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СИНХРОНИЗАЦИЯ И РАЗВИТИЕ НЕСИНХРОННЫХ РЕЖИМОВ 

В СВЯЗАННЫХ СИСТЕМАХ С ФАЗОВЫМ УПРАВЛЕНИЕМ 

В.П. Пономаренко 

МПриведены результаты исследования динамических режимов и бифуркаций в 
нелинейной модели с двумя с половиной степенями свободы, описывающей процессы B 
связанных системах синхронизации по частоте и задержке во времени в случае, когда 
одна из подсистем индивидуально демонстрирует как регулярные, так и хаотические 
режимы поведения, а другая - только регулярные режимы. Установлено, что B 
зависимости от начальной частотной расстройки и параметров инерционности цепей 
управления в системе возможно возбуждение разнообразных регулярных и 
хаотических несинхронных режимов. Определены границы областей синхронизации, 
исследованы сценарии преобразования несинхронных режимов при изменении 
параметров. Результаты представлены в виде двухпараметрического портрета 
движений и однопараметрических бифуркационных диаграмм. 

1.B настоящее время проводятся интенсивные исследования paauoofipaafimx 

нелинейных динамических моделей, способных демонстрировать хаотическое 
поведение. Большой интерес проявляется к моделям связанных автоколебатель- 
ных систем, к углубленному изучению возникающих в них явлений коллективной 
динамики, условий и механизмов возбуждения хаотических колебаний при 
различных свойствах индивидуального поведения подсистем. В широком классе 
связанных автоколебательных систем важное место занимают системы взаимо- 

действующих автогенераторов, управляемых IO частоте с использованием 
принципа фазовой синхронизации [1, 2]. Среди таких систем значительный интерес 
для многочисленных приложений представляют взаимосвязанные системы, 
состоящие из небольшого числа (двух, трех) подсистем, - так называемые 
низкоразмерные системы. Изучение возникающих в них процессов сложной 

динамики и выяснение роли параметров цепей управления и связей между 

подсистемами в характере этих процессов имеют как теоретический интерес, так и 

прикладное значение. 
В данной работе представлены результаты исследования динамических 

режимов и бифуркаций в двухкольцевой системе синхронизации (ДСС), которая 

объединяет — подсистемы — фазовой — автоподстройки — частоты | (ФАПЧ) и 

автоподстройки задержки во времени (АПЗ). Такие системы широко применя- 

ются при решении задач передачи и обработки информации в радиотехнических 

системах со сложными сигналами в качестве схемной реализации оптимальных 
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алгоритмов следящей оценки фазового угла ©(r) и задержки T(r) сигналов с 
псевдослучайной фазовой манипуляцией [3,4]. Основные элементы системы - 
управляемые генераторы, при помощи которых синтезируется опорный сигнал с 
параметрами ©7(7) и T°(f) (оценками изменяющихся параметров входного сигнала 
(1) и T(r)), нелинейные дискриминаторы рассогласований ¢=0(1)-0°(1) и n=T()- 
Т'( и цепи управления с фильтрами низких частот (ФНЧ), типы которых 
определяются используемыми моделями динамики оцениваемых параметров ©(г) и 
T(t). Благодаря нелинейности и инерционности цепей управления и связям между 
подсистемами в рассматриваемых ДСС наряду с возможностью слежения за 
параметрами входного сигнала создаются условия для возбуждения сложных 
автомодуляционных колебаний, проявления эффектов динамического хаоса и 
управления свойствами и областями существования генерируемых колебаний. 

Богатый набор колебательных режимов и  возможность — эффективного 
воздействия на их свойства и области существования делает взаимодействующие 
ДСС интересными объектами для исследования динамических закономерностей 
поведения, свойственных связанным автоколебательным системам. 

Мы рассматриваем динамику одной из базовых структур ДСС, в которой 
взаимодействие подсистем реализуется через связь с выхода подсистемы АПЗ на 
вход подсистемы ФАПЧ, необходимую для демодуляции входного сигнала, и через 
связь MO цепям  управления, посредством  которой сигнал o — фазовом 
рассогласовании, образующийся в петле фазовой автоподстройки, передается B 
цепь управления задержкой [3, 5-7]. Традиционное назначение систем с такой 
структурой состоит в обеспечении и поддержании стационарного состояния, B 
котором величины ф и п имеют минимальные значения. Это состояние принято 
называть режимом синхронизации опорного сигнала, формируемого с помощью 
подсистем ФАПЧ и АПЗ по входному сигналу. Режиму синхронизации отвечает 

устойчивое состояние равновесия в фазовом пространстве соответствующей 
динамической модели. Отыскание условий реализации синхронного режима тесно 
связано с исследованием асинхронных режимов с непостоянными величинами 
рассогласований @ и 1, которым соответствуют автоколебательные движения 
динамической модели. Бифуркации, в результате которых появляются асинхрон- 
ные режимы, определяют B пространстве параметров модели границы областей 
захвата в синхронный режим. Исследование асинхронных режимов актуально 
также в целях расширения функциональных возможностей ДСС, в частности, для 
использования системы в качестве синтезатора шумоподобных колебаний с 
управляемыми характеристиками. 

