
] 
Hpmmamme ЗадаЧи — мваианиианнионинаонинннщенинчнсоосииниоонии 
e ——————d НСЛИНСИЙНОЙ ’ЮОРИИ колебаний и волн 

Изв. вузов «ПНД», т.9, № 3, 2001 УДК 517.9 

МУЛЬТИФРАКТАЛЬНЫЙ АНАЛИЗ ВРЕМЕННЫХ РЯДОВ 

А.Н. Павлов, А.Р. Зиганшин, В.С. Анищенко 

В работе рассматриваются  основные — принципы — мультифрактального 
формализма. Проводится мультифрактальный анализ последовательностей времен 

возврата B секущую плоскость для хаотического аттрактора, а также исследуются 
- изменения структуры сигналов артериального давления белой крысы, вызванные 
стрессом. 

Введение 

В последние годы в международной печати активно обсуждаются 
особенности мультискейлинговой структуры сигналов различной природы. Многие 
сигналы, которые приходится анализировать на  практике, могут - быть 
рассмотрены в качестве представителей специального класса сложных процессов, 
называемых «мультифракталами» [1-7]. Если простые (или монофрактальные) 
сигналы (например, 1//-шум) являются однородными в том смысле, что их 
скейлинговые свойства всюду остаются неизменными, TO мультифрактальные 

процессы допускают разложение на подмножества (участки) с различными 
локальными свойствами скейлинга [8]. Соответственно, для количественного 

описания данных объектов требуется большое число характеристик. ` 
Наличие мультискейлинговой структуры можно обнаружить в самых 

различных ситуациях: при анализе физиологических временных рядов [8,9] и 
символических последовательностей  [10-12], при  исследовании — явления 
турбулентности [13-15] и в задачах об одномерных случайных блужданиях [16,17], 
в броуновском движении [18] и многих других примерах [19-26). 

Чтобы количественно охарактеризовать мультискейлинговые  явления 
обычно привлекают мультифрактальный анализ (который также часто называют 
мультифрактальным — формализмом). Данный подход  первоначально  был 
предложен — для — статистического — описания — скейлинговых — особенностей 
сингулярных мер и предполагал введение в рассмотрение функции /(), 
называемой спектром сингулярности. Смысл этой функции состоит в следующем 
[18]. Предположим, что задана мера ц на некотором множестве. Если это 
множество покрывать сферами радиуса €, TO мера в каждой такой сфере зависит 
от радиуса по степенному закону вида ° 

w(e) ~ &%, () 
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где @, — «экспонента сингулярности», а индекс [ означает номер элемента 
покрытия. Чем меныше значение а,, TeM более сингулярной является мера W. 
Предел o=0 соответствует распределению меры, подобному функции Дирака [18]. 

Спектр сингулярности () характеризует зависимость числа элементов покрытия 
М, (для которых O, равно некоторому значению ) от величины € 

М (&) - ©® (2) 

В случае равномерного распределения меры на Ффрактальном множестве 
(классическим примером является канторово множество) (L=0=CONSt и спектр 
сингулярности представляет собой единственную точку на плоскости (а, f ). При 
неравномерном распределении меры (например, биномиальное распределение на 
канторовом — множестве [18]) функция flo) имеет — более — сложный 
(«колоколообразный») вид. 

На практике фракталы встречаются не только как сингулярные меры, но и 
как сингулярные функции. В связи с этим было предложено несколько обобщений 
концепции мультифрактальности на случай функциональных зависимостей. 
Наиболее удачным из них явилась разработка метода \УТММ («Wavelet transform 
modulus maxima»), позволяющего исследовать ` сложную структуру любых 
экспериментальных данных, включая нестационарные процессы. \УУТММ-метод 
базируется на вейвлет-анализе [27], который называют — математическим 
«микроскопом» из-за способности сохранять хорошее разрешение на разных 
масштабах. Привлекательность данного подхода состоит в TOM, что с его помощью 
можно анализировать как сингулярные меры, так и сингулярные функции; кроме 
того, он  является более  универсальным — аппаратом — для — исследования 
мультискейлинговых свойств объектов по сравнению с ранее разработанными 
алгоритмами, например, методом структурных функций [28]. 

