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СИНХРОНИЗАЦИЯ В СИСТЕМЕ С БИФУРКАЦИЕЙ СЛИЯНИЯ 
УСТОЙЧИВОГО И НЕУСТОЙЧИВОГО ПРЕДЕЛЬНЫХ ЦИКЛОВ 

А.П. Кузнецов, С.В. Милованов 

Рассматривается синхронизация в системе, в которой может происходить 
бифуркация слияния устойчивого и неустойчивого предельных циклов. Проведено 
приближенное и точное рассмотрение задачи, представлены плоскости параметров и 
фазовые портреты системы. Обнаружена возможность синхронизации за порогом 
бифуркации слияния циклов. 

Явление синхронизации известно очень давно и тем не менее продолжает 
привлекать внимание исследователей. Классическая ситуация синхронизации 
состоит в TOM, что реализуется внешнее периодическое (обычно гармоническое) 
воздействие на автоколебательную систему с устойчивым предельным циклом 
[1,2]. В этом случае возможны режимы захвата частоты и квазипериодические 
режимы, соответственно, внутри и вне языка Арнольда на плоскости частота - 
амплитуда воздействия. В фазовом пространстве реализуется устойчивый тор, 
которому в сечении Пуанкаре отвечает замкнутая кривая, то есть предельный 
цикл, возникающий на этом торе [3]. Мы рассмотрим ситуацию, когда B 
автономной — системе — возможно — сосуществование — двух — (устойчивого и 
неустойчивого) циклов и происходят бифуркации их слияния и исчезновения. 

Пусть первоначально циклы сильно разнесены B фазовом пространстве. При 
наличии внешнего воздействия они, в соответствии со сказанным выше, 
превращаются в устойчивый и неустойчивый торы. При вариации частоты 
внешнего сигнала возможна синхронизация на каждом из этих торов. 
Соответственно на плоскости частота - амплитуда воздействия возникают языки 
синхронизации устойчивого и неустойчивого движений. Если в системе есть 
фазовая нелинейность, движения на циклах в автономных системах будут 
происходить с разными частотами. Действительно, циклы имеют разные размеры, 
а при наличии фазовой нелинейности частота обращения по циклу зависит от 
амплитуды (свойство неизохронности). По этой причине  устойчивый и 

неустойчивый языки синхронизации окажутся сильно разнесенными по оси частот 
и, фактически, будут независимыми. 

При варьировании параметра, ответственного за бифуркацию в автономной 
системе, циклы будут сближаться в фазовом пространстве. Их амплитуды станут 
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сопоставимыми, и частоты обращения вокруг этих циклов также станут близкими. 
Соответственно начнут сближаться устойчивый и неустойчивый языки синхрони- 
зации на плоскости частота - амплитуда воздействия. В конечном итоге должно 
произойти объединение этих языков. Основной целью данной работы и является 

выяснение картины их объединения. Один из существенных вопросов, который 

будет также обсуждаться, может быть сформулирован следующим образом: когда 
исчезнут вообще квазипериодические режимы в системе? Очевидный, на первый 
взгляд, ответ - B момент исчезновения циклов - оказывается неверным. Мы 

проводим подробное рассмотрение феномена исчезновения квазипериодических 
режимов. Наше исследование базируется на использовании метода медленных 
амплитуд и укороченных уравнений. Проведено также сопоставление полученных 
результатов с результатами численного моделирования исходных дифференц- 
иальных уравнений. 

1. Исходные уравнения 

Рассмотрим следующее уравнение 

& + (0 -х? + ка“)Х + х + pa = bsinwt. 1) 

Здесь х - динамическая переменная; A - управляющий параметр (при A=0 в 
автономной системе имеет место бифуркация Андронова - Хопфа); к - второй 

управляющий параметр; В - параметр фазовой нелинейности, отвечающий за 
неизохронность системы; b и @ - амплитуда и частота внешнего сигнала. 
Уравнение (1) - естественная модификация уравнения Ван дер Поля - Дуффинга 
[4-9], в которой возможно сосуществование и бифуркация слияния устойчивого и 
неустойчивого циклов. Часто такую систему называют автогенератором с 
жестким возбуждением, имея B виду, что требуется некоторый начальный толчок, 
чтобы система попала на устойчивый предельный цикл. 