В зависимости от тила ФНЧ в цепях управления отдельные подсистемы 
ФАПЧ и АПЗ могут демонстрировать регулярную или хаотическую динамику. В 
работах [6, 7] исследовалась динамика ДСС, описываемой уравнениями (1), в 
случае, когда ее подсистемы характеризуются регулярным поведением. Оказалось, 
что взаимодействие подсистем ФАПЧ и АПЗ приводит к появлению новых 

колебательных режимов и к существенно более сложной картине бифуркацион- 
ных переходов, не свойственных одиночным подсистемам. В данной работе, 
продолжающей исследования [6, 7], рассматриваются особенности динамического 
поведения ДСС в случае, когда подсистема ФАПЧ автономно демонстрирует 
только регулярное поведение, а в автономной подсистеме АПЗ наряду с 
регулярными возможны хаотические асинхронные режимы. Такой случай 
реализуется при использовании в цепях управления ФАПЧ и АПЗ фильтров, 
соответственно, первого и третьего порядка. 

2. Уравнения динамики рассматриваемой ДСС, записанные в операторной 
форме (p=dldr) для рассогласований ф и п, имеют вид [3, 7] 
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р @ lk=y-F\(p) R(x) sin ¢, 

x=0-bF(p) (D(x) +ab™ R(x) sin ), 
() 

где x=n/A (A - длительность одного элемента манипулирующего псевдослучайного 
сигнала); & и b - коэффициенты усиления по цепям управления; а- степень связи 
через управляющие сигналы; у=р©/К и о=(Т-Т))& - начальные частотная и 
временная расстройки, Т - начальное значение задержки сигнала, генерируемого в 
подсистеме АПЗ; F,(p) и F,(p) - коэффициенты передачи ФНЧ в цепях управления 
ФАПЧ и ATI3; R(x) и D(x) - нелинейности, представляемые зависимостями 

-2 -х, -2 <х < -1, 
1+х, -1 <х < 0, Xy -15х<1, 

R(x)=11-x, 0 <х <1, D(x) = 
0, 21, 2-x, 1:8xX2, 

0, X122 

В уравнениях (1) R(x) - корреляционная функция манипулирующего сигнала, а 
функции  sing ои D(x)=R(x-1)-R(x+1) — представляют — характеристики 
дискриминаторов рассогласований фаз и задержек. 

В соответствии с постановкой задачи рассмотрим коэффициенты передачи 
ФНЧ 

Fy(p)=(1+mTp)/(1+T,p), 

Fp)=V(A+(T#+Ty+T ) p+(T, T +T, T Т)Т Т) 

где T,,T,,T, и T, - постоянные времени, 0<m<1. Соответствующие выбранным 

операторам Ё(р) и F,(p) уравнения, описывающие динамику процессов B 
исследуемой ДСС, на основании (1) после перехода к безразмерному временит=й ¢ 
записываются в виде 

deldt = и -т R(x) sin ¢, 

€ @ш@; =y -и -(1 -т) В (х) sin ф, (2) 

dxlde =Yy, 

dyldv =z, 

& &8, @Ик = о-х -Б D(x) ~(e,+e5+e,)y (e 8548 ey в,7 - 

- оВ (x) sin ¢ = И( ф) 

где e=kT, (i=1,2,3,4) - параметры инерционности. Система (2) имеет цилиндри- 
ческое фазовое пространство U = {ф(тод2х),ихуу,2 }. 

Поведение отдельной подсистемы ФАПЧ определяется двумя первыми 
уравнениями модели (2), в которых надо положить R(x)=1. В цилиндрическом 
«парциальном фазовом пространстве»  (p(mod2m),u) существует два типа 
аттракторов: состояние равновесия и вращательный (2л-периодический по ф) 
предельный цикл [8]. Уравнения динамики отдельной системы АПЗ с ФНЧ 
третьего порядка получаем U3 трех последних уравнений системы (2), полагая B 
них a=0. Отметим, что получаемые уравнения совпадают с уравнениями динамики 
автогенератора с частотной автоподстройкой [9]. На основании результатов [9] в 
«парциальном фазовом пространстве» (X, у, z) модели подсистемы АПЗ наряду с 
состояниями равновесия следует ожидать существования периодических и 
хаотических аттракторов. 

Отметим, что при &, << min (Le,, (¢, €;)™) система (2) имеет малый параметр 
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при производной @@. Так как V' =-(e,e +e,e,+e,6,)<0, то система (2) имеет в 

фазовом пространстве U асимптотически устойчивую интегральную поверхность 
W: {z=(0-x-bD(x)-(e,+¢,)y- ozR(v)smtp)(s2 ss)"] движения на которой определяются 
системой уравнений, рассмотренной в [6, 7] 

Движения модели (2), развиваюш;иеся в фазовом пространстве U, зависят от 
девяти параметров. Для того чтобы получить представление O BO3MOXHBIX 
динамических состояниях и бифуркациях модели (2), мы выбрали в качестве 
управляющих параметров начальную расстройку у и параметр инерционности &, 
который характеризует степень влияния ФНЧ третьего порядка подсистемы АПЗ 
на режимы поведения ДСС. В силу существенной нелинейности модели (2) ее 
нелокальное исследование сопряжено с большими трудностями, в связи с чем 
применено компьютерное моделирование, которое базируется на качественно- 
численных методах анализа нелинейных динамических систем [10, 11] и 
использовании программного комплекса [12], обеспечивающего решение задач 
обнаружения периодических и хаотических движений и исследование их 
бифуркаций в динамических моделях с цилиндрическим фазовым пространством. 
Исследование  периодических движений проведено  при помощи анализа 
неподвижных точек отображения Пуанкаре Г, плоскости ф=ф? в плоскость 
ф=ф'+дл. 

