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ФРАКТАЛЬНОЕ БРОУНОВСКОЕ ДВИЖЕНИЕ 
В ДИСКРЕТНЫХ МОДЕЛЯХ ВИРТУАЛЬНОГО КАТОДА 

В.Н. Корниенко, А.П. Привезенцев 

В работе проведено сравнение результатов  моделирования  динамики 
виртуального катода для детерминированной модели плоских листов и простой 
вероятностной модели. Показано, что стохастическая составляющая движения центра 
масс для вероятностной и детерминированной моделей имеют вид фрактального 
броуновского движения. 

1. Моделирование колебаний электронного потока в диодном промежутке в 

режиме сверхкритического тока с использованием детерминированных алго- 
ритмов [1-3] показало, что в динамике этой системы сосуществуют и взаимно 
трансформируются хаотическая и регулярная компоненты. Спектры мощности 
временных  реализаций — усредненных — характеристик — виртуального — катода 
(например, наведенного тока), даже при условии инжекции в промежуток 
идеального моноэнергетического потока зарядов, представляют суперпозицию 
серии эквидистантных пиков и достаточно интенсивного широкополосного шума. 
Такой вид спектра свидетельствует о сложном характере динамики потока, 
типичном для открытых нелинейных систем вдали от равновесия [4]. Появление 
хаотических пульсаций малой амплитуды на временных масштабах, существенно 
меньших периода крупномасштабных, регулярных колебаний в динамике 
виртуального катода связано, по-видимому, с разделением инжектируемых B 
промежуток зарядов, на пролетные и отраженные. 

В ряде работ при анализе механизма генерации излучения в виркаторе 
использовались методы теории возмущений, основанные на представлении 
сверхпредельного потока пространственного заряда ансамблем  нелинейных 
детерминированных осцилляторов. При этом для описания динамики виртуального 
катода используются такие понятия как «частота колебаний электронов в яме 
пространственного заряда», «частота колебаний виртуального катода как целого» 
и синхронизации этих частот. Хаотическая составляющая динамики потока при 
этом практически игнорируется. 

Ограниченность такого подхода становится очевидной при анализе работы 
одной из эффективных моделей виркатора - редитрона. Отраженные виртуальным 
катодом электроны в редитроне перехватываются электродом и осциллирующих 
зарядов не образуется. 

Целью настоящей работы является исследование простого модельного 
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cnyqam{om процесса, КОТОрЫй может служить основанием для ВСРОЯ'ГНОС’ГНОЙ 

модели динамики виртуального катода. В рассматриваемой модели разделение 
частиц на пролетные и отраженные представляется случайным процессом, 
временные реализации которого естественным образом сочетают периодическую 

(в среднем) и шумовую компоненты. 

2. Для пояснения  физических  соображений, составивших — основу 
исследуемой модели, рассмотрим задачу об инжекции потока электронов, 
ускоренных потенциалом V, в эквипотенциальный промежуток шириной 4. 
Безразмерн‚ым параметром, определяющим характер динамики системы, может 

служить отношение плотности тока инжекции / „„ к критической плотности тока [5] аж 

=l 

где j,=32¢/(9d)(2e/m)'?V3"2, е/т - отношение заряда электрона K его Macce. 
Параметр а связан с невозмущенным углом пролета зарядов @ по плазменной 
частоте Ш’ 

=%/ 

где 6= d/v, v=(2eV /т)'? [6]. 
ак известно, стационарное решение самосогласованных уравнений 

динамики пространственного заряда в диодном промежутке зависит от параметра с 

гистерезисным образом [5]. При 0<а<1 может существовать стационарный поток с 
полным пролетом. Для TOKOB, удовлетворяющих условию l2< а < ©, существует 
стационарное решение с виртуальным катодом. При этом инжектируемый поток в 
точке формирования виртуального катода  разделяется на ‘пролетный H 
отраженный. Стационарное разделение инжектируемого потока обеспечивает 
неустойчивый баланс кулоновских сил отталкивания, изменения импульсов частиц 
в пролетном пространстве и их энергии. Относительное число частиц с 
различными типами траекторий и их кинематические характеристики CO временем 

