
Журналв нале аннн ннн 

w для студентов и преподавателей | ). ] 

Изв. вузов «I[IHM», т.12, № 1-2, 2004 УДК 532.59 

ДИНАМИКА СОЛИТОНОВ, ВОЗБУЖДАЕМЫХ В РЕЗОНАТОРАХ 
НА ПОВЕРХНОСТИ МЕЛКОЙ ВОДЫ: ТЕОРИЯ И ЭКСПЕРИМЕНТ 

А.Б.Езерский, О.Е.Полухина, Ж.Броссар, Ф. Маран, И.Муп%бази 

Изучается возбуждение солитонов поверхностных волн в резонаторах. 
Экспериментально установлено, что солитоны могут генерироваться на поверхности 
мелкой воды на фоне крупномасштабной резонаторной моды. Обнаружены 
мультистабильность и удвоение периода возбуждаемых B резонаторе нелинейных волн. 
Построены пространственно-временные диаграммы для различных параметров 
внешнего воздействия. Проведено сравнение пространственно-временной динамики 
нелинейных полей при столкновении двух солитонов в резонаторе и в безграничной 
системе. 

Для теоретического описания генерации солитонов поверхностных волн 
использованы Ддва подхода. Первый основан на поиске решений обыкновенных 
дифференциальных уравнений для амплитуды и фазы солитона, распространяющегося 

на фоне гармонической волны, а второй - на прямых расчетах динамики 
поверхностных волн с использованием уравнений мелкой воды в приближении 
Буссинеска. Качественное исследование уравнений для амплитуды и фазы солитона и 
численный расчет уравнений Буссинеска позволили объяснить характеристики 

солитонов, которые наблюдались в эксперименте. 

Введение 

Возбуждение и динамика солитонов на поверхности мелкой воды изучается 
обычно для случая неограниченно протяженных систем [1, 2]. В безграничной 
среде солитоны, возникщие в результате эволюции начального возмущения, 
распространяются в противоположных направлениях и через определенное время 
расходятся, поэтому их взаимодействием можно пренебречь. По этой причине 
наиболее подробно изучено поведение возмущений, распространяющихся в одну 
сторону. В экспериментах возбуждение таких солитонов достигается за счет 
создания начального подъема уровня жидкости B определенной области [3,4] или за 
счет однократного смещения поршня, толкающего жидкость в горизонтальном 
направлении [5,6]. В теории динамика таких возмущений описывается хорошо 
известным уравнением Кортевега - де Вриза (КдВ), при выводе которого 
изначально полагается, что BOJHBI раСПРОСТраН_ЯЪОТСЯ B одНноМм НаЦРЭ_ВЛСНШХ. ДЭ‚ЖС 

если используются уравнения Буссинеска (в них учтено взаимодействие встречных 
волн), обычно находятся решения в виде волн, распространяющихся в одном 
направлении [7]. 
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K настоящему BpeMeHH KpoMe  процесса BO3HAKHOBEHMS — солитона 
поверхностных BOJH или последовательности солитонов, рождающихся из 
начальных возмущений [8], подробно были исследованы отдельные акты 
взаимодействия: взаимодействие Ддвух солитонов, отражение солитона от 
вертикальной стенки [3,4], уступа на дне [9] и т.д. Было обнаружено, например, что 
амплитуда солитона в момент отражения от стенки увеличивается более чем вдвое, 

а отраженный солитон запаздывает относительно времени, рассчитанного B 
предположении, что скорость распространения солитона постоянна [10]. При 
взаимодействии Ддвух солитонов возникают похожие эффекты: появляется 
временная задержка, а амплитуда смещения болыше, чем сумма амплитуд 
солитовов. Следует отметить, что в болышинстве экспериментов достаточно 
хорошо выполняются основные предположения, заложенные в теории [11-14]: 
солитоны приходят U3 бесконечности, взаимодействуют со стенкой или между 
собой и уходят на бесконечность [15]. 

Солитоны, однако, можно возбуждать не только в системах бесконечной 

длины, HO также и в резонаторах. Очевидно, что в резонаторах, где 
взаимодействием нелинейных волн, распространяющихся в противоположных 
направлениях, уже нельзя пренебрегать, пространственно-временная динамика 
солитонов будет другой. Число экспериментальных работ по изучению солитонов 
поверхностных волн в резонаторах достаточно ограниченно. Параметрическое 
возбуждение нелинейных волн, включая солитоноподобные импульсы, было 
описано в [16,17] для экспериментов в кювете длиной 60 см, совершающей 
горизонтальные колебания. Эта работа была опубликована 35 лет назад, когда 
свойства солитонов и даже сам термин «солитон» не были еще широко известны. 
Авторы [16,17] назвали наблюдаемые волны «резонансными колебаниями». Они 
исследовали временные ряды смещения свободной поверхности в нескольких 
точках резонатора, а информации O пространственно временной динамике 
возмущений не было получено. Режимы параметрического возбуждения одного 
или нескольких нераспространяющихся осдиллирующих солитонов описаны в [18]. 
Обнаружено, что амплитуда смещения свободной поверхности в таких нелинейных 
волнах близка к классическому солитону с экспоненцишгьно уменыпающимися на 
болыших расстоявиях полями. 

Можно указать также несколько примеров возбуждения солитонов B 
резонаторах для волн в системах, физическая природа которых совершенно иная, 
чем поверхностные волны, но которые, тем не менее, обладают такими же 
дисперсионными и нелинейными характеристиками, что и поверхностные волны на 
мелкой воде. Так, солитоны электромагнитных волн наблюдались B отрезке LC- 

линии, возбуждаемой синусоидальным напряжением [19], а солитоны поперечных 
волн - в полоске резины при параметрическом возбуждении гармонической 

внешней силой [20]. 
Когда солитоны возбуждаются в резонаторах, то возникают новые по 

сравнению с безграничными системами проблемы. Они связаны с многократными 
взаимодействиями солитонов, распространяющихся по резонатору, а также с 
взаимодействием солитонов и резонаторных мод. Именно эти явления исследуются 
в данной работе. Результаты излагаются в такой последовательности. Статья 
разделена на две части: эксперимент и теоретическое обсуждение. В первой части 
п. 1.1 представлено описание эксперимента по возбуждению солитонов в канале, B 
п. 1.2 приведено разбиение плоскости управляющих параметров на области с 
качественно различной пространственно-временной динамикой нелинейных волн, 
B п. 1.3 описана процедура выделения солитонов из временных рядов, полученных 
в эксперименте, а в п. 1.4 представлены результаты измерения их характеристик. 
Bo второй части работы B п. 2.1 проведено сравнение данных нашего эксперимента 

139



с данными экспериментов Максворти [3] по отражению солитона от вертикальной 
стенки. Теоретические модели для возбуждения солитонов в резонаторах 
анализируются B ML 2.2 и 2.3. Мы сравнили экспериментальные данные с 
результатами, полученными из полуфеноменологической теории взаимодействия 
солитонов с монохроматической волной (п. 2.2), а также с результатами 
численных расчетов уравнений Буссинеска (п. 2.3). В п. 2.4 обсуждаются 
возможные причины расхождения результатов расчетов и экспериментальных 
данных. 

