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ОТОБРАЖЕНИЕ «КОТ АРНОЛЬДА»: КВАНТОВЫЙ ХАОСИ 

ДИНАМИКА ОПЕРАТОРОВ В ПРЕДСТАВЛЕНИИ ГЕЙЗЕНБЕРГА 
i 

C.I1. Kyaneyoe 

Рассматривается модельная квантовая система с дискретным временем, 

классическим аналогом которой является отображение с хаотической динамикой, 

известное как «кот Арнольда». В силу наложенных на фазовое пространство условий 
периодичности, состояние квантовой системы представляется векторами конечной 

`размерности N, а операторы — матрицами №хМ. Целочисленный параметр N 
характеризует относительную величину квантовых эффектов; классическому пределу 
отвечает N—ee. Предложено отображение, описывающее эволюцию во времени 

операторов конечного сдвига 10 координате и импульсу B представлении Гейзенберга, 
и установлен явный вид соответствующего оператора эВоЛюЮЦИии в представлении 
Шредингера. ПРИВОДЯ’ГСЯ и ОбСУЖДаЮ’ГСЯ рбЗУЛЬТЗ‚ТЬ1 РСШСНИЯ НСС’ГаЦИОН&РНОй задачи с 

начальными условиями в виде локализованного состояния, двух дельта-ликов, гауссова 

волнового пакета. Обсуждается представление квантовой динамики в фазовом 

пространстве в терминах распределения Хусими и функции Виснера, а также спектр 

квазиэнергий и структура собственных векторов в свете динамики гейзенберговских 
операторов. 

Введение 

Известно, ‚ что классические нелинейные системы могут демонстрировать 
динамический хаос. С другой стороны, описание динамики на фундаментальном 
уровне подразумевает использование HE классической, а квантовой механики. 
Поэтому возникает принципиальный вопрос — какими особенностями будет 
характеризоваться динамика квантовых систем, классические аналоги которых 
обладают — хаотическим — поведением? Вопрос этот  оказался  тонким и 
нетривиальным, а для обозначения соответствующей области исследований 
привился термин «квантовый хаос» [1-6]. 

Как и в большинстве работ по квантовому хаосу, будем исходить из того, что 
имеется некоторая изолированная от остального мира квантовая система. Ве 
динвамика в представлении 1Предингера описывается как детерминированная, 
эволюция во времени волновой функции (вектора состояния), а в представлении 
Гейзенберга — как изменение BO времени операторов, которые в квантовой теории 
занимают место классических динамических переменных [7-10]. Предполагая 
отсутствие взаимодействия системы с макроскопическим окружением, мы тем 
самым исключаем из рассмотрения диссипацию, а также весь круг вопросов, 
касающихся теории измерений («редукция волновой функции»}). При этом,



естественно, в поле зрения остаются только консервативныс (гамильтоновы) 
системы. M 

Казалось бы, очевидные рассуждения приводят K выводу, что Xaoca B 
квантовых системах просто не  бывает. Действительно, W3—3a — привципа 
неопределенности, для квантовой системы нельзя говорить о пребывании в 
заданной точке фазового пространства, а лишь в ячейке конечного размера, объем 
которой определяется постоянной Планка В. Поэтому любая ограниченная область 
фазового пространства содержит лишь конечное число яческ. H, следовательно, 
динамика в этой области HE может быть хаотической. Другой аргумент 
основывается, в сущности, на линейности уравнения Шредингера. Для финитного 
движения это уравнение приводит к дискретному спектру собственных чисел — 
разрешенных значений энергии или, согласно фундаментальному соотношению 
У=Е/В, — дискретных частот. Любос мыслимое состояние представляется KUK ли— 
нейная комбинация собственных состояний. В силу дискрстности спектра, оно 
может эволюционировать BO времени только периодически или  квази- 
периодически. 

