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ВРЕМЕННЫЕ РЯДЫ ИЗ ГЕОМЕТРИИ И ТОПОЛОГИИ 

ПРОСТРАНСТВЕННО-ВРЕМЕННОГО XAOCA* 

Н.Г. Макаренко 

В работе рассматриваются методы преобразования геометрии и топологии 2О-паттер- 

нов в скалярные временные ряды на основе формализма математической морфологии и 
вычислительной топологии. Методы иллюстрируются на примере динамики магнитного 

поля Солнца. 

Подходите к вашим задачам с правиль- 
ного конца и начинайте с ответов. Тогда 
в один прекрасный день вы, возможно, 
найдете правильный вопрос. 

P, ван Гулик. «Отшельник 
в журавлиных перьях» 

Введение 

Наиболее удачная попытка решения обратной задачи — получения модели Heno- 

средственно из данных принадлежала Иоганну Кеплеру из Вюртенберга (1571-1630). 

Три знаменитых закона эллиптического движения планет были получены им в ре- 

зультате чудовищных по объему ручных вычислений, проделанных над наблюдени- 

ями пражского астронома Тихо Браге (1546-1601). Модель Кеплера — не только заме- 

чательный пример получения явных знаний из таблиц данных. Она имела предска- 

зательные возможности, реализованные B так называемых Рудольфовых таблицах — 

наперед рассчитанных эфемеридах нескольких планет. 

Исторический контекст современных подходов к реконструкции модели из на- 

блюдений можно найти в известной аллегории лещеры Платона [1]. В УП главе 

*Статья написана по материалам доклада на VII Международной школе «Хаотические автоколеба- 

ния и образование структур», 1-6 октября 2004, Caparos, Россия



трактата «Государство» Платон описал узников, которые видят B отблесках костра на 

стенах пещеры лишь тени внешнего мира, по которым они и должны восстановить 

реальность. Эвристически реконструкция аттрактора из скалярных временных ря- 
дов, которые рассматривались как типичные «тени» фазовой траектории на первую 
координату, была предложена в 1980-м группой Паккарда [2]. Формализм появился 

год спустя, когда Такенс [3] обобщил теорему Уитни о вложении дифференциру- 

емых многообразий в R" на динамические потоки и каскады. Предположим, что 

для динамической системы ф' (х) : М — М на некотором компактном п-мерном 
многообразии М определена наблюдаемая! как непрерывная нелинейная функция 

фазовой точки А (х (#)) : М — R и выполняется Кредо идеального эксперимента- 
тора [4)]. Тогда теорема Такенса [3, 5] утверждает, что отображение Ф : M — В1 

запаздывающих координат 

Ф (х) = (& (х) ‚ ^ (ф*(х)) ,.^ (¢ (x))) () 

— вложение в В! с точностью до предположения о типичности. Полученный 06- 

раз будет диффеоморфной копией реального аттрактора и наследует все его динами- 

ческие характеристики [6]. Копия содержит даже топологию аттрактора, поскольку 

существует связь между структурой множества С (h) = {x € М ай (х) = 0 } кри- 
тических точек функции h и топологией многообразия М [7]. 

Новый способ построения модели U3 наблюдаемого сигнала называют эмбе- 

дологией, как производное от английского слова embedding — вложение [5, 8]. Tex- 

ническая сторона эмбедологии основана на богатом арсенале разработанных ай hoc 

методов для численных оценок динамических инвариантов аттрактора [9-13] и его 

гомологий [14]. На базе алгоритма Такенса возникли новые нелинейные методы ана- 

лиза временных рядов [15, 16] и многомерная техника их прогноза [17-19]. Суще- 

ственным ограничением является, однако, то ОбСТОЯТСЛЬСТВО, что ЭМбеДОЛОГИ_Я адап- 

тирована к точечному источнику сигнала, динамика которого не зависит от про- 

странственной сложности. 