3. Исследование динамики ДСС естественно начать с анализа устойчивости 
режима синхронизации. Система (2), как и в случае, рассмотренном в [6, 7], при 
значениях параметров (0.y,0,a) € С, где 

C, = {max (v3y,) < у <min (v,,1,)}, @ 

= (1+5 Жо)/(1+6 ® о), 13, = -(1+b £0)(1+b F ), 

имеет два состояния равновесия A (g, my, x;, 0, 0) и A, (-, my, x;, 0, 0), 
расположенные B области -1<х<1 фазового пространства U. Координаты ¢, и x, 
определяются равенствами 

@, = arcsin (y/(1-x, sign (0-ay))), ¥, = (о-оу)/(1+5). (5) 

Состояние равновесия A; может быть как устойчивым, так и неустойчивым, 
состояние равновесия A, - неустойчивое седлового типа. Устойчивость состояния 
равновесия A, определяем из анализа коэффициентов характеристического 

уравнения 

№ +4, М +4, № +4, № +а, ^ +q, =0, (6) 

где 4, = -(а +6, +c)), 
4, = 6((а +c)) +ac, -b, -c,, 

—(a b, c -(а, +b))c, +с, - bycy), 
(cz(alb -b, )+ach -с3 (a, +b))), 

с(а -) +°3( a0, 
-m((1 -(с-ау) sign (c-uy)/(l +b))2 у)° 

a, = mysign (o-ay) / (1 -(o-ay) sign (о- ay)/(1 +b)) 

=(вуву+ 5)в ey € ) (e85, 
с = -(egteste,) (58,8,) 
¢; = (aa,-m(1 +b )(mezzse‘)‘l, 
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Условия устойчивости записываются B виде 

9»454+4%>0, — 9,9»-95>0, (414)-93) (459;-950) - 4144740° >0. (7) 

При выполнении условий (7) существует синхронный режим ДСС, 
соответствующий состоянию равновесия A, . Величины g, и x;, определяемые (5), 

характеризуют точность оценки параметров входного сигнала. Область значений 
параметров С, в которой выполняются условия (7), соответствует области 
удержания режима синхронизации. 

4. Рассмотрим динамические процессы, развивающиеся B модели (2) с 
изменением параметров у и €, при фиксированных значениях остальных парамет- 
ров. Как показали результаты численного исследования, система (2) может иметь 
большое число разнообразных предельных циклов в фазовом пространстве, и 

полная картина расположения бифуркационных кривых на плоскости (g,Y) 
представляется достаточно сложной. На рис. Т-приведены некоторые M3 таких 
кривых, соответствующие бифуркациям состояний равновесия (кривые /- L) и 
предельных циклов (кривые /,-/,, пут,) системы (2), построенные при значениях 
0=0.5, b=10, £,=1, £,=2, £,=3, m=0.1, а=5. 

Линия [, - это граница y, области С, существования состояний равновесия A, 
и A,, определяемая (4). Линии / и / - границы области С, устойчивости состояния 
равновесия A, определяемой условиями (7; область С, расположена слева от 
кривой /, и справа от кривой /. При переходе ¢ увеличением (уменьшением) €, 
через кривую /, (1,) в модели (2) наблюдается бифуркация Андронова - Хопфа, 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 

Рис. 1. Параметрический портрет @у) модели (2) 
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когда B решении характеристического уравнения (6) появляется пара комплексно- 
сопряженных корней с положительной реальной частью. Эта бифуркация 
является суперкритической на линии /, и на части /, линии 1, ниже точки М и 

субкритической на части /', линии [; выше точки М. При пересечении линии [, 
(линии Г) с увеличением (уменьшением) €, в фазовом пространстве системы (2) 
мягко рождается устойчивый предельный цикл L, соответствующий квази- 

синхронному режиму ДСС. 
В этом режиме наблюдаются автомодуляционные колебания относительно 

ставшего неустойчивым состояния равновесия A, . При переходе с уменьшением &, 
через линию [y состояние равновесия A; становится неустойчивым в результате 

стягивания к нему седлового предельного цикла $). 
Линии [, и 1, соответствуют бифуркации Андронова - Хопфа для состояния 

равновесия A,. При переходе с увеличением (уменьшением) &, через линию [, (/) в 
фазовом пространстве системы (2) рождается седловой предельный цикл 
колебательного типа 5. Линии I, [, и 1, соответствуют седло-узловым бифурка- 
циям предельных циклов колебательного типа. Установлено существование еще 
двух кривых [, и 1, отвечающих седло-узловой бифуркации колебательных 

предельных циклов. Кривая /, проходит вблизи части кривой /, выше точки М, 
справа от кривой /,, кривая / - между частями кривых [, и 1, ниже точки M, (на 
рис.1 кривые [, и [, не построены). 

В результате седло-узловых бифуркаций происходит рождение в фазовом 
пространстве пары устойчивого и седлового предельных циклов при пересечении 
линий { 19 и 19 (кривой ;) с увеличением (уменьшением) параметра e, и при 
пересечении линии [, с уменьшением параметра у или исчезновение этих циклов 
при обратном движении по параметрам e, и y. На рис. 2, а представлена (¢,v)- 
проекция фазового портрета колебательного предельного цикла L. 

Представленное на рис. 1 расположение бифуркационных кривых /-l 
позвсляет выделить в области С,=(0<у<у,} области существования С, синхронного 
и Р, квазисинхронных режимов ДСС. Область С;С„ЦС_\:‚ где область С. 

