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ИССЛЕДОВАНИЕ ХАОТИЧЕСКОЙ ДИНАМИКИ КОЛЬЦЕВОГО 
НЕЛИНЕЙНОГО РЕЗОНАТОРА ПРИ ДВУХЧАСТОТНОМ 

ВНЕШНЕМ ВОЗДЕЙСТВИИ 

A.A. Балякин 

Рассматривается сложная динамика кольцевого нелинейного резонатора, 
содержащего среду с кубичной фазовой нелинейностью, при двухчастотном внешнем 
воздействии. Получена система связанных отображений Икеды, описывающая 
динамику амплитуд спектральных компонент. Проанализированы стационарные 
режимы колебаний и условия их устойчивости. Представлены результаты численного 
исследования сценариев персхода к хаосу. 

Введение 

Кольцевой нелинейный резонатор под внешним воздействием OTHOCHTCS K 

числу наиболее полулярных моделей нелинейной динамики [1-4]. Особое внимание 
этой проблеме уделяется в нелинейной оптике, где данная модель впервые была 
рассмотрена в работах Икеды и соавторов [5-8]. Разнообразные нелинейные 
явления, такие как мультистабильность и различные сценарии перехода K хаосу 
были изучены как теоретически, так и экспериментально [5-15]. Эти исследования 
представляют несомненный практический интерес в связи с перспективами 
использования кольцевых нелинейных резонаторов в качестве логических 
элементов в вычислительной технике [13] и устройств для защищенной передачи 
информации [14,15]. Отметим, что аналогичные системы могут быть реализованы 
не только в оптическом, но и в микроволновом диапазоне [16]. 

На рис. 1 представлено схематическое nzofipaxe}me оптического кольцевого 

нелинейного резонатора. Система возбуждается внешним сигналом Ё.(2). В случае 
гармонического входного сигнала при некоторых упрощающих предположениях 

(рассматривается динамика медленно меняющейся амплитуды сигнала, He 
учитываются эффекты дисперсии и поглощения в нелинейной  среде, 
пренебрегают дифракцией светового поля в резонаторе и инерционностью 
нелинейной среды по сравнению с временем запаздывания поля при обходе 
резонатора) для описания системы можно получить точечное отображение 

A, =4, +pA expi(IA, P+g). 1) 

Здесь A, - амплитуда сигнала после л-го прохода по резонатору; A - постоянная



Py амплитуда внешнего сигнала, возбуж- 
Еа =А+ ВЕ, ехр(х 'E-l . i(p) дающего резонатор; р - модуль коэффи- 

рта циента — отражения — (0<р<1); ф - 
i линейный набег фазы волны за время 

прохода по резонатору. Для определен- 
ности на рис. 1 изображена оптическая 
система, однако отображение (1) может 
быть — получено — для — кольцевого 

Рис. 1. Схематическое изображение кольцевого Резонатора любого типа, содержащего 
нелинейного резонатора под внешним воздей- Среду с кубичной  фазовой — нели- 
ствием нейностью. 

Динамика отображения (1) исследована с исчерпывающей подробностью 
(см., например, [3,13]). Показано, что при достаточно большой мощности 
падающего излучения периодические колебания на частоте внешнего воздействия 
становятся неустойчивыми, и в системе возникают пульсации с периодом, равным 
удвоенному — времени — запаздывания. Это  явление — получило — название 
неустойчивости Икеды. Дальнейшее увеличение амплитуды внешнего воздействия 
приводит сначала к переходу к хаосу через последовательность бифуркаций 
удвоения периода, а затем к трансформации фейгенбаумовского критического 
аттрактора в хаотический аттрактор Икеды, имеющий характерную спиральную 
конфигурацию [3,7]. 