Если система находится недалеко от порога возникновения автоколебаний @ 

невелико), а амплитуда колебаний и амплитуда воздействия малы, TO для 

приближенного решения уравнения (1) можно воспользоваться методом медленно 
меняющихся амплитуд. Положим 

х= ) (ае“' + к.с.) 

при дополнительном условии ае““+к.с.=0. Здесь а - медленная комплексная 
амплитуда. 

После соответствующей подстановки в исходное уравнение (1) и усреднения 
приходим к укороченному уравнению 

а+ а(о?-1)/(2о) = - Mal2 + laal8 - xld*al16 + 3BilaPal(8w) - b/(2w). — (2) 

Выполнив замену переменных 

х = М/2, 1 = (2)!?), А = (а?-1)/(2о), 
3) 

=-blQ2wA?), k=2kh, х = ЗМо, 

получим укороченное уравнение в комплексной форме 

# + iAz = -z + 122 - Маг + xilzPz + €. (4) 

Параметры е и А представляют собой безразмерные амплитуду внешнего 
воздействия и отстройку внешней частоты от собственной; а & и х - безразмерные 

управляютщие параметры. 
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Используя подстановку г=Ке® и разделяя при этом в (4) действительную и 

мнимую части, получим уравнение для действительной амплитуды & и фазы ф 

Ё = - & + КЗ - kRS + есобф, 

р = - А + ХК? - esing/R. 

2. Приближенное описание синхронизации в системе 

6) 

В автономной системе (то есть при e=0) первое из уравнений (5) приводит K 
следующим значениям для амплитуд установившегося движения: 

& 2= +( - 4K)7]/(2K), В, =0. 
Таким образом, при k=0 в системе имеется устойчивая неподвижная точка B 

начале координат и неустойчивый предельный цикл радиусом R=1. При & 
отличном от нуля к нему из бесконечности приходит устойчивый цикл и при 
k=0.25 они сливаются и исчезают. Амплитуду B момент слияния можно найти из 
(6): К =27? (puc. 1). 

25 

-2.51 -2.5 

в 
2.5 х 25 

2 
25 х 25 

(6) 

Рис. 1. Фазовые портреты укороченного уравнения в автономной системе ( е=0) вблизи 
бифуркации слияния и исчезновения устойчивого и неустойчивого циклов при A=1.0, х=0.3 и 
различных &: а - 0.001; 6 - 0.23 ; в - 0.25; г - 0.27 
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Рис. 2. Языки синхронизации в приближении малой амплитуды воздействия в изохронном @) и 
неизохронном (6) случае. Язык, отвечающий устойчивому режиму, заштрихован: 

В неавтономной системе (5) картины синхронизации будут существенно 
разными в изохронном случае (x=0) и при наличии фазовой нелинейности (+0). 
Если амплитуда воздействия невелика (параметр е мал), можно воспользоваться 
уравнением Адлера [10]. Тогда края языков синхронизации задаются следующими 
соотношениями: 

A=zelR,, A=zelR,, () 

где R, , те же, что и в уравнении (6). В изохронном случае имеется два языка син- 
хронизации - устойчивый и неустойчивый - с общей вершиной B точке A=0 (рис. 2, а). 

Если же система неизохронна (x#0), то языки имеют разные вершины. 
Действительно, если амплитуда воздействия е мала, то амплитуду циклов можно 
взять непосредственно из (5) и тогда края языков даются уравнениями 

А =xR2xeR, А = жК? + К, (8) 

Причина этого понятна - циклы имеют разные амплитуды, а в неизохронной 
системе им отвечают разные частоты (рис. 2,6). 

