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ТЕСТИРОВАНИЕ НА ОДНОЗНАЧНОСТЬ И НЕПРЕРЫВНОСТЬ 
ПРИ ГЛОБАЛЬНОЙ РЕКОНСТРУКЦИИ МОДЕЛЬНЫХ УРАВНЕНИЙ 

ПО ВРЕМЕННЫМ РЯДАМ 

Б.П. Безручко, T.B. Диканев, Д.А. Смирнов 

МПроблема построения глобальных динамических моделей по временным рядам 
- дискретным наборам значений наблюдаемой переменной - весьма актуальна в 
различных областях науки. Первый этап такого моделирования - получение MO 
экспериментальному временному ряду численных значений величин, которые будут 
играть роль динамических переменных модели. Этим «выбором переменных» BO 
многом определяется успех моделирования. В работе предлагается методика, 
помогающая найти «хороший» набор динамических переменных. Она COCTOHT в TOM, 
что для каждого варианта переменных их временные ряды тестируются на предмет 
однозначности и непрерывности зависимостей между величинами, которые должны 
войти в левые части уравнений, и самими переменными (то есть на предмет 
возможности детерминистического описания). Эффективность методики показана в 
вычислительном и радиофизическом эксперименте. 

Введение 

Динамическое моделирование предполагает задание вектора состояния 
объекта X=(X,,X,,...,X,)ERP, где X, - динамические переменные, D - размерность 
модели и оператора эволюции, обеспечивающего  однозначный — прогноз 
последующих состояний, если задано начальное. Модель, описывающую поведение 
объекта в широкой области фазового пространства (X,,X,,...,X,), называют 
глобальной. Одним из актуальных подходов K  построению — глобальных 
динамических моделей является реконструкция уравнений по временным рядам - 
дискретным последовательностям экспериментальных данных м(:), где (=!М, 
i=1,2,.. ,N‘ ‚ & - выборочный интервал. В настоящее время предложены методы 
построения по временным рядам обыкновенных дифференциальных уравнений 
(ОДУ) [1-6], дискретных отображений [7-9], дифференциальных уравнений с 
запаздыванием [10,11]. "Такие феноменологические модели показали  свою 

эффективность при решении задач прогноза [7], расчета характеристик 
наблюдаемого движения [2,3,12] и классификации сигналов [13]. 

В общем случае процедура конструирования модельных  уравнений 
У(О=Г(х(0)) по ряду {n(r)} выглядит следующим образом. Сначала из исходного 
ряда {п(;)} (размерность векторов и длина которого ограничиваются условиями 
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эксперимента) формируют временной ряд векторов состояния {x(r))'. Ряд {y(r)} 

получают из {x(1)} в соответствии с выбранным видом модели: для ОДУ - 
dx(t)/dt=f(x(f)) - его формируют путем численного дифференцирования ряда 
{x())}, а для отображений - X(1,,,)=f(x(z))) - сдвигом ряда {х(г))} по времени. Затем 
задают вид аппроксимирующих функций f, (компонент вектор-функции f) и 
методом наименыших квадратов находят значения их коэффициентов. Ключевыми 
в описанной процедуре являются начальные этапы: выбор динамических 
переменных х, и задание вида функций /,. Неудачный выбор переменных может 
затруднить аппроксимацию зависимости у(х) гладкой функцией [15] или вовсе 
сделать связь усх НСОДНОЗНЗЧНОЙ. 

В данной работе мы предлагаем методику оценки пригодности и «удобства» 

выбранных переменных X, для построения глобальной динамической модели. В ее 
основе лежит тестирование временных рядов {y(7)] и {x(1,)} на предмет однознач- 
ности и непрерывности каждой экспериментальной зависимости у,(х) во всей 
области наблюдаемого движения. Предлагаемая нами методика в некоторой 

степени опирается на идеи ё-е метода, предложенного в [14] для выявления 
детерминированности наблюдаемого процесса. Но наше исследование посвящено 
решению другой задачи - построению глобальной модели. 

