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ХАОТИЧЕСКИЕ КОЛЕБАНИЯ 
В ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМАХ 

JIL.H. Канов, B.A. Соколов 

Показано, что при совместной работе электрических машин постоянного тока 

последовательного и параллельного возбуждения возникают хаотические колебания 
токов и скоростей вращения машин. Получены числовые характеристики хаотических 
колебаний. 

Введение 

К настоящему времени подробно исследованы хаотические колебания в 

электрических и электронных цепях [1-5]. Однако подобные колебания, связанные 
с потерей локальной устойчивости, могут существовать и в электромеханических 
системах [6]. В классических монографиях IO электроприводам (см., например, 

[7]) утверждается, что устойчивая совместная работа двигателя постоянного тока 
последовательного возбуждения в режиме генератора с машиной параллельного 
возбуждения невозможна. Такая ситуация  возникает при  динамическом 
торможении электропривода постоянного тока. В статье показана возможность 
возникновения хаотических колебаний токов и скоростей вращения электрических 
машин в подобной системе электропривода постоянного тока. 

1. Математическая модель 

Анализ электромагнитных процессов в системе электропривода постоянного 
тока выполним на основе цепи, показанной на рис. 1. Система состоит из двигателя 
последовательного возбуждения M1, к которому приложен вращающий момент М, 
и генератора параллельного возбуждения М2,.вращающегося с неизменной 
скоростью. Упрощенная математическая модель системы имеет вид 

аиа = UL [(kg,0-R-R )i + (R g,)i ], 

аа = ULy [R о-В -В ), (0 
doldt = М/ (M-k,_o-C,, ), 

где i, о - TOK и скорость вращения двигателя последовательного возбуждения M1; 
Iy, [, - TOK возбуждения и ток якоря генератора параллельного возбуждения М2; 
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М - MOMEHT, прикладываемый K 
двигателю; L, К - индуктивность и 
сопротивление двигателя МП; Г, Ry, R, 
- индуктивность, сопротивление BO3- 

буждения, сопротивление якоря генера- 
Topa M2; e=ky wi, e=kpi, -  Эд© 
двигателя и генератора; ky,, ky, ~Koad- 
фидиенты возбуждения; С, - электро- 

механическая постоянная; k - коэф- 4, . 

фициент трения; // - приведенньш K Валу рис. 1. Схема электропривода постоянного тока 
двигателя момент инерции. 

2. Метод решения 

Приравнивая правые части уравнений (1) к нулю и исключая 1, И o, 
получаем уравнение равновесного состояния системы 

(ke Y(IM-Cyy ) - (В+8 )i+ (R ey )R (К 4R k) = 0. (2) 

Отсюда следует, что возможны три равновесных значения тока двигателя: ;=0 и 
Iy з=+((М-М, )/С )2, Здесь обозначен критический момент 

М о =kl [R+R R/(R В y-ky,)] (3) 

2," 

ий, > kg, 
Таким образом, если внешний вращающий момент меныше критического (3), 

существует состояние равновесия системы (1) при 7=1,=0 и ‘”_М”‘тр С увели- 
чением момента возникают два состояния равновесия с токами =+((М-М, )/ С, 
ЦЕЙ /(ky,-R -Ry) и скоростью =M o/ Krp KAK ВИДНО из последнего выражения‚ при 
М >М скорость не зависит от величины момента М. 

ля оценки устойчивости состояний равновесия составим матрицу А 
линеаризованной системы (1) 

(kyy@-R-R)IL (R 4y,)IL ка Й. 

A= |R/L, (kyp-R,-R)IL, © . (4) 
-2С,, il 0 I 

Собственные числа матрицы определяются уравнением 

e SD[(PHRAR ва 0)/L) (p+(R 4Ry -kgy)/Ly) + (R /Lg)(ky-R /L] + 

+ (2C, kg, /(JL))2(p+(R FRy-k,)ILy) = 0. 

Равновесию с нулевыми токами i U iy при M <M, и <Г соответствует Р\=- k Ми 
еще пара вещественных отрицательных корнеи что TOBOPHT об устоичивости 
ЭТОГО СОСТОЯНИЯ. 

Равновесие с ненулевыми токами I, I дает полное кубическое уравнение (5) 
вида p*+a,p*+a,p+a,=0. Анализ коэффициентов этого уравнения, выполненный при 
типичных значениях параметров системы с машинами неболышой мощности 
(L~2 Гн, L~3 Гн, R =Ве1 Ом, В =40 Ом, ky;=2.1 Omrc, ky,=32 Ом, J=0.8 кгм?, k.= 
~1 Нсс, C =2.5103 H- M/ A?), B соответствии с условием аа, аз—О дает граничное 
значение момента М, при котором система еще будет устойчива: М =5.8 Нм, 
критический момент для этих же численных данных М. —2 6 Нм. 

6) 
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В этих условиях система имеет пару сопряженных собственных чисел 
Р1э=^ЖЛ), и одно отрицательное вещественное собственное число р,=-а, а>0. 

При 5.8>M>2.6 собственные числа Py, находятся в левой полуплоскости и 
определяют состояние равновесия типа устойчивого фокуса. Исключив из 
очевидных соотношений -а =2\ +a, а=|р?+2ца, -аз=рРа. величины а, M, получаем 
для A, уравнение -a,(a,+2\ )=-a;+2\ (а,+23,)?. Дифференцируя это уравнеъше по М 
и утштывая что при М=М, \=0, находим выражение для производнои д\/ам = 
=1/[2(a,*4a,)]d(a,-a,a,)ldM. C учетом вышеприведенных значений параметров 
системы определяем, что при М=М производная а) /аМ>>0, то есть при граничном 
значении момента пара сопряженных собственных чисел р , переходит U3 левой 
полуплоскости в правую. 