Расстояние между вершинами языков 

а = х(В,2-К ) = (1 - 4 2%/к. (9) 

Оно стремится к бесконечности при k=0 и обращается в ноль в точке 

бифуркации слияния циклов &,=0.25. 
Центр системы языков А., = X(R 4К) = y/k. 

3. Основные бифуркации B случае произвольных 
амплитуд воздействия 

Откажемся теперь от условия малости е и перейдем к более точной теории. 
Рассмотрим непосредственную окрестность точки бифуркации &,=0.25. 
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Для этого положим k=0.25+k и R=2'2+R. После подстановки в соотношения (5) 
получаем i В @ 

R = 2\°4( +2122К? + всо5ф, 
ы (10) 

¢ =-8+2122%R - esing/2'?, 

где 8=A-2y. Эти уравнения и описывают динамику амплитуды и фазы вблизи 
бифуркации. Они допускают аналитическое решение. 

Для стационарных режимов из (10) следует, что 

К + 2(25 + у2)К? - 2V%R + о%4 + 482 - 28 = 0. (1) 

Мы получили каноническое уравнение для многообразия катастрофы 
«ласточкин хвост» [11] 

К* +ай? + ЬК + с = 0, (12) 

гдеа= 2(25 + {2), Ь = 2'ду, с = 4 + АВ - 8. (13) 
Бифуркационное множество этой ка- 

тастрофы в канонических переменных 
а, b, с показано на рис. 3. Как мы увидим 
далее, его структура проявляется B 
устройстве языков синхронизации. 

Аналогичные результаты получа- 
ются и непосредственно из уравнения 

(5): 
R - К` + kR = есо5ф, 

(14) 
- AR + ХКЗ = - esing, 

откуда 

Е(1-5+5?)? + Е(-А+уё)? = @, (15) 

а b тде E=R2. 
Вообще говоря, это уравнение 

более высокого порядка, но OHO демон- 
Рис. 3. Многообразие катастрофы «ласточкин СТрирует также катастрофу «ласточкин 
хвост» в канонических переменных XBOCT». 

Бифуркация — «седло-узел». Kpas S3bIKOB — синхронизации — находим, 
дифференцируя последнее соотношение по &, 

А% + 2ХАЕ? + 26 + B(1-E+KET) = €. (16) 

Совместно с (15) можно получить 

& = B(1-E+kE)? + Е(-А+3Ё)?, 

A =298 + P8 (1-5+kE7) (1-38+587)] 2. 
Конфигурация языков, задаваемая соотношениями (17), представлена на рис. 4. 

Можно видеть, что в окрестности точки бифуркации при малых амплитудах мы 
имеем уже описанную картину. Новое здесь - появление точек сборки в вершинах 
языков и TO, что вдали от бифуркации они распадаются на два независимых языка. 

(17) 

20



30 f 30 ” 

€ 3 

0.0 ¢ 0.0 

а 08 A 35 5 08 A 35 

30 3.0 

€ € 

0.0 { 0.0 

-0.8 35 -08 35 
в А г A 

Рис. 4. Вид языков синхронизации укороченного уравнения Ван дер Поля - Дуффинга с жестким 
возбуждением на плоскости @,А) и их трансформация по мере увеличения &: 0.16 (a); 0.19 (6); 
0.23 (в); 0.26 (2). Здесь и на следующих рисунках параметр х фиксирован и равен 0.3 

Интересно также, что при достаточно больших значениях & языки отрываются от 
оси A, образуя характерную для теории катастроф особенность «губы» [11]. 