1. Эксперимент 

1.1 Схема экспериментальной установки. Эксперименты проводились в 
бассейне лаборатории механики университета Гавра, Франция. Длина бассейна L 
составляла 10 метров, ширина 0.5 метра. Глубина жидкости Н была 0.26 метра. 
Поверхностные волны возбуждались волнопродуктором (рис. 1), представлявшим 
собой плоскую пластину, периодическое движение которой осуществлялось за 
счет электромотора. Пластина вращалась вокруг центра O,, H, строго говоря, 
амплитуда €€ горизонтального смещения зависела от глубины. Измерения 
смещения свободной поверхности проводились двумя датчиками сопротивления. 
Один из датчиков мог перемещаться с помощью координатной системы на 
расстояние до 5.6 метра в центральной части бассейна, а другой был неподвижным 
и располагался у стенки, отражающей поверхностные волны. Используя сигналы 
от двух датчиков, мы могли строить пространственно-временные диаграммы. При 
этом сигнал от неподвижного датчика использовался как опорный, и проводилось 
фазовое усреднение. Волнопродуктор позволял возбуждать резонаторные моды с 
частотами f,=(gk tanh(k H))"*/(2x), где k =nn/L, n=123,.., g - ускорение сво- 
бодного падения. В ходе экспериментов частота волнопродуктора выбиралась 
близкой к частоте моды, длина которой была равна длине резонатора L, то есть 
n=2, f=(gH)"?/L. В условиях эксперимента резонансная частота этой моды 
составляла f,=0.165 Гц. Измерения показали, что эта мода имеет достаточно 
высокую добротность. Относительная ширина резонансной кривой (по уровню 
0.707) составляла y=Af,/Af<0.02. С болышей точностью установить ширину 
резонансной кривой HE удалось, поскольку минимальный шаг по частоте 
возбуждения у используемого в эксперименте устройства составлял А/`,=0.002 Гц. 

2 3 

Puc. 1. Схема эксперимента: I - волнопродуктор, O, - ось вращения пластины; 2 - подвижный 
датчик; 3 - неподвижный латчик 

1.2. Пространственно-временные диаграммы. Пространственно-времен- 
ные диаграммы, получаемые B эксперименте, существенным образом зависят от 
управляющих параметров системы: амплитуды @, и разности между частотой 
волнопродуктора и резонансной частотой f, возбуждаемой моды. B связи с TeM, что 
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волнопродуктор совершает вращательное движение, под амплитудой смещения a, 
будем понимать усредненную по глубине амплитуду горизонтального смещения 

волнопродуктора. _ 
На рис. 2 представлены характерные диаграммы для различных параметров 

внешнего воздействия и соответствующие временные ряды, полученные при 

помощи неподвижного датчика, расположенного у стенки. Как ВИДНО H3 3THX 

диаграмм, при малой амплитуде внешней силы B резонаторе возбуждаются стоячие 

T, MM N, MM 

100 100 1 
50 

50 0 

0 -50 
`50 T T T '100 T Т U 

в 5 10 15 20 с г 5 10 15 20 tc 

Рис. 2. Пространственно-временные диаграммы и соответствующие временные рядыа - а =2.3 см, 

£.,=0.151 Гц, А=(7 f,)f,=-0.087; 6 - a =82 см, / „=0.158 Гц, A=-0.045; в - @, =8.2 см, £, =0.170 T, 
A20.028;2 - a_=83 oM, f =0.177 Гц, AZ0.07 
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поверхностные волны (рис. 2, а). При больших амплитудах в системе возникают 
распространяющиеся импульсы (рис. 2, 6-г). Импульсы на пространственно- 

временных диаграммах видны как яркие полосы. Наклон этих полос соответствует 

скорости распространения импульсов и в условиях нашего эксперимента эта 

скорость близка к скорости поверхностных волн на мелкой воде (подробное 
обсуждение скорости распространения импульсов будет проведено в дальнейшем). 
Число импульсов зависит от частоты возбуждения. Под числом импульсов мы 
понимаем следующее. Представим стоячую волну как суперпозицию двух бегущих 
волн, распространяющихся в противоположных направлениях. Синхронно с 
каждой из этих BOJH распространяются импульсы - в большинстве наших 
экспериментов от одного до трех. Нонятно, что количество импульсов, 
зарегистрированных датчиком, будет разным B зависимости от точки резонатора, B 
которой этот датчик находится. Легко понять, что только в центре резонатора и у 
его боковых границ количество импульсов, регистрируемых датчиками, совпадает 
с количеством импульсов в каждой из бегущих волн. В зависимости от частоты 
при фиксированной амплитуде внешней силы могут возбуждаться три импульса на 
периоде волны (см. рис. 2, 6), два импульса (им соответствуют две пары треков, 
представленные на рис. 2, в) или один импульс. В последнем случае есть только 
два пересекающихся трека (см. рис. 2,г). 

Разбиение плоскости параметров (f ,a ) на области с качественно 

различной динамикой показано на рис. 3. Внутри областей, отмеченных цифрами, 
наблюдается возбуждение соответственно одного, Ддвух и TpeX импульсов на 
периоде волн. При достаточно болышой амплитуде есть небольшая область, где 

наблюдается возбуждение четырех импульсов. При управляющих параметрах, 
попадающих в зоны, отмеченные пунктирной линией, наблюдалась мультиста- 
бильность; при одних и тех же величинах частоты и амплитуды колебаний 
волнопродуктора, но различных начальных условиях, могли наблюдаться различ- 
ные режимы. Например, в зоне 2-3 - возбуждение двух (рис. 4, а), трех (рис. 4, 6) 
или переменная генерация двух и трех импульсов на периоде (рис. 4, в). Последний 

4 импульса 3 импульса 2 импульса 1 импульс 

o /0 $ 6 mwQMZA АЛ 
3.0 I_IL\I_I f—ll'l—fl' 

S 1-2/0 

” у и 
6.0 | 

0-1f ‚° 

10§ е@ ® X AAL ЛЛ #4Ф 
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20 | СтояЧая „\@Ш“ 
волна Стоячая 
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0150 0.155 0.160 0.165 0.170 0.і75 0.і80 К Гц 

4.0 

0.0 

Рис. 3. Разбиение плоскости ( ХЛ» ) на области с существенно различными режимами генерации 
нелинейных волн. Области, выделенныс пунктирными линиями, соответствуют параметрам, при 
которых режимы генерации зависят от начальных условий. Резонансная частота возбуждаемой 
монохроматической моды составляет f2=0.165 
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Рис. 4. Мультистабильность, наблюдаемая при а,„=9.4 см, /` =0.165 Гц (область 2-3 на рис. 3) 

из режимов соответствует удвоению периода. Нелинейные волны, возбуждаемые 

B системе, имеют период вдвое больший, чем период колебаний волнопродуктора. 