3. Результаты 

Таким образом, в точке М=М , выполняется условие теоремы Хопфа [8] o 
бифуркации рождения цикла, в соответствии с которой можно утверждать, что 
при достижении MOMEHTOM значения М, в системе происходит бифуркация 
рождения неустойчивого цикла. На рис. 2 приведены фазовые траектории 
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Рис. 2. Фазовые траектории при различных значениях M, Нм: 2.62 (а); 4.6 (6); 6.0 (в) 
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системы, иллюстрирующие €€ пове- 
дение при различных значениях М. Рис. 
2, 6 показывает, что при М>М система 
(1) переходит в режим хаотических 
колебаний, и в ее фазовом пространстве 
возникает странный аттрактор - область 
глобально устойчивых, HO локально 

неустойчивых — колебаний  (рис. 3). 
Первый лист аттрактора расположен в 
квадранте I, iy, w>0; второй - i, i;<0, 
w>(0. Фазовая точка попадает в область 

притяжения  OfHOTO — из JIACTOB 
аттрактора, однако после нескольких 
оборотов вокруг неустойчивого фокуса 
OHa захватывается областью  притя- 
жения другого листа, чтобы затем вновь покинуть его. Хаотические колебания, 
возникающие в системе (1) при М>М изображены на рис. 4. 

1, g, А 

®-10, ¢! 

Рис. 3. Аттрактор, M=6.0 Нм 
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Рис. 4. Колебания TOKOB и скорости двигателя, М=9.0 Нм 

Для оценки диапазона значений момента М, вызывающих хаотические 
колебания, в интервале 0 ... 600 с вы- 
полнялось численное интегрирование 
уравнений (1) при различных М с 
нулевыми начальными условиями. Для 
каждого М фиксировались точки пере- 
сечения — фазовой — траектории  C 
плоскостью w=2. На рис. 5 показана 
построенная таким образом диаграмма 

точечного отображения Пуанкаре для 
тока {. Из диаграммы следует, что при 00 20 40 60 80 100 МНым 

моменте, болышем KPUTHYECKOTO, B 

системе  происходит IIOSBIICHHE BCE Рис. 5. Отображение Пуанкаре,0=2.0 ¢l 
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большего количества субгармоник, приводящее к хаотическим колебаниям B 
широком диапазоне значений момента. 

Подтверждение хаотического характера колебаний дают показатели 
Ляпунова [9], характеризующие разбегание близких фазовых траекторий с 
течением времени. Первый показатель A, определяется из соотношения 
у(2))/У(0)=ехр(05), где y(¢) - вектор сОсТОЯнИя линеаризованной однородной 
системы с матрицей А из (4). Исходная система (1) и линеаризованная система с 
начальными условиями у, (0)=1, ,(0)=y, (0)=0 интегрируются совместно в течение 
достаточно болышого времени, после чего показатель A, подсчитывается IO 
формуле A =lim __(1/)n(ly()l/ly(0)1). В случае устоичивого детерминированного 
процесса A, <0. При хаотических колебаниях линеаризованная система неустойчива 
ВдОлЬ траектории системы (1) (вначале близкие траектории разбегаются), и ^ >0. 
На рис. 6 приведены графики показателей Ляпунова в зависимости от изменения 
момента М. W3 графиков следует, что при всех значениях момента, когда 
существуют хаотические колебания, показатель A, положителен, а показатель A, 
всегда отрицателен. 

Размерность странного аттрактора системы (1) в режиме хаотических 

колебаний оценивается по показателям Ляпунова [1]; dim=+2_A/IN I, где 
№2\2\,, а ] определяется U3 условий: A +.. A >0, M+.. НАИ <О На рис. 6 
показан также график зависимости размерности аттрактора системы (1) от 
момента M, U3 которого следует, что в области хаотических колебаний аттрактор 
имеет дробную размерность 1<dim<3, что говорит о его фрактальной структуре. 

Aj3, dim 

4.0 RO NSRS SO S 

2.0 |- mmmm b b 

0.0 

-2.0 

S
R
R
 

U
G
 

I
S
,
 

[ 
U 
S
,
 

-4.0 

-6.0 
0 54.0 M, Ны-10" 

| 1 

i I 

0 270 36.0 45 0.0 9.0 —
 

Рис. 6. Показатели Ляпунова и размерность аттрактора 

Заключение 

Аналогичный анализ показывает, что подобные явления возникают в 

рассматриваемой паре машин и при других условиях, например, когда машина M2 

работает B режиме двигателя, а также тогда, когда машина M1 работает в режиме 

генератора с постоянной скоростью. В последнем случае хаотически изменяются 

ток и скорость машины М2. К хаотическим колебаниям приводит не только 
изменение вращающего момента, но и изменение параметров машин, например / - 

Кроме того, хотя B упрощенной модели электропривода (1) магнитные 

характеристики машин полагались линейными, тем не менее, при учете насыщения 
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магнитных цепей машин возникновение хаотических колебаний также имеет 
место. 

Проведенные исследования подтверждают невозможность совместной 

устойчивой работы машин последовательного и параллельного возбуждения. 

Попытка перевести двигатель последовательного возбуждения в генераторный 
режим вызывает появление сложных периодических или хаотических колебаний 
токов якорей и возбуждения обеих машин, а также их скоростей вращения. Это 
происходит B широком диапазоне изменения как вращающего момента, так и 
параметров машин. ' 
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CHAOTIC OSCILLATIONS IN ELECTROMECHANICS SYSTEMS 

L.N. Kanov, V.A. Socoloy 

It is shown that chaotic fluctuations of current and of rotation-velocities appear at 
collaboration of electrical machines of direct current of consequent and parallel 
excitation. Numeric features of chaotic fluctuations are received. 
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