

кластеров? 
Q Численные эксперименты 

0.1 показали, что общий вид идеальных 
312 кластерных — структур - устойчив —к 

0.08 изменению — параметров — численного 
интегрирования, M — значения — ©(х) 
достаточно быстро устанавливаются. 

0.06 Однако мелкомасштабные изменения на 

1 границах кластеров требуют Gonee 
0.04 точного — интегрирования. — Для — их 

установления необходимо использовать 
1926 1928 1930 1932 х малые  интервалы — дискретизации и 

большое время интегрирования. На рис. 
Prc. 3. Фрагиенты зависимости 9(2) в режиме 3 приедер;] фрш_мЁЁЫ с e 
идеальных кластеров при #=1.0, A, =0.2, 1=50. я 
Вычисление проводилось на времени T=30000 ©(х),  соответствующей — идеальной 
при времени установления {)=120000 и шаге Кластерной структуре при #=1.0. Они 
дискретизации Ax=0.0005 и различных значениях - получены с  одинаковым шагом Ах 

ЁТЁВ ::3?'05 (кривая 1); 0.02 (кривая 2) и 001° (который выбран в сто раз меньше, чем 
а в случае рис. 1, а) и с разными шагами 

At. Можно видеть, что на графике появляются TOYKH, располагающиеся между 
горизонтальными плато (то есть между кластерами). Возникает некая переходная 
область между кластерами, соответствующая непрерывному изменению частоты 
Q(x). С уменьшением шага интегрирования по времени размер межкластерной 
области уменьшается. Можно ли для любого выбора достаточно малого Ах 

подобрать такой малый шаг Af, что межкластерная область исчезнет совсем? С 

физической точки зрения этого быть не должно в силу непрерывности среды. 
Зависимость (X) в непрерывной среде не должна претерпевать скачки на границе 
идеальных кластеров. Однако межкластерные области могут быть чрезвычайно 
узкими, а значения производной @(х)/@ B некоторых точках - очень большими. 
Уменьшение шагов дискретизации приводит K резкому росту времени вычисления. 
В этой связи невозможно с полной уверенностью сказать, дает ли численное 
моделирование — физически — корректный — результат — или — используемая 
математическая модель не вполне адекватно описывает процессы в непрерывной 
среде, происходящие на границах кластеров. 

4. Эволюция кластерных структур при вариации параметров среды 

Структура кластеров частотной синхронизации в непрерывной среде (1) 
зависит от коэффициента диффузии g, длины системы / и расстройки А› 
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приходящейся на длину [, или градиента 

расстройки 6=А,„/!. В проведенных 
численных экспериментах исследова- 
лась эволюция кластерных структур 
при вариации параметров g и [ при 
фиксированной — расстройке A =0.2. 
Полученная диаграмма режимов 
представлена на рис. 4. На диаграмме 
нанесены границы между кластерными 

структурами с различным количеством 
кластеров М. Римскими — цифрами 
указано количество частотных клас- 
теров, наблюдаемых в соответствующей 
области. Области с восемью и более 
кластерами — являются — достаточно 
узкими и границы между ними на 
диаграмме He изображены. Кластеры B 
рассматриваемых областях могут быть 
как идеальными, так и неидеальными 
(промежуточными). Некоторые наиболее. 
широкие области существования 

0.50 

025 

00 

25 50 75 ! 
Рис. 4. Диаграмма кластерных режимов непре- 
рывной среды (1) при вариации параметрове и / и 
фиксированной расстройке A, =0.2. Сплошными 
линиями нанесены границы оластей с различным 
количеством частотных кластеров. Количество 
кластеров обозначено цифрами П, Ш, IV, .. 
Серым тоном отмечены наиболее  широкие 
области идеальных кластерных структур 

идеальных кластеров выделены серым тоном. 