Пространственно-временные — диаграммы — показывают, UTO — импульсы, 
распространяющиеся в противоположных направлениях, взаимодействуют. На 
диаграммах можно найти, например, области, где импульсы сливаются. Вместо 
двух максимумов в результате слияния в определенной области диаграммы 
возникает один максимум. Размер области, где происходит слияние, зависит от 
амплитуды импульсов. Это ясно видно на рис. 2, где пространственно-временные 
диаграммы — демонстрируют  столкновение [BYX  импульсов для — различных 
управляющих параметров системы. Чем больше амплитуда импульса, тем меныше 
протяженность области, где наблюдается слияние. 

1.3. Выделение солитонов. Детальный анализ экспериментальных данных 

показал, что для определенного интервала управляющих параметров импульсы, 
возбуждаемые в резонаторе, близки по своим характеристикам к солитонам. 
Чтобы доказать это, мы предположили, что в резонаторе солитоны возбуждаются 
на фоне гармонической волны. Вопрос состоит в TOM, как разделить импульсы и 
гармонические колебания. Очевидно, что это нельзя сделать при помощи 
линейных фильтров: частота повторения импульсов в точности равна частоте 
гармонических — колебаний. Поэтому — использовался — следующий — прием. 
Определялось положение максимумов импульсов (рис. 5, а), затем данные, 
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Рис. 5. Выделение из временного ряда солитонов 
и гармонической волны: а - исходный временной 

ряд и DAL со срезанными на интервалах T+t 
солитонами, 6 - гармоническая  волна H 
«гармоническая волна плюс COJIMTOH», 8 - 
последовательность солитонов и гармоническая 
волна. На рис. в указан сдвиг фазы солитона и 
гармонической волны cpszAtSos, где o)=2nfe й 

10 At йс 

полученные B — эксперименте, — на 
интервале T,+T, заменялись линейной 
зависимостью — смещения — свободной 
поверхности от времени. Таким образом 
вырезались импульсы. Из полученного 
сигнала за счет фильтрации вырезались 
все гармоники с частотой выше часто- 
ты возбуждения. Полученный таким 
образом сигнал вместе с исходным вре- 
менным рядом представлен на рис. 5, 6. 
На рис. 5, в представлены отдельно 
гармоническая MoJa  резонатора и 
последовательность импульсов. Очевид- 
HO, что результаты фильтрации сущест- 
венным образом зависят от того, Kak 
выбрать времена T, и T,. Расчеты для 
разных T, H T, показали, что при 
разумном — выборе этих  параметров 
(z,,S 1/6 T, T - период внешней силы) 
разброс характеристик гармонических 
колебаний и импульсов не большой. 
Временные ряды с  использованием 
такого алгоритма обрабатывались при 
помощи пакета программ LabView 4.1. 
Было установлено, что форма импуль- 
сов близка к классическим солитонам 

cosh™(t/x) всюду за исключением областей ¢ малой амплитудой поля (рис. 6). 
Длительность импульса T, уменышается с увеличением амплитуды импульса 4,. 
Экспериментальные данные представлены на рис. 7. На этом же графике показана 
теоретическая 
амплитуды. 

зависимость длительности классического солитона OT €ro 

Мы назвали наблюдающиеся B эксперименте импульсы солитонами, чтобы 

подчеркнуть, что они локализованы B определенной области пространства, а их 

характеристики близки к характеристикам классического солитона. 

7 9 13 ё с 

Рис. 6. Сравнение формы импульса с теорети- 
ческой зависимостью M=A со5 “ ((г))/,) 
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Рис. 7. Экспериментально полученные значения 

длительности солитона (точки). Для сравнения 
приведена — , теоретическая зависимость 
T = МУ (4H?1(3A )%, V =V (1+A /(2H)) 
(сплошная линия) 
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1.4. Свойства солитонов. Фазовый сдвиг между солитоном U гармо- 
нической волной. Выделение W3 временных рядов солитонов и гармонической 
волны позволяет сравнить свойства нелинейных BOJH, наблюдающихся B 
эксперименте, с хорошо известными решениями уравнения Кортевега - де Вриза 
(см., например, [2]). Смещения свободной поверхности  «мелкой» — воды 
подчиняются уравнению 

/ot + V@dn/ox + 31, ( Hynon/ox + М; V, H?dPn/dx® = 0, 1) 

которое имеет решение B виде солитона 

n(x-V£) = A cosh ((BAJ(AH)Y Y x-V 1)), V.= V,(1+AJ2H)), (2) 

где V=(gH)'" - скорость поверхностных волн бесконечно малой амплитуды B 
мелкой воде. Понятно, что длительность солитона пропорциональна A 07, 
скорость солитона зависит от его амплитуды - нелинейная добавка к скорости 
пропорциональна A . 

Мы предполагаем, что нелинейные волны, возбуждаемые в резонаторе, 
состоят из двух солитонов, распространяющихся навстречу друг другу, причем 
каждый из солитонов распространяется на фоне гармонической волны. В нулевом 
приближении мы пренебрежем взаимодействием встречных волн и представим 
нелинейное поле смещения поверхности в виде четырех компонент 

N (x-V ) + ngsin(w-kx- ) +n(x+Vr) + ngsin(orrke-g, ), (3) 

где о, & - частота и волновое число гармонической волны, 1), - амплитуда волны, 
@, - фазовый сдвиг между солитоном и гармонической волной (cM. рис. 5, в). 
Отметим, что рядом с боковой CTEHKOH, где расположен неподвижный датчик, 

смещение свободной поверхности может быть представлено как 

n = 2nsin(wr-g ) + 2м,(2. 