ограничена частью кривой /| и кривой /,, а область С, охватывает значения €, и у 
справа от линии /,. Область Э, ограничена частью линии /, ниже точки M|, частью 
линии /, выше точки М |, линиями [, и {„ и частью линии [ ниже точки М. Отметим, 
что квазисинхронный режим ДСС существует также вне D в узкой области между 
линиями [, и . Обратим внимание и на то, что B D для значений параметров из не 
видных B масштабе рис.1 узких областей между линиями [, и 1, и между линиями [ 
и 19 B фазовом пространстве существуют два устойчивых колебательных 
предельных цикла; какой из двух квазисинхронных режимов, определяемых этими 
циклами, реализуется в системе для указанных узких областей, зависит от 
начального состояния системы. 

Выход из области D0 через границы !2 и 1J (через границы I [5 и часть 

границы /, в области С.) приводит K мягкому (жесткому) прекращению автомоду- 
ляционных колебаний и установлению в системе синхронного режима. При 
переходе с увеличением у через часть границы I, между областями С, и C, 
одновременно с исчезновением квазисинхронного режима появляется перемежае- 
мость - чередование длинной стадии колебательных движений с относительно 
короткими — нерегулярными — всплесками — вращательных — движений. — Через 
перемежаемость в фазовом пространстве возникает хаотический аттрактор Р, 
колебательно-вращательного типа, соответствующие ему (ф,х)- и (и,х)-проекции 
фазового портрета, зависимости ф(т) и и(т) приведены на рис. 2, 6-д. Поведение 
фазовой траектории на аттракторе P, представляет собой чередование движений B 

окрестности исчезнувшего седло-узлового колебательного предельного цикла и 
вращательных движений с нарастанием разности фаз ф. С удалением от границы /, 
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частота и длительность вращательных движений возрастают (рис. 2, e, ж). Пере- 
ход из области D через часть границы /,, расположенной в области С„ сопровож- 
дается либо возникновением колебательно-вращательного хаотического аттрак- 
тора, либо установлением синхронного режима. 

Линии г- 7, построенные на рис. 1, соответствуют бифуркациям вращатель- 
ных однооборотных (2л-периодических по ф) предельных циклов системы (2). 
Линии г r,, ry и части линии 7, между точками В, и B, и между точками B, и B, 
отвечают седло-узловым бифуркациям (при этом появление устоичивого й 
седлового циклов происходит при пересечении линий г) и ry с увеличением у и 
линий г и 7, с уменьшением }). На линиях г , 7, и на ‘части линии 7y справа от 
точки В, происходят бифуркации удвоения периода. Линия г часть линии г, между 
точками В и В, и часть линии г слева от точки В, являются ЛИНИЯМИ бифуркации 
рождения двумерного тора (тор рождается при пересечении линий 7, и Ty C 
увеличением €,, а линии г - с уменьшением Y, когда пара комплексно-сопряженных 
мультипликаторов предельного цикла пересекает единичную окружность). Линия 

1.05 

ИЙ 
е 

1000 

0.90 

-0.22 

ж 
1000 

Рис. 2. Проекции фазовых портретов и зависимости ф(т) и и(т) при £,=2.5; у =0.28 (a), 0.289 (6-9), 
0.31 (e, ж) 
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г, смыкается с линией Iy, соответствующей бифуркации петли сепаратрисы седло- 

фокуса A, с отрицательной седловой величиной 0, =hs+Re A, (i=1,2,34, М„ннй; - 

корни характеристического уравнения (6) для точки 4, A, ,<0, Re 4, ,<0,Im 2, , #0, 

Ag>0); линия ry проходит вблизи (ниже) линии /. При переходе с увеличением у 

через линию г из петли сепаратрисы появляется устойчивый вращательный (2л- 
периодический по ф) предельный цикл. 

Обратим внимание на TO, что линия 7, проходит B области С, а части линий 

гр Г„ I's И Г, расположены в области С,. Это означает, что вращательные 
предельные циклы системы (2), рождающиеся при пересечении линий 7', Г, И Г. 
существуют в фазовом пространстве одновременно с устойчивым состоянием 
равновесия А,. Из характера расположения бифуркационных линий на puc.1 
следует, что B области D =C \C , где C = {C, N Dy} UC,, а область С, заключена 
между частью линии [, и линией g, и B области D, охватывающей значения &, и у 

ниже линии г, справа от линии /, и части линии /, ниже точки М, аттрактором 
системы (2) в фазовом пространстве служит состояние равновесия A . При 
значениях ¢, и у в областях D и D, синхронный режим реализуется в ДСС при 
любых начальных условиях. Переход через границы областей D и D, приводит K 

возможности установления в системе квазисинхронного или асинхронного 
режимов. 

5. Рассмотрим динамические режимы и бифуркации, реализуемые в системе 
после прекращения синхронного режима при значениях у и €, вне областей С. и 
С». На рис. 3 приведена однопараметрическая бифуркационная диаграмма @, ›), 
соответствующая е,=0.4, а на puc. 4 даны (ф,у)-проекции фазовых портретов 
аттракторов (а, 6 - ¢, 3) и (y, х)-проекции точечного отображения T, порожда- 
емого траекториями модели (2) (6, ж). Диаграмма (y, у) отражает динамику 
асинхронных режимов, возникающих после перехода границы области С. 