\УУТММ-метод часто интерпретируют как обобщение классических методов 
покрытия множества сферами, кубиками и т.п. с той лишь разницей, что вместо 
вышеупомянутых элементов покрытия используются вейвлеты. Поскольку 
базисные функции вейвлет-преобразования являются хорошо локализованными 
(солитоноподобными), они представляют собой эффективный математический 
аппарат для анализа принципиально неоднородных (нестационарных) процессов. 
Детали \УТММ-метода обсуждаются в следующем разделе настоящей работы. 
Отметим, что переход от изучения сингулярных мер к сингулярным функциям (или 
временным рядам) сопровождается сменой используемых обозначений: вместо 
спектра — сингулярности flo) рассматривается  функция  D(h), имеющая 
приблизительно тот же смысл, где /1 называют еэкспонентой Хелдера или 
локальной экспонентой Херста (IO смыслу она аналогична o), а D(/) 
представляет собой фрактальную размерность подмножества анализируемых 
данных, которое характеризуется локальной экспонентой Л,. 

Математическое ‘определение экспоненты Херста Н звучит следующим 
образом [18]. Если g(x) есть функция, инвариантная по отношению к аффинным 
преобразованиям, то Ve К, ЗНей такое, что VA>0, 

g(xo + М) —'g(xo) = }‘H(g(xo'*'x) '—g(xo))' (3) 

Ecnu g представляет собой случайный процесс, равенство будет выполняться 

только при фиксированных значениях A и X,. В случае Н<1 функция g(x) является 
недифференцируемой |, IO аналогии с экспонентой сингулярности O, чем меньше 
Н, тем более сингулярна g(x). 

При исследовании мультифрактальных объектов локальные скейлинговые 
свойства отличаются для разных подмножеств анализируемых данных, поэтому 
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говорят о лоюкальных окенонситал Жорета (опоишшлтшя лолдора) f1(x), которыс 

вводятся путем незначительного изменения определения Н (3) 

18( + 1) —g(x )l ~ СР®) (4) 

и характеризуют локальное сингулярное поведение объекта исследования. Как 

отмечается в [8], мультифрактальный подход для сигналов потенциально способен 
характеризовать широкий класс процессов, являющихся более сложными по 
сравнению с процессами, для описания которых достаточно одного числа 
(единственного значения фрактальной размерности). Несмотря на то, что 
концепция мультифрактальности разрабатывалась для класса самоподобных 
функций, WTMM-MeTog формально может применяться и при отсутствии 

фрактальных свойств анализируемого объекта. При этом, однако, возможна не 
вполне корректная интерпретация результатов [29], о чем будет упомянуто при 
изложении деталей алгоритма. 

Целью — настоящей — работы — является — выявление — особенностей 
мультискейлинговой структуры временных рядов различного происхождения. 
Наряду с тестовым примером, рассматриваемым для наглядного изложения 
работы — \УТТММ-метода, мы — проводим мультифрактальный анализ 
последовательностей времен возврата в секущую плоскость для хаотического 
аттрактора, а также исследуем изменения мультискейлинговой структуры 
сигналов артериального давления белой крысы, вызванные стрессом. 

1. Мультифрактальный формализм 

Подробное описание \УТММ-метода приводится в работе [18]. Учитывая, 

что эта работа может быть недоступна российскому читателю, мы решили 
изложить в данном разделе основные детали алгоритма. 

На первом шаге осуществляется вейвлет-преобразование функции g(x) 

T, [8](rpa) = Val_g(w, [(x —x,)/aldx, (5) 

где в качестве #(х,) обычно выбирают функцию распределения в точке л), @ — 
масштабный коэффициент, \у — базисная функция вейвлет-преобразования, 
сконструированная, например, на основе производных функции Гаусса 

Ш(т) - (_1)… д/дх т[СХР(—х 2/2)] (6) 

Если говорить о вейвлет-анализе как O математическом «микроскопе», TO а 
определяет увеличение микроскопа, а \у — оптические качества. 

Выбор базисной функции (B данном случае, выбор параметра т), как 
правило, определяется TeM, какую информацию необходимо извлечь из g(x). С 
одной стороны, увеличение т позволяет проигнорировать крупномасштабные 
полиномиальные составляющие (устранить тренд) и анализировать мелко- 
масштабные вариации данной функции [27]. С другой стороны, многократное 
дифференцирование приводит к увеличению числа линий локальных экстремумов 
вейвлет-коэффициентов и появлению «ложных» линий (этот эффект будет 

рассмотрен позднее). 
Если анализируемая функция g(x) непрерывно дифференцируема в точке X, 

вплоть до производной порядка т, то коэффициенты ее вейвлет-преобразования 
при X=X, подчиняются неравенству 
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T lglCpa) sa™, —а —› 0" (7) 

Для функции g(x), имеющей особенности в точке X=X, локальное сингулярное 
поведение характеризуется экспонентой Хелдера /(х,) 

Т[8]( оа) ~ а*С®, — а —› 0" (8) 

