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ВЛИЯНИЕ ТЕПЛОВОГО РАЗБРОСА ЭЛЕКТРОНОВ MO СКОРОСТЯМ 
НА ВЗАИМОДЕЙСТВИЕ ПРЯМОЛИНЕЙНОГО ЭЛЕКТРОННОГО 

ПОТОКА ©С ОБРАТНОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНОЙ 

Н.О. Бессуднова, А.Г. Рожнёв, Д.И. Грубецков 

Построена одномерная линейная теория взаимодействия прямоливейного 
электронного потока и обратной электромагнитной волны с учетом распределения 
электронов по скоростям. Предложен подход, позволяющий корректно учесть 
конечную длину области взаимодействия. Для случая больших значений простран- 
ственного заряда и теплового разброса представлены результаты двухволнового 
приближения. Проанализирован пусковой режим низковольтной -JIOB. Расчеты 
проведены — для — прямоугольной,  лоренцевской — и — максвелловской — функций 
распределения. 

Введение 

В последние несколько лёт появилась и быстро развивается новая область 
электроники — вакуумная микроэлектроника [1,2]. Одним из направлений этого 
развития является создание миниатюрных низковольтных вакуумных ©СВЧ- 
приборов, в частности, ламп бегущей и обратной волны (ЛБВ и ЛОВ). 
Преимущества подобных устройств перед твердотельными аналогами, особенно в 
миллиметровом и субмиллиметровом диапазонах длин волн, состоят в более 
высоких мощностях, устойчивости K тепловым и радиационным воздействиям, 
малом дрейфе параметров. Однако переход к более низким рабочим напряжениям 
приводит при разработке приборов к необходимости учета пелого ряда факторов, 
которые прежде играли второстепенную роль. В первую очередь это относится к 
разбросу электронов по скоростям. 

Известно, что уменьшение размера электродинамической системы B & раз, 
где & — масштабный фактор, приводит K уменышению напряжения в k2 раз. Тогда 
TOK пучка должен быть увеличен B k2 раз для поддержания мощности. Это приводит 
к существенному увеличению влияния разброса электронов по скоростям и 
пространственного заряда в электронном потоке на процессы взаимодействия с 
электромагвитным полем. В связи с этим представляет определенный интерес 
построение теории миниатюрных ламп бегущей волны (JIBB) и обратной волны 
(JIOB), учитывающей распределение электронов по скоростям. Несмотря на то, 
что  разработан - ряд  программ — численного — моделирования — нелинейных 
нестационарных процессов в этих приборах, строгой линейной теории для случая 
произвольной функции распределения по скоростям в электронном потоке до CHX 
пор не существует. В данной работе предложен варианвт такой теория для ЛОВ. 
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Впервые — влияние — теплового fo@) 
разброса электронов по скоростям на 1 
пусковой режим работы ЛОВ было 
оценено Г. Джонсоном — [3]. Он : : 
предложил — приближенно — считать | 
функцию распределения по скоростям в ! 
электронном — потоке — прямоугольной —а 
(рис. 1), при этом  оказалось, что 2 
разброс по скоростям может быть учтен | | 
введением — эффективного — (увеличен— 
HOTO) параметра — пространственного 
заряда 

Рис. 1 Модель Г. Джонсона. ] ~ прямоугольная 
у функция распределения, 2 — произвольная сим- 

9 = 9 + (1/С ) [Av/ (200) ] (1) метричная функция распределения 

где Av — ширина функции распределения; о) — средняя скорость электронного 
потока; С — параметр усиления Пирса, явное выражение для которого будет 
приведено ниже. 

В настоящей работе дано строгое подтверждение эвристических представ- 
лений Г. Джонсона и их обобщение на случай произвольной симметричной 
функции распределения. Границы применимости подхода Джонсона, как будет 
показано ниже, определяются условием 0/0)<<С<<1, где v, — дисперсия функции 
распределения. В работе также предложена более общая теория, позволяющая 
корректно учёсть ограниченность области взаимодействия B пространстве (см. [4]) 
и справедливая при выполнении более общего условия 0/0)-С<<1. 