W3 (y, у)-диаграммы видно, что после прекращения синхронного режима 
система переходит к хаотическому асинхронному режиму на аттракторе Р, 
колебательно-вращательного типа (рис. 4, а, 6). При увеличении у режим 

аттрактора P, преобразуется в режим двухоборотного (4л-периодического по ф) 
предельного цикла [?, (6), который затем жестко сменяется режимом колебаний 
на однооборотном (2л-периодическом по ф) предельном цикле L', (г). В свою 

0.8 

-0.5 
0.72 0.92 

Рис. 3. Диаграмма развития асинхронных режимов при H3MEHEHHH Y, соответствующая €,=0.4 
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Рис. 4. Проекции фазовых портретов и отображенияТ.,, соответствующие аттракторам модели 

(2), при е=0.4; у=0.74 (a, 6), 0.769 (), 0772 (2), 0.79 (2), 0.84 (e, ж), 0.86 () 

очередь, режим цикла L) при у >0.7736 жестко преобразуется в режим одно- 

оборотного вращательного предельного цикла L', (д). Цикл L', через бифуркации 

удвоения периода преобразуется в хаотический вращательный аттрактор Р (e, ж). 

В интервале 0.8171 <y <0.8943 наблюдается чередование хаотических и периоди- 

ческих асинхронных режимов на сложных вращательных предельных циклах (на 

рис. 4, 3 дан фазовый портрет одного M3 таких циклов - трехоборотного, G- 

периодического по ¢, предельного цикла /3,). От колебаний на аттракторе Р, 

система возвращается при у >1.037 к режиму предельного цикла 1, через 

бифуркации, обратные бифуркациям удвоения. 

Развитие асинхронных режимов, реализуемых в системе после перехода 

границы области С, показывает бифуркационная диаграмма (¥, X), соответствую- 

щая е,=5.75 (рис. 5, а). Здесь после прекращения синхронного режима система 

также переходит к режиму колебательно-вращательного хаотического аттрактора 

P, Для движений на этом аттракторе характерно нерегулярное чередование 

колебаний относительно ставшего неустойчивым состояния равновесия A, и 

колебаний с вращением разности фаз ф. На рис. 5, 6 даны фазовый портрет и 

зависимость х(т), соответствующие аттрактору P, вблизи границы области С. 

При увеличении у длительность стадии колебательных движений на аттракторе Г, 

уменышается. Как видно M3 рис. 5, а, для поведения системы с возрастанием у 
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Рис. 5. Бифуркационная диаграмма (Y, x) при €,=5.75 (a), фазовые портреты и зависимостих(т), 

соответствующие хаотическому аттрактору P, при у=0.63 (6) и тору TI1 при y=0.95 (в) 

свойственно чередование регулярных и хаотических асинхронных режимов. При 
этом для большей части интервала 0.62<y<0.93 наблюдаются хаотические режимы, 
которые формируются на базе двухоборотного, трехоборотных и пятиоборотного 
(10л-периодического по ф) предельных циклов системы (2). 

При достижении параметром у величины 0.9237 происходит мягкий переход 
к асинхронному режиму на однооборотном вращательном предельном цикле L', 
При у >0.9437 (10 есть при пересечении кривой ) цикл L!; теряет устойчивость и 
в фазовом пространстве возникает двумерный тор 7. 

На рис. 5, в даны (x, у)-проекция точечного отображения Т. и зависимость 
х(х), соответствующие тору Т',. При увеличении у тор T', разрушается, через 
хаотизацию колебаний система переходит в асинхронный режим на двухоборотном 
предельном цикле L2,, который существует в относительно широком интервале 
0.9632 <y <1.3474. 

При у>1.3474 возбуждается хаотический асинхронный режим, затем 
наблюдается мягкий переход к периодическому асинхронному режиму на пятиобо- 
ротном предельном цикле. © увеличением у этот режим жестко сменяется режи- 

мом другого пятиоборотного цикла L°, который при у >1.4908 жестко 
преобразуется в режим однооборотного вращательного предельного цикла // 
Этот режим поддерживается в системе при дальнейшем увеличении расстройки Y. 

При значениях y>1.487 кроме указанных выше обнаружены следующие 
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Рис. 6. Проекции отображения Т, при £,=5.75;y=1.488 (a), 1.4895 (6), 1.5 (8),1.54 @), 1.576 (д) 

динамические режимы системы. С переходом при увеличении у через значение 

1.487 в фазовом пространстве при наличии устойчивых предельных циклов Г/ и Т 

рождаются два тора: устойчивый ', и неустойчивый T*,. Puc.6, а, на котором дана 

(х;у)-проекция отображения Т, иллюстрирует одновременное существование этих 

торов (замкнутые кривые Г, и T,) и предельных Цциклов L', (центральная 

неподвижная точка) и 15 (цикл из пяти неподвижных точек). При y >1.489 на базе 

тора T', возникает режим тор-хаоса (рис. 6, 6), который при у >1.576 

преобразуется (puc.6, 6-2) снова в режим тора Т, (рис. 6, д). С превышением 

параметром у значения 1.585 наблюдается разрушение квазипериодических 

колебаний и жесткий переход к асинхронному режиму на шестиоборотном (12л- 

периодическом по ф) предельном цикле. Далее через бифуркацию, обратную 

бифуркации удвоения периода, этот режим преобразуется B режим трехоборотного 

предельного цикла, который при у >1.802 жестко сменяется асинхронным 

режимом на цикле L . 
Когда у переходит через значение 1.954, в фазовом пространстве вновь 

возникают устойчивый 7', и неустойчивый T', торы при наличии устойчивого 

предельного цикла L', (рис. 7, а). Циклу L', отвечает неподвижная точка К 

отображения T,. При у >1.976 тор Т', разрушается, фазовые траектории 

устремляются к семиоборотному (14х-периодическому по ф) предельному циклу 1! 