Бифуркация Андронова - Хопфа. Для того чтобы найти линии бифуркации 
Андронова - Хопфа, разделим действительную и мнимую части г в уравнении (4). 
Для x=Rez и y=Imz имеем 

х=-х + Ay - x(324y?) - kx(2+)2)? - х(о?+у?)) + ¢, 

¥ =y - Ах-у(32+)”) - by (8477 + х(е+)?)х. 
Условием бифуркации Андронова - Хопфа является равенство нулю следа 

матрицы линеаризации системы (18). После несложных преобразований получаем 

(18) 
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Рис. 5. Слияние и исчезновение двух вствей линии бифуркации Андронова - Хопфа укороченного 
уравнения Ван дер Поля - Дуффинга с жестким возбуждением. k=0.33 (a); 0.3333 (6); 0.3334 (в) 

€2 = (1-E+AE?)? + Е(-А+Х5), (19) 

£, = 1+(1-30 2(30 

Эта система задает две ветви линии бифуркации Андронова - Хопфа, 
примыкающие к устойчивому и неустойчивому языкам синхронизации. Общие 
точки линий бифуркаций седло-узел и Андронова - Хопфа (точки Богданова - 
Такенса [5]) определяются совмещением систем (17) и (19). Как мы увидим далее, 
линии бифуркаций Андронова - Хопфа обрываются в этих точках. 

Существенно, что бифуркация Андронова - Хопфа возможна лишь при & < 1/3. 
Значение & =1/3 соответствует бифуркации коразмерности три, когда эти ЛИНИИ 
исчезают. Рис. 5 поясняет процесс их исчезновения. Буквами $М на рисунках обозна- 
чены линии седлоузловых бифуркаций, Н - линии бифуркаций Андронова - Хопфа. 

4. Анализ плоскости параметров укороченного уравнения 

Перейдем к более подробному обсуждению картины синхронизации B 
рассматриваемой системе. Для этого изучим плоскость е,А укороченного 
уравнения Ван дер Поля - Дуффинга с жестким возбуждением при фиксированном 
значении х=0.3 и различных значениях k. Для наглядной иллюстрации возможных 

бифуркаций будем строить фазовые портреты. 
На рис. 6 представлена плоскость параметров системы при £=0.12. В этом 

случае два языка синхронизации не перекрываются, K каждому из них примыкает 
линия бифуркации Андронова - Хопфа. При переходах через линии Н за 
пределами языков синхронизации меняется характер устойчивости неподвижной 
точки и вблизи нее рождаются или исчезают устойчивые или неустойчивые 
предельные циклы (вставки 1-5). При пересечении границы языка синхронизации 
(линии SN) происходит седлоузловая бифуркация, и на месте одного M3 предельных 

циклов рождаются узел и седло с общей сепаратрисой. Второй предельный цикл 
может остаться (вставки 6, 8) или исчезнуть при переходе через линию Н (вставка 
7). B данном случае мы не останавливаемся на линиях нелокальных бифуркаций, 
однако они имеют место вблизи точек Богданова - Такенса и аналогичны 
нелокальным бифуркациям на плоскости параметров укороченного уравнения Ван 
дер Поля - Дуффинга [8,9]. 

На рис. 7 изображена плоскость параметров укороченного уравнения при 
значении k=0.19. Этот случай соответствует перекрытию языков синхронизации с 
образованием структуры, характерной для катастрофы «ласточкин хвост». Внутри 

языков появляются новые особенности. Во-первых, на вставке 8 показан фазовый 
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Рис. 6. Плоскость параметров (€,A) укороченного уравнения Ван дер Поля - Дуффинга с жестким 
возбуждением; k=0.12. Здесь и далее на вставках - фазовые портреты для выделенных точек: 
плоскости параметров 

портрет с пятью неподвижными точками: седлоузловая бифуркация происходит 
как на устойчивом, так и на неустойчивом циклах. Кроме этого, появляется новая 
линия нелокальной бифуркации: при переходе от вставки 6 к вставке 7 видно, как 