В настоящей работе рассматривается случай, когда внешний сигнал E(r) 
является полигармоническим, то есть его спектр содержит несколько дискретных 
составляющих 0,00, 

" 
Е, = 2;-1"‘0;"'*9(1‘”‚‘)' 

где Ay=const. В разделе 1 показано, что B данном случае динамика медленно 
меняющихся амплитуд спектральных компонент описывается системой связанных 
отображений Икеды. В разделе 2 обсуждаются стационарные режимы колебаний и 
условия их устойчивости в случае двухчастотного воздействия. В разделе 3 

приведены результаты численного моделирования процессов перехода к хаосу. 
Показано, что добавление второго сигнала качественно меняет поведение системы 
по сравнению со случаем одночастотного воздействия. Таким образом, варьируя 
амплитуду и фазу одной из спектральных KOMIIOHEHT, можно эффективно 
воздействовать на характер колебаний другой компоненты, причем управляющий 
сигнал может быть достаточно слабым. Некоторые предварительные результаты 
были представлены в работах [17,18]. 

Отметим, что аналогичная задача уже рассматривалась ранее в работах [11] 
и [19]. Однако в этих работах He было проведено подробное изучение режимов 
сложной динамики и хаоса в широком диапазоне параметров. 

1. Связанные отображения Икеды 

Покажем, что при многочастотном внешнем сигнале динамику системы 
можно описать при помощи связанных отображений Икеды. Используем 

гамильтоновский формализм, который является одним M3 наиболее универсальных 
в теории нелинейных волн (см., например, [20,21]). Гамильтониан системы с 
кубичной фазовой нелинейностью можно записать в виде 

Н = Н, + Н +..,



Н, = Jo(k)a,a, dk, 

=0T, аааа о(НО -в К)а аК, ай, 

где а, - фурье-амплитуда волны с волновым числом &, & - дельта-функция Дирака. 
РЗССМОТРИМ поле волны в виде многочастотного пакета 

И {x t)expl(mt k т) () 1-! 

причем амплитуды A; считаются медленно меняющимися, а частоты ‹, СВяЗаны с 
волновыми числами k дисперсионными соотношениями © =w(k ). Для простоты 
будем полагать, что эги частоты не находятся в резонансных соотношениях. Также 
не будем учитывать дифракцию поля и инерционность нелинейности. В этом 
случае, как показано в работе [22], динамика амплитуд A; подчиняется системе 
связанных нелинейных уравнений Шредингера (НУШ) 

i(0A, Ior+V дА /дх) + (ш” 12)%A, 1дх? + (GAZY P+3 BilAP)A; = 0. (3) jeibji i 

В уравнениях (3) V ‘dm/dk групповые CKOPOCTH, @”; =а 2m/ailc2 - параметры 
дисперсии групповых скороггеи а коэффициенты B, В, определяются следующим 
образом 

в Ва ООа Тна еа Taaps): ® 
Система связанных НУШ (3) содержит два сорта нелинейных слагаемых. Первые, 
пропорциональные IAllej отвечают эффектам фазовой самомодуляции, вторые, 
пропорциональные 4; |2А при i# - эффектам фазовой кросс-модуляции, то есть 
перекрестного нелинейного взаимодействия различных спектральных компонент 
[23]. Отметим, что вклад кросс-модуляции в нелинейный набег фазы будет более 
сильным: так, если все коэффициенты T, . В (4) примерно равны, то В, 
примерно в два раза больше В, Таким образом когда частоты двух волн ра:ишчны, 
число слагаемых удваивается по сравнению с вырожденным случаем (см. [23]). 