(puc. 7, 6). На рис. 7, б этому циклу отвечают семикратные неподвижные точки д 

О,„--» O отображения Г,. С увеличением у цикл Г/ теряет устойчивость и из него 

рождается устойчивый тор Т' (цикл замкнутых кривых С, С ... , C; на рис. 7, в), 

после разрушения которого вновь возникает устойчивый тор T', (puc. 7, г); 

неустойчивая инвариантная кривая Г, исчезает в результате перестройки 

инвариантных сепаратрисных кривых семикратных седловых неподвижных точек. 

На puc. 7, 2 внутри замкнутой инвариантной кривой Г, соответствующей тору Т' 

существует цикл из семи ставших неустойчивыми неподвижных точек О О› О. 

цикл из семи седловых неподвижных точек и устойчивая неподвижная точка К 

отображения Т. При возрастании у семикратные неподвижнные точки 0y Ок 

О.‚ вновь обретают устойчивость M, кроме этого, снова появляется неустойчивая 

инвариантная кривая Г, отвечающая неустойчивому тору T',, в результате 

перестройки сепаратрисных инвариантных кривых семикратных — седловых 
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Pac. 7. Проекции отображения ТФ при £,=5.75; у =1.9744 (a), 1.98 (6), 2.0004 (s), 2.001 @), 

2.008 (д), 2.05 (е) 

неподвижных точек (рис. 7, д). Когда у становится больше 2.0111, семикратные 

неподвижные точки исчезают в результате седло-узловой бифуркации, B фазовом 

пространстве существуют устойчивые тор Т', и предельный цикл L', (рис.7, е). 
Поведение системы при дальнейшем увеличении у характеризуется чередованием 
режима тора T', и периодических асинхронных режимов  вращательных 
предельных циклов, число оборотов MO ф на которых последовательно 
увеличивается на единицу, начиная с четырех. 

Если теперь рассмотрим асинхронный режим на цикле L', в качестве 
стартового состояния системы и проследим за эволюцией колебаний при 
уменьшении параметра Y, то обнаружим качественно иной характер развития 
динамических режимов в области значений у >0.93, в поведении системы 
проявляется гистерезис. При переходе через значение 1.386 (то есть при 
пересечении кривой м, на рис. 1) цикл L!, теряет устойчивость с рождением 
устойчивого двумерного тора T',. Соответствующая тору Т', (»„х)-проекция 

отображения TW приведена на рис. 8, а. Здесь внутри замкнутой инвариантной 

кривой Г, существует неподвижная точка К с парой мультипликаторов, 
расположенных вне единичного круга, отвечающая ставшему неустойчивым циклу 
L',. Когда у становится меньше 1.3432, один из этих мультипликаторов проходит 
через значение (-1) и перемещается внутрь единичного Kpyra. При этом 
реализуется (в соответствии с [13]) бифуркация рождения цикла неустойчивых 
двукратных неподвижных точек (K, K,) отображения T, соответствующих 
неустойчивому двухоборотному вращательному предельному циклу L2, (рис. 8, 6). 

При переходе с уменьшением у через значение 1.3356 пара комплексно- 
сопряженных мультипликаторов цикла 1}3 пересскает границу единичного Kpyra, 

перемещаясь внутрь него. Это приводит K  превращению  неустойчивого 
предельного цикла L% в устойчивый, одновременно от него отделяется [13] 
неустойчивый двумерный тор Tll. На рис. 8, в дана картина отображения T, 

соответствующая одновременному существованию устойчивого ', (кривая T,) и 
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Рис. 8. Проекции отсбраженияТч‘ при в =5.75; } =1.36 (a), 1.34 (6), 1.335 (в), 1.3332 (2), 1.332 (д) 

неустойчивого 7% (замкнутые инвариантные кривые Г, и Г,, охватывающие 
соответственно неподвижные точки K, и К) торов, устойчивого двухоборотного 
предельного цикла L2, (неподвижные точки K, K,) и неустойчивого предельного 
цикла // (седловая неподвижная точка К). При уменьшении у происходит слияние 
замкнутых инвариантных кривых отображения T, , отвечающих тору 1%, с петлями 
сепаратрисных инвариантных кривых седловой неподвижной точки К и образуется 
неустойчивый тор Т',. Соответствующая этому тору замкнутая инвариантная кри- 
вая Г, отображения Г. расположена внутри инвариантной кривой Г. и охватывает 

неподвижные точки 1?,’ K, и К, (рис. 8, г). С дальнейшим уменьшением у торы Т' и 
Т', сближаются и исчезают при переходе через значение y=1.3321. В результате 
этой бифуркации происходит прекращение квазипериодического асинхронного 
режима и жесткий переход системы к режиму двухоборотного цикла L2, (рис. 8, д). 