Как отмечается B [27], вейвлет-преобразование устроено таким образом, что 
T,[8](xpa) является регулярнои функцией даже при нерегулярной g(x). Вся 
Ш{формация о возможной особенности g(x) (включая ее локализацию X, и 
показателъ h(x,)) заключена в асимптотическом поведении козффициентов 
Т/8](хоа) при малых а. Если коэффициенты на малых масштабах расходятся, то & 
имеет особенность в X, И экспонента Хелдера может быть определена путем 
представления зависимости (8) в двойном логарифмическом масштабе и вычисле-— 
ния наклона 07 /[#](хоа) от Ina. Если коэффициенты Т „[8]Схоа) близки к нулю B 
окрестности X, ‘на малых масштабах, то g является регулярнои в этой точке. 
Важное обстоятельство при расчете хелдеровских экспонент состоит в TOM, что 
искомые характеристики не зависят от выбора базисных функций вейвлет- 
преобразования, что позволяет говорить O TOM, что анализ локальной 
регулярности в некотором смысле универсален [18]. 

Второй шаг \\ТММ-метода предполагает выделение «скелетона» [18] 
(линий локальных экстремумов коэффициентов T, [¢](x,,a) на каждом масштабе а 
ИЛИ что эквивалентно, линий локальных Максимумов модулей коэффициентов 
Т/8}(хо@)!) и построение частичных функций 7(4,а), в простейшем случае по 

: фОРМУЛе 
7(а =2 IT,[gl(x(a), а), 9) 

leL(a) 

где L(a) - множество всех линий (/) максимумов модулей вейвлет-коэффициентов, 
существующих на масштабе @а; х/(а) характеризует расположение на этом 
масштабе максимума, относящегося к линии [. Определение (9) He подходит для 
отрицательных значений ¢, поскольку возможна ситуация, когда"!Т[2](+/(а)‚а)!=0. 
В связи с этим на практике используется другая формула 

Z(g.a) :13@ (sup IT, [g](x (@), a)I)", (10) 

то есть выбирается максимальное значение модуля коэффициентов вейвлет- 
преобразования вдоль каждой линии на масштабах, меньших заданного значения 4. 
Согласно [18], выполняется следующая зависимость: 

Z(gq.a) - a™@, (11) 

где величину т(4), определяемую для некоторого значения ¢ путем вычисления 
наклона InZ(g,a) от Ina, называют скейлинговой экспонентой. Вариация степеней 4 

при построении частичных функций (10) позволяет получить линейную 
зависимость 7т(4)=@Н-1 для монофрактальных объектов (H=dt/dg=const) и 
нелинейную зависимость т(4)=дй-0(1) с большим числом хелдеровских экспонент 
h=dtldg#const в случае мультифракталов. - 

При некоторых значениях д скейлинговые экспоненты т(д) имеют простую 
ивтерпретацию [8]. Так, существует взаимосвязь между т(2) и скейлинговой 
экспонентой спектральной плотности мощности S(f) ~ 1// В 

В =2 +т(2). (12) 
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Z(g.a) отражает OCOGEHHOCTH  скейлинга для больших  флуктуаций mpu 
положительных ¢ и малых флуктуаций при отрицательных д. Взаимосвязь между 
основными — величинами, рассматриваемыми в рамках \У/ТММ-алгоритма, 

определяется преобразованием Лежандра : 

D(h) = ай —<(4). (13) 
Мультифрактальный анализ представляет собой мошный математический 

аппарат, позволяющий характеризовать важные особенности сложной структуры 
процессов. Как отмечается в [18], существует аналогия между мультифрак- 
тальным формализмом и статистической термодинамикой: при изучении 
сингулярных мер переменные ¢ и т(4) играют ту же самую роль, соответственно, 
что и величина, обратная температуре, и свободная энергия в термодинамике, а 
преобразование Лежандра (которое в случае сингулярных мер имеет вид f{o)= 
= min [40 — +(4)]) означает, что вместо таких термодинамических характеристик 
как энергия и энтропия рассматриваются @ и flo). Сам термин «мультифрак-— 
тальный формализм», подразумевает некий подход, в рамках которого спектр 
сингулярности f{0.) может быть рассмотрен как преобразование Лежандра от т(4). 