Представление (3) не учитывает взаимодействия встречных гармонических 
волн и солитонов. В частности, хорошо известный эффект увеличения амплитуды 
солитона при отражении от стенки и появление фазового сдвига не может быть 
описан B рамках представления (3). B предположении, что модель (3) справедлива, 
были измерены параметры солитонов. Используя процедуру разделения сигнала на 
гармоническую волну и солитон (п. 1.3) 
по временным рядам, полученным с 

Ф„„рад 
неподвижного датчика, мы выяснили )» Ж‚/>К\о=. 
зависимость xapaKTepHCTm< солитона от РЕ Ж/Х 

управляющих параметров. Зависимость g g А X 
длительности — солитона на — уровне il 
041994, (0.4199=cosh™(1)) от ампли- ¢4 \.\ \ЕЁЁЕ 
туды солитона представлена на рис. 7. < 
ТеореТИЧССКЭ‚Я зависимость, показанная 0.0 $ ) 

на 9TOM X¢ pHCYHKe, получена U3 т т 

формул:ы (2) 0.165 0.170 0.175 f;x, ТЦ 

Был измерен также  фазовый 
сдвиг ф, (рис. 8). При малой амплитуде 
внешней силы фазовый сдвиг был ‘ЁЁ’ 1.7 | 2.6 | 3.4 | 4.3 | 5.1| 6.0 1 6.8 
близок к нулю. С увеличением ампли- 

туды фазовый сдвиг увеличивался до Рис. 8. Зависимость фазы солитона от частоты 
40-60 градусов. Амплитуда солитона внешней силы. Данные получены для разных 
зависела от частоты и — амплитуды значений амплитуды внешней силы a 

* | A н X 
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волнопродуктора. При одной и той же амплитуде внешнего воздействия амплитуда 
солитона и фаза солитона зависели от частоты внешнего воздействия. Измеряя 

время достижения максимальной амплитуды солитона при различных положениях 

датчика смещения свободной поверхности, можно определить траекторию 
движения солитона. Пример таких измерений показан на рис. 9. 

Если исключить область, где происходит слияние двух максимумов, TO 
можно определить скорость движения солитона на различных участках 
траектории. Линейная аппроксимация показала, что скорость солитона имеет 
приблизительно постоянную величину на всех участках, /,=2л/Г. Солитоны 
распространяются синхронно с гармонической волной. В центральной части 
резонатора, где происходит столкновение двух встречных солитонов, возникает 
область, где солитоны сливаются - BMECTO двух максимумов существует один. 
Размер области слияния Г, зависит от амплитуды солитона (рис. 10). Длина 
слияния, так же как и размер солитона уменьшается при увеличении амплитуды 
солитона. 

X, см 7 

500 \‘- 
х = -167.17 + 758.5 

R? = 0.9993 

400 AN 
\‘\ 

300 

x=-173.51-229.1 

& = 0.9993 

200 
х=-176.51+794.4 

/ R? = 0.9996 

100 
x=169.87-203.8 

R? =0.9993 r\cfi 
0 Т - T T T \- \ 1 

0 1 2 3 4 46 

Рис. 9. Траектории солитона B резонаторе, полученные при а,„=8.2 см, £, =0.177 Гц. Для каждой 
U3 траекторий показано уравнение, соответствующее наилучшей линейной аппроксимации, и 
величина & достоверности аппроксимации. Если развернуть выделенную область на 90°, то 
получатся траектории, изображенные далее на рис. 11 

2. Обсуждение результатов 

2.1. Сравнение с  результатами _ Максворти. Полученные нами 
результаты по взаимодействию солитонов в резонаторах естественно сравнить с 
результатами по динамике солитонов в безграничных средах [3]. Типичная 
траектория для случая столкновения двух солитонов (см. рис. 9) состоит из 
четырех участков. Стрелки показывают направление движения солитонов. 

Наилучшая линейная аппроксимация и корреляция точек даны для каждого из 
участков траекторий. Укажем некоторые особенности траекторий солитонов. Как 
показывает линейная аппроксимация траекторий, скорости солитонов на этих 
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четырех участках несколько  разли- 
чаются. Хотя различие небольшое (+3%), 
оно достаточно хорошо проявляется, 
так как точки ва каждом из участков 
траектории имеют высокую (0.999) 
степень корреляции. Имеется также 
небольшой фазовый сдвиг - задержка 

солитонов, вызванная их взаимодей- 
ствием. 

Траектории солитонов, взаимо- 
действующих B резонаторе, MOXHO 
сравнить с траекториями, приведенными 

L,em 

120 A 

80 TN 
12,=-03724,+134.69 

40 R?=0.9418 

0 T T —T T 

0 50 100 150 200 4, мм 

Рис. 10. Зависимость длины слияния L, от 
амплитуды солитона A. Показано уравнение, 

соответствующее наилучшей линейной аппрокси- 
мации и величина #2 достоверности — этой в работе Максворти [3]. Как было 
аппроксимации показано в этой работе, столкновение 

двух встречных солитонов поверхностных BONH одинаковой амплитуды B 
безграничной среде эквивалентно отражению одного солитона от вертикальной 
стенки. Действительно, при отражении от вертикальной стенки горизонтальная 
скорость возмущений равна нулю, а при столкновении двух солитонов одинаковой 
амплитуды можно выделить сечение (ось симметрии), B котором горизонтальная 
скорость будет равна нулю. Это обеспечивает эквивалентность двух задач. 
Траектория солитона, отраженного от стенки, представлена на рис. 11. Как видно 

\‘ \ / 
8.0Г \ И 

\ Incident wave / 
\\/ 

6.0+ '\.\ 
\ Reflected wave with 

<& \ no phase shift ™/ / 
N . 
х \ £ 
N 4.0F \ / Measured spatial 
^ ` И` phase shift, - AX/hg 

\' 

\ 
2.0 F K 

\\ Actual reflected wave 

Wall ‚ ‚ ‚ \ ' ‚ ‚ 
P 

2 4 6 8 10 12 

F=t/hyg)l? 

Puc. 11. Траектория солитона, полученная Максворти [3] (по горизонтальной оси отложено 
безразмерное время, по вертикальной - безразмерная координата) 

из этого рисунка, существует определенное время, в течение которого максимум 

находится B ОДНОЙ точке. Это время T, называют временем остановки. Зависимость 

безразмерного времени остановки от амплитуды солитона показана на рис. 12. 
Отметим сходства и различия траекторий, представленных на рис. 9 й 11. 

Как видно из этих рисунков, траектории подобны и получаются одна M3 другой 
поворотом на угол 90°. Вместо длины слияния L, которая наблюдается при 

взаимодействии солитонов B нашем эксперименте, существует время остановки T, 
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ё т нрр при отражении единичного солитона от 

Е 1 вертикальной стенки в экспериментах 
50 b 7 Максворти. Длина слияния и время 
40 Е 1 остановки уменышаются при увели- 
Е ] чении амплитуды солитонов. Различие 

30 F 4  траекторий обусловлено тем, YTO по- 
разному обрабатываются данные. В 

2.0 ` ' DU экспериментах [3] анализировались 
00 01 02 03 04 05 e 

мгновенные CHHMKH - KaJipbl кино- 

Рис. 12. Зависимость безразмерного времени фильма. На каждом из мгновенных 
остановки г от безразмерной амплитуды соли- СНИМКОВ положение максимума 
тона €. Незаполненными кружочками обозначены амплитуды определялось при фИКСИРО- 
результаты расчетов, ПРОВВДСШ{ЬШВ[:[О] ванном значении BpeMeHH. B нашем 

эксперименте  анализировались временные ряды в различных точках и 
определялось время, при котором достигается максимум амплитуды с изменением 
значения координаты вдоль резонатора. Подробный анализ того, как способ 
обработки данных влияет на форму траекторий солитонов, представлен в 
Приложевии 1. 

