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ВОЛНА КЛАСТЕРИЗАЦИИ В ЦЕПОЧКЕ СИСТЕМ, 
КАЖДАЯ ИЗ КОТОРЫХ СОДЕРЖИТ НАБОР ЭЛЕМЕНТОВ 

СВНУТРЕННЕЙ ГЛОБАЛЬНОЙ СВЯЗЬЮ 

A.C. Иванова, С.П. Кузнецов 

Исследуются цепочки систем (ячеек), каждая M3 которых содержит набор 
элементов с внутренней глобальной связью. Показано, что при определенных условиях 
в этих моделях реализуется феномен распространения волны кластеризации, 
состоящий в том, что образ, записанный первоначально в одной ячейке, в ходе 
временной эволюции системы формируется и в связанных с ней ячейках. 

Введение 

Исследование и  использование принципов  обработки — информации, 
реализующихся в естественных нейросистемах (мозг человека и Животных) 
представляет фундаментальный интерес и является одним из магистральных 
направлений развития современной науки [1]. 

Известны два основных подхода к построению моделей нейроподобных 
систем. ПСрБЫ_Й подразумевает по возможности TOYHOE воспроизведение деталей, 

выявленных при изучении биологических систем [2]. Второй заимствует из 
биологии только самые ОбЩИВ моменты - существование большого числа 

элементов (каждый из которых отвечает индивидуальному нейрону) и развитой 
системы связей между этими элементами [3]. С точки зрения формулирования 
общих принципов обработки информации, которые воспроизводили бы свойства 
биологических нСЙрОН.НЬХХ СБТЕЙ, и для построения технических систем, 

реализующих эти принципы, именно второй подход представляет большой интерес. 
В его рамках, B свою очередь, можно выделить два направления. 

Классической реализацией одного считается модель Хопфилда [4], когда в 

качестве индивидуального элемента берется система с предельно простой 
ДЪШЗМЕШ(ОЙ, а все нетривиальные динамические и Ш‹!фОрМЗЦИОННЬЮ свойства и 

процессы (например, способность к распознаванию образов, ассоциативная 
память) обусловлены сложной (и варьируемой в процессе «обучения») структурой 
связей между элементами. Другой подход, изначально предложенный ' японским 
исследователем Канеко [5], в каком-то смысле противоположен: индивидуальный 
элемент предполагается способным демонстрировать сложную динамику и Xaoc, а 
структура связей считается достаточно простой. Эта модель обладает сложной 

нетривиальной динамикой и представляет собой набор эволюционирующих в 

дискретном времени элементов (квадратичных отображений), каждый из которых 
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связан с каждым другим одинаковым образом (глобальная связь). Исследования 
Канеко и других авторов продемонстрировали богатую феноменологию этой 
модели [5-8]. В частности, было обнаружено явление, названное кластеризацией, 
которое состоит B TOM, что в процессе динамики спонтанно формируются группы 
элементов - кластеры, такие, что мгновенные состояния точно совпадают для 
элементов, относящихся к одному кластеру. Возможность сосуществования 

аттракторов с различным числом кластеров при одних и тех же значениях 
параметров системы, очевидно, дает возможность для хранения информации, а 
управление этими состояниями можно использовать для обработки информации. 

Как известно, одной W3 первых продуктивных концепций, предложенных B 
контексте проблемы создания искусственного интеллекта, был перцептрон [9]. 
Это нейросеть, в которой элементы («нейроны») расположены B виде нескольких 
слоев, а передача возбуждения осуществляется от слоя к слою (рис. 1, а). 
Интересное развитие идеи Канеко состоит в TOM, чтобы соединить ее с идеей 

перцептрона и рассмотреть сеть из последовательности слоев, такую, что 

AANY & 

Рис. 1, Схематическое изображение многослойного перцептрона [9] (@), цепочки ячеек © 
глобальной внутренней связью и однонаправленной связью элементов с партнерами в соседней 
ячейке (6) и цепочки ячеек со взаимной связью (8) 
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индивидуальные элементы представлены квадратичными отображениями, связь 

между элементами в пределах каждого одного слоя является глобальной, и 

добавлена попарная связь между элементами, относящимися к соседним слоям. 