Хаотические сценарии распределенных динамических систем принято назы- 

вать пространственно-временным хаосом [20-22]. При экспериментальном анализе 

такого хаоса приходится иметь дело с двумя видами сложности: временной и про- 

странственной. Последняя кодируется геометрией и топологией пространственной 

структуры системы. Проекциями такой динамики в «Мир Экспериментатора» явля- 

ются мгновенные снимки (Snapshots), то есть матричные данные, такие как фото- 

графические и цифровые изображения, сцены или карты. В качестве собирательного 

термина такого разнообразия удобно использовать термин латтерн. 

Немногочисленные попытки прямого обобщении эмбедологии на матричные 

данные [22, 23] привели к интересным результатам. Для последовательности мгно- 

венных снимков пространственного поля СКОРОСТЗЙ ДИНЭ.МИЧССКОЙ системы гради- 

ентного типа определялась фрактальная размерность в матричном пространстве вло- 

жений. Оказалось, что снимкам с ламинарным режимом соответствует целочислен- 

TO есть сигнал или реализация - то, что наблюдается. В общем случае, может зависеть от пара- 

метров, так что может и не наблюдаться при некоторых их значениях. Чтобы избежать катастроф при 
проекции, предположим, что наблюдаемая является гладкой функцией Морса, то есть ее критические 
точки изолированы и невырождены.



ная размерность, а снимки, предшествующие бифуркациям, описываются €€ дроб- 

ными значениям [22]. К сожалению, «матричная эмбедология» связана с огромным 

объемом вычислений. Однако существует другая возможность. Комфорт скалярной 

эмбедологии можно сохранить, если преобразовать геометрию и топологию паттер- 

на в скалярные величины. Это можно сделать с помощью некоторых дескрипторов, 

определенных на изображенийи. Их можно найти в методах математической морфо- 

логии и вычислительной топологии, 

Математическая морфология и геометрия случайных полей 

Пусть К € R? - выпуклое замкнутое ограниченное множество? и B (z) — 
замкнутый шар с центром в Z и радиусом Е. Тогда тело K., параллельное К на 
расстоянии £, определяется как объединение шаров 

K, = UIEK B, (z). (2) 

Очевидно, что K. состоит из всех точек К и точек, е-близких к его границе 

дК. K, называют часто дилатацией или «раздуванием» K. Объем параллельного 

тела дается формулой Штейнера [24, 25] как точный полином по степеням £ 

() . 
Уо! К = ( ‘Ё ) Wie'. 3) 

Коэффициенты Wi, ¢ = 0,1,...,d называют функционалами Минковского. 

Пусть, например, K — квадрат со стороной а . Тогда 

Vol K. = а? + 4ae + ле? = F (К) + Р(К) € + ne?, 

тде F' u P - площадь и периметр К; последний коэффициент ¢ точностью до л равен 

характеристике Эйлера % (К) = 1, которая определена ниже. 

В общем случае рассмотрим класс В подмножеств { A} € Вё, которые можно 

представить как конечное объединение компактных, выпуклых подмножеств, и пусть 

пустое множество @ Е В. Определим функционал х : В — R соотношениями 

х (А) :{ (1)’ ЁЁЁ для выпуклого А и 

’ (4) 

УА, ВЕВ, Х(АНВ) = 3 (4) + х (В) - х(АПВ), 
тде вторая строка (4) выражает свойство аддитивности Х. Функционалы Минковского 

W, над В определяются как интегралы [25] 

W, (4) = /X(AflEa)du[Ea], a=0,...,d-1; И, (4) = @а (1) х (4), ©) 

где оа (1) = л“/? /[T (d/2 + 1)] - объем d-MepHOTO единичного mapa®, Е — о-мерная 
гиперплоскость в В*. Символом аи [E,) обозначена плотность геометрической меры: 

*Такое множество называют компактом. 
°Например, для d = 1,2, 3 имеем w1 (1) = 2; @2 (1) = л; оз (1) = Ал/3, соответственно.



