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КОЛЕБАНИЯ В ЦИФРОВЫХ РЕКУРСИВНЫХ ФИЛЬТРАХ 
ПЕРВОГО ПОРЯДКА C ПРЕДСТАВЛЕНИЕМ ЧИСЕЛ 

В ДОПОЛНИТЕЛЬНОМ КОДЕ С ОКРУГЛЕНИЕМ 

Ю.А. Брюханов 

Исследованы процессы в цифровых фильтрах нижних и верхних частот с 
произвольным числом уровней квантования. Числа представляются в дополнительном 
коде, а результаты суммирования округляются. Сумматор имеет характеристику с 
насыщением. Методом точечных отображений исследованы автономный режим и 
колебания при постоянном внешнем воздействии. Получены выражения для расчета 
наиболее вероятных режимов. 

Цифровые рекурсивные фильтры первого порядка используются для 
выделения сигналов нижних или верхних частот [1]. Процессы B таких фильтрах 
зависят от количества двоичных разрядов М, способа представления чисел и 
характеризуются  определенными ошибками квантования. Если  последова- 
тельность ошибок квантования является совокупностью выборок стационарного 
случайного процесса, если она не коррелирована с последовательностью точных 
значений сигнала, а сами значения ошибки не коррелированы между собой 
(представляя собой белый шум) и при этом распределение вероятностей ошибки 
равномерно BO всем диапазоне ошибок квантования, TO исследование процессов B 
фильтрах может быть осуществлено с помощью линейной статистической модели 
ошибок [2]. Эти условия нарушаются при малом числе разрядов (и связанным с 
ним числе уровней квантования [=2М*+!), а также при воздействии, например, 
постоянного или синусоидального сигнала, дискретизированного с частотой, 
рационально кратной частоте синусоиды. Нарушение условий влечет за собой 
необходимость рассмотрения цифрового фильтра как существенно нелинейной 
колебательной системы. 

Полагаем, что в фильтре использована целочисленная арифметика с 
фиксированной запятой, сумматор имеет характеристику с насыщением, B отличие 
от [3] использовано также распространенное на практике [2] представление чисел 
B дополнительном коде с округлением результатов сложения чисел. 

Цель работы - исследование автономного режима и колебаний при 
постоянном внешнем воздействии 4А. 

При использовании целочисленной арифметики шаг квантования равен 
единице, A - делое число, характеристика квантователя (сумматора) с 
округлением B дополнительном коде и насыщением определяется функцией



p+1 при 0 < @< N,- 1, 2 1 2 
. Х) = N, при ¢ 2N, - 1/,, 

[p +1/,-N]-N mpu -М + М, < ср <0, 
-N при ¢ < - -N+ /2‚ 

где [} - целая часть числа, М, =М - 1, N=L/2. Участки характеристики при ф20, 
соответствующие значениям [ф + 1/2] обозначим O,LI,... N, а участки при ф<0, 
соответствующие значениям [ф + /2-N] - N, обозначим 0,-1,-1L,...,-N. Имеем B виду, 
что вследствие квантования B системе первого порядка возможны / состояний. 

В общем случае движения в цифровых фильтрах первого порядка 
описываются нелинейным разностным уравнением 

х(п+1) = ах(п)+и(п)), 

где x(n+l) - реакция фильтра, а - параметр фильтра, и(п) - входное воздействие. 
Заметим, что зависимость функции f от числа уровней квантования L 
обусловливает зависимость вида разностного уравнения от этого числа, а вместе с 
тем и от количества двоичных разрядов М. Введем функцию y(n)=x(n+l). 
Процессы  исследуем на плоскости  состояний (х,у) методом — точечных 
отображений с использованием диаграммы Ламерея, представляющей собой 

совокупность графиков биссектрисы у=х и функции последования [4]. Задача 
исследования движений сводится к нахождению последовательности точечных 
отображений Р отрезка xE[-N,N;] в себя. Как и в [3], плоскость состояний 
разобьем на области соответственно участкам характеристики квантователя 
(сумматора), обозначив их, как и соответствующие участки. 

В нелинейной системе в зависимости от начального состояния x(0) 
возможны различные установившиеся движения. Поскольку все L возможных 
начальных — состояний — равновероятны,  введем — понятие — вероятности P 
установившегося движения В в виде P(B)=m/L, где т - количество начальных 
состояний, соответствующих этому движению. Параметр фильтра а выбираем B 
области устойчивости без учета эффектов квавтования, то есть О<Ш<1. 