Как было отмечено Максворти, амплитуда солитона, отраженного от стенки, 
несколько меньше, чем до отражения. Это обусловлено потерями. В случае 
возбуждения солитонов в резонаторе, кроме потерь есть еще взаимодействие 
солитонов с монохроматической модой, которое может приводить и K увеличению 
амплитуд солитонов. Поэтому нельзя утверждать, что B резонаторе ампилитуда 
солитонов до взаимодействия должна быть больше, чем после взаимодействия. Это 
и демонстрируют полученные нами данные. 

2.2. Аналитическая модель генерации солитонпов. В данном разделе мы 
сравним — характеристики  солитонов — поверхностных  волн, измеренные B 
эксперименте, с  результатами - полуфеноменологической теории. Следует 
отметить, что теоретическое изучение нелинейных полей, возбуждаемых B 
резонаторе гармонической силой, было развито в [17] для поверхностных волн на 
мелкой воде и в [19] для электромагнитных волн B [С-линиях. В этих работах 
возмущения, распространяющиеся в резонаторах, представлялись как сумма 
монохроматических волн и нелинейных возмущений. В силу того, что работа [17] 
появилась несколько раньше, чем началось интенсивное исследование солитонов в 
различных областях науки, в ней не было никакого упоминания O солитонах, тогда 
как в [19] постулировалось существование солитона на фоне монохроматической 
BOJHBL. 

Для описания солитонов электромагнитных волн в [19] были выведены 
уравнения для амплитуды и фазы солитона, распространяющегося B резонаторе на 
фоне монохроматической моды. Аналогичные уравнения для поверхностных волн 
на мелкой воде выглядят следующим образом: 

dE jdt =3/, (on/H)E совф, - 8E,, (4.1) 

афа =11, (аН)'РА М Н - nk(g/H)Ysing_ - А. (4.2) 

Под Ё, здесь понимается энергия солитона E=[ A dx~ A*?, а под фазой солитона 
@, - безразмерное время между максимумом солитона и нулем монохроматической 
моды (рис. 7, в), A=2n(f, - f,) это расстройка, а & - коэффициент, описывающий 
экспоненциальное затухание солитона. Первое уравнение системы (4) - уравнение 
энергетического баланса. Изменения амплитуды солитона обусловлены передачей 

энергии от гармонической волны (первое слагаемое в (4.1), его подробный вывод 
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представлен в Приложении 2) и диссипацией энергии (второе слагаемое в (4.1)). 
Следует подчеркнуть, что коэффициент O описывает диссипацию, которая не 
зависит от масштаба возмущений. Такая диссипация действительно наблюдается в 

различных системах [21,22], однако этот параметр в отличие от всех других, 
входящих в систему (4), мы He определили при проведении нашего эксперимента и 
в дальнейшем выберем его из условия близости теоретически предсказанных 
параметров солитона к экспериментальным данным. Второе уравнение системы 
(4) - кинематическое условие. Скорость солитона в системе отсчета, движущейся 
со скоростью гармонической волны (V. =w/k), зависит от амплитуды солитона A 
(первое слагаемое B (4.2)). Гармоническая волна переносит солитон как частицу с 
соответствующей скоростью, зависящей от фазы. Этот перенос описывается 
вторым слагаемым в правой части (4.2). Изменения фазы обусловлены также 
расстройкой между частотой внешней силы и резонансной частотой (третье 
слагаемое). Следует подчеркнуть, что система (4) получена для солитона и 
монохроматической волны, распространяющихся в одном направлении. Для 
солитона и волны, распространяющихся в противоположных направлениях, 
уравнения будут теми же, а взаимодействие встречных возмущений He принимается 
во внимание. 

Уравнения (4) могут быть получены также M3 уравнений, описывающих 
возбуждение солитона бегущими возмущениями. Такой подход был развит B 

монографии [23]. 
Качественный анализ решений системы (4) показал (см., например, [19]), 

что устойчивые стационарные состояния для фазы @, и амплитуды A 
удовлетворяют соотношениям 

@, = агссов(2НЫ/(Зот))), (5.1) 

A, = 200k + 2emy/(HO[L-(2H8/ (3um, )12 (5.2) 
Иснпользуя процедуру выделения амплитуды и фазы солитона, описанную B 

n. 1.3, мы можем сравнить экспериментальные данные с теоретическими 
предсказаниями. M3 представленной теоретической модели следует, что фаза 
солитона не зависит от расстройки. Поэтому мы представили значения фазы ф, как 
функцию амплитуды гармонической волны п для всех частот возбуждения, при 
которых в эксперименте наблюдался один солитон (рис. 13). Зависимость 
амплитуды солитона А, от амплитуды гармонической моды показана на рис. 14 для 
двух различных частот возбуждения. При построении теоретических кривых, 
изображенных на рис. 13 и 14, значение затухания ё было выбрано равным 0.0015 
1/с. Как видно из графиков, есть достаточно хорошее качественное соответствие 
между теоретическими и экспериментальными зависимостями. Отметим, что 
использованная при теоретических расчетах величина коэффициента & хорошо 

(Pss рад As’ 

1_2 - °а „иии MM N 

-$ / ° 80.0 / — 
0.8 ./.' 5 °° . I’//- 

0.0 S . 0.0 . . . 
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Рис. 13. Зависимость фазы ф, солитона от Mg - Рис. 14, Зависимость амплитуды солитона А. OT 
амплитуды гармонической волны (точки) и амплитуды гармонической волны 1)) TOUKH, COe- 
теоретическая зависимость (5.1) для 5=0.0015 диненные ломаными кривыми - эксперимента- 
(кривая) льные данные, гладкие кривые - теоретическая 

зависимость (5.2). Толстые линии соответствуют 
расстройке A=0.063 [рад], тонкие - А=0.075 [рад] 
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коррелирует с измерениями добротности гармонической моды с частотой f, по 
ширине резонансной кривой. Непосредственные измерения показали, что О'!= 
=Af,/f,~0.02. Если предположить, что затухание моды с частотой / такое же, как у 
солитона, то в результате пересчета получим близкую величину добротности: 
Q'=Af,/f,=0.023. 