Если речь идет об изучении сингулярных мер W, то при осуществлении 
вейвлет-преобразования в качестве g(X) выбирают функцию распределения 

X 

g(x)=|,t(—oo,x]:f_w 4и. При анализе символических последовательностей (например, 
цепочка нуклеотидов молекулы ДНК) они обычно преобразуются в бинарные 
последовательности и(;)=+1 (B зависимости от того, какой нуклеотид встречается 
под номером i), после чего рассматривается задача об одномерных случайных 
блужданиях «random walk» [30] 

a(k) = % u(i). (14) 
Проводя мультифрактальный анализ зависимости g(k), можно говорить об 
отсутствии корреляций в символической последовательности, если экспоненты 
Хелдера й=0.5, и о наличии корреляций при А+0.5 (иногда говорят также O 
корреляциях #>0.5 и антикорреляциях 1<0.5 [30]). 

Заметим, что процедура анализа  мультискейлинговых  явлений  для 
одномерных случайных блужданий (13) приводит K тем же самым результатам, что 
и рассмотрение B качестве 2(х) исходной бинарной последовательности #(7)=и(г), 
HO в последнем случае нужно еще исключить множитель 1/а перед знаком 
интеграла в (5). 

Несколько сложнее OOCTOMT дело с временными — рядами.  Если 
анализируются сингулярности некоторого сигнала $(!), то B качестве g(x) в (5) 
может рассматриваться либо сам сигнал §(f) (соответственно, интегрирование 
будет проводиться по времени), либо функция распределения (по аналогии с 
«random walk» можно рассмотреть интеграл с переменным верхним пределом от 
s(¢)). Как следствие, численные значения экспонент Хелдера могут различаться 
(обычно на 1). Согласно зависимости (7), тот ke эффект будет наблюдаться, если 
убрать множитель 1/а в (5). В известной литературе по мультифрактальному 

анализу He всегда четко оговаривается, что выбирается в качестве g(x) — 
характеризуются — сингулярности — самого — процесса — либо — его — функции 
распределения. В нашей работе проводится анализ локальной сингулярности 
функций — распределения — независимо от выбора  объекта — исследования 
(сингулярные меры либо временные ряды). 
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2. Тестирование УУТММ-метода 

Рассмотрим классический пример — канторово множество. Процедура его 
построения состоит в следующем: отрезок [0,1] делится на 3 равные части, после 
чего средняя часть выбрасывается. Затем те же операции проводятся с двумя 
оставшимися частями и т.д. На некотором шаге л данной процедуры мы получим 2" 
равных отрезков, каждый длиной 37" 

Предположим теперь, что на канторовом множестве задано равномерное 
распределение меры й (например, массы), и для покрытия  множества 
рассматриваются 2 элементов (окружностей) размера £=37". Mepa, попадающая в 

каждый из этих элементов, будет равна w(Bx (e))=27", где через Bx(e) обозначена 
окружность с центром в точке X, и диаметром е. Согласно формуле (1), экспонента 
сингулярности @, определяемая наклоном зависимости Inu(Bx(e)) от №е, 
принимает значение o=In2/In3. (B пределе е—›(0* это значение экспоненты 
соответствует каждой точке канторова множества). В рассматриваемом примере 
размерность Хаусдорфа d,=0=In2/In3, а спектр сингулярности /(о) состоит U3 
одной точки (f{o)=d,=a) [18] (puc. 1). 

Для проведения численного ана— 
о)) . лиза канторову множеству ставится B 

соответствие бинарная последователь- 
ность, состоящая из нулей и единиц 
(нули обозначают выбрасываемые при 
построении ряда части отрезка). Таким 

0.60 образом, данный ряд вначале (n=0) 
COCTOMT из одного элемента «1», на 
первом этапе — из трех «101», на втором 

0.55 
0.55 0.60 0.65 o — из девяти «101000101» и т.д. Функция 

распределения для бинарной последо- 
вательности (можно определить g(x): 

Ё(Ё‹;.т Bi. Спектр сингулярности канторова MHO— [0,1]-[0,1]) представляет собой «чер- 

: ° тову лестницу» (рис. 2, а). 
Выбрав в качестве базисной функции \`„ МБа!-вейвлет (n=2) и следуя 

алгоритму, изложенному в предыдущем разделе, на первом этапе мы провели 
вейвлет-преобразование функции 2(х) и выделение линий локальных максимумов 
модулей вейвлет-коэффициентов (рис. 2, 6). Как видно из рисунка, число 
локальных максимумов уменьшается при увеличении масштаба а. В соответствии с 
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Рис. 2. а — функция распределения бинарной последовательности, 6 — линии локальных 
максимумов (черные кружочки) и минимумов (белые кружочки) вейвлет-коэффициентов
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Рис. 3. Значения хелдеровских экспонент, вычисленные по различным линиям локальных 
максимумов модулей вейвлет-коэффициентов при: Юа20 (а); 1па21 (6); та?4 (в) 