не изменяются. В силу неуСТОЙ'-ШВОС'ГП стационарного потока, на практике, 

формируется режим нестационарных колебаний, в котором кинематические 
параметры траекторий пролетных и отраженных частиц (время пролета, точки 
поворота, скорость ВЬ]ПС’Г&) меняются B достаточно широких пределах. В потоке 

устанавливаются «в среднем» близкие к периодическим  релаксационные 
колебания, B которых чередуются процессы — накопления — (преобладают 
отраженные частицы) и сброса заряда (преобладают пролетные частицы). При 
этом для достаточно малых интервалов времени влета разделение зарядов по 

принципиально различным видам траекторий (пролетные и отраженные) 
происходит непредсказуемым образом. Изменение числа пролетных и отраженных 
частиц BO времени, можно считать реализацией случайного процесса. Об этом 
свидетельствует — 6-образный  характер  изменения — корреляций — локальных 

параметров потока с виртуальным катодом и фрактальная структура реализаций 
усредненных по потоку характеристик [1,3]. 

Неопределенность в типе траекторий сохраняется при произвольно малой 
сетке в области времен инжекции. Возникает ситуация характерная для 
неустойчивых нелинейных систем с BBICOKOM чувствительностью к начальным 

УСЛОБИЙ'М. B силу TOTO, что реально возможны операции с числами, имеющими 

конечное число десятичных знаков, детерминированное моделирование ПОДОбНЪТХ 

систем с большим числом частиц приводит к необратимому стохастическому 
характеру результатов [7,8]. 

Рассмотренные особенности динамики виртуального катода дают основание 
полагать, что его поведение может быть описано достаточно ПрО(ГГОЙ Ш&СКРЭ’ГНОЙ 
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вероятностной моделью. В силу универсальности процессов, происходящих B 
различных системах с критической динамикой, исследование их простых моделей 

не только помогает правильно понять происходящие в них процессы на 
качественном уровне, HO и получить количественные характеристики этих 

процессов [6,9,10]. 
Основным требованием к рассматриваемой модели при ее построении была 

близость спектральных и фрактальных характеристик реализаций центра тяжести 
потока частиц в вероятностной модели [11] и динамической модели плоских листов 
для виртуального катода [1,3]. Теоретической основой стохастической модели с 
интенсивной регулярной компонентой является хорошо исследованная схема 
случайных блужданий. Как известно [12], процесс одномерных случайных 
блужданий на ограниченном интервале имеет детерминированный временной 

масштаб, который задается средним временем достижения границы. Для 
обеспечения колебательного характера процесса в модели введена гистерезисная 
зависимость вероятностей перехода от положения центра тяжести потока. Такая 
зависимость позволяет моделировать процесс чередования накопления и сброса 
заряда в потоке с виртуальным катодом. Следует отметить, что рассматриваемая 
модель относится к области сверхкритического тока а>) и не может 
претендовать на полное описание потока пространственного заряда. 

Допустим, что частицы равномерно поступают в промежуток 0 <х < 1 через 
точку х=0 с временным интервалом Al и единичной скоростью. Динамика частиц 
определяется итерационным процессом 

Хы = X+ Vi Ay ® 

где 0 <x,< НЫ 1\/„!:1; & - номер частицы; i - номер шага 1o времени; k=1,2..N; N - 

полное число частиц в текущий момент времени. Величина очередного шага 
частицы по времени определяется равенством Af =Aflgl, где g - случайная 
величина с нормальной функцией распределения. Скорость k-# частицы может 
случайным образом изменить знак при переходе через точку X, „ определяющую 
положение центра масс системы B /-Й момент времени 

N 
x,; =2 х IN. 

Таким  образом MOfeNMpYeTCs разделение частиц на пролетные и 
отраженные. Введем вероятность изменения знака скорости Py, =-v, )=q и 
вероятность ее сохранения Plv, . =v, }=р, р+9=1, которые B дальнейшем будем 
называть вероятностями перехода. Как отмечалось выше, для моделирования 
процесса накопления и сброса заряда вводится зависимость вероятностей перехода 
от положения центра масс. Эта зависимость имеет гистерезисный вид 

В, s 0< х <х 

Plx)= @ 
p, пля х © х, < я 

где x,>%,, p;> 1y, р,<\М). 
Гистерезис Р(х‚) обуславливает периодичность процесса «в среднем», 