Согласно — предлагаемому — нами — подходу — определяются — значения 
относительного разброса величины у, в пределах малых объемов AV в 
пространстве выбранных переменных X, ,X, . .. ‚Х и выясняется закон его изменения 
при АИ-+0. Причем B отличие от [14], где используются лишь средние 
(интегральные) оценки, основную роль играют локальные характеристики. 
Динамические переменные мы предлагаем выбирать так, чтобы обеспечить для 
каждой M3 модельных зависимостей минимум локального разброса и его 
стремление K нулю при уменьшении AV, Это является признаком однозначности, 
непрерывности и отсутствия участков большой крутизны в зависимостях ), (X). B 
противном случае достаточно точная аппроксимация этих зависимостей обычно 
применяющимися — гладкими — функциями — (например, полиномами) — сильно 
усложняется или становится невозможной. 

НПредлагаемая методика изложена в разделе 1. В разделе 2 она иллюстри- 
руется на примерах реконструкции эталонных разностных и дифференциальных 

уравнений по их «чистым» и зашумленным решениям. Ee работоспособность 
демонстрируется на примере моделирования реальной нелинейной электрической 

цепи в разделе 3. 

1. Методика тестирования 

Пусть имеется наблюдаемый временной ряд (1(:)}. Выбран вид модельных 
уравнений и сформированы ряды {х()} и {y(r)}, i=1,....N. Требуется оценить 
однозначность и непрерывность зависимостей y, от х (для k=1,2,...,D), а также 

найти критерий для выделения варианта переменных, наиболее удобного для 
построения глобальной модели. 

Если некоторая зависимость у(х) однозначна и непрерывна B области V, то 
разность |)(х)-у(х,)! стремится к нулю при |-х!->0 (для любого х,ЕМ). 
Нарушение этого условия на практике можно считать признаком неоднозначности 
или разрывности зависимости y(X). Так как мы располагаем лишь временным 
рядом, состоящим W3 конечного числа точек, то указанный предельный переход 

выполнить невозможно, но можно проследить тенденцию изменения разности 

1 Компоненты вектора х могут быть получены методом последовательных производных [3,5], 
временных задержек [5,6], интегрирования [5] или просто совпадать с наблюдаемыми. 
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ly(#)-y(¢)! при сближении векторов X(f) и X(f) до определенного конечного 
расстояния. При достаточно большом количестве данных N, высокой точности 

измерений и низком уровне шума это расстояние может быть сделано достаточно 

малым (для любого участка в области наблюдаемого движения). 
МС’ГОД'Ш(Э тестирования БЫбраЕН'ЫХ переменных состоит в следующем. 

Предположим (без ограничения общности), что разность между максимальным и 

минимальным значениями для каждой из величин X, и у равна единице?. Другими 

словами, все исследуемое множество векторов (x(t,)f содержится внутри гиперкуба 

VERP, длина стороны которого равна 1. Разобъем У на одинаковые «гипер- 

кубические» ячейки со стороной 8. И выберем из HUX все ячейки, содержащие 
болыше одного вектора каждая. Обозначим WX S,,S,...5,. Разность между 
максимальным и минимальным значениями у в пределах ячейки SA назовем 

локальным разбросом: е;тахха_у(х)-тіп‚@у(х)‹ Используем величину макси- 
мального локального разброса €, =max,, ., И График е„(8) в качестве 
основных характеристик исследуемой зависимости y(X). Будем оценивать 
пригодность рассматриваемых величин х и у для глобального моделирования, 
опираясь на следующие соображения. 

* Если зависимость у(х) однозначна и непрерывна, то величина г „, должна 
быть достаточно малой при малом ё и обнаруживать тенденцию к уменьшению до 

нуля при 8—0. Нетрудно показать, что при достаточно малых & графиком e, (8) 

должна быть прямая. 

* Для однозначной непрерывной зависимости с участком большой крутизны 
величина € Остается болышой при довольно малых 6, пока весь этот участок 
попадает внутрь одной ячейки. При дальнейшем уменьшении ё величина , Все- 
‘таки уменьшается, так как перепад уже «поделен» между несколькими ячейками. 
График ¢ (5) имеет «излом» при значении 5, равном размеру участка большой 
крутизны (например, puc. 1, 6, светлые кружки). В таком случае зависимость у(х) 
также трудно аппроксимировать гладкой функцией. Поэтому для построения 
глобальной модели нужно выбирать переменные так, чтобы график e, . (8) 