а = 0,1,2 соответствует случайным точкам, линиям и плоскостям. Мера [ ан [Eq] 

инвариантна относительно группы С твердотельных движений“, поэтому её плот- 

ность называют кинематической [26]. Она нормирована так, что для шара wg (т) ¢ 
радиусом r 

И (0g (г)) = оа (1) 7° 

Согласно (5) в R? существует а + 1 функционал. 
Рассмотрим бинарное изображение I (z,y) = [0 ^ 1], z,y € Z2, образованное 

черными (Г = 0) или белыми (I = 1) пикселями на квадратной решетке Z2 € В?. Для 
любого кластера А C I (z,y), согласно (5), Wa(A) = лу (A), где х (А) определяется 
согласно (4) и называется характеристикой Эйлера А. Легко убедиться, что % не 

меняется при гомотопиях 4. 

Для И/ (А) гиперплоскость Е. вырождается в точку Е0 = х = (z,y); выраже- 
ние х (ANx) = 1 для любой х € A, и paBHO нулю B противном случае. Плотность 

меры случайных точек на плоскости определяется бивектором @и [Ey| = dz Л dy, где 

внешнее умножение ах Л dy = —dy Л ах автоматически учитывает якобиан при изме- 

нении координат, B отличие от обычного - dzdy. Таким образом, Wy(A) — Лебегова 

мера точек B A, то есть его площадь Р'(А): 

Wo(4) = / (A0 В ан (Бо) = [ dondy=F(a) ©) 

Наконец, Wi (А) = [y (Ап В)) аи (В.), где E; - случайная прямая в В?. Нам 
необходима кинематическая плотность случайных прямых на плоскости, пересека- 
ющих А. Введем подходящую систему координат, определив любую прямую B R2 
парой (р,ф), где р — длина нормали, опущенной в начало координат, и ф — угол 

между нормалью и положительным направлением оси т. Можно показать [26], что 
ан (E1) = ар Л аф - инвариант относительно группы (. Поэтому 

ші‹А›:/х(Апві›‹ірАсгф= . dpAd¢:/O“ pdp=P(4), () 

где P (A) - периметр области А. Таким образом, все функционалы Минковско- 
го имеют простой геометрический смысл: это периметр, площадь и связность би- 

нарного изображения. Кроме того, W, обладают морфологическими свойствами: 

они аддитивны, инвариантны относительно группы (G, непрерывны в метрике Xa- 

усдорфа [24, 25]. Интересно, что два первых функционала можно выразить через 

И/ (4) — х (4). 
Пусть А - геометрическое тело в R? с кусочно-гладкой границей дА; 

Q1,02,...,0, — внешние углы B вершинах линейных участков д.А; ds — элемент 

длины дуги и & — ee кривизна. Тогда локальные (k) и глобальные () свойства A 

связаны теоремой Гаусса — Бонне [27]: 

Z;l (л- а;) + /дА kds = Элу (А). (8) 

4 Поскольку группа С транзитивна, TO есть переводит любую точку А в B, существует одна ин- 
вариантная мера с точностью A0 масштабной константы. Если группа сильно транзитивна, так что 
несколько преобразований могут перевести А — В, может случиться, что такой меры нет вообще.



Рассмотрим теперь случай «серого» изображения, где I (z,y) € [a,b]. Ero 
легко свести K бршарному варианту, если определить множество уровней5 Ввысо- 

ты h: By = {(z,y){{ =h}, а < h < Ъ, или множество выбросов за уровень h: 

Ap ={(®@,y) Г 2 h}, а < h < b графика функции I (z,y). 
B геометрии случайных полей [28] 

имеют дело с контурными картами, об- 
разованными множествами выбросов 
Ay (F,Z) = {t|F(t) > u} непрерыв- 
HOTO случайного поля Р (&), 
t € ЙС RN, РЕ RM за уровень u. 
Предположим, что компакт 7 и его гра- 

ница д7 являются достаточно просты- 
ми. Пусть поле Р ($) достаточно регу- 

лярно в некотором определенном смыс- 

ле [28]. На рис. 1, например, множе- 

ством A, являются серые области; 07- 

прямоугольник и A, N 0Z = @©. Выберем в качестве основного направления ось 

ординат to. Будем двигаться вдоль $5 и изучать точки, в которых OF /Oty > О и 04, 