неустойчивый цикл касается неустойчивого многообразия седла и исчезает. 
Похожая ситуация имеет место при переходе от вставки 7 к вставке 4. При 
движении по направлению к точке 4 устойчивый узел (2) становится фокусом и на 
линии Н происходит бифуркация Андронова - Хопфа с рождением устойчивого 

цикла. Однако уже вблизи линии бифуркации предельный цикл касается 

сепаратрисы седла (3) и исчезает. 
Рис. 8 соответствует значению k=0.23. Катастрофа «ласточкин хвост» про- 

изошла ранее, так что область плоскости параметров, в которой система имела 
пять неподвижных точек, здесь OTCYTCTBYET. После катастрофы «ласточкин XBOCT» 

появляются новые линии нелокальных бифуркаций. Так, появляется линия 

столкновения и исчезновения npenenbflmx циклов: при переходе от вставки I K 

вставке 2 устойчивый и неустойчивый циклы касаются друг друга и исчезают. B 

расширенном  трехмерном  фазовом  пространстве этой  ситуации — будет 

соответствовать столкновение торов. He менее интересную особенность 

демонстрирует переход между вставками 3 и 4. Сама по себе линия нелокальной 

бифуркации, берущая начало в точке Богданова - Такенса, наблюдалась и в более 

простых модификациях системы Ван дер Поля (см., например, [8]), однако эта 

линия оканчивалась на линии седлоузловой бифуркации. В нашем случае она 

npunoml(ae'rcn и за границами языка синхронизации, а переход через нее 

сопровождается слиянием и исчезновением  устойчивого и неустойчивого 

предельных циклов! Пересечение этой линии внутри языка сопровождается 

столкновевием неустойчивого цикла и сепаратрисы седла. 
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Рис. 7. Плоскость параметров (¢,A) укороченного уравнения Ван дер Поля - Дуффинга с жестким 
возбуждением; k=0.19 

L5 у 

0.0 

Рис. 8. Плоскость параметров (,А) укороченного уравнения Ван дер Поля - Дуффинга с жестким 
возбуждением; k=0.23 
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Рис. 9. Плоскость параметров (€,A) укороченного уравнения Ван дер Поля - Дуффинга с жестким. 
возбуждением; k=0.29 

Рис. 9 - еще одна иллюстрация плоскости параметров укороченного 
уравнения Ван дер Поля - Дуффинга с жестким возбуждением. Параметр k=0.29. 
По мере роста & линия столкновения предельных циклов опускается ниже и 
исчезает в момент отрыва языка от оси А. Поэтому на вставках / и 2 уже не 
наблюдаются устойчивые и неустойчивые циклы. Однако квазипериодические 
режимы, вопреки ожиданиям, все еще возможны при достаточно больших 

амплитудах воздействия - между двумя ветвями линий бифуркации Андронова - 
Хопфа (вставки 3, 5). Интересной особенностью системы является также TO, что 
устойчивые и неустойчивые предельные циклы еще могут сосуществовать в узких 
областях плоскости параметров между нижней ветвью бифуркации Андронова - 
Хопфа и линией нелокальной бифуркации (на рисунке не показаны). Предельные 
циклы окончательно исчезают в момент слияния линий бифуркации Андронова - 
Хопфа (при & = 1/3). Из этого следует, что в дифференциальной системе по мере 
роста & области существования неустойчивых торов должны исчезнуть, а области 

существования устойчивых торов должны становиться все более узкими и вскоре 
также исчезнуть. Доминирующим режимом при этом будет синхронизация 
УСТОЙЧИ_ВОГО предельного цикла. 

s Результаты численного исследования исходного 

дифференциального уравнения 

Hoc’rpoeuue карт динамических режимов полного неавтономного уравнения 

Ван дер Поля - Дуффинга с жестким возбуждением связано с рядом трудностей, а 
именно с наличием пяти управляющих параметров и мультистабильности. Поэтому 
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при выборе значений параметров и начальных условий нужно проявлять 
определенную осторожность. 