стремился к началу координат плавно, без изломов. 
* На практике достижимая величина & ограничена снизу из-за конечного 
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Рис. 1. а - Графики отображений последования для временных рядов переменныхи и v, сформи- 
рованных из хаотического решения системы (1). На графике длях имеется участок большой 

крутизны (справа). 6 - Графики е „. (8) при отсутствии шума для переменных у(светлые кружки) 

и и (черные кружки). Для v наличие участка большой крутизны (рис. 1, а) отражается B 

появлении излома на графике при 8=0.005. Графики Е(&) совпадают для обеих переменных 
(штриховая линия).в - Графики e (8) при наличии шума (1%-го) 

2 В любом случае этого легко добиться соответствующей нормировкой величин X, и Y. 
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количества данных N. Например, если векторы х(!) равномерно распределены 
внутри гилеркуба V, то 3Ty границу можно оценить как N0 . При очень малом N 
во многих областях нет достаточно близких векторов X(1,) и X(1), и данный подход 
неприменим, так как HeT BO3MOXHOCTH исследовать локальные свойства 

зависимости у(х).3 
* В экспериментальных данных неизбежно присутствуют погрешность 

измерений (связанная, например, с разрядностью АЦП) и шумы (влияние 
многочисленных факторов, которые не поддаются детерминированному опи- 
санию). Обозначим через о,. их суммарный вклад в значения х и у. Когда & 
становится меньше O, , € . ОолЬШе не уменьшается даже при наличии опреде- 
ленной закономерности, связывающей у и X. Так, если величина о,. превышает 
размер участка большой крутизны, то график €, (8) будет свидетельствовать O 
неоднозначности исследуемой зависимости (напри'мер‚ рис. 1, 8, светлые кружки). 
В этом случае согласно предлагаемому критерию рассматриваемые переменные не 
годятся для глобального моделирования. 

В качестве дополнительнойхарактеристики можно использовать и вели= 

чину среднего локального разброса €=1/M Z‘ZIEL. Ecm &0 при 6—0 и крутизна 

графика &($) мала, то это может указывать на более «плавную» B среднем 
зависимость  y(X), которую иногда (при прочих равных условиях) легче 
аппроксимировать гладкой функцией. Далее будет проиллюстрировано, что сама 

по себе величина Е- не содержит НЭОБХОЦИМОЙ st глобального моделирования 

информации о свойствах y(x). Так, если у(х) имеет локализованный участок 
неоднозначности или разрыв, то они могут вносить малый вклад в среднее 

значение & и график €(8) будет выглядеть примерно так же, как и для гладкой 
однозначной зависимости. 

2. Демонстрационные численные примеры 

2.1. Реконструкция отображений. Проиллюстрируем изложенные выше 
соображения на примере реконструкции разностных уравнений по временному 
ряду, генерируемому квадратичным отображением 

ча = 1~ ), W 
моделируя две ситуации. В первой - наблюдаемая п(!) =u, где и, - результат 

итерирования системы (1) при r=4.0, что соответствует хаотичсскому режиму. Во 
второй - m(f)=v, где переменная у связана с и функционально взаимно- 
однозначным кусочно-линейным преобразованием /i 

Su, 0<u<0.18, 
у= (и) = (2) 

0.9+(и-0.18)/8.2, 0.18<u<1, 

которое можно интерпретировать, например, как преобразование сигнала 
измерительными устройствами. Располагая рядами этих двух наблюдаемых длиной 
N=10000, оценим с помощью предложенной методики возможность построения 

глобальной модели в виде одномерного отображения х(г„1)=/(х(;)), где x(t) 
совпадает с наблюдаемой n(t). 

3 в [14] нет таких ограничений, поскольку цель там другая - при небольшой длине ряда найти 
хотя бы «следы детерминизма», другими словами, участки однозначности - «исключительные 
события» (при этом вполне допустимо игнорировать большие, но редкозаселенные области). 
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Построение глобальной модели при 7(1,)=u; He представляет затруднений: 
достаточно использовать в качестве функции f полином 2-го порядка. При этом 
построенная модель дает прогноз на один шаг вперед практически с машинной 

точностью. При П(Д.)=У‚‚ моделирование весьма затруднительно. Так, используя 
полином 11-го (!) порядка, удается снизить среднеквадратичную ошибку прогноза 

на один шаг вперед лишь до 30%. 