(8), локальное сингулярное поведение g(v) может анализироваться путем 
построения зависимости 107 [2](х,а) от ша ° и вычисления наклона аппроксими— 
рующей прямой. Результаты расчетов, проведенных для различных линий 
локальных максимумов, представлены на рис. 3, а. Наряду с ожидаемым значением 
h=In2/In3 для некоторых линий (преимущественно самых коротких) получены 
значения хелдеровских экспонент, варьирующиеся в широких пределах. Картина 
меняется, если исключить из рассмотрения линии, «обрывающиеся» на малых 
масштабах и рассматривать степенные зависимости вейвлет-коэффициентов, 
например, при Ine>1 (рис. 3, 6) или Ina>4 (рис. 3, в). Если для конкретной линии 
степенная зависимость (8) He выполняется, TO есть вычисленное значение 
экспоненты А отличается от теоретического, то мы классифицируем ее как 
«ложную». (Это не означает, что сама линия получена вследствие численных 
ошибок, возникающие проблемы, по-видимому, связаны с плохим разрешением на 
малых масштабах). На практике изучение скейлинговых особенностей проводится 
при не слишком малых масштабных коэффициентах (мы выбирали обычно 
Ina=0.7). 

Непосредственные оценки экспоненты /i M3 степенных зависимостей для 
вейвлет-коэффициентов могут быть менее точны, чем определение спектра 
скейлинговых экспонент 1T(g) частичных функций и вычисление локальных 
наклонов й=фиаа (второй этап \УТММ-метода). При болыпом числе элементов 
бинарной последовательности (большом числе шагов л при построений канторова 
множества) численно найденные значения / и спектра сингулярности D(h) 
практически не отличаются от теоретических. Tak, B наших расчетах для n=10 
ошибка не превышала 1 %. 

Если в качестве анализирующего вейвлета используются производные 
высокого порядка функции Гаусса (большие значения параметра т в (6)), то число 
«ложных» — линий — локальных — максимумов |Тш[3](х0‚а)| возрастает, — что 
обусловливается осциллирующими «хвостами» солитоноподобных функций W™, 

Поэтому при проведении мультифрактального анализа бывает целесообразно 
ограничиваться малым значением т (обычно m<2). 

Мы рассмотрели случай равномерного . распределения меры ц на 
фрактальном множестве. Если мера распределена неравномерно, спектр 
сингулярности — усложняется. Для  иллюстрации — проанализируем — случай 
биномиального распределения [18]. Предположим, что отрезок [0,1] вновь делится 
на 3 равные части; средняя часть выбрасывается, HO теперь мы приписываем 
разные весовые коэффициенты p, и p,=(1 —p,)#p, двум оставшимся ивтервалам, 
[0,1/3] и [2/3,1]. Если вначале (n=0) мы примем для всего интервала [0,1] u,=1, то 

* й 
Поскольку осуществлен переход к фрактальной функции, мы можем говорить об 

экспонентах Хелдера /(х), которые по смыслу аналогичны O и принимают те же значения. 
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на первом шаге процедуры построения канторова множества двум отрезкам 
соответствуют меры U, =P,y И 1;=(1-р,)и. При последующих шагах используются 
те же самые весовые коэффициенты p; и p,, когда проводится деление на части 

каждого U3 отрезков. 
Покрывая — фрактальное — множество — окружностями — радиуса e=37", 

рассмотрим крайний левый и крайний правый отрезки. Для первого из них 
(содержащего точку x,=0) Mepa, попадающая в окружность B, диаметра &, равна 
w(B,)=p,"u=p,". Tlosromy, согласно (1), o(0)=lnp /In(1/3). Аналогично, для 
крайнего правого отрезка, содержащего точку X =1, можно записать o(1)=Inp,/ 
In(1/3). Поскольку изначально ру#р,, то и 0(0)+(1). Соответственно, спектр 
сингулярности /{(а) уже не будет состоять только W3 одной точки. Рассмотрим 
сложную структуру спектра сингулярности мультифрактальных объектов на 
конкретных примерах. 