Таким образом, мы приходим к одномерной дискретной среде, построенной из 

связанных между собой ячеек, каждая из которых состоит W3 набора элементов с 

глобальной связью (рис..1, 6, в). Цель данной работы заключается в исследовании 

динамики такой модели, что представляет очевидный интерес с точки зрения 

выяснения возможностей подхода Канеко и его обобщений для описания и 

объяснения информационных процессов в нейросетях. 

В разделе 1 вводится система, представляющая собой строительный блок для 

конструирования рассматриваемых далее цепочек. Это обобщение модели Канеко 

- совокупность элементов, динамика которых описывается  одномерными 

квадратичными отображениями, с двумя типами глобальной связи. В разделе 2 

строятся модели цепочек с однонаправленной и взаимной связью, а в разделе 3 

изложены результаты численного моделирования динамики этих моделей. 

Основной результат состоит в TOM, что продемонстрирован существенно новый 

феномен - волна кластеризации: в ходе временной эволюции системы кластерная 

структура, заданная первоначально в одной ячейке (которую можно трактовать 

как «образ»), передается соседним ячейкам, а затем постепенно распространяется 

на остальные элементы цепочки. В системе с однонаправленной связью 

реализуется совершенная волна кластеризации, B системе с взаимной связью её 

распространение характеризуется своего рода диссипацией, проявляющейся B 

постепенном размывании образа. 

1. Модель с двумя типами глобальной связи 

ПРИМБМ, что динамика  изолированного — индивидуального — элемента 

описывается квадратичным ОТОбРЗЖеНИВМ 

Х.а =AX)=1-0X2, @ 
и построим сначала систему с глобальной связью, которая далее будет 

использоваться как ячейка при конструировании цепочки. 
В свое время для двух связанных элементов типа (1) на основе 

ренормгруппового (РГ) анализа было обнаружено, что слабая связь между 

отображениями представляется в общем случае как комбинация двух типов CBS3H, 
инерционной и диссипативной [10-13]. В области перехода к хаосу оба этих типа 

связи характеризуются принципиально разными свойствами по отношению к РГ 

преобразованию, причем B отличие от диссипативной связи, инерционная может 

приводить к самопроизвольно возникающей нетривиальной динамике не только в 
области хаоса, но и в области регулярного поведения индивидуальных элементов. 

Достаточно общая форма записи уравнений двух связанных систем имеет вид 

X, ., (1) =X, (1)) +&,(AX,(2)-AX, (1)) + &,X, (2)-Х, (1)), 

X, 1(2) =X, (2) + £, (AX,(1)-AX,(2)) + (, (1)-X, (2)), 

где X, (i), i=1,2 обозначает состояние !-го элемента B л-й момент дискретного 
времени, €, и &, - два параметра связи. В уравнении (2) член с /(Х) соответствует 
диссипативной связи, тогда как линейный член представляет собой комбинацию 

инерционной и диссипативной связи, хотя вклад диссипативной связи относительно 

мал. Как следует из анализа в работе [14], коэффициенты €, и €, выражаются 
через коэффициенты диссипативной €, и инерционной €, связи следующим 

образом: 

@ 
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e =¢,+0088, e,=¢ 3) 

Систему с глобальной связью можно мыслить как набор элементов, каждый 

из которых попарно связан с каждым другим. 'Тогда рассмотренные выше два типа 
взаимодействия также могут быть отнесены к системам с глобальной связью. 

Уравнение для системы, в которой присутствуют оба типа глобальной связи, 
можно записать B следующем виде: 

N 

X,(0) = (1e)AX, (D) - X, (i) + (&,/N) 2, X, () + (E,/N)E,.':X,,(J‘)» @) 
тде N - полное количество элементов B CHCTEME, предполагающееся достаточно 
большим. 

2. Модель в виде цепочки связанных ячеек с внутренней 
глобальной связью 

Перейдем теперь K моделям в виде совокупности слоев или ячеек, каждая из 
которых описывается с помощью уравнения (4). Положим, что для любых двух 
соседних слоев установлено попарное соответствие между элементами одного и 
другого слоя, и связь вводится между соотнесенными друг с другом элементами. 
Эта связь может быть задана по-разному. 

Одна возможность COCTOHT B TOM, что информация может передаваться от 

слоя к слою только в одном направлении, и динамика последующих слоев не 
влияет на динамику предыдущих. Это однонаправленная связь. Другой вариант 
ттаков, что связь между слоями является взаимно СИМ'МСТРИ"-ШОЙ, то есть КВЖШ:!.Й 

слой оказывает влияние на соседние с ним CJIOH. 