МПрименим предложенную методику для тестирования зависимостей X(1,,,) от 
x(1)) для наблюдаемых и и v (см. рис. 1, а). Графики ¢, (8) на рис. 1, 6 говорят o 
наличии однозначности и нелрерывности, HO для M= Еп\ш‹ «плавно» стремится K 

нулю при уменьшении 8, а для =V — график имеет «излом» при малом 8. Излом 
отражает наличие участка большой крутизны в зависимости x(f,,) от x(1,) 

(область х(:)=1 на рис. 1, а). Графики же £(3) (рис. 1, 6, штриховая линия) 
практически совпадают для обеих переменных. 

Преимущества одной из переменных для глобального моделирования еще 
более очевидны, если наблюдаемые ряды зашумлены, то есть п({)=и;+5, или 
1(t)=v+E, где E, - последовательность независимых случайных величин, равно- 

мерно распределенных на отрезке [-0.005, 0.005] (это соответствует примерно 1% 
от уровня сигнала). При этом по ряду (;+5} еще удается получить эффективную 
глобальную модель с полиномом 2-го порядка (относительная ошибка прогноза на 
один шаг вперед сравнительно невелика - 3%), а ряд {v+E) оказался вовсе 
непригодным для моделирования. Об этом предупреждают и графики e (8) (рис. 
1, в): для и график лишь немного «поднялся» по сравнению с рис. 1, 6, а для v 

график «говорит» о неоднозначности. 
Другим показательным примером является сравнение результатов оценки 

переменных и реконструкции модели вида x(7,,,)=f(x(z,)) по ряду в случаях: I - 
x()=n(1); 2 - x(t)=n(1,); 3 - x(1)=n(1,). Это соответствует первой, второй и 
третьей итерациям логистического отображения (1). С ростом номера итерации 
графики x(7,,,)=f(x(1;)) имеют все более сложный для аппроксимации вид (рис. 2, 
а), что отражается во все большей крутизне зависимости e (8) (рис. 2, 6). 
Аналогично предыдущему примеру влияние шума проявляется сильнее при более 
сложной зависимости (рис. 2, в). 

11 1.0 

x(tya1) лак 

2° 

01 0.0 
01 x(1,) 11 0.0 5 0.5 

a 6 
Рис. 2. а - Графики отображений последования для временных рядов, сформированных из 
хаотического решения системы (1) путем записи каждого значения ‹ (график /), каждого второго 

(график 2) и каждого третьего (график 3). 6 - Графики е (8): быстрее осциллирующей 

зависимости соответствует более крутой график. в - При наличии шума графики «Пподняты» 

вверх. Наиболее существенно усиливается разброс быстро осциллирующих зависимостей 

(соответствующие им графики «подняты» выше) 

2.2. Реконструкция дифференциальных уравнений. Возьмем в качестве 
первого объскта систему Ресслера 
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v-w, 

=u+ay, (3) 

» =b +w(u-c), 

при значениях параметров а=0.398, b=2.0, c=4.0, что соответствует хаотическому 

режиму (рис. 3, а). 
Рассмотрим предварительные оценки по критерию e, (8) и результаты 

реконструкции модели стандартного вида [3] 

’Е1 =X 

Lo @ 
х, =0 5) 

где X, совпадает с наблюдаемой M, а ряд наблюдаемой n(z)} сформирован на 
основе последовательности значений переменной v. Значения (v(r)] были 
получены численным интегрированием уравнений (3) методом Рунге - Кутты 4-го 
порядка с шагом Ar=0.01 (длина ряда N=10%). Предложенная методика применялась 

во всех приведенных ниже случаях для исследования зависимости (х,х,„х,). 
Значения координаты X, формировались по ряду (»(‹)} различными способами, а 

ряды величин X,, X; и ¥; были получены численным дифференцированием ряда 
{x,(¢)} с использованием разных методов. 

1 - {x,(¢)}={v()}, шум отсутствует, производные вычисляются с помощЬЮ 

простых разностных формул вида ¥, (1))=(x, (1+Ar)-x,(1-A1))/(2Ar). График e, (8) 
(рис. 3, 6, светлые кружки) свидетельствует об однозначности и непрерывности 

зависимости (X, .Y, X;), что только подтверждает известный результат [3]. Весьма 
эффективная модель (4) может быть получена при использовании полинома 2-го 
порядка в качестве функции /` (прогноз с относительной погрешностью не более 
5% осуществляется примерно на 15 характерных периодов вперед, на периоде 

здесь укладывается около 600 точек). 