Свободные колебания (u(n)=0) 

При этом граница областей |[ф +1/2 signep 1] [ср+ /2 51gncp]+s1gncp на плоскости 
состояний определяется зависимостью х=([ф +/, signo]+/, з1рпф)/а. Сама граница 
при ф20 принадлежит области [ф +/,]+1, а при ф<0 - области [ф - 1/,]. Функция 
последования имеет вид у=/(ах). B 
зависимости от знака и величины 
параметра а — графики — функций 
последования и биссектрисы — могут 
пересекаться в ОДНОй MMM нескольких 
точках. 

Пусть а>0, в этом случае цепь 
является фильтром нижних — частот 
(ФНЧ). B качестве примера 
рассмотрим — случай — [=12,  a=Ys. 
Плоскость состояний с обозначенными 
на ней областями, соответствующими — 
участкам характеристики квантователя - 7 
(сумматора), и диаграмма Jlamepes 
показаны на рис. 1. Здесь график Рис. 1. Диаграмма Ламерея автономного фильтра 

функции последования пересекается с НИЖНИХ частот npul= 12, a=4/5 
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биссектрисой при [x]|€[-2;2]. Поэтому при старте из точки ( B цепи сохраняется 
состояние покоя. Ниже это обозначено Т=0. При старте из точек x=+1 в цепи 
возникают паразитные колебания с периодом Т=1 и амплитудой Х=+1, 
соответственно. Ниже это обозначено Т=1(+1). При движении из точек [x]€[2;5] и 
из точек [х]Е[-2;-6] в цепи устанавливаются колебания соответственно Т=1(+2). 
Поэтому вероятность колебаний T=1(2) равна /5. Ниже это обозначено P(2)=1/. 
Вероятности других возможных паразитных движений равны Р(О)=Р(і1)=1/12, 
Р(-2) =5/12. Следует отметить, что интервал установившихся значений ХЕ [-2;2] 
составляет так называемую мертвую зону цифрового фильтра [2]. Рассмотрение 
движений при а©(0;1) позволяет построить бифуркационную и вероятностную 
диаграммы. Последняя показана на рис. 2, а. 

Исследование колебаний для ряда значений [ позволило установить 
следующие закономерности для наиболее вероятных значений величины Х. B 
общем случае произвольного L на выходе фильтра в установившемся режиме 
имеем наиболее вероятное паразитное движение T=1(-X), где - М<-Х<0, если на 

диаграмме Ламерея точки -Х и -X-1 принадлежат области -Х. Это означает 
выполнение условия 

-Х - М < -аХ <X+, п -Х - М, < а(-Х-1) < -Х + Y, 

откуда следует (X-1/,)/X<a<(X+1/,)/(X+1). При Х=0 с вероятностью Р=1 
выполняется условие O<a£1/2. В дмапазоне значений (N—1/2)/N<a<1 имеем 
равновероятные — движения I=1(X), где X€E[-N;N,]. Пользуясь — этими 
закономерностями, для любого L можно найти зависимость X (а). 

Пусть а<0, в этом случае цепь является фильтром верхних частот (ФВЧ). B 
качестве примера рассмотрим случай L=12, a=—4/5. При этом — функция 
последования отличается от изображенной на рис. 1 только знаком. График ее 
пересекается с биссектрисой только в начале координат, что обусловливает 
сохранение состояния покоя при старте из точки х=0. Вместе с тем, при старте из 
точек х=+1 в цепи возникают паразитные колебания с периодом Т=2 и 
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Puc. 2. Вероятностные диаграммы автономной цепи для L=12: а - фильтра нижних частот, 
6 - фильтра верхних частот 
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мгновенными значениями xE{1;-1}. Ниже это обозначено T=2(1/-1). При движении 
из точек [x]€[-6;-2] и [x]€[2;5] B цепи устанавливаются колебания T=2(2/-2). 
Соответственно вероятности вышеуказанных движений составляют величины 
Р(0)= М», P(1/-1)=?/;5, P(2/-2)=3/,. И здесь интервал значений ХЕ [-2;2] составляет 
мертвую зону фильтра. Рассмотрение движений при а©=(-1;0) позволяет построить 
бифуркационную и вероятностную диаграммы. Последняя показана на рис. 2,6. 

Исследование колебаний для ряда значений [ позволило установить 
следующие закономерности. На выходе фильтра имеем Х=0, если на диаграмме 
Ламерея точка X=1 принадлежит области 0. Откуда следует -1/2_<. а < 0. Наиболее 
вероятным является установившееся паразитное движение Т=2(Х/-Х), где 
0<X<N,, если точки X и Х+1 принадлежат области -Х. Это означает выполнение 
условия 

- (X+15) <аХ < -(Х-М)) п -(Х+ )) < a(X+1) < -(Х- ), 

откуда следует 

- X+ )X+ <а < -(X-11)/X. 