3. Мультискейлинговая структура времен возврата 

Проанализируем структуру последовательности времен возврата в секущую 
плоскость для хаотического аттрактора. С этой целью выберем в качестве 
системы, демонстрирующей хаотический режим динамики, модель Ресслера 

dxldt = — (y + z), 

dyldt = х + 0.15y, 

аиа =02 + z (х - 10) 

(15) 

и зададим уравнение секущей в виде х=© (@=соп5!). Подставляя разные значения 
постоянной ©, рассмотрим как случай «правильного» задания секущей Пуанкаре 

(когда все траектории ее пересекают, причем, трансверсально), так и случай 
«неправильного» выбора секущей (часть траекторий в фазовом пространстве не 
пересекает плоскость х=@, либо касается ее). Оба эти случая представляют 
интерес ` при  изучении  процессов . преобразования  сигналов — пороговыми 
устройствами, если требуется охарактеризовать свойства сигнала на входе 
устройства путем анализа последовательности временных интервалов между 
моментами превышения порогового уровня. (Takue задачи возникают, например, B 
нейродинамике: в простейших моделях, описывающих работу нервных клеток, 
генерация импульсов происходит при превышений входным сигналом постоянного 
значения ©=const [31,32]. Смещение порога или, что эквивалентно, изменение 
амплитуды — колебаний . Ha входе  приводит K — изменению — структуры 
последовательности времен между моментами генерации импульсов [33-37].) 

Рассмотрим вначале случай, когда все фазовые траектории пересекают 
плоскость ©=const. При указанных значениях управляющих параметров системы 
Ресслера с этой целью можно выбрать широкий диапазон значений порогового 
уровня (приближенно 101<5.3). На рис. 4, а приводятся результаты расчета хел- 
деровских экспонент для времен возврата при двух произвольно выбранных 
уровнях ©, принадлежащих данному диапазону: ©=1 и ©=3. Обращают на себя 
внимание следующие два обстоятельства. Первое: даже незначительное го 
сравнению с амплитудой колебаний x(f) смещение плоскости х=© от начала 
координат (точнее, от состояний равновесия системы, вокруг  которых 
осуществляется движение в фазовом пространстве) приводит к существенному 

изменению локальной регулярности анализируемых данных. Для ©=1 среднее 
значение хелдеровских экспонент A равно примерно 0.05, для ©=3 h=0.4. Второе: 
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смещение порога приближает значения хелдеровских экспонент K уровню A=0.5 
(пунктирная линия), соответствующему случаю отсутствия корреляций в 
последовательности временных интервалов. Если для ©=1 мы можем говорить O 

сильных корреляциях, при увеличении порога корреляции становятся слабее. Для 
иллюстрации на рис. 4, а приводятся результаты мультифрактального анализа 

BpeMeH возврата для ©=15 («неправильный» выбор секущей Пуанкаре). B 
последнем случае /=0.5 при ¢=0 (что соответствует максимуму спектра 
сингулярности D(h) — рис. 4,6). 

Аналогичные выводы могут быть сделаны на основе других методов анализа 
‚ мультискейлинговой структуры временных рядов, в частности, на основе DFA-— 
алгоритма (detrended fluctuation analysis [30]). Данный метод также позволяет 
убедиться в изменении скейлинговых особенностей последовательности времен 
возврата при увеличении параметра © и происходящем при этом уменышении 
корреляций. Более детальное исследование мультискейлинговой структуры 
временных интервалов свидетельствует о TOM, что зависимость численных 
значений экспонент Хелдера от порога является сложной и нелинейной: в 
небольших диапазонах по параметру © увеличение порога может приводить -K 
уменьшению А (увеличению корреляций), тогда как при расширении диапазона 
изменения © общая тенденция, отмеченная выше, сохраняется. В настоящее время 
неясно, с чем может быть связан такой эффект. 

На рис. 4, 6 изображены спектры сингулярности при двух значениях порога. 
Полученная «колоколообразная» структура зависимости () является типичной 
для мультифракталов. В рассматриваемом примере размерность Хаусдорфа 
D(g=0)=1 и практически не зависит от ©. (Небольшие отличия максимального 
значения D связаны с погрешностями аппроксимации зависимостей Ю07(а, а) от Ina 
при вычислении скейлинговых экспонент.) Более информативными являются 
значения Л, соответствующие ¢=0 (иногда рассматривают /(4=1)), и диапазон 
изменения — хелдеровских — экспонент. — Если — локальные — скейлинговые 
характеристики для различных подмножеств меняются незначительно (малый 
диапазон значений /1), можно говорить O TOM, что анализируемый временной ряд 
относится к монофрактальным объектам. 