Рассмотрим плоскость параметров укороченного уравнения при x=U0.3 и 
k=0.1 (рис. 10). Такой выбор параметров соответствует двум неперекрывающимся 
языкам синхронизации. Для исходного дифференциального уравнения пересчитаем 
параметры из условия перенормировки (3): положим №=1, тогда к=0.05, В=0.5. 

На рис. 10, а выделены области плоскости параметров укороченного 
уравнения, в которых реализуется по меньшей мере одна устойчивая неподвижная 
точка, а рис. 10, 6 - области, где реализуются неустойчивые неподвижные точки. 
Напомним, что в расширенном трехмерном фазовом пространстве неподвижные 
точки укороченного уравнения будут соответствовать синхронизации предельных 
циклов исходной системы. 

На рис. 10, 6, 2 показаны плоскости параметров амплитуда - частота воздей- 
ствия дифференциальной системы (1) при указанных значениях параметров. На 
рис. 10, в выделена область, где реализуется устойчивый предельный цикл периода 
1, область на рис. 10, г соответствует синхронизации неустойчивого предельного 
цикла периода 1. 

Начальные условия подобраны таким образом, чтобы на всей плоскости 

0.6 b 9.1 06 b 91 

в г 

Рис. 10. Вверху - плоскость параметров укороченного уравнения Ван дер Поля - Дуффинга с 
жестким возбуждением; k=0.1. Выделены области синхронизации устойчивых (а) и неустойчивых 
(б)охёэъшовб Внизу - соответствующие плоскости параметров исходной неавтономной системы. 
к=0.05, В=0.5 

26



параметров мы, TI0 возможности, попадали B бассейны притяжения предельных 
циклов, а не торов. Сравнение верхних и нижних рисунков свидетельствует O 
хорошем — качественном — соответствии  устройства  плоскости — параметров 
укороченного уравнения и исходной дифференциальной системы. 

На рис. 11, а, 6 показаны плоскости параметров укороченного уравнения, на 
которых выделены области существования устойчивого и неустойчивого 
предельных циклов, на рис. 11, 2, д - плоскости параметров исходного неавтоном- 
ного уравнения, на которых выделены области существования устойчивого и 
неустойчивого торов. На самом деле эти области содержат в себе также языки 
синхронизации более высокого порядка. Как и для рис. 10, в этом случае можно 
говорить о достаточно хорошем качественном соответствии плоскостей параметров. 

"Таким образом, укороченное уравнение позволяет получить представление о 
TOM, в каких областях плоскости параметров исходной системы можно ожидать 
возникновение квазипериодических режимов. 

Более полная карта динамических режимов представлена на рис. 12. Карта 
построена в прямом времени без наследования. Начальные условия: x,=-10, y,=-10. 
При таком выборе начальных условий мы попадаем на устойчивый тор в той 

9.1 

Рис. 11. Вверху - плоскость параметров укороченного уравнения Ван дер Поля - Дуффинга с 
жестким возбуждением. k=0.1. Выделены области существования устойчивых (а) и неустойчивых 
(6) торов. Внизу - соответствующие плоскости параметров исходной неавтономной системы. 
к=0.05, В=0.5. На самом деле заштрихованные области на нижних рисунках содержат языки. 
синхронизации более высоких порядков 
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области параметров, где он существует. На рисунке также показаны фазовые 
портреты «на торе» и сечения Пуанкаре для выделенных точек плоскости 
параметров. Темным цветом показаны устойчивые торы, предельные циклы и 
неподвижные точки в сечении Hyaflxape, а светлым - НСУСТОЙ'-ШШЫС‹ Мы 

старались, по возможности, выявить все аттракторы, которые могут реализо- 
ваться в системе при выбранных значениях параметров. Вставка а иллюстрирует 
устойчивый предельный цикл периода 1, который реализуется в основном языке 
синхронизации. На вставках 6, 6 и е показаны устойчивые предельные циклы 
периода 2, 3 и 7, соответственно, которые сосуществуют с неустойчивыми 

предельными циклами периода 1. Вставка г иллюстрирует квазипериодический 
режим - движение на инвариантном торе, внутри которого - неустойчивый 
предельный цикл. На вставке д показан режим сосуществования устойчивого и 
неустойчивого торов, а также устойчивого предельного цикла. 