1. Основные уравнения линейной теории. 
Приближение малого теплового разброса 

Для простоты ограничимся случаем широкого электронного потока, 
фокусируемого бесконечно большим магнитным полем и взаимодействующего с 
замедленной волной в линии передачи. Распределение амплитуды высоко-— 
частотного ноля по сечению пучка считаем -однородным, редукцией поля 
пространственного заряда пренебрегаем (см. [5]). В предположении, что все 
переменные зависят от времени по гармоническому закону вида ехр(/0х), запишем 
систему одномерных линеаризованных уравнений, состоящую M3 кинетического 
уравнения Власова, уравнения возбуждения линии передачи и выражений для поля 
пространственного заряда и плотности сгруппированного тока в следующем виде: 

ой, + vofi/ox + (e/m)(E,+E)dfy/dv = 0, (2) 

л = el fido, 3) 

Eq = —jl/(imefl)v (4) 

дЕ/дх + jBoE = BKSi/2. (5) 

В соотношениях (2)—(5) fo(v) — невозмущенная полем стационарная простран-— 
ственно однородная функция распределения электронов; /(0,х) — ее возмущение 
под действием поля; Е, — переменная составляющая поля пространственного 
заряда и Е — поле линии передачи; j; — первая гармоника плотности сгруппиро- 

ванного тока; Py — постоянная распространения волны в линии передачи без пучка; 

@ — частота; К — сопротивление связи; S — площадь поперечного сечения элект— 
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POHHOI'O потока; Е; — диэлектрическая постоянная вакуума; е/т — УДСЛЬНЬЕЙ заряд 

электрона. 
Для полной постановки задачи уравнения (2)—(5) должны быть дополнены 

граничными уУсловиями. Р&ССМОТРИМ сначала дисперсионное уравнение. соответ- 

ствующее системе уравнений (2)—(5). Следуя [7], запишем выражение для 
переменной составляющей плотности тока 

Jiel(e=1) = /ож)Ё, (6) 

B которое входит пронольная составляющая ДИЭЛСКТРИЧССХОЙ проницаемости 

ЭЛЭКТРОННОЙ плазмы 

e(@) = 1 — w2 |__3fy/ov ао!(о-о ), (7) 

где В — неизвестная постоянная распространения; w,=[e2ny/(mey)]12 — плазменная 
частота, My — постоянная плотность электронов в пучке. Из условия совместности 
(5), (6) получается дисперсионное уравнение задачи 

—(В - Bp)e/(e-1) = ИзоВо2воК5, (8} 

Для рассматриваемой задачи добавка в диэлектрическую проницаемость, 
связанная с затуханием Ландау, мала, поэтому в формуле (7) интеграл 
рассматривается в смысле главного значения. : 

Невозмущенную — компоненту — функции — распределения  fy{v)  удобно 
представить в виде 

N
t
 

fo(2) = for((v—v) o) (novy), © 

где Uy — средняя скорость электронного потока, 

02, = 1/nof_:(v—0@)%('v)dv (10) 

— дисперсия функции распределения; величина U, определяет ширину функции 

распределения, а ¥y — положение её максимума на оси скорости. Безразмерная 
функция /'(и) при этом имеет характерную ширину порядка единицы. Полагая, 

что о<<10/В-0)!, разложим интеграл в формуле (7) B асимптотический ряд 0 

1 } „ д/*(и)!ди аи/и-(оВ-оо)/о] = (/B — 05)=2 + 302 (/B — о)- (11) 

Здесь интеграл рассматривается в смысле главного значения. 