1.0 =5 T 1.0 
30 2 * с 

2: 
У Smext & Emax 

У 

Га 
5.9 12 

40 оо , о.0 - 
0.0 5 1.0 0.0 5 1.0 

а 6 8 

Рис. 3. а - Хаотический аттрактор системы Ресслера (3). 6 - Графики e (8) для x,=v; без шума, 
«чистые ряды» - 1 (светлые кружки); с шумом: при расчете производных без фильтра -2 (черные 
кружки), при расчете производных е помощью 21-точечного сглаживающего полинома - 2' 
(черные квадраты), при использовании 41-точечного полинома -2'' (B данном масштабе накла- 
дывается на график 1). в - € (8) для х 2; без шума - 3 (светлые кружки). Зависимость неод- 

нозначна, а график £(8) выглядит так же, как и для однозначной зависимости (штриховая линия) 
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2 - {x,(t)}=((2)+8}, где & - последовательность независимых случайных 
величин,  равномерно  распределенных на  отрезке — [-0.0005,0.0005],  что 
соответствует примерно 0.01 % от уровня сигнала. Без фильтрации ряда 

реконструированная модель HE выдерживает никакой критики, что прогнозирует и 
график e (8) (рис. 3, 6, черные кружки). Это связано с TEM, что шум существенно 
усиливается при дифференцировании. Ситуация улучшается, если для расчета 

производных использовать сглаживающий полином (фильтр Савицки - Голэя [16]) 
при достаточно большой ширине окна для его построения. Использование окна 
шириной в 21 точку (случай, представленный на рис. 3, 6 черными квадратами), 
оказалось недостаточным - график е (8) указывает на неоднозначность. 
Реконструированная глобальная модель (4) с полиномом 2-го порядка значительно 
хуже, чем B случае «чистых» данных: прогноз обеспечивается лишь на 3Г вперед. 

При использовании большей ширины окна (41 точка) график e (8) практически 
накладывается на график для «чистого ряда» (рис. 3, 6). Модель значительно 
более эффективна: дает прогноз на 7T вперед. 

3 - {x,(£)}={*(1,)}, шум отсутствует. График ¢, (8) явно указывает на неод- 

нозначность зависимости X;(X, х ,,¥;) (рис. 3, в). Эффективную модель (4) получить 

не удается.* Заметим, что график £(8) в данном случае выглядит так же, как и для 
однозначной непрерывной зависимости, TO есть HE позволяет — выявитьЬ 
непригодность переменных для глобального моделирования. 

В качестве второго примера рассмотрим применение методики для 
реконструкции уравнений неавтономного объекта - гармонически возбуждаемого 

осциллятора Дуффинга 

Uy = Uy, ©) 

131 =-и, + и - 4, + Асо5(о?), 

при у=0.1, A=1, w=1 (см. фазовую траекторию на рис. 4, а). Рассмотрим оценки по 
критерию & (8) и реконструкцию модели вида [19-21] 

=i © 
% = f5%0)s 

по ряду наблюдаемой {n(r)}, который формировался на основе реализаций 
переменных !‚41 и Il2 различными способами. Предложениая методика применялась 

во всех приведенных ниже случаях для оценки однозначности и непрерывности 

зависимости Х1(.\'1,х2‚ср)‚ где х, совпадает с наблюдаемой 1), ряды величин x‘z их, 

были получены численным дифференцированием ряда (v (1)} с использованием 
разных методов. Реализация фазы ф получена по формуле ¢(7,)=wr;mod 2л, частота 
® считалась известной. 

1 - {x,(t)}={u(z,)}, шум отсутствует, производные вычисляются C MOMOMIBIO 
простых разностных формул аналогично предыдущему примеру. График e, (8) 
(рис. 4, 6, кружки) свидетельствует об однозначности и непрерывности зависимости 

%,(x,.%,.¢). Сопоставляя исходные уравнения (5) с выбранным видом модели (6), 
можно УбВЦИ'ГЬСЯ, что эта зависимость действительно однозначна. Полученная 

модель (6) с аддитивным воздействием [20,21] обеспечивает прогноз на 13 
периодов воздействия (137) вперед. 