2.3. Численные расчеты. Чтобы  рассчитать  нелинейные — волны, 
наблюдавшиеся в эксперименте, и иметь возможность получать в теоретических 
моделях пространственно-временные диаграммы для разных параметров внешней 
силы, мы провели численные расчеты уравнений, описывающих распространение 
волн на мелкой воде. Мы использовали одномерные уравнения мелкой воды B 
приближении Буссинеска [1], в которые было добавлено затухание, 

" + й, + e(um), = 1 P-zuEEE + YN УЬ © 

A A ЛА —1 2/\ A A 

и, + M + вии, = [y w Uge, T Yyl 7 И, 

где n=n/(eH) - смещение свободной поверхности (здесь и лалее знаком (^) обозначены 

безразмерные переменные); #=u/(eHw „) - скорость в поверхностных волнах; T=1), 
- время; E=x/L - координата вдоль резонатора; w=H/L, Н - глубина жидкости, L - 
длина резонатора; € - малый параметр асимптотического разложения, введенный, 
например, в [1]. Мы дополнили уравнения Буссинеска слагаемыми, описывающими 
диссипацию: вязкие потери (слагаемые с коэффициентом у) и частотно- 
независимые потери (слагаемые в правой части (6) с коэффициентом у). Первый 
тип потерь связан с феноменологическим учетом затухания, вызванного сдвиго- 
выми напряжениями, величина которого растет пропорционально квадрату 
волнового числа, а второй - определяется потерями в пограничном слое 
поверхностной волны у дна. Потери такого типа обсуждаются в работах [21,22]. 
Как показано в этих работах, частотно-независимые потери обусловлены 
рассеянием волн на мелкомасштабной турбулентности. В наших экспериментах 
такая турбулентность существует в пограничном слое у дна. Измерения пульсаций 
скорости в пограничном слое с помощью лазерного доплеровского анемометра 
показали значительную интенсивность пульсаций скорости на расстоянии порядка 
1 мм от дна. Учет обоих видов диссипации является очень важным для нашего 
случая, так как установление конечной амплитуды нелинейных волн в резонаторе 
связано с балансом поступления энергии в систему из-за внешнего воздействия и 
потерь энергии в системе. 

Для численных расчетов мы использовали следующие граничные условия 
при ё=0 и Е=1; 

^ ^ й 
on(wE=0)/0g =0, u(tg=0) =V sin(2nf?), 

(7) 
^ ^ 

on(te=1)/0t =0, u(rE=1)=0. 

Отметим, что если V=0, то граничные условия (7) будут соответствовать 
задаче о волнах на мелкой воде в резонаторе с твердыми стенками. Мы будем 
моделировать работу волнопродуктора гармонически изменяющейся горизон- 
тальной скоростью на одном из концов резонатора. 

Численное моделирование системы уравнений (6) проводилось на основе 
неявной конечно-разностной схемы, реализованной B пакете MATLABS.3: 
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(0 )/Q28%) + (w, -, ")(248) + su(n,, " n, ") (2AE) + 

o (u ", 2AE) = Y6 p2 (1,2, 42 - P)(2AE) + н 

+ " /(AE2) + e, 

(u-u1)(247) + (g™ MW (208) + e (u,,, "1, ")/ (2A8) = 

= WY(4A0) (1,120 P (AED) - (1204w, #1)/(AED)] + 

4,0 ™, PO/ (AED) + Y. 

Здесь /"=/(т„6). Эти уравнения применялись BO внутренних узлах простран- 
ственной сеткй, а на границах использовались разностные аналоги краевых 
условий (7). 

Приведем результаты численных расчетов при разных параметрах. В первой 
серии экспериментов мы положили частотно-независимое затухание равным нулю 
и исследовали, как зависят временные реализации и пространственно-временные 
диаграммы от амплитуды и частоты возбуждающей силы. Результаты при 

^ ^ 

нулевых начальных условиях u(r=0,£)=0, п(т=0,5)=0 представлены на рис. 15. При 
малой амплитуде V, внешней силы (рис. 15, а) в системе возбуждаются стоячие 
BOJIHBI (размерная амплитуда смещения пластины волнопродуктора составляет 
a,=0.325 см). При болышей амплитуде (рис. 15, 6-2; а,=3.25 см) форма нели- 
нейных волн, возбужцаюпшхся в системе, зависит от соотношения между частотой 
внешнего воздействия f, и резонансной частотой /. При /„=0.95/=0.1563 Гц на 
периоде наблюдаются три импульса, при f, =0.98f, =0.1612 Гц - два импульса и при 
К =1.02/=0.1678 Гц - один. Точно такие же режимы наблюдаются при 
соответствующих параметрах внешней силы в эксперименте. В численных 
расчетах, так же как и в эксперименте, мы получили мультистабильность и 
удвоение периода. Режим генерации солитонов зависел от начальных условий - 
например, при нулевых начальных условиях генерировался один солитон на 
периоде волны, а если при тех же параметрах внешнего воздействия стартовать с 
начальных условий, соответствующих генерации двух солитонов на периоде, TO 
этот режим оказывался устойчивым. В определенной области параметров 

наблюдалась попеременная генерация двух и трех импульсов или одного и двух 
импульсов, то есть возникал режим удвоения периода. 

Во второй серии численных расчетов менялось соотношение между 
коэффициентами частотно-зависимой и частотно-независимой диссипации. Если 
предположить, что большая  часть  диссипации — обусловлена — частотно- 
независимыми потерями, например \у,=0.0001, у=0.0015, на интервалах между 
солитонами появляется осциллирующая компонента (рис 16, ср. с рис. 5, где 
представлены экспериментальные данные). Качественное объяснение этого 
феномена может быть довольно простым. При затухании, приблизительно 
пропорциональном A%, потери энергии в высоких гармониках увеличиваются с 
номером и высокочастотные колебания подавляются. Поэтому солитон плавно 
изменяется на периферии. При частотно-независимом затухании  высокие 
гармоники имеют большую амплитуду и проявляются на временных реализациях, 
полученных в численном эксперименте. 