имеет горизонтальную касательную. В этих критических точках граница 0A, мо- 
жет быть выпуклой или вогнутой. Припишем каждой «выпуклой» точке границы 

индекс & = 0, а «вогнутой» — индекс & = 1; пусть my — число точек индекса k. То- 
тда дифференциально-топологическая характеристика Эйлера % рт (A) выражается 

через число критических точек на границах компонент дА [28]: 

£} 

Рис. 1. Пример определения ¥ рт согласно (9) 

N-1 

хот (А) = 1° ть- ©) 

Для компонент A, на рис. 1 существует 5 критических точек. Из них вклад, рав- 

ный (+1), B Хрт дают три выпуклые точки A, С, D с индексом & = 0, а вклад, 

равный (—1), - две вогнутые точки В,Е с индексом & = 1. Таким образом, имеем 

Хрт = $ — 2 = 1. 

Другой способ оценки % основан на алгоритме Серра [25]. Покроем множество 

A, достаточно регулярного поля квадратной решеткой. Нусть V, В, Р' — число узлов, 

ребер и граней решетки, соответственно, целиком содержащихся в A, (см. рис. 1). 

Тогда, согласно известной формуле Эйлера: % (А) =V — В + F. . 

Онисанная техника является основной B морфологическом анализе изображе- 

ний [24, 25] и геометрии случайных полей [28-31]. Функционалы W; можно вы- 

числить, например, в Image Processing Toolbox пакета MatLab. Оператор дилатации 

[24, 25, 32], который используется для получения параллельного тела, позволяет вы- 

числить для изображения еще один полезный скаляр. Он связан со скейлинговыми 

свойствами паттерна и называется размерностью Минковского — Булигана [33]. 

Рассмотрим кривую Г на плоскости и Vz € Г, определим открытый диск ра- 

диусом € с центром B точке z: В, (z) = {ylllz — у|| < Е}. Тогда е-покрытием или 
шарфом Минковского называется множество точек I' () = {y|ly € B:(z), з €T} 
Пусть н (Г` (Е)) - Лебегова мера е-покрытия. Тогда размерность Минковского — Бу- 
лигана определяется как скорость изменения и (Г` (€)) при изменении радиуса € 

°То есть областей, на которых изображение имеет «тональность» окраски I (т, у) = Л.



dy = lim {2 — Ююви (T (е)) 105 s} (10) 
Е—+0 

и является одной из множества фрактальных размерностей [33, 34]. Для компактов 
дилатация получается лишь за счет граничных точек, вдоль которых «прокатываЮют- 

ся» диски. Нри работе с цифровыми изображениями возникает проблема выбора 

дискретно-непрерывной последовательности [32] радиусов на ортогональной ре- 

шетке Zo. Введенная в [35] концепция точной дилатации, основанная на точном 

решении уравнения эйконала из геометрической оптики, позволяет избежать пробле- 

мы искажения расстояний и определить подходящее множество радиусов. При этом 

граница области дилатации растет с постоянной скоростью вдоль нормали к границе 

множества. 

Морфологический анализ позволяет описать геометрию паттерна. Однако од- 

ной и той же геометрии могут соответствовать совершенно различные топологии. 

Так, два фрактала могут иметь одинаковую бокс-размерность [33, 34], но отличаться 

«пористостью», то есть числом «дыр». Методы вычислительной топологии [36-38] 

дополняют морфологический авализ в том смысле, что позволяют описывать «фор- 

му» изображения и его области, B которых мера OTCYTCTBYET. 