Пренебрежем дисперсией групповых скоростей, тогда система (3) примет 

By=-2T, 

BUI 
(A /ot + УдА/дх) + (1A * + 2 B,JA1A, =0, (5) аба 

причем все групповые скорости предполагаются равными. Нетрудно найти 
решение уравнений (5) 

А{ху) = А (0,0-x/V)exp{(ix/V)[BJA(0, г-х/И)Р + ® „ВА (0.4-xIV)P]). (6) уИа 

Поскольку поле на левой границе нелинейной среды (B сечении х=0) складывается 
из суммы внешнего сигнала и сигнала, прошедшего по цепи обратной связи (CM. рис. 
1), граничное условие имеет вид 

Е(0,) = Е, + RE(l, -) (7) 

где г„ - время прохождения сигнала Mo цепи обратной связи; / - протяженность 
нелинейной среды; R - комплексный параметр обратной связи, который мы будем 
считать одинаковым для всех частот. Подставляя в граничное условие (7) 

соотношения (2), (6) и рассматривая динамику амплитуд в дискретные моменты 
времени, получим систему связанных отображений Икеды 

А!'д =А))+ рА"е.хр[і(В 1/\/|А‚"|2 +3 fi.,[/V\A."I2 + q))] (8) 

Здесь A=A, (х=0, г=пт), е„ - время запаздывания, p—IRl,:p=Arg(R) T 
далев s npocTO'ru положим — все к‹›эффициенты нелинейного



взаимодействия в гамильтониане равными: Тд__ ,%А_А:Т. Тогда, как видно U3 формул 

(4), Вуяв=-27, В‚=-47=28.  Ограничимся — рассмотронием  доухчаетотного 
возбуждающего сигнала. 'Тогда, вводя новые переменные А -> А/( BUV)IZ, A, A, | 
(Bl V)2, можно привести систему (8) к виду 

A" = Ay + pA, "expli(1A, "Р+214,"+ф,)], 
©) 

Ay = Ay, + pA,"expli(IA,"P+2IA, "P+g,)]. 

При A,=0 отсюда получаем одиночное отображение Икеды (1). 

2. Стационарные режимы колебаний и их устойчивость 

Стационарными будем называть режимы колебаний, когда амплитуды 
компонент сигнала не зависят от времени. Им отвечают неподвижные точки 

связанных — отображений  (9) А."=Аі°=с0пзъ. Для  стационарных — значений 
интенсивностей 1‚.=|Аі°|2, очевидно, Ёудем иметь уравнения 

1, = ,/(1+р?-2рсовФ,), (10) 

1, = I,/(1+p*-2pcos®,), (11) 

где [,=lA, |2 - интенсивности входных сигналов; Ф,‚=!‚‚+21]+‹р‚‚ iy=1,2. Уравнения 

(10), ‹11) представляют собой систему трансцендентных уравнений, которые могут 
быть решены только численно. На рис. 2 приведены примеры зависимостей /, (I, ) 
- передаточных характеристик, рассчитанных при различных значениях / 
Пунктирными линиями на рис. 2 нанесены прямые /,/(1+р)°. Как видно 3 
уравнений (10), (11), значения /, , лежат в следующих пределах: 

L) < 1 <IJ(1-p) (12) 

График на рис. 2, а соответствует случаю, когда второй сигнал отсутствует, 
1;,=0, и полностью аналогичен известной зависимости для передаточной функции 

нелинейного кольцевого резонатора, которая приведена во многих работах (см., 
например, [9,13]). Он наглядно иллюстрирует явления мультистабильности и 
гистерезиса, присущие данной системе. Ветви, имеющие отрицательный наклон, 
отвечают неустойчивым состояниям, для которых один из мультипликаторов 
больше единицы [13]. Восходящие ветви (на рис. 2 они выделены жирным) могут 
быть как устойчивыми, так и неустойчивыми. Соответствующий анализ 
проводится ниже. 