В общем случае связь между элементами, относящимися к разным слоям, 
должна представляться как комбинация инерционной и диссипативной связи. В 
данной работе, однако, для определенности будем считать, что эта связь чисто 
диссипативная. 

С учетом сделанных предположений, систему уравнений для цепочки с 

однонаправленной связью формулируем следующим образом: 

ха =AU, 1) + (6/N)Z [RGB AX К)) + 

N E XX, )] + Х/ () -Х) 

а для цепочки с взаимной связью - B виде 

X0 =ЛХ,/0) + (г\/і‘/)Ё:,[/‘(Х,‚’(Ю) -7,/0)] + E/NEXARX D) + ® 

+q2fX (D) - FX @) - ЯХ () 

где, напомним, f(X)=1-AX? есть нелинейная функция, отвечающая логистическому 

отображению; л - дискретное время; i - индекс элемента; } - индекс ячейки; №- 

число элементов в каждой ячейке; e, и ¢, - параметры глобальной связи; 4- 

параметр связи между элементами, относящимися к разным ячейкам. 

(©) 

3. Численные эксперименты и волна кластеризации 

Говоря об информационных аспектах динамических процессов в моделях 

рассматриваемого класса, будем иметь ввиду плоские изображения (образы). 

Будем полагать, что элементы, относящиеся к каждой ячейке (слою), в количестве 
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№=!?, где г - целое число, расположены B виде двумерной квадратной решетки 
пикселей размера гхг (r= 10, следовательно, в каждой ячейке 100 элементов). 

Значения динамической переменной, отвечающей каждому элементу, будем 
ассоциировать с цветом, приданным соответствующему пикселю. Пиксель обозна- 

чается белым, если значение динамической переменной соответствующего 
элемента Х J(i)<X®, и черным, если Х /(1)>Х®. Здесь X®=[(1+41)!-1]/(21) отвечает 
неподвижной точке индивидуального одномерного отображения (1). В одной из 
ячеек начальные условия таковы, что записан образ - круг, а во всех остальных 

заданы СПУЧЕЙНЬ!МИ‚ 

На рис. 2 показана серия диаграмм, относящаяся к случаю цепочки с одно- 
направленной связью и иллюстрирующая состояние цепочки на нескольких вре- 

менных шагах. Глобальная связь элементов внутри ячеек считается линейной, то 
есть преимущественно инерционной: е,=0, £,=0.2. Остальные параметры №=0.8, ¢=02. 

Если бы связи между ячейками не было, то изображение в каждой ячейке 
(слое) оставалось бы таким же, как в первой строке, с изменением цвета каждого 
пикселя со светлого на темный на каждом шаге, поскольку заданное значение 
параметра соответствует циклу периода 2. 

В присутствии связи, однако, можно видеть, как после примерно 10 итераций 
тот e образ, какой был записан в первой ячейке, появляется во второй и третьей 
ячейках, то есть B них реализуется двукластерное состояние, повторяющее по 
структуре состояние первой ячейки. В двух последующих ячейках он также 

После 20 итераций 

е Yo 
После 30 итераций 

е е 1е [1@ 
После 40 итераций 

Рис. 2. Распространение волны кластеризации в ячейках глобально линейно связанных отобра- 
жений с однонаправленной связью при - A=0.8, £=0.2,¢=0.2 
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различается, но не так четко. В дальнейшем образ постепенно формируется BO 
всех последующих ячейках. 

В силу однонаправленного характера связи, обратного воздействия ячеек со 
случайным состоянием на предыдущие нет, и образ в итоге приобретает 

совершенную структуру - происходят только колебания элементов внутри каждой 
ячейки между двумя значениями, отвечающими циклу периода 2. 

В случае, когда значения параметров соответствуют турбулентной фазе 
Канеко [5] и каждая подсистема демонстрирует хаотическую динамику, происходит 
разрушение четкой структуры образа в первой ячейке и сложной структуры 
остальных. Но при этом перед разрушением образ, задававщийся в первой ячейке, 
формируется во всех последующих, хотя и в размытом виде (рис. 3). 