Введем стандартные для теории ЛБВ и ЛОВ безразмерные параметры b, § и 

С с помощью соотношений f=B,(1+/8C), b=(By—P.)/(CB.), B.=w/vy, C3=I,K/(4V), где 

Го и Му — постоянные ток и напряжение пучка. Считая бС<<1, с учетом (11) 

представим дисперсионное уравнение задачи в виде 

(b - /5)[82 + д + Зо/(0)2С2)] = (1 + bC)2, - (12) 

где 4=0)/(0,С)? — параметр пространственного заряда. Уравнение (12) имеет вид 
обычного дисперсионного уравнения для ЛОВ за исключением того, что B 
квадратных  скобках появляется дополнительное  слагаемое,  определяемое 
величиной теплового разброса. В духе идеи Джонсона его можно интерпре— 
тировать как увеличение пространственного заряда за счет конечной ширины 
Ффункции распределения электронов по скоростям. Таким образом, распределение 
электронов по скоростям в электронном потоке может быть учтено введением 
эффективного параметра пространственноо заряда 
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49ф = 4 + 302 (02 C2). (13) 

В частности, для прямоугольной функции распределения из уравнения (13) 
получается формула Г. Джонсона (1). 

В таком приближении в системе электронный поток — волна в линии 
передачи существуют три парциальных волны, как и в случае моноскоростного 
электронного лотока. Пусковые режимы ЛОВ могут быть рассчитаны по 
формулам обычной линейной теории, если увеличить параметр пространственного 
заряда в соответствии с уравнением (13). 

Использованные при выводе уравнения (12) условия v<<lw/p—vyl и С<<1, 
выраженные в безразмерных параметрах, принимают вид 

о/0 << С << 1, (14) 

Эти соотношения определяют область применимости подхода  Джонсона, 
обобщенного на случай произвольной симметричной функции распределения. 

2. Случай преизвольного теплового разброса 

Как показывают простые оценки, в низковольтных ЛОВ с рабочим 
напряжением порядка десяти вольт условие 0/00<<С нарушается, так что простой 
подход, изложенный в предыдущем разделе, оказывается недостаточным. В этом 
разделе будет предложено более общее решение задачи, которое, к тому же, 
корректно учитывает конечную длину области взаимодействия. 

Дополним  уравнения (2)—(5) граничными условиями на — функцию 
распределения и ВЧ-поле на концах области взаимодействия 

fl|X=U = O, Е'.Р:! = O, (15) 

где / — длина лампы. 

Введем следующие безразмерные переменные: координату &, ВЧ-поле F и 
сгруппированный ВЧ-ток / с помощью соотношений 

6 =B.CxIL, F(&) = E(x)exp(jBx)/(2C2VB.), К5) = ii(x)exp(jBx)/Lp, 

где L=2nCN — безразмерная длина области взаимодействия, N=BJ/(2rx) — 

электрическая длина лампы. В новых переменных система уравнений (2)—(5) с 
граничными условиями (15) может быть приведена к системе двух связанных 
интегральных уравнений для функций F(E) и /(5) 

т 2 g b '[ — 18) = ИРЬЕСО + jal(QIK(E-0)C, (16) 
1 

F(g) = ~(1+bCL 1(L)expl(—/bL(E-L)]4E, 
где 

K(E) = &]__fir(wexpljod (0eC)Lul(L+un,/vo)EY (1+uv/ve)2du a7 

— ядро интегрального уравнения, 
В частности, если электронный поток моноскоростной, то К(Е)=5 и из (16) 

получаются известные результаты [6]. Для прямоугольной функции распреде— 

ления, определяемой формулами [y 0)=ny/(2-312,), если 12-001<3120, и fo(0)=0 для 
остальных значений 0, интеграл в соотношении (17) берется элементарно и равен 

К(5) = МЕ(1-42)] exp{—jeLa/[C(1-AD [isin{eLA[CA-MIB/MCA-a)]}. (18) 

где A=312p/v,. B случае лоренцевской функции распределения 
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fo(©) = ny/[mo[1+(v-0p)2/ 02} 
ядро (17) вычисляется методом контурных интегралов через вычеты. При этом 
контур ивтегрирования выбирается согласно предписанию Ландау [7] о бесконечно 
медленном включении поля в момент времени /=—е°. В итоге получаем 