TN 
C(;’/ ) В, 

Рис. 12. Карта динамических режимов неавтономного уравнения Ван дер Поля - Дуффинга с 
жестким возбуждением. A=1, В=0.5, к=0.05 
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Проведенное нами численное исследование исходной дифференциальной 

системы показало, что при увеличении параметра к на плоскости параметров 
появляется линия бифуркации столкновения TOPOB, как это было при анализе 
укороченного уравнения. Также нам удалось показать, что при достаточно 
болыших значениях к эта линия опускается вниз и исчезает, однако при этом 
квазипериодические режимы все еще могут возникать между линиями бифуркации 
Андронова - Хопфа. 

Заключение 

Синхронизация в уравнении Ван дер Поля - Дуффинга с жестким возбужде- 
нием ранее практически He изучалась. Однако эта система представляется весьма 
интересной, так как она является простейшей моделью, демонстрирующей B 
автономном режиме бифуркацию слияния и исчезновения устойчивого и 
неустойчивого предельных циклов. 

Анализ укороченного уравнения Ван дер Поля - Дуффинга показал, что 
синхронизация в системе может происходить как на у\:ТОйЧПВЪ\Х‚ так и на 

неустойчивых циклах. Соответственно, на плоскости параметров нормированная 
амплитуда - частота воздействия имеются два языка синхронизации, а также 
области, B которых сосуществуют устойчивый и неустойчивый | циклы. 
Укороченное уравнение может иметь до пяти неподвижных точек, что 
предопределяет возможность новых нелокальных бифуркаций вблизи точек 
сборок. В системе пять управляющих параметров, и она может демонстрировать 
катастрофы высокой коразмерности, в том числе катастрофу «ласточкин хвост». 
При анализе плоскости параметров укороченного уравнения особое внимание 
было уделено окрестности точки катастрофы, 

Одной из наиболее интересных и нетривиальных особенностей укороченного 
уравнения можно считать возможность исследования  квазипериодических 
режимов выше порога бифуркации слияния устойчивого и неустойчивого циклов 
(после отрыва языка от оси A). Более Toro, нами было показано, что и после 
исчезновения линии столкновения предельных циклов в узких областях плоскости 
параметров устойчивые и неустойчивые циклы могут сосуществовать! 

Сравнение численного исследования исходной дифференциальной системы с 
результатами анализа укороченного уравнения показало, что в исходной системе 
синхронизация происходит аналогичным образом: могут существовать устойчивые 
и неустойчивые периодические орбиты, которые сосуществуют с устойчивыми и 

неустойчивыми торами. Причем языки синхронизации имеют структуру, схожую с 
устройством плоскости параметров укороченного уравнения. Фазовые портреты и 
сечения Пуанкаре, построенные для выделенных точек карты режимов, позволяют 
более наглядно представить реализующиеся в системе аттракторы, а также 
произвести правильный выбор начальных условий при построении карты с учетом 

мультистабильности. 

Работа поддержана Российским фондом фундаментальных исследований, 

грант 03-02-16074. 
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SYNCHRONIZATION IN ТНЕ SYSTEM WITH BOTH STABLE AND 
UNSTABLE LIMIT CYCLES COLLISION BIFURCATION 

A.P. Kuznetsov, S.V. Milovanov 

The paper deals with the system where stable and unstable limit cycles collision 
bifurcation occurs. The approximate and precise study are carried out, the parameter 
planes and phase portraits are also presented. The possibility of synchronization above the 
threshold of cycles-collision bifurcation is discovered. 
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