При  -1<а <- (1\/1—1/2)/1\/ имеем — наиболее  вероятное  движение (C 
вероятностью 3/L) T=2(N,/-N,). Эти закономерности позволяют установить 
зависимость Х(а) для произвольного числа уровней квантования/.. 

Постоянное воздействие (и(п)=А) 

При постоянном внешнем воздействии А функция последования имеет вид 

y=f(ax+A), а график ее пересекает ось ординат в точке y=A, при этом ф=А. 
Граница областей [ф +!/; ], [ф +/, signel+signg на плоскости состояний 
определяется зависимостью х=([ф +1/,signg]+1/, signp-A)/a. Сама граница при ф20 
принадлежит области [ф+!/,]+1, а при ф<0 - области [p-1/,]. Рассмотрим случай 
А>0. 

Пусть а>0. B качестве примера рассмотрим случай А=1. Диаграмма Ламерея 
для L=12, а=4/5 показана на рис. 3, а. Здесь график функции последования 
пересекается с биссектрисой при [x]€[3;5]. Следовательно, при старте U3 точек 
[x]€[-6;3] в цепи устанавливается колебание T=1(3). При старте из точек х=4 и 
х=5 имеем соответственно движения Т=1(4) и T=1(5). Поэтому вероятности 
колебаний равны P(3)=5/¢, P(4)=P(5)=1/;,. Рассмотрение движений при ае(0;1) 
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Рис. 3. Диаграммы Ламерея для L=12: а - фильтра нижних частот, a=4/5, А=1; 6 - фильтра 
верхних частот, а=-8/11, А=5 
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Рис. 4. Вероятностные диаграммы для L=12: а - фильтра нижних частот при А=1, 6 - фильтра 
верхних частот при А =5 

позволяет построить бифуркационную и вероятностную диаграммы. Последняя 
показана на рис. 4, а. 

Исследование колебаний для ряда значений L и А позволило установить 
следующие закономерности для наиболее вероятных установившихся значений 
величины х. В общем случае произвольного 0<A<N, на выходе фильтра имеем 
наиболее вероятное движение T=1(X), где А<Х<М,, A<N,, если на диаграмме 
Ламерея точки Х-1 и X принадлежат области Х. Это означает выполнение условия 

Х-М, <аХ +А < Х + М, пХ - М, <а(Х-1) + А < Х + 1y, 

откуда следует 

(Х - М, - А)(Х - 1) <а < (Х + М, - А)/Х. 

‚ При Х=А необходимо пользоваться 
M выражением O<a<1/(24). В случае X=N, 

необходимо, — чтобы — точка — №,-1 
0.8 принадлежала области N, что означает 

а>(№- Y5 -A)/(N,-1), верхним значением 
этого диапазона является a<l. При 

0.6 A=N,, а=(0;1) на выходе фильтра имеем 
единственное установившееся движение 

0.4 T=1(N}). 
Полученные закономерности поз- 

! воляют найти зависимость Х(а) для 
| 

0.2 4 жлюбых L и А. Эту зависимость можно 
: сравнить с идеальной при L=c, которая 

00 ! установлена в [5]. В качестве примера 
00 02 04 06 08 на рис. 5 приведены графики норми 

@а — рованной функции X(a)/N, для трех 

Рис. 5. Наиболее вероятные зависимости Х/ М, значений числа разрядов М, при этом, 
от величины параметраа для ФНЧ когда М=3, имеем А=1. 
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Пусть а<0. В качестве примера рассмотрим случай A=5. Диаграмма Ламерея 
для L=12, a=-8/11 показана на рис. 3, 6. Здесь график функции последования 
пересекается с биссектрисой в единственной точке при х=3. Это обусловливает 
возникновение колебаний T=1(3) при старте из точки х=3. Вместе с TeM, при 
старте из точек [x|€[-6;2], хе{4;5} в цепи устанавливается паразитное колебание 
T=2(4/2). Соответственно вероятности этих движений равны Р(3)=1/12‚ P(4/2)=11/12. 
Рассмотрение движений при а©(-1;0) позволяет построить бифуркационную и 
вероятностную диаграммы. Последняя показана на рис. 4, 6. 