С увеличением интенсивности BTOporo сигнала  зависимости I,(Iy) 
усложняются, число ветвей увеличивается (рис. 2, 6, в). Важно, что при этом 
могут возникать такие участки восходящих Be’mefi, на которые невозможно 

попасть при плавном увеличении или уменьшении /), (на рисунке они отмечены 
точками). Для того, чтобы получить колебания с соответствующим значением 

интенсивности, необходимо или обеспечить близкие начальные условия, или 
двигаться весьма специфическим образом в пространстве параметров. Все это 
позволяет предположить, что и нестационарная динамика системы также бУдВТ 

усложняться. Отметим, что во всех случаях, представленных на этих рисунках, 
интенсивность ВТОРОЙ компоненты остается достаточно МЗЛОЙ‚ так что ее 

действительно можно трактовать как слабое управляющее воздействие (!,,<0.36, 
ср. ¢ I, на рис. 2). 

Теперь выполним анализ стационарных решений на  устойчивость.
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Рис. 2. Зависимости стационарных значений интенсивностей первого сигнала /| от МОЩНОСТИ 
входного сигнала ], построенные вдоль линии постоянной фазы ф,=л при Apy: @ - 0, 6 - 04,6 - 
0.6 и при значении ф=Зл/4: г - 0.6. Пунктирными линиями обозначены предельные значения 
интенсивности, определяемые по формуле (12). Устойчивые ветви передаточной характеристики 
выделены жирным. Стрелками показаны перескоки между различными устойчивыми ветвями 

Линеаризуя отображения вблизи неподвижной точки, после ряда преобразований 
можно получить характеристическое уравнение 

[и?-2ир(совФ, -/ 5Ф )+p?][*-2up(cos®,-1,sin®,)+p] = a3 

= 1602р / 5Ф sin®,. 

Здесь и - мультипликатор. Отметим, что члены в квадратных скобках B левой 
части (13) совпадают с характеристическими уравнениями для одиночного отобра- 
жения Икеды (1). Следовательно, правую часть (13) можно интерпретировать как 
коэффициент связи. 

Как известно, потеря устойчивости неподвижной точкой может происходить 
различными способами (см., например, [3]): в результате бифуркации удвоения 
периода (и=-1), касательной бифуркации (u=1), а также бифуркации Неймарка 
(пара комплексно сопряженных мультипликаторов и,=ехр(+!9)). Построим линии 
различных бифуркаций на плоскости параметров G‘am,cpl), анализируя характе- 
ристическое уравнение (13) численно. 3aMeTHM, что неподвижные точки, 
соответствующие ветвям передаточной характеристики с  отрицательным 
наклоном, неустойчивы вследствие касательной бифуркации. Таким образом, 
линии p=1 на плоскости — параметров — будут — ограничивать — области 
МУПЬТИСТабИЛЬНОСТИ и гистерезиса. 

Результаты расчетов представлены на рис. 3. Сплошными кривыми обозна- 
чены линии бифуркаций удвоения, штриховыми - линии касательных бифуркаций, 

пунктирными - линии — бифуркации Неймарка. — Вертикальные — прямые



соответствуют линиям, вдоль которых строились передаточные характеристики, 
представленные на рис. 2. Буквами A,B,...N обозначены точки жестких переходов 

с одной ветви передаточной характеристики на другую (см. рис. 2). Как видно из 
рис. 3‚ они совпадают с границами области гистерезиса, то есть касательной би- 

фуркации. Изменение фазы второго сигнала ф, качественно не влияет на динамику 
системы, поэтому мы всюду ограничились случаем ¢,=0. Представленные на рис. 3 
результаты периодичны по параметру @, с периодом 2. 

Рис. 3, а соответствует одиночному отображению Икеды. На нем видны 
границы области гистерезиса и линия бифуркации удвоения. При малых значениях 
амплитуды второго сигнала (рис 3, 6) изменения по сравнению с одиночным 
отображением сводятся к незначительным искажениям бифуркационных линий. 

Увеличение параметра А до 0.4 приводит к существенному усложнению границ 

бифуркаций различных типов. Появляются области — квазипериодического 

движения внутри границ бифуркации Неймарка (рис. 3, в). С ростом [, ОНИ 

увеличиваются в размерах, и в системе появляется две такие области, располо- 
женные на различных листах плоскости параметров (рис. 3,2). 