V3 диаграммы видно, что при заданной расстройке А „‚ И коэффициенте 
диффузии & структуру из заданного небольшого числа кластеров М можно 
наблюдать только в системах ограниченной длины. Следует отметить, 4YTO, 
увеличивая длину /, мы уменьшаем градиент частотной расстройки 8, что, казалось 
бы, должно способствовать синхронизации. Однако это не наблюдается. 
Количество частотных кластеров растет с увеличением длины системы. Из рис. 4 
хорошо видно, что границы между структурами М и М+1 соответствуют 

параболам. 
Для представленной на рис. 4 области изменения длины системы / режим 

глобальной — синхронизации  реализуется при  очень — больших — значениях 

коэффициента диффузии. Так как болышие значения g не соответствуют 
квазигармонической модели (1), то область глобальной синхронизации не нанесена 
на диаграмму. Оценка границы области глобальной синхронизации непрерывной 
неоднородной среды может быть получена аналитически из рассмотрения 
поведения фазы ф(хи), если пренебречь изменениями амплитуды и считать 
la(x,f)l=1. В этом приближении уравнение динамики фазы, соответствующее 
модели (1), принимает вид 

ф = 0(x) + 2Ф ) 

с граничными условиями ¢, (0,1)=9, (1,£)=0. Продифференцировав (5) по координате 
и введя обозначение 6=0,, можно записать 

0,=8+g6,, (6) 

где d=dw/dx=const - градиент линейного роста собственной частоты вдоль 

пространственной координаты. 
Полагая, что в режиме глобальной синхронизации градиент фазы не 

изменяется во времени, дф /д!=0, и максимальная разность фаз в точках среды не 
превосходит 27, легко получить условие глобальной синхронизации 

& > А „Й/(12л). (7) 
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Рис. 5. Граница области глобальной синхро- 
g низации непрерывной неоднородной среды на 

плоскости параметров ,/° при фиксированной 
10 расстройке A =02. — Сплошная — линия 

й соответствует оценке (7). Точками отмечены 
данные численного эксперимента 

3.0 
Граница области глобальной синхрони- 

20 зации непрерывной неоднородной среды 
й представлена на рис. 5. Следует отме- 

то тить, что в дискретной модели [15,38] 
ы при фиксированной расстройке A 

граница — глобальной — синхронизации 
0.0 отвечает закономерности g~N, где N - 

0 200 400 600 800 /° длина цепочки автогенераторов. Таким 
образом, граница глобальной синхро- 

низации по-разному зависит от длины системы в случае непрерывной среды и ее 
дискретного аналога. 

Выводы 

Проведенные численные эксперименты позволяют утверждать, что B 
непрерывной неоднородной автоколебательной среде с расстройкой собственной 
частоты вдоль пространственной координаты наблюдается образование кластеров 
частотной синхронизации. Кластерные структуры в непрерывной среде во многом 
подобны тем, что образуются в дискретной модели среды. В численных 

экспериментах при фиксированных шагах дискретизации зависимость средней 
частоты колебаний от координаты Q(X) в режиме идеальных кластеров может 
вести себя как разрывная функция. Она, как и в случае дискретной модели 
(цепочки автогенераторов), претерпевает скачки на границах кластеров. 
Наблюдается определенное отличие в поведении неоднородной непрерывной 

среды и ее дискретного аналога при вариации параметров, отвечающих за 
диффузионное взаимодействие и частотную расстройку. В частности, по-разному 
определяется граница области глобальной синхронизации. 

Данная работа частично поддержана Фондом гражданских исследований и 
развития (CRDF) и Министерством образования РФ (грант КЕС-006). Авторы 
благодарны Хованову И.А. и Шабунину А.В. за полезные советы и помощь в 
работе над статьей. 
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CLUSTER SYNCHRONIZATION IN INHOMOGENEOUS 
AUTOOSCILLATION MEDIUM 

А.А. Akopov, T.E. Vadivasova, V.V. Astakhov, D.D. Matyushkin 

Formation of clusters of frequency synchronization is studied for a continuous 
extended medium with linear mismatch of the natural frequency along a spatial 
coordinate. We compare the behavior of the continuous medium described by the 
equation in partial derivatives and of its discrete analogue in the form of a chain of 
oscillators. 
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