* Путем аналитических преобразований можно показать, что эта зависимость действительно 

неоднозначна. 
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Рис. 4.а - Проекция фазовой траектории осциллятора Дуффинга (5).6 - ¢ (8) для зависимости. 

%y(x;,%,,9) в случае х =, без шума - кружки, с шумом и (недостаточным) усреднением в окне 
шириной 35 точек - Квадраты, с шумом и усреднением в 51-точечном окне - ромбики (влияние 
шума снижено). 6 - € (8) для x; =, Зависимость неоднозначна, а график &(5) выглядит так же, 
как и для однозначной Зависимости (цп'риховая линия) 

2 - {x(0)}={u(r)+E}, где & - последовательность независимых случайных 
величин, равномерно распределенных на отрезке [-0.005,0.005], что соответствует 
примерно 0.1 % от уровня сигнала. Без фильтрации вновь не удается получить 
эффективную модель. Для снижения влияния шума производные вычислялись с 
использованием сглаживающего полинома и окна шириной 35 точек (34Ar 
составляет примерно 0.05 характерного периода колебаний Т). Эта ширина 
оказалась недостаточной: график e (8) (puc. 4, 6, квадраты) указывает на 
неоднозначность, а полученная модель дает точный прогноз лишь на 3T вперед. 
При использовании большей ширины окна (51 точка) график е„ (8) приобретает 
вид, который более характерен для однозначной зависимости (рис. 4, 6, ромбики). 

Можно получить достаточно эффективную модель (6), обеспечивающую 
дальность прогноза бТ. 

3 - (к,(()}={6(‹), шум отсутствует. График € (8) явно указывает на неодно- 

значность зависимости X,(x,,%,,¢) (рис. 4, в). Эффективную модель (6) в данном 

случае получить невозможно. Вновь график €(3) (рис. 4, в) выглядит так же, как и 
s ouHoaHallHofl Henpepbmflofi зависимости, то есть HE лозволяет BbISBATH 

непригодность переменных для глобального моделирования. 

3. Моделирование реальной нелинейной электрической цепи 

На рис. 5, а приведена схема нелинейной электрической цепи - В/ С-контур с 
переключаемыми конденсаторами, гармонически возбуждаемый — источником 
внешней ЭДС [17,18]. Элемент К - это электронный ключ: микросхема, 
содержащая десятки транзисторов и других пассивных элементов, которая 
питается от специального источника постоянного напряжения. При малых 
значениях напряжения U на емкости С, сопротивление ключа очень велико и 
вынужденные колебания происходят лишь в контуре RLC,. Когда напряжение 
достигает порогового значения U, сопротивление ключа резко падает, и он 
подключает к цепи  емкость С,. Обратное переключение — происходит 
приблизительно при том же значении U. В результате при болыших амплитудах 

воздействия система демонстрирует сложную динамику, в том числе хаотические 
колебания. 
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Рис. 5. а- Схема контура с переключаемыми конденсаторами:С=0.1 мкФ, C,=4.4 мкФ, L=0.03 Гн, 
R=10 Ом, U _-o 2 B, U;=2.344 B, частота воздействия 2.98 k1116 - Оценки выбора переменной 
x,=I по гра икам. е‚…&) Графики £(8) выглядят примерно одинаково (штриховой линией 
показан график для случая 1). в - Оценки выбора переменной X, - интеграла от силы тока / по 
rpacpukame_ (8) 

Рассмотрим влияние выбора динамических переменных и структуры 
уравнений на результат моделирования. Используем в качестве наблюдаемого ряда 
{n(#)} последовательность значений силы тока / через резистор R в хаотическом 
режиме. Данные записывались с помощью 12-разрядного АЦП, выборочный 
интервал был равен А/=4 MKc, период воздействия T=84Ar, длина ряда N=30000. 

Ниже приведены 6 примеров (три варианта структуры модельных ОДУ для двух 
различных вариантов выбора наблюдаемой переменной) и изложены результаты 
оценок по предлагаемой методике (рис. 5, 6, в) и результаты построения моделей. 
Графики на рисунках пронумерованы в соответствии с номерами примеров. 