2.4. Отличия — экспериментально — наблюдаемых — солитонов — от 
«классических». B экспериментах обнаружено, что на фоне гармонической моды B 
резонаторе возбуждаются солитоны поверхностных волн. Наиболее подробно мы 
исследовали случай, когда на одном периоде гармонической волны возбуждается 
один солитон. Такой режим наблюдается при частотах внешней силы, больших, 

чем резонансная частота. Это можно понять, используя следующие рассуждения. 
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Рис. 15. Результаты численного моделирования системы уравнений (6):a - V=0.05, /=0.95; 6 - 
У. =0.5, /=0.95; в - V=05, /=0.98; г - И) =0.5, f=1.02. Белыми линями выделены области, 
соответствующие построению пространс гвенно временных диаграмм в эксперименте (см. рис. 2) 

При точном резонансе период возбуждаемых колебаний Т, будет равен 21/(2Н)'?. 
Солитон, который распространяется по резонатору от одного конца [0 другого и 
назад, затрачивает время Т,=21/\ . Скорость солитона V, =(1+A /(2H))(Hg)*>(Hg)"™ 
Следовательно, T, >T, и стационарный режим возбуждения одного солитона может 

существовать для частот, болыших чем резонансная частота, и не может 
существовать при частотах ниже резонансной. Именно это и наблюдается в 
эксперименте. При частотах, меныших чем резонансная частота, в системе 
возбуждаются, по-видимому, связанные соетояния солитонов. Скорость связанных 
состояний отличается от скорости движения одного солитона и они возбуждаются 
при других условиях. Вопрос о скорости движения связанных состояний 
нуждается, на наш взгляд, в дальнейшем исследовании. 
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Kak показал эксперимент, скорость движения солитона по резонатору 
несколько меныше, чем ее оценки по формуле (2). Так, для режима, представ- 
ленного на рис. 9, скорость солитонов находится в интервале 173 cM/c>V >167 см/с. 
Если мы оценим \, по формуле (2) для амплитуды A =8 см, что соответствует 
экспериментальным условиям возбуждения солитона для данных на рис. 9, то 
получим V ,=184см/с (скорость волн бесконечно малой амплитуды составляет 
V=(gH)2=160cM/c). Как объяснить разницу теоретически рассчитанной и 
экспериментально полученной скоростей? Следует, на наш взгляд, учесть, что B 
эксперименте, строго говоря, имеется нелинейная периодическая волна, а не 
уединенная волна - солитон. Оценим, используя точное решение в качестве 
эталона, отличие скорости солитона и кноидальной волны. Как известно [9], 
скорость кноидальной волны зависит от так называемого эллиптического 
параметра т и описывается формулой 

У„ = - з АУН+Ит(АИН)( - 3, E(m)/K(m))](gH)"?, (8) 

где K(m), E(m) - эллиптические функции первого и второго рода. Параметр т 
отвечает за форму волны, причем т=0 соответствует гармонической волне, а m=1 
- солитону. Используя формулу (8), можно оценить, каким должен быть 
эллиптический параметр, чтобы при амплитуде А,=8 cM, глубине слоя Н=26 см 
скорость распространения И,„ была равна 170 см/с, а не 184 см/с, как это дает 
формула (2). Оценки показывают, что эллиптический параметр для этих данных 
мало отличается от единицы (т=0.9996). Каковы характерные особенности волн 
при т близких к единицде? Сравним, например, кноидальные волны при m=0.9996 и 
т=0.9999 (рис. 17). Форма импульсов в этих двух случаях практически не 
отличается, тогда как период повторения импульсов отличается сильно. При т->1 
период стремится к бесконечности, а скорость распространения отличается от 
скорости линейных волн на мелкой воде на конечную величину, описываемую 
формулой (2). Для характеристики кноидальных волн можно ввести величину n=/T, 
где т - длительность импульса, а Т - период кноидальных волн. Для условий 
эксперимента n=10 ‚ что хорошо согласуется с оценкой эллиптического параметра 
m=0.9996. Таким образом, различие скоростей распространения импульсов, 
измеренное в эксперименте и рассчитанное по формулам, связано, по-видимому, с 
TEM, что в эксперименте наблюдаются, строго говоря, периодические волны, а не 
солитоны. Приведенные здесь оценки показывают, что последовательность 
солитонов имеет менышую скорость, чем один солитон. Исследование скорости 
распространения солитонов должно быть проведено более подробно. В 

né=10) — — Ш 
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Рис. 16. Солитоны с осциллирующими хвостами, Рис. 17. Форма кноидальных волн при значениях 

наблюдающиеся в численном расчете при эллиптического параметра, близких к единице 
параметрах /=1.05, И) =0.5, у=0.0015, у,=0.0001 
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эксперименте, например, B интервале между  солитонами — наблюдается 
осциллирующая составляющая, которая никак не учитывалась при оценках. 

Заключение 

В заключение кратко сформулируем результаты, полученные в данной 
работе. При возбуждении гармонической внешней силой возмущений на 
поверхности мелкого канала была обнаружена генерация солитонов на фоне 
гармонической волны (моды резонатора). Измерения показали, что солитоны 
распространяются синхронно с гармоническими волнами. Выяснено, что солитоны 
привязаны к определенной фазе гармонической волны, которая зависит от 
амплитуды и частоты внешней силы. Аналитическая модель генерации солитонов 
и численный расчет показали  хорошее COOTBETCTBHE — экспериментально 
полученных данных и измеренных B эксперимевте параметров нелинейных BOMH. 

Авторы признательны Н. Абча за помощь в эксперименте, Е.Н. Пелинов- 
скому за многочисленные обсуждения, П. Вейдману за подробную библиографию 
IO  экспериментальным — исследованиям — солитонов — поверхностных — волн. 
А.Б. Езерский благодарен за  предоставленную — возможность — проведения 
экспериментов в бассейне лаборатории механики университета Гавра в течение 
программы PAST. 

На стадии подготовки статьи к печати работа частично поддержи- 
валась INTAS, грант M 03-51-3728. 

Приложение 1 

Представим на модельном примере, как будут выглядеть траектории 
движения солитонов, если положение максимума амплитуды определять или по 
мгновенным снимкам, или по временным рядам в отдельных точках. 

Пусть мы имеем два солитона, распространяющиеся навстречу друг другу 

пь(хыг) = Alcosh? ((3A/(4H)) 2(xFVi)/H), 

V = (gH)"2(1+A/(2H)). 
Пренебрежем — нелинейным — взаимодействием  солитонов и построим 

пространственно-временную диаграмму столкновения двух солитонов, отображая 
на ней величину n(X,!)=m,(x,1)+n (x,0) 

20 (рис. 18). Теперь построим траектории 
движения солитонов (положения точки 

16 максимума — амплитуды), — используя 
мгновенные снимки WM временные 

12 ряды. Если обрабатываются мгновен- 
ные снимки, то находится координата с 

08 максимальной амплитудой при фикси- 
рованном времени (рис. 19, а). Если 

04  обрабатываются временные ряды, TO 
находится время, соответствующее мак- 

0.0 — симальной амплитуде при фиксирован- 

2 -1 0 1 ! ной координате (рис. 19, 6). В первом 
Рис. 18. Пространственно-временная диаграмма СЛучае траектории солитонов анало- 
для столкновения солитонов (модельный пример) гичны — полученным в работе Макс- 
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ворти, с характерным временем остановки, а во втором - полученным B нашем 
эксперименте, с определенной длиной слияния. Траектории выглядят совершенно 
по-разному в зависимости от способа — определения.  Исчерпывающими 
характеристиками динамики солитонов являются, конечно, пространственно- 
временные диаграммы, которые и определялись нами в ходе экспериментов. 