поскольку каждый раз при достижении центром масс границы гистерезиса, 
направление его дрейфа, определяемое разностью -, изменяется. Вероятностный 
характер рассматриваемого процесса аналогичен классической задаче о первом 
достижении границы процессом диффузии (задача o разорении). Период 
колебаний  определяется средним  временем — движения  между — границами 
гистерезиса (2). Относительная интенсивность «периодической» и шумовой 
компонент процесса определяется дисперсией времени первого достижения 
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границы гистерезиса. Оценки, проведенные по результатам аналитического 
решения простейшей задачи случайного блуждания [12], показывают, что при 
F,~0.8, P~02 и x-x~1/4 дисперсия и среднее значение времени первого 
достижения границы сравниваются и периодическая компонента поглощается 

флуктуациями. 
Среднее  время  достижения — границы — гистерезиса, — определяющее 

периодическую — составляющую  процесса, даже для  простейшего  случая 
марковского процесса случайных блужданий одной частицы является достаточно 
сложной функцией вероятностей перехода и ширины области гистерезиса L, =x -x,. 
В рассматриваемой модели последовательность значений центра тяжести X, 
является скользящим средним случайных координат X, и поэтому определяет 
немарковский случайный процесс. Далее будет показано, что это процесс ¢ 
памятью — (персистентное° броуновское движение). Полное — исследование 
зависимости среднего периода от параметров модели достаточно сложно. Однако, 
как показали численные расчеты, для значений р, близких к единице и достаточно 
малых значений p, существует область значений ширины гистерезиса, для которой 
средняя частота периодической составляющей процесса @ возрастает с 
уменьшением ширины по закону близкому к линейному w~w (1-L,). 

Известно, что с увеличением параметра о. положение виртуального катода 
приближается к электроду, через который производится инжекция. Область 

локализации виртуального катода уменьшается, а частота колебаний увеличи- 
вается. Росту степени надкритичности в рассматриваемой модели соответствует 

приближение правой границы гистерезиса к плоскости инжекции. В силу условия 

0<x,<x, происходит естественное уменьшение L,, и увеличение частоты колебаний 
центра масс потока. 

Возможность реализации описанного выше режима случайных блужданий с 

периодической составляющей зависит от положения границ  гистерезиса 

относительно двух точек равновесия потока. Эти точки определяют положение 

центра масс потока х„ при условии, что инжектируемые и отраженные частицы C 

одной стороны — уравновешены пролетными частицами с другой стороны. 

Уравнение для координаты точки равновесия имеет вид 

(14q)x,2 = p(1-x, ). 
дВуМ возможным значениям вероятности перехода соответствуют два положения 

равновесия 

х„(Р) = [(1+2q/p)"* - 1]/24), p+q=1. 3) 

Направление регулярного дрейфа меняется при достижении центром тяжести 

границы гистерезиса, если выполнены условия X, (P,)SX, x,Srw(pf). При 

проникновении одной из точек равновесия внутрь области гистерезиса в системе 

происходит конкуренция режима периодического дрейфа между границами 

гистерезиса и флуктуациями около точки равновесия. В этом случае для 

реализаций х., наблюдается типичная картина перемежаемости. Колебания, 

близкие к периодическим, с амплитудой порядка L, беспорядочно сменяются 

режимом хаотических флуктуаций вблизи точки равновесия с существенно 

меньшей амплитудой. При более глубоком проникновении точки равновесия В 

область гистерезиса система переходит в режим антиперсистентной формы 

фрактального броуновского движения. 

* Персистентность - свойство сохранения тенденций. 
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3. Для иллюстрации адекватности описанной вероятностной модели сравним 
результаты численного расчета центра тяжести потока по итерационной схеме (1), 
(2) с результатами, полученными для колебаний виртуального катода в рамках 
гамильтоновской формы модели плоских листов, достаточно подробно описанной 
в работе [1]. В работах [1,13] было показано, что в области гистерезиса 
стационарных состояний по безразмерному току \/э<а<1 можно получить два вида 
колебательных режимов виртуального катода. Первый режим (низкочастотная 
мода) формируется, если начальное распределение частиц  соответствует 
неустойчивому стационарному потоку с полным пролетом. Второй режим 
(высокочастотная мода) формируется M3 начального состояния, соответствующего 
стационарному потоку с виртуальным катодом. 