Пересечение и взаимное наложение линий различных бифуркаций отражает 

факт мультистабильности, который наглядно иллюстрируется представленными на 

рис. 2 передаточными характеристиками. Таким образом, следует ожидать, что B 
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Рис. 3. Карты динамических режимов на плоскости параметров (A @, ), построенные при p=0.5, 
Ф»=0 и А а - 0.0, 6 - 0.2, в - 0.4, г - 0.6. Сплошная линия - линия бифуркации удвоения, штриховая 
линия - граница области гистерезиса, пунктирная линия - линия бифуркации Неймарка. Тонкие 
линии отвечают случаю, изображенному на рис, 2, буквами обозначены соотвстствующие точки B 
пространстве параметров и на линии стационарной интенсивности первого сигнала



зависимости от направления движения по плоскости параметров можно будет 
наблюдать различные сценарии перехода к хаосу. В целом добавление второго 
сигнала приводит к уменьшению значений A ), при которых стационарные режимы 

остаются устойчивыми. . 

3 Результвты численного моделирования и их обсуждеиие 

Типичные результаты численного исследования нелинейной динамики 
системы связанных отображений (9) представлены на рис. 4 в виде серии карт 
динамических режимов на плоскости (A ,@,) при различных значениях А , (то 
есть, фактически, на плоскости параметров амплитуда - частота внешнего 
воздействия). Исследование системы связанных отображений (9) проводилось в 
широком диапазоне параметров. Для определенности все представленные ниже 
результаты получены при p=0.5, ¢,=0. В целом, с изменением параметров р и @, 
структура карт динамических режимов качественно не меняется. С увеличением р 
все пороги бифуркаций в целом снижаются, что обусловлено увеличением 
добротности колебательной системы, а изменение ¢, в основном приводит к сдвигу 
карт вдоль горизонтальной оси. 

Для идентификации динамических режимов строились фазовые портреты, 
бифуркационные диаграммы, определялся спектр ляпуновских показателей по 
методике Бенеттина [2,3]. В областях периодического движения все ляпуновские 
показатели отрицательны, для квазипериодического движения имеются три 
отрицательных показателя и один нулевой, в областях хаоса один из ляпуновских 
показателей становится больше нуля. Режимы гиперхаоса, когда имеются два и 

более положительных показателя, B данном случае отсутствуют. Сканирование 
плоскости параметров проводилось в направлении снизу вверх и слева направо. 
О’ГМЕ'ГИМ‚ что в силу того, что карты режимов являются многолистными, 

представленные рисунки не отражают, вообще говоря, всех особенностей 
динамики системы. Их вид будет меняться в зависимости от направления 

сканирования. 
Рис. 4, а соответствует случаю A,=0, то есть одиночному отображению 

Икеды (1). Цифрами обозначены области циклов различных периодов, штриховой 

линией - переход к хаосу 1o сценарию Фейгенбаума, Ch - области хаоса. Внутри 
хаоса существуют многочисленные области периодического движения, имеющие 

характерную конфигурацию cross-road area . На карте приведены только области 
на базе циклов периодов 3 и 4, которые имеют наибольшие размеры. Внутри 
каждой cross-road атеареализуется фейгенбаумовский каскад удвоений. Отметим, 
что построенная карта динамических режимов согласуется ¢ известными 

результатами (см., например, [24])!. 
При малых значения амплитуды второго сигнала изменения по сравнению с 

отображением весьма (1) незначительны и сводятся к некоторой деформации 
границ областей с различными типами колебаний (рис. 4, 6). Переход к хаосу, по- 
прежнему, происходит по тем же сценариям, что и в случае одночастотного 
сигнала. 