Когда у становится меньше 1.295, при наличии в фазовом пространстве 
цикла L2, в результате седло-узловой бифуркации появляется еще один двух- 
оборотный цикл L?,, который при y <1.2908 становится неустойчивым и U3 него 
рождается устойчивый тор 72,. На рис. 9, а-в даны (ф.у)- и (ф»х)-проекции 

0.28 

Ly 
В 

-3.14 0.04 
a Ф 

0.42 0.38 

х х 

-0.44 -0.47 - 
-0.20 0.03 -3.14 3.14 Ф 

г й д 
Рис. 9. Проекции фазовых портретов и отображешшТФ при £,=5.75; y =1.294 (a), 1.2861 (6, в), 

1.2844 (2, д) 
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фазового портрета, соответствующие устойчивому циклу L?, и тору 7%, и (y.%)- 

проекция отображения T, соответствующая тору Т?,. На рис. 9, s, г тору T7, 

отвечают замкнутые инвариантные кривые Г, и Г, неподвижная точка К, 

соответствует седловому предельному циклу L';, а неподвижные точки N, и N, - 

неустойчивому двухоборотному циклу L?,. При уменьшении у тор 1%, преобра- 

зуется в тор Т', (рис. 9, 2, д) в результате слияния замкнутых инвариантных 

кривых T, и Г, C петлями сепаратрисных инвариантных кривых седловой 

неподвижной точки K. На рис. 9, г тору Т', отвечает замкнутая инвариантная 

кривая Г, отображения Т, (напомним, что при этом в фазовом пространстве 

одновременно существуют двухоборотные предельные циклы Г?,-устойчивый и 

1* -седловой). Далее при y<1.2841 тор Т', разрушается в результате перестройки 

сепаратрисных инвариантных кривых седловых неподвижных точек отображения 

Т› отвечающих циклу I*,, после чего происходит переход к предельному циклу Г,. 

Дальнейшие преобразования, наблюдаемые в системе при уменышении у 

характеризует бифуркационная диаграмма y, X, приведенная на рис. 10, а, которая 

отображает развитие режима цикла L*; при изменений у от 1.285 до 0.93. Процесс 

эволюции цикла [?, сопровождается следующими явлениями. Вначале (при 

138 

1.25 1.134 

Рис. 10. Бифуркационная диаграмма (y,x), соответствующая е,=5.75 (а) и ее фрагмент (6) 
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у <1.2771) снова происходит переход к режиму тора T . Далее появляется большое 
количество «окон» предельных циклов, число оборотов по ф на которых 
последовательно уменышается на два. Последнее M3 этих OKOH COOTBETCTBYET 
однооборотному предельному циклу /А при у <0.9428. На рис. 10, 6 дан фрагмент 
(у,х)-диаграммы в интервале 1.134 <y <1 .25, где отчетливо видны OKHA предельных 
циклов с числом оборотов от 21 до 5. Видно также, что внутри окон семи-, пяти- и 
трехоборотного циклов реализуются бифуркации удвоения периода с переходами к 
хаосу. 

Изучение структуры отображения Т, в окнах между циклами показывает, 
что после окна 15-оборотного цикла наблюдается искажение формы замк.нутои 
инвариантной кривой, что свидетельствует O постепенном вырождении тора Т, 
тор-хаос. На рис. 11 даны (х,у)-проекции отображения Т показы.вающие 

изменения в структуре хаотического аттрактора, происходящие в интервале между 
окнами пятнадцати- и однооборотного циклов. При у <1.0161 режим хаотических 
колебаний жестко сменяется асинхронным  режимом на  двухоборотном 
предельном цикле L?,, затем при у <0.963 после исчезновения цикла L2, через 
перемежаемость вновь возбуждаются хаотические колебания. При у <0.9506 
наблюдается переход от хаотических колебаний к — квазипериодическим 
колебаниям, соответствующим тору Т' (см. рис. 5, 8), через перемежаемость типа 
хаос-тор, а при у <0.9428 - мягкий переход от квазипериодических колебаний к 
асинхронному режиму предельного цикла // 

Представленные сценарии поведения модели (2) при изменении начальной 
расстройки у интересны еще и TeM, что дают представление о BO3MOXKHBIX 
несинхронных режимах рассматриваемой ДСС, возникающих на пути K 
синхронному режиму при уменьшении Y. 

Приведенные выше результаты о динамике модели (2) не исчерпывают всех 
колебательных режимов и бифуркационных переходов, которые наблюдаются B 
исследуемой ДСС. В частности, при численном исследовании модели (2) 
обнаружены — широкие  области — параметров,  соответствующие — двух- H 
трехоборотному предельным циклам, претерпевающим при изменении параметров 

0.02 -0.01 

`-0.76 0.81 ВЕ 119 

Рис. 11. Проекции отображения Т, при £,=5.75;y =1.225 @), 1.176 (6), 1.142 (в); 1.09 @), 1.022 (д), 
0.953 (е) 
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бифуркации удвоения периода и рождения торов и эволюционирующих K 

хаотическим аттракторам. 
6. Paccmo‘rplm влияние параметров инерционности ёр ё) И ЕЭ на поведение 

модели (2). Численное исследование модели (2) показывает, что увеличение е €, И 

ЕЗ ведет в итоге к дехаотизации колебаний системы и переходу к периодическому 

асинхронному режиму однооборотного вращательного предельного цикла или к 

синхронному режиму. 
На рис. 12 приведены бифуркационные диаграммы, соответствующие 

значениям у=0.73, £,=5.75 и тем же значениям остальных параметров, при которых 
построен параметрический портрет на рис. 1. Исходным состоянием системы 

Рис. 12. а -Эволюция хаотического асинхронного режима при изменении €. 6 - Бифуркационная 

диаграмма (e,, x). в -Эволюция хаотического асинхронного режима при изменении е... 
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является режим колебательно-вращательного хаотического аттрактора P, (см. 
рис. 5, а, 6). Видно, что в случае диаграмм (g;,t) и (e,X) для большей части 
значений € и ё, U3 исследуемых интервалов в системе поддерживаются 
хаотические режимы. Периодические асинхронные режимы при изменении 