K() = Eexpl—0,/(0,C)LE/ (14j0,/ o) V(L + jo o). (19) 
Для максвелловской функции распределения 

Jo(0) = ng/[(2m) 20 |exp[~(v-20)%/ (2 v2)] 
выражение (17) представимо B виде 

К(Е) = 1/(2m)12e]__exp(—uz/2)expljo (vaC)Lul/(1+uv /o) [/(1+uviv)de. — (20) 

Система интегральных уравнений (16) решалась методом коллокаций [8]. Алгеб-- 
раизация задачи проводилась следующим образом. Расчетная область О<6<1 
равномерно разбивалась на конечное число элеменвтарных отрезков с кусочно-- 
линейной аппроксимацией функций F(E) и /($) на них. Эти аппроксимации 
подставлялись в уравнения (16) и налагалось требование, чтобы уравнения точно 
выполнялись на концах отрезков (B точках коллокации). В результате получалась 
система линейных однородных уравнений относительно значений функций тока и 
поля в точках коллокации. Условие совместности этой системы приводит к двум 
трансцендентным уравнениям с неизвестными b и L и параметром С, решение 
которых может быть найдено численно. 

3. Двухволновое приближение 

При болыших значениях пространственного заряда продцессы в ЛОВ могут 
быть описаны в рамках двухволновой модели, то есть с учетом взаимодействия 
только медленной волны пространственного заряда в электронном потоке и 
обратной волны в линии передачи. В этом разделе будут получены уравнения 
двухволнового приближения, применимые для произвольного распределения 
электронов по скоростям в электровном потоке. Для этой цели перейдем в 
пространство изображений, применяя к системе (16) преобразование Ланласа, 
тогда 

о)+ 912 K(p)) = j L2 КО)Р(р), 
F(p)(p+i b) = (1+b CRI(p), 

(21) 

где 

к) = ГОАа нио/оо)г(р — jod(0,C)Lul (L+uv/o)2)du 

— образ ядра К(5). 
Рассмотрим выражение, стоящее в левой части выражения (21) для тока 

1 + gL2K(p) = | fy()/(1+uvdvp)? х 

м Ip(1+uzvg)—jLuv/(eoC)+iLg 2] [p(1+uv/ve)—iLuv/ (vsC)—iLq!?] йи 

[p—jol(0,C)Lul(1+uv/vy))2 

Оставляя множитель, соответствующий медленной волне B (22), и применяя 

(22) 
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обратное преобразование Лапласа‚ ПОЛУЧ&СМ систему интегральных уравнении 
описывающую ВЗ&ИМОДСИСТВИС МСДЛСННОИ волны B электронном потоке и обратнои 

электромаг НИТНОЙ ВОЛНЫ В ЛИНИИ передачи 

5 3 

Jf(©D(E-0)dg = ~LI2q )]y [F(L) + 2jgI(Q)]R(E-0)dL, 
(23) 

F(E) =-(! + bOY L [)exp[~bLE-DL, 
где w 

Р© = | fyr (Wexpliod (eC)Lut) (1+uvo) /(A +uv оан (24) 
— ядро интегрального уравнения. ‚ 

Уравнение для TOKa B некоторых частных случаях может быть упрощено. 

Например, для моноскоростного электронного потока D(&)=1, K(£)=£ и выражение 
для тока переходит в хорошо известное 

4 

КО = -МОаР)МЕСО + 2Оа (25) 

В случае лоренцевской функции распределения электронов по скоростям 0(5)= 

=(1+jv/oy)K(E)E=exp[—v/ (v C)LE/ (1 +jv/vy) |/(1+70/0)), и первое из уравнений (23) 
‘принимает следующий вид; 

3 
(&) = ~LIQq\2(1+jolve)) РСО + (2g+2q 20/ (v,C)(E)]dE. (26) 

4. Обсуждение результатов 

Вычисления пусковых значений длины ЛОВ и параметра рассинхронизма 
проводились для прямоугольной, лоренцевской и максвелловской функций 
распределения методом дисперсионного уравнения M. методом коллокаций. В 
дальнейших расчетах использовалось до 160 точек коллокации. Параметр Пирса 
фиксировался и во всех вычислениях выбирался равным типичному значению 0.05. 