Таким образом, при указанном выборе связи между ячейками и внутри них 
осуществляется передача информации вдоль по цепочке. В случае периодической 

динамики каждой ячейки эта передача происходит без искажения. С динамической 
точки зрения, процесс можно интерпретировать как распространение волны 

После 15 итераций 
R 

После 25 итерации 

После 32 итерации 

Рис. 3. Распространение волны кластеризации в ячейках глобально линейно связанных 
отображений с однонаправленной связью при №=1.7, £=0.2, ¢=0.2 
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Начальные ycnos 

итераций 

Ф8 3 

10 итераций 

еа B A 
е 

AT 

MTepaqufi 

После 35 итераций 

Рис. 4. Распространение волны кластеризации в ячейках глобально линейно связанных 
отображений со взаимной связью ближайших соседей при №=1.2, е=0.2, ¢=0.1 

кластеризации. В случае хаотической динамики информация искажается, однако 
ее распространение все же прослеживается BO всех ячейках. 

РЗССМОТРИМ теперь цепочку из ячеек с взаимной связью между элементами- 

партнерами, относящимися к ячейкам - ближайшим соседям (6). Граничные 
условия считаются периодическими, то есть наша цепочка представляет собой, по 
существу, замкнутое кольцо из ячеек с внутренней глобальной связью. Для опре- 
деленности рассмотрим случай €,=0, когда внутренняя связь между элементами B 
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каждой ячейке линейная (то есть преимущественно инерционная), а связь между 
ячейками диссипативная. 

Численное моделирование проводилось аналогичным образом, как для 
цепочки с однонаправленной связью. Для одной ячейки (на рисунке - центральной) 
начальные условия таковы, что в ней задан образ в виде круга. Во всех остальных 
ячейках начальные условия выбраны случайным образом. Интересно посмотреть, 
сохранится ли в случае взаимной связи описанный в предыдущем разделе феномен 
распространения волны кластеризации. 

На рис. 4 показана серия диаграмм, иллюстрирующая состояние цепочки на 
нескольких временных шагах при A=1.2, е,=0.2, ¢=0.1. Так как соседние ячейки 
взаимно действуют друг на друга, то происходит размывание четкого образа B 
центральной ячейке, однако можно наблюдать постепенное распространение 
образа, хотя и не воспроизводящегося идеально точно, по другим ячейкам. Сначала 
образ круга проявляется в ближайших соседних ячейках (через 5-10 итераций). 
Затем копии круга начинают в некоторых ячейках проявляться, а в некоторых 
исчезать. Например, после 20 итераций можно видеть образ круга во всех ячейках 
(B нашем случае их выбрано семь), а после 35 итераций круг виден только B 
первой, пятой и седьмой ячейках. Структура цепочки такова, что полного 
размывания образа круга не происходит. 

TakuM образом, процесс распространения кластеризации в данном случае 
также наблюдается, но он сопровождается постепенным «размыванием» исходного 
образа, а также его вновь возникших копий в других ячейках. Волна кластеризации 
подвержена действию флуктуаций, обусловленных присутствием случайных 
начальных условий, иными словами, информационное содержание образа 
испытывает диссипацию в процессе распространения. 

Заключение 

В данной работе рассмотрены модели в виде цепочек, COCTOAIIMX U3 
подсистем, каждая из которых представляет собой систему глобально связанных 

отображений и демонстрирует сложную динамику. Показано, что в таких цепочках 

возможен феномен распространения волны кластеризации, состоящий в TOM, что 

образ, записанный первоначально в одной ячейке, в ходе временной эволюции 

системы формируется и в связанных с ней ячейках. Условием реализации этого 

феномена является такая структура связи между ячейками, когда связь 

осуществляется между индивидуальными элементами-партнерами в PasHbIX 

ячейках. Можно ожидать, что обнаруженный феномен окажется полезным для 

систем, предназначенных для обработки информации, и описания феноменологии 

сложных моделей нейросетей, исследуемых B контексте проблемы искусственного 

интеллекта. 

Работа выполнена при поддержке Минпромнауки в рамках договора с 

ИПФ РАН и гранта РФФИ № 03-02-16074. 
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WAVE ОЕ CLUSTERIZATION IN А CHAIN ОЕ COUPLED CELLS ЕАСН ОЕ 
WHICH IS COMPOSED OF A SET OF GLOBALLY COUPLED ELEMENTS 

A.S. Ivanova, S.P. Kuznetsov 

We study chains оё cells each оё which 15 а set оЁ globally coupled elements. Under 
definite conditions, we observe numerically propagation of a wave of clusterization: an 
image presented originally in one cell is formed gradually, in а course оЁ evolution in 
time, also in other cells of the chain. 
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