Изменяя параметры вероятностной модели (размер области гистерезиса L, 
значения p, p, и шаг по времени), можно добиться достаточно хорошего 
соответствия спектров мощности реализаций детерминированной и вероятностной 
моделей. Для анализа и сравнения фрактальных свойств динамики плоских листов 
и вероятностной модели рассмотрим зависимость стандартного отклонения 
приращений реализации как функцию сдвига по времени Т 

Std(T) = (E{(x(++T) - x(0) ] - (E[x(r+T) - х(г)])?}!г, 
где E[.] - означает математическое ожидание величины в квадратных скобках. Для 
фрактального броуновского движения, введенного Мандельбротом и Ван Нессом 

[14], справедливо равенство 

log(Std) = Hlog(T) + const. (4) 

Свойства процесса определяются параметром Н. Для Н =М, это обычное 
броуновское движение, которое является марковским процессом. Для Н #\/) 
процесс марковским не является и последовательные шаги статистически 
зависимы. В случае Н>1/2 фрактальное движение обладает  свойствами 
персистентности, H<!/, определяет антиперсистентное броуновское движение. Для 
антиперсистентного движения характерна тенденция к изменению знака смещения 
[15,16], за приращением с положительным (отрицательным) знаком с большей 
вероятностью следует приращение с противоположным знаком. На рис. 1 
показаны спектральные плотности (а) и фазовые портеты (6) низкочастотной 
моды модели плоских листов Ддля значения тока инжекции, HEMHOro 

превышающего критический (a=1.02), и вероятностной модели. Параметры 
вероятностной модели подбирались так, чтобы получить близкие значения номера 
максимальной гармоники спектра и параметра H в соотношении скейлинга (4) для 
сравниваемых моделей. Для рис. 1 эти параметры имели следующие значения: 
Ar=0.0095, х,=0.489, x=0.184, p=0.847, p,=0.153. На рис. 2 показаны спектры и 
фазовые портреты высокочастотной моды. Результаты модели плоских листов (а), 
(6) получены для значения тока равного принятому в расчетах низкочастотной 
моды (@=1.02). Результаты вероятностной модели получены для следующих 
значений параметров: Ar=0.016, x,=0.49, x=0.26, pF0.7, p,=0.3. Фазовые портреты 
и спектры модели плоских листов получены по реализациям наведенного тока. 
Временной сдвиг Т для наведенного тока или координаты центра масс при 
построения фазовых портретов на рис. 1, 2 выбирался равным четверти периода 
гармоники Фурье с максимальной амплитудой. На рис. 3 приведены графики 
зависимости log(Std) от log(T) для четырех процессов, спектральные плотности 
которых представлены на рис. 1 и 2. Сплошная линия на рис. 3 соответствует 

низкочастотной моде, штриховая - высокочастотной моде модели плоских листов. 
Линия, отмеченная ромбами, представляет вероятностную модель низкочастотной 
моды. Линия, отмеченная треугольниками, представляет вероятностную модель 
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Рис. 1. Спектральные плотности и фазовые портреты низкочастотной моды, 6 - модель плоских 
листов; 6, 2 - вероятностная модель 

высокочастотной моды. Как видно из рисунка, соотношение (4) выполнено в 
достаточно широком интервале временных сдвигов. Показатель скейлинга для 
низкочастотной моды Н=0.8. Для высокочастотной моды он несколько меньше 

H=0.7, что отражает больший уровень интенсивности флуктуаций в этом режиме. 

4. Диагностика режима перемежаемости для реализаций стохастической 
модели проводилась по значению разности между максимальным и минимальным 
значением координаты центра тяжести потока. Назовем эту величину диаметром 
реализации, 

Р = тах х - пп Х, 

где i=12,.,M, М - объем реализации. На рис. 4 представлена зависимость 

диаметра реализации от координаты правой границы гистерезиса при постоянной 
ширине области гистерезиса Г. Из графика видно, что для значений 0.4 <x < 0.5 
диаметр реализации сравним по величине с размером области гистерезиса D~L и 
испытывает флуктуации, обусловленные случайным характером процесса. Эга 
область соответствует ситуации, когда точки равновесия не входят в интервал 