Как отмечается в [29], «колоколообразная» форма спектра сингулярности 
может быть даже в том случае, когда УУ/ТММ-метод применяется для обработки 

сигналов, He обладающих мультифрактальными свойствами. Если временной ряд 

характеризуется не бесконечным числом величин, описывающих особенности 
скейлинга, а конечным (небольшим) набором хелдеровских экспонент, TO 
непрерывная зависимость О(А) представляет собой огибающую истинного спектра 
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Puc. 4. Мультифрактальный анализ времен возврата. а — зависимости A{g), вычисленные при 

различных значениях порогового уровня; 6 — типичная форма спектров сингулярности 
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сингулярности. Последнее  означает, что, получив  результаты,  подобные 
изображенным на рис. 4, а, 6, в общем случае мы HE можем сказать достоверно, 
существуют ли участки временного ряда, где й принимает значение, например, 

0.55+0.03? Bo избежание  сложностей B — интерпретации — результатов, 
целесообразнее не анализировать, конечно или бесконечно число скейлинговых 
характеристик, а рассматривать \У'ТММ-метод как математический аппарат, 
позволяющий оценивать диапазон изменения хелдеровских экспонент (то есть 
степень сингулярности) и характеризовать наличие корреляций различной 
длительности в сильно неоднородных (нестационарных) временных рядах. 

4. Мультифрактальный анализ сигналов биологического происхождения 

Привлечение аппарата мультифрактального формализма для исследования 
скейлинговых особенностей физиологических сигналов началось сравнительно 
недавно. В работе [8] проводился анализ мультискейлинговой структуры 
последовательностей кардиоинтервалов (R~ R), зарегистрированных в дневное и 
ночное время у относительно здоровых людей и у людей с нарушениями 
нормального функционирования сердечно-сосудистой системы. В [9] осущест- 
влялось сравнение \УТММ-- и ОЕА-алгоритмов и иллюстрировалось применение 

обоих подходов K анализу RR-wHTepBanoB. Визуально форма спектров сингуляр- 
ности кардиоинтервалов напоминает зависимости О(/), представленные на рис. 4, 6. 
(Как отмечалось, «колоколообразный» вид данных зависимостей является 
типичным для мультифрактальных объектов.) В диагностических целях интерес 
представляют численные значения хелдеровских экспонент и диапазон их 
изменения [8]. 

Мы решили проиллюстрировать работу \У'ТММ-метода на другом примере — 
сигналах — артериального давления  белой — крысы,  зарегистрированных — у 
бодрствующих крыс прямым способом (через вживление артериального катетера). 
Эксперименты — проводились следующим образом. Вначале  осуществлялась 
регистрация артериального давления в условиях свободного поведения животных 
(B течение 2-х часов), затем через венозный катетер вводился обзидан (препарат, 
блокирующий адренорецепторы, то есть блокирующий влияние симпатической 
нервной системы на сердечно-сосудистую систему, что приводит к урежению 
сердечного ритма) и проводилась запись артериального давления в течение еще 
2—х часов. На следующий день крыса подвергалась стрессорному воздействию, 
которое приводило к нарушениям микроциркуляции и сократительной функции 
миокарда. Через 30 минут после окончания стресса вновь вводился обзидан и 

проводилась 2—часовая регистрация. - 
Чтобы ответить на вопрос об эффективности привлечения аппарата 

мультифрактального формализма для обработки сигналов, полученных в ходе 
данных экспериментов, нами были произвольно отобраны пять крыс, реализации 
артериального давления которых исследовались на основе \УТММ-метода. (Мы 
ограничились небольшой базой данных, поскольку целью исследования на данном 
этапе являлось не накопление статистического материала, а выяснение вопроса: 
вызывает ли введение адреноблокаторов и стрессорное воздействие изменения 
локальной регулярности сигналов, либо скейлинговые характеристики остаются 
неизменными.) 

Мультифрактальный — анализ — проводился — для — последовательностей 

временных интервалов между моментами превышения артериальным давлением 
порогового значения (аналог времен возврата в секущую Пуанкаре для 
хаотического аттрактора). Предварительно исходные сигналы подвергались 
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Рис. 5. Мультифрактальный анализ сигналов артериального давления белой крысы (различные 

типы реакции на стресс). Черные кружочки соответствуют зависимостям /(4) до cTpecca, белые — 
во время стресса 

фильтрации с целью устранения «плавающего» среднего уровня (тренда). Для 
фильтрации использовались методы, ранее применяемые нами при обработке RR-— 
интервалов [38]. Результаты мультифрактального анализа сводятся к следующему. 

* Блокирование влияния симпатической нервной системы, вызванное 
введением обзидана, практически не сказывается на локальной регулярности 
анализируемых временных рядов. Во всех экспериментах с обзиданом численные 
значения хелдеровских экспонент либо оставались неизменными (B пределах 
точности вычислений), либо менялись, но очень незначительно (M3 пяти крыс у 
одной по реализации артериального давления было зафиксировано небольшое 
уменышение экспонент Хелдера, еще у одной — небольшое увеличение /(4), в трех 
случаях зависимость А(д) не менялась по сравнению с исходным состоянием). 
Таким образом, мультискейлинговая структура записей артериального давления 
почти не претерпевает изменений при введении адреноблокатора (либо они не 
настолько значительны, чтобы их можно было продиагностировать на основе 
мультифрактального формализма). Заметим, что в отличие от скейлинговых 
свойств  некоторые  статистические  характеристики — случайных — процессов 
(например, среднее значение) меняются при введении обзидана. 