чае прямоугольной функции распределения возможно решение уравнений 
(7) ]?1) с граничными условиями (15) методом дисперсионного уравнения [6]. На 
рис. представлены зависимости СМ,(4) и by(g) при различных значениях 

bg 
2.9 - 

2.5 - 

0.0 1.0 2.0 30 q 0.0 1.0 2.0 30 4. 

Рис. 2. Пусковые значения СМц и by для прямоугольной функции распределения; С=0.05. Для 

кривых /-5 значения параметра ©/(00С)=0, 0.6, 0.8, 1, 1.2, соответственно, Сплошные линии 
соответствуют точному решению, пунктирные = результагам, раССЧИТЭ‚ННЬ1М no формуле ДЖОН— 

сона; треугольники — двухволновому приближению 
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параметра о/(0,С), полученные таким слособом (сплошные линии). Отметим, что 
они полностью совпадают с результатами решения системы интегральных 
уравнений (16) методом коллокаций. Расчеты, проведенные C помощью 
приближенной формулы Джонсона (13), отмечены пунктирными линиями. Из 
графиков видно, что Фформула Джонсона является  достаточно — хорошей 
аппроксимацией точного решения для прямоугольной функции распределения, 
хотя в результатах расчета пусковых значений частоты есть различия. Границы 
применимости двухволнового приближения определяются снизу достаточно 
большими значениями параметров 0/ (vyC) и 4. 

Расчеты пусковых режимов ЛОВ для лоренцевской функции распределения 
представлены на рис. 3. Необходимо отметить, что функция Лоренца не является 
аппроксимацией реальной функции распределения по скоростям в электронном 
потоке, но, с одной стороны, OHa является гладкой функцией в отличие от 
прямоугольного распределения, а с другой стороны, HO  сравнению © 
максвелловским распределением €€ использование дает возможность получить ряд 
результатов в аналитическом виде, что позволяет отработать технику решения. 
Таким образом, расчеты с применением лоренцевской фувкции распределения 
электронов по скоростям в электронном потоке следует рассматривать в качестве 
тестовых. Здесь, также как и в случае прямоугольной функции распределения, 
обнаруживается полное совпадение результатов  решений задачи — методом 
дисперсионного уравнения и методом коллокаций. Строгое решение задачи, как и 
ранее, обозначено сплошными линиями. Ho, поскольку распределение Лоренца 
обладает бесконечной дисперсией, то величину U, следует рассматривать как 
некоторый параметр, задающий ширину функции распределения, который, однако, 
He связан с ee Ддисперсией. Результаты решения задачи в  двухволновом 
приближении представлены на рисунке треугольниками. Обратим внимание, что 
для такой функции распределения при заданном значении параметра U, существуют 
предельные величины пространственного заряда, при превышении которых 
колебания в системе невозможно возбудить вообщёе. Это связано с тем 
обстоятельством, что функция распределения имеет очень широкие ‘‘хвосты”’, так 
что при любом значении параметра пространственного заряда в пучке существует 
группа электронов с такими скоростями, что быстрая волна пространственного 
заряда, связанная с этой группой электронов, будет находиться в синхронизме с 

обратной электромагнитной волной, препятствуя возникновению генерации. 
Указанное обстоятельство еще раз говорит о TOM, что использование 

Функции распределения Лоренца для моделирования процессов теплового разброса 
по скоростям при взаимодействии прямолинейного электронного потока с 
электромагнитной волной является неправомерным. 
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Puc. 3. Пусковые значения CNy и by для лоренцевской функции распределения; C=0.05. Пля 

кривых 1-7 значения параметра v /{vgC)=0, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, соответственно, Сплошными 

линиями показано точное решение; треугольниками — двухволновое приближение



На рис. 4 аналогичные зависимости представлены для максвелловской 
функции распределения. В этом случае аналитическое выражение для ядра K(E) 
отсутствует, а его численный расчет приводит K значительному увеличению затрат 
машинного времени. Но можно получить хорошее аналитическое приближение 
для ядра, если учесть, что выполнение условий 0/(00С)-1 и С<<1 эквивалентно 
неравенству 0/0<<1. 