параметра ¢, в интервале 1.0<e; <2.8537 наблюдаются в узких (в масштабах рис. 12, 
а, в) областях значений у и соответствуют четырех- и семиоборотному предельным 
циклам. Такие же узкие области, соответствующие трех-, двух- и пятиоборотному 
предельным циклам, существуют и при изменении параметра e в интервале 3.0<e, 
<13.5912 (рис. 12, в). В интервале 13.5912<e,<18.7816 для поведения системы с 
увеличением &; характерно чередование периодических асинхронных режимов на 
трехоборотных предельных циклах и хаотических режимов. На (е,„х)-диаграмме 
(рис. 12, 6) наблюдаются узкие области шести-, четырех- и двухоборотного 
предельных циклов и относительно широкие области двух- и трехоборотного 
предельных циклов. Переход от хаоса к режиму однооборотного предельного 
цикла при увеличении каждого из параметров &, €, И &; происходит через 
бифуркации, обратные бифуркациям удвоения периода. Режим однооборотного 
цикла поддерживается в системе при дальнейшем увеличении €, €, ИЛИ €5. 

Обнаруженный характер влияния параметров инерционности &, €, И &, на 
динамическое поведение системы открывает возможность перевода ее из 
хаотического асинхронного режима в желаемого типа периодический асинхронный 
режим, а также из периодического асинхронного режима в хаотический 
подходящим изменением этих параметров. 

7. Проведенное качественно-численное исследование динамической модели 
(2) с двумя с половиной степенями свободы в дцилиндрическом фазовом 
пространстве позволило выяснить закономерности коллективного поведения 
связанных систем с фазовым управлением в случае, когда одна из подсистем 
(автоподстройки частоты) характеризуется регулярной динамикой, а другая 
(автоподстройки задержки) автономно может демонстрировать как регулярные, 
так и хаотические режимы. Результаты исследования показывают, что в такой 
системе могут реализоваться как динамические режимы, наблюдаемые B случае 
подсистем с регулярной индивидуальной динамикой [6, 7] (синхронный режим, 
периодические и хаотические асинхронные режимы), так и режимы и явления 
сложной динамики, обязанные своим происхождением применению — фильтра 
третьего порядка в цепи управления задержкой (потеря устойчивости синхронного 
режима, появление ПерИОДИЧеСКИХ КВЗЗИСИНХРОН}Ц›]Х режимов, определяемых 

колебательными — предельными — циклами, и — асинхронных — режимов, 
соответствующих колебательно-вращательным предельным циклам и двумерным 
торам в фазовом пространстве модели (2)). 

Выделены  области  параметров, соответствующие — установлению и 

удержанию синхронного режима (эти области представляют основной интерес для 
традиционных задач синхронизации и слежения) и квазисинхронным режимам. 
При значениях параметров вне этих областей рассматриваемая система ведет себя 
как автоколебательная система со сложной динамикой. Анализ перестроек 
поведения системы после нарушения синхронного и квазисинхронного режимов 
позволил — выяснить — болышое — разнообразие — асинхронных — режимов и 
бифуркационных переходов при изменении начальной частотной расстройки у и 
параметров инерционности цепей управления €, &, , И &, Хаотические режимы 
формируются через бифуркации удвоения периода и седло-узловые бифуркации 
вращательных предельных циклов, через перемежаемость и разрушение 
двумерных торов.. Примечательно, что сложные режимы и переходы к хаосу 
наблюдаются в системе при сравнительно небольших величинах параметров €, €,, 
€5 И &, когда обе взаимодействующие подсистемы в отдельности демонстрируют 
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регулярное поведение. Показано, что увеличение параметров €, €, И €, СПОсоб- 
ствует процессам дехаотизации асинхронных режимов. Обнаружено явление 
потери и последующего восстановления устойчивости синхронного режима при 
монотонном увеличении параметра g, Результаты исследования сценариев 
преобразования асинхронных режимов при изменении расстройки у объясняют 
механизмы сложного поведения системы в процессе ввода в режим слежения, а 
также после нарушения этого режима. Сильная зависимость динамических 
состояний системы от параметров Y, ), &,, €, И €, позволяет при помощи изменения 
этих параметров переходить от несинхронных режимов к синхронному или, 
наоборот, стимулировать возбуждение несинхронных режимов, отвечающих 
различным аттракторам модели (2), и решать на этой основе задачи генерации 
разнообразных сложных, в том числе случайноподобных, колебаний. 

Работа выполнена при поддержке научной программы Минобразования 
РФ «Университеты России - фундаментальные исследования»(проект № 992870) 
и РФФИ (грант № 99-02-17742). 
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SYNCHRONIZATION AND DEVELOPMENT ОЕ NONSYNCHRONOUS 

4 REGIMES IN COUPLED SYSTEMS WITH PHASE CONTROL 

V.P. Ponomarenko 

Dynamical regimes and bifurcations in nonlinear model with two-and-half-degree- 
of-freedom are investigated, which describes the behaviour of two coupled phase-locked 
and delay-locked systems. One of the interacting systems demonstrates only regular 
regimes of behaviour while the other system exhibits both regular and chaotic regimes. 
Numerical simulations of the model reveals various periodic and chaotic oscillatory 
regimes. The boundaries of lock range are determined, scenarios of development of 
nonsynchronous regimes under variation of the system parameters are shown. The results 
are presented in the form of one- and two-parameter bifurcation diagrams. 
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