Вычиелительная топология 

Наиболее простой способ изучения топологии изображения заключается в 

простом приеме: оценке изменения связности паттерна, то есть числа его отдельных 

компонент при изменении разрешения. Для этого необходимо формализовать поня- 

тие разделимости фрагментов. Топологическое пространствоб Х называют связным, 

если оно HE может быть разложено на объединение двух непустых, несвязных и за- 

мкнутых множеств [39]. Если Х несвязно, TO существуют два замкнутых множества 

О и У таких, что UNV = Ои U UV = Х. Это понвятие было адаптировано Ро- 

бинс [40, 41] для использования в компьютерном эксперименте, где всегда приходит- 

ся иметь дело ¢ конечным разрешением e. Основная идея, восходящая к Кантору', 

заключается в определении некоторых свойств паттерна, меняющихся при £ — 0. 

Подмножество Х метрического пространства с метрикой @ называется 

Е-несвязным, когда оно может быть разложено на два множества, которые разделе- 

ны расстоянием, по меньшей мере, равным £. Формально существуют два замкнутых 

подмножества U и V такие, что Г ОУ = Хи 

dU, V)= шЁ d(z,y)>c. 11 (UV)=_of  d(zy) (11) 

В противном случае X является е-связным. При заданном разрешении £, Х имеет 

обычное разбиение B виде несвязного объединения его е-компонент. Основной во- 

прос заключается в TOM, какую информацию о связности множества Х несет измене- 

ние несвязности разбиения при € —› 0. Пусть С (е) - число е-компонент множества. 

бГРУбО говоря, топологическим пространством называют множество ОбЪеК'ГОВ‚ снабженное поняти- 

€M окрестности или близости. 

"По Кантору, Х связно, если любые его две точки могут быть связаны с помощью е-цепи, то есть 
последовательности точек L0, . . . , Tp, таких что d (2, Tiq1) < Е для % = 1,..., П.



Определим величину, которую называют индексом несвязности [40], как 

(12) 

Для самоподобного фрактала у совпадает с ero бокс-размерностью. В [40, 41] ис- 

пользуется подсчет компонент связности, основанный на так называемом минималь- 

ном натянутом дереве —- МОД. Этот граф не содержит циклов и соединяет конечное 

множество точек так, что суммарная длина всех его ребер минимальна [42, 43]. Если 

упорядочить длины ветвей МОД по возрастанию, то удаление ветвей с фиксирован- 

ным значением £ разбивает точки на е-несвязные компоненты (кластеры). 

Дальнейшую информацию о топологии паттернов можно получить методами 

алгебраической топологии [36-38, 43-46]. В наиболее общей постановке, пусть Х — 

топологическое или метрическое пространство скрытых параметров, RD — про- 

странство наблюдателя и } : Х — ВР — вложение. Пусть, например, U C Х - 

конечное множество точек окружности Х, выбранных случайно, и У = / (U) C R? 

— его образ, наблюдаемый на дисплее компьютера. Какие свойства Х наследуются B 

его конечно-точечном приближении Y ? Как следует соединить точки У, чтобы по- 

лученная структура сохраняла форму Х или, точнее, его гомологии [44, 45]? Однако 

эта тема превышает возможности одной статьи. Вместо этого полезно показать, как 

работают уже описанные выше методы на примере реальной физической системы. 

Морфология и топология глобального магнитного поля Солнца 

Наиболее известным проявлением детерминизма в солнечной активности явля- 

ется циклическое изменение числа солнечных пятен с периодом около 11 лет, уста- 

новленное в 1843 году астрономом-любителем Генрихом фон Швабе, с 1848 года 

регистрируемое так называемыми числами Вольфа [47). Кроме 11-летней циклично- 

сти (закон' Швабе — Вольфа) наблюдается пространственное изменение количества 

пятен в течение каждого цикла по гелиоширотам, описываемое законом Шпёрера. 

Следующей важной характеристикой солнечной активности является закон Хэйла, 

который в 1908 г. установил, что солнечные пятна обладают сильными магнитными 

полями®. Пятна обычно образуют биполярные группы, в которых ведущие, по Bpa- 

щению Солнца, р-пятна B северном полушарии имеют полярность северного полюса 

Солнца до его переполюсовки? B период максимума 11-летнего цикла, а ведомые. f- 

пятна имеют полярность южного полюса. В южном полушарии порядок полярности 

р- и ]-пятен — обратный. Эта ситуация сохраняется в течение 11 лет и меняется на 

обратную B следующем цикле, так что через каждые 22 года порядок полярности 

повторяется. 