Раскладывая в формуле (20) для K(E) дроби вида /(1+но/0)) в ряд по uv,/o, И 
ограничиваясь величинами первого порядка малости, получаем приближенное 
выражение для ядра 

K(&)=Cexp{~[L&v/ (v,C) A [2+4jv /0oL (0oC) )/ [1+ 270 vl &l (ооС)]32. (27) 

Сплошными линиями на рис. 4 показаны зависимости, полученные решением 
интегральных уравнений (16) с использованием точного выражения (20). Расчеты 
с использованием приближенного выражения для ядра (27) показаны на рис. 4 
‚ромбами. Видно, что приближенное выражение можно использовать вплоть до 
значений 0,/(0yC)=1, что соответствует достаточно большому тепловому разбросу. 
Зависимости, рассчитанные с помощью обобщенной формулы Джонсона (13), 
обозначены . пунктирной линией. Как и следовало ожидать, применение 
приближенной формулы (13) ограничивается очень  малыми — значениями 
параметров 0/0)<<С и д. Таким образом, для расчета пусковых условий 
низковольтных ЛОВ следует пользоваться результатами решения интегральных 
уравнений (16). 

Заметим, что при фиксированном значении параметра теплового разброса 
электронов по скоростям с увеличением поля пространственного заряда B 
электронном потоке характер поведения зависимостей СМ.(4) на рис. 2 и 4 
изменяется. На каждой кривой можно выделить два участка. На первом из них, 
соответствующем неболышим значениям параметра ¢, в процессе генерации 
сигнала существенно взаимодействие трех волн: волны в линии передачи и двух 
волн пространственного заряда в электронном потоке. На этом участке 
наблюдается монотонное нарастание CN с увеличением параметра g. Второй 

участок соответствует достаточно болышим значениям параметра простран- 
ственного заряда, когда можно ограничиться рассмотрением взаимодействия 
только медленной волны пространственного заряда с обратной электромагнитной 
волной, то есть двухволновым приближением. В этой области значение пусковой 
длины меняется с увеличением параметра 4 существенно медленнее — по закону 
СМ№-д\4 [5]. Такое различие в поведении зависимостей пусковой длины OT 
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Рис. 4. Пусковые значения СМ и by для максвелловской функции распределения; С=0.05. Для 

кривых 1-5 значения параметра ©/(00С)=0, 0.6, 0.8, 1.0, 1.2, соответственно. Сплощными 
линиями обозначено точное решение: ромбами — результаты, полученные с  помощью 
приближенного выражения для ядра; пунктиром — расчеты по обобщенной формуле Джонсона 
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параметра д объясняется различным количеством взаимодействующих в системе 
волн. С увеличением параметра теплового разброса область, где существенно 
влияние только двух волн, увеличивается; соответственно уменышается участок, 
где следует рассматривать трехволновую задачу. 

Авторы выражают благодарность С. П. Кузненову и Н. M. Рыскину за 
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INFLUENCE ОЕ THERMAL VELOCITY DISTRIBUTION ОМ ELECTRON 

BEAM - BACKWARD ELECTROMAGNETIC WAVE INTERACTION 

М. О. Bessudnova, А. С. Rozhnev апа D. Г. Trubetskov 

One—dimensional linear theory of interaction between electron beam and backward 
electromagnetic wave in transmission line is presented taking into account arbitrary ve— 
locity distribution of electrons and allowing correct consideration of finite length of in— 
teraction region. Influence оё electron velocity spread оп start oscillation regime оЁ low~— 
voltage backward—wave oscillator is analysed. Calculations are carried out for rec— 
tangular, Lorentz and Maxwell distributions. 
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