х X 

2.5 | \\\\\ ///// 251 \\\\\\////// 

00 | v 0.0 | 

2510 / \ -2.5 | / \ 

-5.0 ! -5.0 : 
2 ° A 0 1t 2 -1 0 1 ¢ 
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Рис. 19. Траектории солитонов при столкновениях, полученные по мгновенным снимкам @) и по 
временным рядам (§) (модельный пример) 

Приложение 2 

Выведем — уравнение, описывающее изменение  амплитуды — солитона, 
распространяющегося на фоне гармонической волны. Для этого рассмотрим 
распространение гармонической волны с частотой © и волновым числом % на фоне 
переменного течения с характерной длиной, много большей пространственного 
периода волны. Будем считать xH<<1 и будем рассматривать такую волну как 
квазичастицу, имеющую энергию. Изменения амплитуды волны обусловлены 
передачей энергии от крупномасштабного течения. В системе отсчета, 
движущейся €O скоростью крупномасштабного течения, мы оценим изменение 
энергии волны Ё, используя адиабатическое приближение 

A(EIQ)/3t = 0. (9) 

Частота © зависит OT поля скорости и и смещения новерхности 1 B 

КРУПНОМЭСШТ&бНОМ течении как ` 

Q = их + (g(H+n)) . (10) 

Предположим теперь, что крупномасштабное течение - это тоже волна на 
мелкой воде с частотой о и BOJHOBBIM числом k, такими что Q<<w, kh<<yH<<l. В 

этом случае 

Q = ux+(g(H+n)) Y = n(g/H)"Py, + (1+Yy n/H)(gH)x = 

= 3/, n(g/H) ", + (gH)". 
(11) 

Тогда из (9) мы находим 

(Е)дЕ!о: = (1/Q2)0Q/d¢t — 3/2 (g/H)Y2dm/o. (12) 

Предположим — теперь, что BMECTO гармонической  волны — имеется 
кноидальная волна, состоящая из набора гармоник. Заметим, что в правую часть 
(12) не входит ни частота, ни волновое число короткой волны. Следовательно, 
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уравнение (12) будет справедливо для каждой гармоники кноидальной волны. 
Тогда энергия кноидальной волны E, =E +E,+..., где Е, - энергия гармонических 
составляющих, будет подчиняться ToMy же уравнению (12). Для солитона, 

предельного случая кноидальной волны, мы также получим это уравнение. 

Необходимо, чтобы размер солитона был MHOIO меныне, чем  длина 

крупномасштабной волны. 
Изменение энергии солитона B системе отсчета, движущейся со скоростью 

w/k, имеет вид 

дЕ/дг= 3/, wensing Ё, (13) 

Здесь Е, - энергия солитона, ¢, - фаза, введенная в разделе 1.4. «Свойства 
солитонов». Выражение (13) дает нам первый член в уравнении (4.1). Чтобы это 
уравнение описывало эволюцию солитона, необходимо дополнить его слагаемым, 
описывающим диссипацию энергии (второе слагаемое в правой части (4.1)). 
Подобное уравнение было представлено в [13] для солитонов электромагнитных 
волн, распространяющихся в [/С-линии. 
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DYNAMICS ОЕ SOLITONS EXCITED IN RESONATORS ОМ ТНЕ SURFACE 
OF SHALLOW WATER: THEORY AND EXPERIMENT 

A.B.Ezersky, O.E.Polukhina, J.Brossar, F.Marain, [. Mutabazi 

Excitation of solitons of surface waves in resonators is investigated. It was found 
that solitons may be generated on the shallow water surface against the background of a 
large-scale resonator mode. Multistability and репой doubling оё nonlinear waves excited 
in the resonator were found. Spatio-temporal diagrams were ploited for different regimes 
of wave excitation. Spatio-temporal dynamics of nonlinear fields of soliton excitation in a 
resonator and in an unbounded system were compared. 

Two approaches were used for theoretical description of solitons excitation. The 
first one was based on searching solutions of ordinary differential equations for phase and 
amplitude of soliton propagating against the background of harmonic wave and the 
second one was based оп direct numerical calculations of Euler equations in the 
Boussinesq approximation. Qualitative investigation of equation for amplitude and phase 
of solitons and numerical simulation allowed us to explain the characteristics of solitons 

observed in the experiment. 

157



Езерский Александр Борисович, доктор физико-математических наук, 
заведующий лабораторией Института прикладной физики РАН. Окончил 
радиофизический факультет Горьковского государственного университета 
им. Н.И. Лобачевского (1976). Область научных интересов - гидродинами- 
ческие неустойчивости, взаимодействие вихрей с акустическими волнами, 
формирование структур. Имеет более 100 публикаций. В соавторстве с 
МИ. Рабиновичем  опубликована книга «Динамическая теория формо- 
образования» (1998), в соавторстве с М.И. Рабиновичем и П. Уэйдманом - 
английский вариант этой книги - «The dynamics оё patterns» (World Scientific, 
2000). E-mail: abezersky@mail.ru 

Полухина Оксана Евгеньевна родилась в 1977 году. В 1999 окончила с 
отличием факультет информационных систем и технологий Нижегородского 
государственного технического университета, работала младшим научным 
сотрудником в Институте прикладной физики РАН. В 2002 году защитила 

. Кандидатскую диссертацию MO специальности «Динамика жидкости, газа и 
: плазмы», с 2003 года работает доцентом кафедры «Прикладная математика» 
Нижегородского государственного технического университета. 

Броссор Жером эродился в Анже, Франция (1953). Закончил 
технический университет MO специальности инженерная механика (1977). 
Защитил докторскую диссертацию в университете Гавра, Франция (1987). 

Область научных интересов: механика жидкости, инженерная гидромеханика 
прибрежной зоны, перенос придонных осадков. В настоящее время - 
профессор B университете Гавра, Франция. Опубликовал более 10 статей B 
ведущих гидродинамических журналах. 

Маран Франсуа окончил технический университет Руана (1988). 
Защитил докторскую диссертацию Mo механике жидкости (1992) в 
университете Гавра, Франция. Область научных интересов: перенос донных , 

осадков, гидромеханика прибрежной зоны, формирование структур B 
придонном пограничном слое. В настоящее время - лектор в университете 
Гавра. 

Мутабази Инносентродился в Руанде (1954). Окончил университет 
Дружбы народов им. Патриса Лумумбы (1980), защитил докторскую 

диссертацию в университете Париж \П (1990). Профессор физики B 
университете Гавра, Франция. Область научных интересов: 

* гидродинамические неустойчивости, формирование структур, вязкоупругие 
жидкости, пространственно-временной хаос. Автор более 40 статей в ведущих 

физических журналах. 

158