1) Часто применяемая форма модели 

% = ЛС х)), 

% =f(x,x,53), () 

* = А(С,хх)), 

с x(6)=n(t), x,(t)=n(t#7), x,(1)=m(1#2%) - координаты получены методом 
временных задержек, где т=21/ - первый ноль автокорреляционнной функции. 
Для численного дифференцирования оптимальным образом подбирался сглажи- 

вающий полином. Тестировались все три зависимости X (X, .%,,%), К=12,3. 
Величина е He стремится K нулю при уменьшении & для всех k. Графики е „(®) 
ВЫГЛЯдЯТ аналогично представленному на рис. 5,6 (черные квадраты) для k= 30 
говорит о невозможности построения эффективной глобальной модели, что 
полностью подтверждается на практике. 

2) Стандартная модель (4) с x(z)=n(z). Тестировалась зависимость 

%( ›хэх)): €, (8) уменьшается при уменьшении & (рис. S, 6, светлые кружки), что 
указывает на возможное наличие однозначности. Результат моделирования: 
эффективную модель с полиномом в правой части подобрать не удается. По- 
видимому, для аппроксимации зависимости полином не годится. Здесь требуется 
другой вид аппроксимирующей функции f, его выбор - это отдельная сложная 

задача, которая не является предметом дЗН'ПОЙ статьи. 

3) Неавтономная модель вида (6) с x,(z)=n(t,). Тестировалась зависимость 

%,(x,%,,9)- График е„ (8) (рис. 5, 6, черные кружки) указывает, что зависимость, 
возможно, однозначна. Но эффективную модель с полиномиальной аппроксима- 
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цией зависимости X,(X,,Y,.p) получить не удается. Вновь требуется подбирать 
специальный вид функции f. 

4) Стандартная модель (4) с x, (1)) f 11(! )dr. Эта переменная имеет физи- 
ческий смысл - суммарный заряд на емкостях C, и С,. Временной ряд {х(г)} был 
получен путем численного интегрирования (методом трапеций) измеренного ряда 
значений силы тока /. График e (8) не обнаруживает тенденции к уменьшению 

при уменышении ё (рис. 5, 6, светлые кружки): е остается не меньше 0.35. Эф- 
фективную модель построить не удается. 

5) Модель (7) сх, (г f "(а и задержанными координатами X, (2)=x, (+t) I 
x,(8)=x,(1+2%), где т - первый ноль АКФ. Тестировались все три зависимости 

X,(x,%,.x,), k=1,2,3. Для всех трех случаев графики e (8) не стремятся K началу 
координат при уменьшении ё (один из них - для k=1 - приведен на рис. 5, 6, черные 
квадраты). Эффективную модель построить не удается. 

6) Модель (6) с x,(t) J' n(t)dr. График ¢, (8) (puc. S, 6, черные кружки) 
показывает, что зависимость omiom-la‘ma и меняется плавно. РЗКОНС’ГРУИРОВЗРШЗЯ 

модель (6) с полиномом 11-го порядка и аддитивным воздействием демонстрирует 
хаотический аттрактор, качественно схожий с экспериментальным, и дает прогноз 
с относительной погрешностью He более 5% примерно на 5Г вперед [21]. 

Показательно, что оптимистическая оценка по критерию ¢ (8) и хорошие 
результаты глобальной реконструкции получены лишь в последнем (шестом) слу- 
чае, а графики £ Для всех перечисленных выше вариантов выбора переменных 
практически совпадают: один 13 них (для первого примера) показан пунктиром на 
рис. 5, 6. Это подтверждает тезис о TOM, что средняя характеристика & в общем 
случае He позволяет оценить  пригодность переменных — для глобального 

моделирования. 

Заключение 

При глобальной реконструкции динамических моделей по временным рядам 
очень важным шагом является взаимосогласованный выбор динамических 
переменных и вида функций, аппроксимирующих входящие в модель зависимости. 
ПРИ неудачном ныборе переменных эти зависимости могут оказаться слишком 

сложными для аппроксимации или вовсе неоднозначными. 