» Стресс вызывает существенные изменения структуры временных рядов, 

хотя реакция на стресс может быть различной. Для анализируемой небольшой 
базы данных мы обнаружили два типа реакции: стресс приводил либо к заметному 
уменышению  хелдеровских экспонент, TO есть K изменению — локальной 
регулярности сигналов, которое было зафиксировано у четырех крыс (рис. 5, а), 
либо к изменению диапазона значений /(4), зафиксированному у одной крысы 
(рис. 5, 6). Последняя реакция наиболее интересна с точки зрения методов 
мультифрактального анализа: в результате стресса мультифрактальный процесс 
(сигнал артериального давления крысы в исходном состоянии) становится 
монофрактальным. Таким образом, исследование стрессорных воздействий B 
некоторых случаях может рассматриваться как анализ переходов от моно- K 
мультифрактальной структуре и наоборот. Поскольку наши эксперименты 
проводились на небольшом числе животных, в настоящее время мы не можем 
говорить о TOM, насколько типична та или иная реакция на стресс, однако можем 
констатировать, что аппарат  мультифрактального формализма  позволяет 
фиксировать изменения локальной регулярности сигналов при стрессорных 
воздействиях. 
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Заключение 

В настоящей работе рассмотрены основные принципы мультифрактального 

формализма и описан алгоритм, позволяющий анализировать — локальное 
сингулярное поведение объекта исследования (Wavelet transform modulus maxima 
method). Данный алгоритм был протестирован нами на нескольких примерах (B 
статье мы ограничились только одним из них — канторовым множеством) и 
применен для анализа мультискейлинговой структуры сигналов  различной 
природы. В частности, при исследовании последовательностей времен возврата B 
секущую Пуанкаре для хаотического аттрактора показано, что скейлинговые 
характеристики являются чувствительными K  незначительным — смещениям 
секущей x=O=const; удаление данной плоскости от состояний равновесия 
динамической системы, относительно которых происходит движение в фазовом 
пространстве, — приводит K — уменьшению — корреляций — в — дискретных 
последовательностях. Нами было рассмотрено применение мультифрактального 
анализа для обработки данных медико-биологических экспериментов (записей 
артериального давления белой крысы в различных состояниях: в условиях 
свободного поведения, после введения адреноблокатора и при стрессе). 
Обнаружено, что блокирование эвлияния симпатической нервной системы 
практически не сказывается на локальной регулярности сигналов, тогда как 
стрессорные воздействия вызывают существенные изменения хелдеровских 
экспонент и/или диапазона hi(g). Показано, что возможны ситуации, когда стресс 
приводит к переходам от мульти- к монофрактальной структуре (упрощению 
процесса) и наоборот. 

Мультифрактальный анализ B настоящее время приобретает все большую 
популярность для обработки нестационарных данных  самого — различного 
происхождения. Детальные исследования структуры сигналов на базе вейвлет- 
преобразования и попытки проанализировать с помощью данного «микроскопа» 
изменения свойств изучаемых продессов на различных масштабах порой приводят 
к осознанию того, что рассматриваемые временные ряды являются по своей 
структуре даже еще более сложными, чем предполагалось paHee. Учитывая 
особенности и преимущества вейвлет-анализа, пожалуй, наиболее эффективного 

средства для обработки нестационарных сигналов, можно предположить, что 
интерес к мультифрактальному формализму будет расти в первую очередь в тех 
задачах, где требуется анализировать сильно неоднородные и нестационарные 
процессы, K которым  неприменимо большинство классических — методов 
статистической обработки данных. С этой точки зрения нам представляется 
перспективным — продолжение — исследований — по — привлечению — аппарата 
мультифрактального формализма для анализа сложной структуры данных медико- 
биологических экспериментов. 
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MULTIFRACTAL ANALYSIS ОЁ TIME SERIES 

А.М. Paviov, A.R. Ziganshin, V.S. Anishchenko 

Main principles of multifractal formalism are discussed. Multifractal analysis of 
sequence оЁ the phase space trajectory return times to the Poincare section is performed. 
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Stress—induced by stress changes of the structure of white rats of blood—pressure signals 
are studied. 
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