Исследование колебаний для ряда значений L и А позволило установить 
следующие закономерности для наиболее вероятных установившихся значений Х. 
В общем случае произвольного 1<A<N , на выходе ФВЧ имеем T=1(X), где 1<X<A, 
если точки Х-1 и Х принадлежат области Х или если точки Х и Х+1 принадлежат 
области Х. Это означает выполнение условия 

Х - 1/2_<_С!Х+А<Х+ 1/2ПХ-1/2Ё0(Х-1)+А<Х+ 1/2 

или 
Х- < аХ + А <Х + И) пХ - Ч, <а(Х+1) + А < Х+ 1, 

Откуда следует 
(Х- М, - А)Х < а < (Х + )- А)/(Х -1) 1 

ИЛИ 

(X - м) -Ау(Х+1) <а < (Х + М, - А)/Х. (2) 

При X=1 следует пользоваться выражением (2). В случае A=1 единственным 
колебанием с периодом Т=1 является T=1(1) при условии 

-1/2 <а< 0. (3) 

Левая граница этого диапазона обусловлена принадлежностью точки X=1 области 
1. Другим по сравнению с определяемыми из (1)-(3) областям параметра а<0 
соответствуют наиболее вероятные паразитные колебания с периодом Т=2. Эти 
закономерности позволяют установить зависимость Х(а) для произвольных L и 4. 
Эту зависимость можно сравнить с идеальной при L=00, которая рассчитывается с 
помощью методики, разработанной в [5]. 

Рассмотрим случай А<0. Воспользовавшись методикой, описанной выше, 
получаем следующие закономерности для наиболее вероятных установившихся 
колебаний при произвольных L и А. 

Пусть а>0. В случае входного воздействия -М <А<-1 на выходе ФНЧ имеем 
T=1(X), где -N,<X<A, если точки Хи Х+1 принадлежат области Х. Это означает 

выполнение условия 

Х- Ч, <аХ +А <Х + М, пХ - 1195 а(Х+1) +А < Х + ,, 

откуда следует 

(Х+1-А)(Х +1) <а < (X-1/5-A)/X. (4) 

В диапазоне входного воздействия -N,<A<1 на выходе фильтра имеем T=1(-N), 
если точка -N, на диаграмме Ламерея принадлежит области -N, это означает 
a>(—N+1/2 -A)/-N,, верхним значением этого диапазона является a<l. При 
воздействии А=-1 на выходе фильтра имеем Т=1(-1), если точка X=-1 
принадлежит области -I, это означает (<а 51/2. При том же воздействии имеем 

Т=1(%), где - М\<Х<-1, если точки X и Х+1 принадлежат области Х. Это означает 
выполнение условия (4), где A = -1. B случае A=-N а Е (0;1) на выходе фильтра 
имеем единственное установившееся колебание T=1(-N). 
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Пусть а<0. В случае входного воздействия -М<А<-1 на выходе ФВЧ имеем 
T=1(X), где А<Х <-1, если на диаграмме Ламерея точки Х и Х-1 принадлежат 
области X или точки X и Х+1 принадлежат области Х. Результирующие 
соотношения получаем из (1), (2) путем замены знаков = и < на < и >, 
соответственно. В том же диапазоне входного воздействия на выходе фильтра 
имеем Т=1(-1), если выполняется условие (1) с вышеуказанной заменой знаков 
неравенств. В случае A=-1 единственным колебанием с периодом Т=1 является 
Т=1(-1) при условии -l/,<a<0. Левая граница этого диапазона обусловлена 
принадлежностью точки X=-1 области -1. Другим по сравнению с определенными 
выше областям параметра а<( соответствуют наиболее вероятные паразитные 
колебания ¢ периодом T=2. 

Теоретические результаты подтверждены компьютерным моделированием. 
Полученные — закономерности нетрудно распространить Ha  случай, когда 
переменные представляются в форме чисел с выравниванием слева (то есть в виде 

дробных чисел). Для этого достаточно ввести новую переменную х=хд, где g=1/N - 
шаг квантования. 

Заключение 

Исследованы свободные колебания и колебания при постоянном входном 

воздействии в цифровых рекурсивных фильтрах нижних и верхних частот первого 
порядка, использующих арифметику с фиксированной  запятой. — Числа 
представляются в дополнительном коде, результаты суммирования округляются, а 
сумматор имеет характеристику с насыщением. Процессы в  фильтрах 
характеризуются  диаграммами Ламерея и  вероятностными — диаграммами. 
Полученные выражения позволяют рассчитывать наиболее вероятные режимы 
фильтров при произвольном числе уровней квантования. 

Работа вымолнена при финансовой поддержке Pocculickozo фонда 
фундаментальных исследований, грант № 02-02-17500. 
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OSCILLATIONS IN THE FIRST-ORDER DIGITAL 
RECURSIVE FILTERS WITH REPRESENTATIONS OF NUMBERS 

IN ADDITIONAL CODE WITH ROUND-OFF 

Yu.A. Bryuhanov 

Processes 10 low-pass and high-pass filters with ап arbitrary number оЁ 
quantization levels are investigated. Numbers are represented in additional code and the 
results of adding are rounded. Adder have the characteristic with saturation. Using dot 
mappings method, the autonomous regime and oscillations under constant external 
influence are considered. Expressions for calculating the most probable operating modes 
are obtained. 
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