Крупномасштабные структуры (¢ пространственным разрешением более 5°) 

принято называть глобальным или фоновым магнитным полем Солнца. Динамика 

для этих масштабов проявляется в распределении униполярных областей, которые 

эволюционируют B течение приблизительно 11 лет [49]. Нейтральные магнитные ли- 

нии, разделяющие эти области, изображают в форме так называемых Н синоптиче- 

8Общий магнитный поток B пятнах достигает 10?? максвелл. 

®Инверсии знака глобального магнитного поля [48].
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Рис. 2. Синоптическая Н, магнитная карта Солнца для СК1504. М-полярность показана серым 

ских карт, которые показывают топографию распределения знака фонового магнит- 

ного поля, усредненного на масштабе одного кэррингтоновского оборота!°, в цилин- 
дрической проекции (рис. 2). Последовательность таких карт покрывает интервал 

времени 1915-2002 тт. {50]. Магнитограммы, содержащие топографию радиальной 

компоненты магнитного поля, существуют!! с 1976 г. Синоптические карты отобра- 
жают реальные структуры, по менышей Mepe, гомеоморфно, так что топологические 
свойства сохраняются. Именно поэтому они интересны для приложения описанных 
выше методов [43, 51-53]. дов [43, 3] Для оценок морфологических Xa- 

20 ~ Рактеристик использовались два типа 

i карт. Для магнитограмм функционалы 

Wi, ® = 0, 1, 2 оценивались для сечения, 

?1 o  KOTOPOE соответствовало линии раздела 

1001 | . V| оо  ПОЛЯРНОСТИ. Любая пара смежных карт 

°° 1920 1940 1960 1980 2000 не согласована по геометрии нейтраль- 

годы ной линии: напомним, что карты отоб- 

Рис. 3. Сравнение поведения сглаженных значений ражают долгоживущие структуры, усред- 

Эйлеровой характеристики % с числами Вольфа \ — ненные во временном окне одного СК. 

для CR 815 (1972) Поэтому полученные временные ряды 
функционалов сглаживались. На рис. 3 в качестве примера приведен график ха- 
рактеристики Эйлера Y, вычисленной для объединенной выборки магнитограмм и 

Н-карт (циклы № 15-23) [53], после сглаживания фильтром Уиттекера??, вместе со 

значениями чисел Вольфа. 
Вложение этих двух временных рядов в В показано на рис. 4. Фазовые порт- 

реты по пятнам и глобальному полю существенно различаются. Для реконструкции 
по х оценки корреляционной размерности у и К — энтропии с использованием Гаус- 
совского ядра [54] дали v = 2.309 + 0.023, К = 0.06 bit/CR. Известные оценки V для 

реконструкций по числам Вольфа варьируются B пределах v = 2.1 ... 3.5 [55, 56]. 

Размерность Минковского — Булигана йм, вычисленная для трех соднечных циклов 

и ноказанная на рис. 5, меняется в диапазоне [1.17...1.37]. 

*°Один кэррингтоновский оборот - 1CR ^& 27 дней. 

1Wilcox Solar Observatory Synoptic Charts: http:/quake.stanford.edu/~wso/synoptic.htm! 

123701 фильтр сохраняет статистические моменты A0 второго порядка. 
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Рис. 5. Сравнение поведения ежемесячных зна- 

Рис. 4. Вложения в R3 временного ряда чисел чений вспышечного индекса @ и размерности 

Вольфа (слева) и % (справа) Минковского йм 

Нижний график на рис. 5 показывает изменение так называемого вспышечного 

индекса (), который был введен чещским астрономом Я. Клечеком в 1957 г. Этот ин- 

декс приближенно характеризует общую энергию, излучаемую вспышками по всему 
спектру наблюдаемого электромагнитного излучения (от радиоволн до рентгенов- 

ских и гамма лучей) за день!8. Максимальная корреляция между двумя кривыми 
наблюдается при сдвиге йм вперед приблизительно на 12СЕ. Таким образом, изме- 

нению вснышечной активности предшествует перестройка геометрии нейтральной 
линии [57]. 