Увеличение Ay, до 04 (рис. 4, в) приводит к возникновению области 
квазипериодического движения, обозначенной на рис. 4, в буквой Q. Переход к 
квазипериодическому движению происходит в результате бифуркации Неймарка, 

1В работе [24] карта динамических режимов (рис. 3) построена на плоскости параметров, 
отвечающих A, и Мфв (1). Если mepecTponTs её в координатах А ф, то она будет периодической по 
фспериодом Ё: и совпадет с рис. 4,а данной работы.



Рис. 4. Карты динамических режимов системы. 
связанных — отображений — Икеды — (10) на 
плоскости параметров (4, @, ), построенные при 
0=05,0,=0 нга - 0.0, 2 - 0.2,в - 04,2 - 0.6,д - 
0.8. Цифрами  обозначены  области  циклов 
различных периодов; Ch - области хаотического. 
движения; О - области квазипериодики; пунктир - 
линия перехода к хаосу через разрушение 
квазипериодического движения; штриховая 

линия - переход K Xaocy по  сценарию 
Фейгенбаума 

то есть мягкого рождения инвариантной 

0.0 аа кривой. Отметим, что справа эта область 
п2 п 32 ¢ примыкает к области цикла периода 2. 

Если двигаться справа налево вдоль 

нижней границы области Q, то число вращения w будет плавно меняться от 1/2 до 

1. Внутри Q наблюдаются языки синхронизации с любыми рациональными 

значениями W из этого интервала. Наиболее крупные из них изображены на рис. 4, 

в-д, около них указаны соответствующие значения числа вращения. Следует 

напомнить, что карты режимов на рис. 4 построены только при одном 

определенном направлении сканирования, поэтому на рис. 4, в-д изображена, 
вообще говоря, только часть области О (ср. рис. 3, в). 

С ростом параметра А,, появляется уже несколько областей квазипе- 

риодического движения (ср. рис. 3, г). Становится возможным переход к хаосу 
через разрушение квазипериодического движения (линия перехода к хаосу 
показана пунктирной линией). Одновременно увеличиваются размеры языков 
синхронизации. Внутри некоторых из них реализуется переход к хаосу по 
сценарию Фейгенбаума, то есть удвоения периода резонансного цикла на торе. В 
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целом наблюдается существенное усложнение границ областей с различными 

типами колебаний. Границы области устойчивости цикла периода 1 сдвигаются вниз, 

что обусловлено увеличением нелинейности с ростом амплитуды второго сигнала. 
Следует напомнить, что переменные A, представляют собой огибающие 

спектральных компонент на частотах о), ,. Поэтому устойчивой неподвижной точке 

для отображений (9) в реальной системе соответствует, вообще говоря, квази- 

периодическое движение с двумя несоизмеримыми частотами. Для отображения 

Икеды — неподвижная точка  соответствует — стационарным — периодическим 
колебаниям на частоте внешнего сигнала. Колебания амплитуд A, приводят K 
модуляции сигнала. Мы считаем, что частоты fl)l " wz расположены достаточно 

далеко друг от друга (ю,-Ф,!>>2л/), так что их модуляционные спектры не 
пересекаются. Это позволяет, поставив на выходе полосовой фильтр, настроенный 
на одну M3 несущих частот, наблюдать динамику каждого W3 сигналов B 
отдельности. Первая бифуркация удвоения, то есть появление цикла периода 2 из 
неподвижной точки, таким образом, означает возникновение автомодуляции с 
периодом 2х. При этом в спектре появляются сателлиты, то есть компоненты C 
частотами , „+0,, где @,=л/с - частота автомодуляции. В нелинейной оптике 
данный тип иеустоичивосги‚ вызванный запаздывающим характером обратной 
связи, носит название «неустойчивости Икеды» [13]. В процессе перехода к xaocy 
no сценарию Фейгенбаума в спектре появляются все новые компоненты вида 
‚2+0,/2". Если же динамика амплитуд в отображении (9) становится квазипе- 