Развитая в данной работе методика тестирования временных рядов {х(г)} и 
(y(z,)}, сформированных MO наблюдаемым данным, позволяет оценить, являются ли 
зависимости  y,(X) однозначными, непрерывными и без участков большой 
крутизны (и, следовательно, пригодны ли выбранные переменные для построения 
динамической модели). Работоспособность предложенной методики показана на 

численных и радиофизических примерах. Она имеет общие черты с ё-е методом, 
предложенным в [14] для выявления детерминированности наблюдаемого 
процесса. Ho B отличие от [14], где используются лишьъ средние (интегральные) 
оценки, в нашем подходе основную роль играют локальные характеристики, 

которые гораздо важнее для успеха глобальной реконструкции. В примерах 
показано, что усредненная величина разброса не содержит всей необходимой для 

моделирования информации. 

Что касается применения методики на практике, то необходимо особо 
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упомянуть случай, когда в данных имеется хотя бы один сильный выброс, 
например, в результате помехи в измерительном приборе, то есть в зависимости 

,(X) имеется всего одна точка, лежащая «отдельно» от всех остальных. При этом 
методика приведет к выводу, что зависимость неоднозначна, так как в той ячейке, 

которой принадлежит «выброс», при любых ё будет наблюдаться большой 
локальный разброс. Это свидетельствует, на первый взгляд, о статистической 
неустойчивости предложенного подхода. Однако эту трудность можно устранить с 
помощью несложной предварительной обработки данных. Во-первых, сильную 
помеху, как правило, легко заметить на графике наблюдаемой реализации п\(г). O 
таких выбросах говорят как о неправдоподобных данных и исключают 
соответствующие участки ряда M3 рассмотрения. Во-вторых, если выбросы 
визуально заметить трудно, то можно внести небольшую поправку в методику 
тестирования. А именно, в случае большой величины е„ проверять, какая ячейка 
дала это большое значение, исключать наиболее удаленный от всех других вектор 
этой ячейки W3 рассмотрения и повторять процедуру. Таким образом можно 

исключить, скажем, до 5% векторов. При этом избавление от помех (если их 
немного) гарантировано. В-третьих, такие выбросы в эксперименте присутствуют 
не всегда. Так, в рассмотренных радиофизических примерах, где есть шумы и 
измерительная аппаратура, таких помех не было, и процедура позволила выявить 
подходящие для моделирования переменные. 

НПредложенная методика может применяться также при реконструкции 
дифференциальных уравнений с запаздыванием и дифференциальных уравнений в 
частных производных, поскольку и B этих случаях одним из элементов процедуры 

моделирования — является — аппроксимация — некоторых — зависимостей — по 
экспериментальным данным [22]. 

Однако однозначность зависимости еще He гарантирует _ получения 
эффективной глобальной модели. Однозначная зависимость может оказаться 
трудно поддающейся глобальной аппроксимации (особенно стандартными функ- 
циями, в частности, полиномами), если OHa, например, является быстро осцил- 
лирующей. В этом случае может оказаться эффективным локальный подход [7-8]. 

В заключение OTMETHM, что предложенная методика констатирует результат 
выбора переменных, HO не говорит о TOM, как нужно изменить набор переменных B 
случае неудачи. Может потребоваться добавить новые переменные, исключить 
Wi преобразовать какие-то из имеющихся и т.д., что является темой отдельного 

разговора. 

Авторы признательны Е.П. Селезневу за предоставление данных радио- 

физического эксперимента. 
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TEST FOR UNIQUENESS AND CONTINUITY IN GLOBAL 
RECONSTRUCTION OF MODEL EQUATIONS FROM TIME SERIES 

B.P. Bezruchko, T.V. Dikanev, and D.A. Smirnov 

The problem of construction of global dynamical models from time series (from 
discrete sets of values of an observable variable) is quite relevant for different fields of 
science. The first step оё such modeling 15 the values obtaining оё variable quantities from 
ап experimental time series which will serve ав dynamical variables of а model. This 
«choice оЁ variables» determines the success оЁ modeling 10 а significant extent. In this 
paper we suggest a technique which helps to find a «good» set of dynamical variables. 
For each variant of state variables, their time series are tested for uniqueness and 
continuity of dependencies between the state variables and quantities which should enter 
left-hand sides of model equations (that is for possibility of deterministic description). 
Efficiency of the technique is shown in numerical and radiophysical experiments. 
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