Размерность ам не единственная фрактальная характеристика, которую можно 
получить из синоптических карт. Оказывается, все морфологические функционалы 

демонстрируют мультифрактальный скейлинг. Мультифрактальные свойства мелко- 

зернистого магнитного поля Солнца были обнаружены впервые по магнитограммам 

малых областей, полученным с высоким разрешением [58]. Оказалось, что сингу- 

лярная мера присутствует и для крупномасштабного поля. 

Будем рассматривать график функции как некоторую меру. Ee можно опреде- 

лить либо как нормированную сумму ординат в некотором интервале или боксе С 
размером &, либо как вариацию графика в этом боксе. Пусть С = {Cs} — множество 

всех таких боксов. Определим крупнозернистый гельдеровский показатель меры B 

боксе выражением [59] 

(13) 

Пусть №; (а &) = # {Cs : а (Съ) Е (а — Е, а + ) }, где (#) — число непустых боксов, 
содержащих меру с показателем @ + £. Тогда крупнозернистый мультифрактальный 

спектр больших отклонений определяется выражением [5$] 

1 

Л, (@) = lim lim sup log № (0. €) 
=0 80 log (1/6) a4 

На рис. 6 приведен пример такого спектра для Х. Асимметричная форма спектра на 
рисунке, возможно, связана с сосуществованием двух различных мер!*. 

13Ha графике приведены ежемесячные значения © из базы данных 
http://www.koeri.boun.edu.tr/astronomy/ 

4 Jlexanmposcxuit мультифрактальный спектр [33] не позволяет выявить такие детали — он всегда 
является выпуклой кривой. 
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Рис. 6. Спектр болыших отклонений для вре- 

У(+) = 1.8 и у(-) = 2.0 полей разной поляр- 
менного ряда Х, ности для кортежа с переполюсовкой: CR1540 

— CR1549 

Индекс несвязности (12) вычислялся отдельно для областей северной y(4) И 

южной \(_) полярностей по кортежам, образованным «склейкой» десяти Н-карт, 

как наклон зависимости числа несвязных областей С от € по графику, построенному 

в двойном логарифмическом масштабе. Оказалось, что для кортежей, содержащих 

переполюсовки глобального поля, существует хорошо выраженный скейлинговый 

участок, общий для обеих полярностей (рис. 7). Наклон прямолинейного участка 

меняется в диапазоне от \(+.) = 1.8 + 0.1 до у(-) = 2.0 + 0.1. Для наборов Н„-карт, 

не содержащих инверсий глобального поля, прямолинейный участок отсутствует во- 

обще, а кривые lgC от Ige расходятся для областей разной полярности. Таким 

образом, переполюсовки сопровождаются «стиранием» выделенных масштабов для 

магнитных структур Солнца. Аналогичные эффекты возникают обычно вблизи то- 
чек фазовых переходов физических систем и интерпретируются в рамках теории 

самоорганизующейся критичности [18]. Подтверждение этого результата по магни- 

тограммам имело бы большое значение для физики инверсий магнитного нполя Солн- 

ца. Дальнейшие результаты, основанные на вычислении гомологий синоптических 

карт, можно найти в [60]. 

Приведенные примеры показывают, что «арифметизация» изображений может 

быть весьма полезна при интеллектуальном анализе матричных данных. 
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TIME SERIES FROM GEOMETRY AND TOPOLOGY 

OF SPATIO-TEMPORAL CHAOS 

N.G. Makarenko 

The transformation of geometry and topology of 2D patterns into scalar time se- 

ries with the help of the mathematical morphology and computational topology methods 

are considered.The approaches are illustrated by the example оё the solar magnetic field 
investigation. 
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