рио;шческпй это означает появление сателлитов вида © „+0, причем ©о#л/пт. 
Поскольку для данной системы характерны различные сценарии перехода K 

хаосу, существуют различные типы хаотических аттракторов. Первый тип, 
который мы обозначим С, соответствует аттрактору, возникшему на базе 
фейгенбаумовского каскада удвоений. Второй тип С отвечает аттрактору, 

сформировавшемуся после перехода к хаосу через разрушение квазипериодики. 
Последний тип С, соответствует аттрактору Икеды, который реализуется при 
сильной надкритичности [3,6]. Для одиночного отображения Икеды характерны 
только два M3 вышеперечисленных типов хаотических аттракторов: С, и С, При 
увеличении амплитуды сигнала происходит постепенный переход от первого типа 
ко второму. Фазовые портреты на плоскости Re(4,”) - Im(A,”) в различных 
режимах приведены на рис. 5. Показаны хаотический аттрактор типа С, 
возникший в результате каскада удвоений (рис. 5, а), хаотический аттрактор типа 
С (рис. 5, 6), и хаотический аттрактор типа Икеды (рис. 5, 6). 

Im(dn) Im(dy) 
10 

2.0 

1.0 

0.0 / 0.0 

-1.0 

-2.0 
-1.0 L -0.5 L L П 

05 10° Ке(4,) 00 05 10 15Re(4,) 00 1.0 20 3.0 Re(dy) 

a 6 8 
Ряс. 5. Различные типы хаотических аттракторов, наблюдающиеся B системе: а - типа С (py=n/6, 
А)=1.3); 6 - аттрактор  C, , образовавшийся после перехода к хаосу по сценарию. Рю:пшя - 
Tokenca (@ =372, Ару=1.5); в - аттрактор Икеды С, (фу=л, Ay;=2.5). Остальные значения 
параметров такие жс. как ина рис. 4,2 
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Re(4,) 

1.0 

=k 0.0 
0.5 1.0 1.5 20 Ao 0.5 1.0 1.5 20 о1 

а 6 
Рис. 6. Бифуркационные диаграммы вдоль линии 
: а -6, 6 - л, в - 32, построенные при 
плавном увеличении параметра A Остальные 
значения параметров такие же, как и на рис. 4,2 

Разнообразие сценариев перехода 

к хаосу иллюстрируют бифуркационные 
диаграммы, на которых отложены по- 
ложения Re(A,") при различных значе- 
НИЯХ А… вдоль линий постоянной фазы 

¢,=n/6 (рис. 6, а), л (рис. 6, 6) и Зл/2 
(рис. 6, в). Остальные параметры при- 
нимают те же значения, что и на рис. 4, 
г. Все диаграммы  построены — при 
плавном увеличении параметра 4,. 

При движении вдоль линии ф=л/б вначале происходит переход K хаосу по 
сценарию Фейгенбаума, в хаосе видно несколько окон периодического движения. 
При А,=1.5 фейгенбаумовский хаотический аттрактор С, начинает трансформи- 
роваться B аттрактор типа Икеды С, Однако при значении Ay =1.61 происходит 
гереход K периодическому движению через последовательность обратных 

бифуркаций удвоения. Затем при Ay =1.8 происходит жесткий переход K 
квазипериодическому движению. При дальнейшем увеличении параметра Ay 
инвариантная кривая мягко переходит в неподвижную точку. Наконец, при 
А,=2.25 происходит жесткий переход к хаотическому аттрактору типа Икеды. 

При движении вдоль линии ф=х (см. рис. 6, 6) с ростом параметра Ay из 
неподвижной точки мягко рождается инвариантная кривая (А,,=0.8), размеры 
которой вначале увеличиваются, 3aTeM вновь уменьшаются. При А,=1.1 
инвариантная кривая снова мягко переходит в неподвижную точку. При даль- 
нейшем  увеличении параметра входного сигнала Ay д0 1.25 система 
демонстрирует жесткий переход K хаотическому аттрактору типа Икеды С, 
Жесткий — характер — перехода к — хаосу — свидетельствует O — наличии 
мультистабильности. 