(x,,), или находятся достаточно близко к его границам так, что флуктуации не 
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Рис. 2. Спектральные плотности и фазовые портреты высокочастотной моды:а, 6 - модель 
плоских листов; 8, г - вероятностная модель 

позволяют реализоваться уравновешенному состоянию. При этом центр масс 
совершает близкое к периодическому движение с чередующимся изменением 
направления регулярного дрейфа. При увеличении x, наблюдается область резких 
скачков диаметра, которая соответствует режиму перемежаемости. В этой 
области существует конкуренция периодического режима и уравновещенного 
состояния в точке X, (p,). Аналогичная картина наблюдается при уменьшении X, В 
этом случае режнм биений обусловлен проникновением в область ги‹‚'герезиса 

уравновешенного состояния с координатой центра тяжести ‹„(р„) В области 
х;>0.54 система переходит в режим хаотических флуктуаций вблизи уравно- 
вешенного состояния X, (p). В этом режиме динамика системы представляет 
антиперсистентное фрактальное броуновское движение с показателем Н<\ / в 
соотношении скейлинга (4). Образно говоря, система балансирует вблизи х (р)), 
изменяя смещение центра тяжести относительно этой точки. Функция плотности 
распределения — вероятности для — приращений — координат  Av=x(r+T)-x(1) 
фрактального броуновского движения с показателем Н имеет вид [14] 

w(Ax) = ехр[-/у(Ах/(от“))?)/(2л)!?оТ"), (5) 

где с - положительная константа; Т - приращение времени, соответствующее 
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Рис. 3. Стандартные отклонения приращений Рис. 4. Диаметр траектории 
координаты центра масс и !ШВЕДЕНВОГО_ тока 

приращению координаты. Функция распределения (5) инвариантна относительно 
афинного преобразования Т->/Т, х-»гйх, г - коэффициент подобия. Следствием 
статистического самоподобия распределения является соотношение скейлинга для 
спектральной плотности мощности S (), характерное для фликкерного шума 

logS(f) = -(2H+1)log(f) + const. (6) 

На рис. 5 представлены зависимости log(Std) от log(T) и logS(n) от log(n), где л - 
номер фурье-гармоники для значения X =0.546. Угловой коэффициент линейной 
части графика для логарифма стандартного отклонения равен Н=0.386. B 
соответствии с уравнением (6), модуль углового коэффициента спектра мощности 
в логарифмическом масштабе должен быть равным k=2H+1=1.772. Вычисление 
этой величины методом наименыших жквадратов IO результатам численного 

расчета, представленным на рис. 5, 6, дает достаточно близкую величину k=1.589. 
Результаты расчетов свидетельствует о TOM, что в рассматриваемом случае 
флуктуации в системе действительно имеют характер фликкер-шума. Явление 
фликкер-шума широко распространено в системах самой различной физической 
природы [10,17,18]. Механизм формирования этого спектра универсального вида 
для флуктуаций центра тяжести аналогичен рассмотренному в работе [19]. 
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Рис. 5. Стандартные отклонения (а) и спектр мощности (6) фликкерного шума 
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Фликкер-шум наблюдается в поведении параметра, который является супер- 
позицией элементов‚ совершающих случайные шаги. 

5. Р&ЗУПЬТЗТЫ проведенных — численных — экспериментов установили 

достаточно хорошее количественное соответствие в расчетах интегральных 

характеристик регупярной и стохастической компонент потока с виртуальным 

катодом для рассмотренной вероятностной модели и детерминированной модели 
плоских листов. Это указывает на возможность вероятностной торактовки 
механизма формирования сложного поведения (сочетания порядка и хаоса) в 
потоке пространственного заряда в режиме сверхкритического тока. B 

предлагаемой модели регулярные колебания формируются как  результат 
конструктивного взаимодействия причины и случая в потоке частиц, отдельные 

траектории которых наделены вероятностными свойствами 
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FRACTIONAL BROWNIAN MOTION ‚ 
IN VIRTUAL CATHODE DISCRETE MODELS 

V.N. Kornienko,A.P. Privezentsev 

Results of modeling virtual cathode dynamics for the determined flat sheet model 
and simple probabilistic model have been compared. It has been shown that stochastic 
component of mass center motion is formed as fractional Brownian motion for both the 
stochastic and determined models. 
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