Наиболее сложно выглядит бифуркационная диаграмма, построенная вдоль 
линии ф=3л/2 (см. рис. 6, 6). Здесь можно выделить области существования всех 
трех описанных выше типов хаотических аттракторов. Имеются многочисленные 
фейгенбаумовские каскады удвоений, области квазипериодики и различных 

резонансов. При увеличении параметра A, M3 неподвижной точки мягко 
рождается инвариантная кривая (А,;=0.9). Затем линия ф=3л/2 проходит через 
области квазипериодики и язык синхронизации периода 3. На базе этого цикла 
последовательно происходят прямая и обратная бифуркации удвоения. Для 
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наблюдения полного каскада удвоений внутри языка синхронизации необходимо 
двигаться по плоскости параметров в другом направлении (см. рис. 4, 2). При 
дальнейшем увеличении параметра АШ наблюдается сложная последовательность 

чередования регулярных и хаотических режимов, причем возможны аттракторы 
всех типов: типа Икеды, типа С, и типа Со. Отметим, что при указанном 
направлении сканирования не удается наблюдать переход к хаосу через 
разрушение квазипериодического движения, и хаотический аттрактор типа СО 

возникает в CHCTEME жестко. 

Заключение 

В настоящей работе исследована сложная динамика кольцевого нелинейного 
резонатора, заполненного средой с кубичной фазовой нелинейностью, при 
многочастотном воздействии. Получена система связанных отображений Икеды, 

описывающая поведение амплитуд спектральных составляющих. Установлено, что 
при многочастотном внешнем воздействии наблюдается качественное изменение 
динамики излучения, прошедшего через резонатор. Появляется возможность 
управления динамикой выходного сигнала. При этом необходимо отметить, что 

интенсивность второй компоненты может быть достаточно малой. Варьируя 
амплитуду и частоту второй компоненты входного сигнала, можно добиться либо 
появления хаотических колебаний в тех условиях, когда одночастотный сигнал 

демонстрирует регулярное поведение, либо наоборот, осуществить подавление 
хаоса. Наблюдается новый по сравнению с одиночным отображением Икеды (1) 
тип неустойчивости, который вызван эффектами фазовой кросс-модуляции, TO 
есть — нелинейного — взаимодействия — различных — спектральных — компонент. 
Соответственно, переход к хаосу может происходить не только по сценарию 
Фейгенбаума, но и через разрушение квазипериодического движения. Полученные 
результаты представляют интерес не только с теоретической точки зрения, но и в 
связи с перспективами использования кольцевых нелинейных резонаторов в 
качестве элементов логических устройств вычислительной техники [13] и 
устройств защищенной передачи информации [14.15]. 

Отметим, что отображение Икеды MOXHO получить не только для 
кольцевого нелинейного резонатора, но и для других систем, например, для 
нелинейного осциллятора под периодическим импульсным воздействием [24,25]. 
Очевидно, что система связанных отображений, изученная в данной работе, будет 
описывать нелинейный осциллятор при квазипериодическом двухчастотном 
воздействии. 

Автор благодарен Рыскину Н.М. за полезные советы и обсуждение 
результатов работы. Работа выполнена при финансовой поддержке грантов 
CRDF (Award № КЕС-006 ), Российского фонда фундаментальных исследований 
(проект № 03-02-06257). 
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Complex dynamics of a nonlinear ring cavity filled by medium with cubic phase 
nonlinearity under multi-frequency driving 15 considered. System оё coupled Ikeda maps 
to describe the dynamics of spectral components was derived. Regimes of steady-state 
oscillations and their stability conditions are analyzed. The results оё numerical 

simulation of transition to chaos in the case of two-frequency driving are presented. 
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