С другой стороны, классическая динамика должна получаться U3 квантовой 
как результат определенного предельного перехода. На этом основан знаменитый 
принцип соответствия, сыгравший выдающуюся роль на раннем этапс становления 
квантовой теории [7.8]. Таким образом, можно сказать, что основная проблема 
теории «квантового хаоса» состоит в объяснении того, как появляется хаос при 
переходе к классическому пределу. Можно ли выявить особенности квантовой 
динамики, которые ассоциировались бы с возникновением хаоса в классике? 
Заметим, что нетривиальность проблемы квантования и перехода K классическому 
пределу для систем, не являющихся полностью интегрируемыми, была отмечена 
ее в 1917 году Эйнштейном [11|. 

Для понимания классического хаоса общепризнаннос значение имеет 
изучение специально сконструированных простых моделсй, подчас HE очень 
реалистичных, но допускающих далеко идущий теоретический анализ. К их числу 
относятся такие системы с дискретным временем как отображение пскаря или 
гиперболическое отображение тора «кот Арнольда» [12—14]. Можно думать, что 
столь же существенную роль в понимании квантового хаоса должны играть 
квантовые аналоги названных модельных CHCTEM. 

Разработка этой идеи началась с основополагающей работы Ханнэя и Берри. 
опубликованной в 1980 году [15]. С тех пор появилось значительное количество 
работ, исследующих модельные квантовые системы, классическими аналогами 
которых служат отображения с хаотической динамикой (см. обзор в последнем 
разделе). 

Как уже говорилось, основное содержание проблемы квантового хаоса 
заключается в выяснении  деталей  квантово-классического  соответствия. 
Наиболее sBHO параллель между квантовым и  классическим — описанием 
прослеживается при использовании представления Гейзенберга, когда квантовая 
динамика трактуется как эволюция во времени линсйных операторов, сопостав- 
ленных динамическим переменным классической системы |7,8,16]. В работах, 
посвященных квантованию модельных отображений, этому аспекту квантово- 
классического соответствия не было пока уделено достаточного внимания. 

Данная статья имест целью изложить результаты, которые получаются при 
квантовании B представлении: Гейзенберга отображения «кот Арпольда» — 
простейшей динамической системы с хаотической динамикой, фазовым простран- 
ством которой служит поверхность тора [13.14]. Это свосго рода упражнение из 
элементарной — квантовой — механики, хотя — достаточно — нестандартное й 
акцевтирующее-внимание на несколько других аспектах квантовой теории, пежели 
это делают традиционные учебные курсы. Уровень изложения рассчитан на 
широкий круг читателей-физиков, в том числе студентов и аспирантов. знакомых 
с курсом квантовой механики. 

В разделе 1 вводится классическое отображение «кот — Арнольда», 
обсуждаются его свойства и дается  механическая - интерпретация — этой



динамической системы, что подготавливает переход K квантовому рассмотрению. 
В разделе 2 определяется гильбертово пространство состояний квантовой 

системы. Благодаря периодичности на торе по двум переменным, это пространство 
оказывается конечномерным. Ero размерность — целое число М — можно 
трактовать как параметр, характеризующий относительную величину квантовых 
эффектов. Этот параметр обратно пропорционален постоянной Планка, так что 

переход K классическому пределу соответствует //—›ее. 

В разделе 3 производится квантование системы в терминах представления 
Гейзенберга для случая нечетных М. Построенное в результате операторное 
(матричное) отображение порождает нериодическую во времени динамику матриц 
МхМ№, которыми представляются операторы сдвига IO координате и импульсу. 

Наличие хаоса в классике ассоциируется с тем обстоятельством, что период - 
квантовой динамики в зависимости от N ведет себя сложным, нерегулярным 
образом и притом в среднем растет с увеличением N. 

В разделе 4 paccMOTpeH переход от представления Гейзенберга к 

представлению Шредингера и получен явный вид унитарной матрицы NxN, 

задающей оператор эволюции, или пропагатор системы. 
В разделе 5 обсуждается порождаемая квантовым отображением на торе 

динамика волновых Ффункций. Представлены как компьютерные результаты 
решения нескольких начальных задач, так и аналитическое исследование, 
проливающее свет на взаимосвязь между характером эволюции волновой функции 
B представлении  Шредингера и динамикой операторов в представлении 
Гейзенберга. 

В разделе 6 рассматривается квантовый аналог классической Функции 
распределения — функция Вигнера, известная как очень полезный инструмент 
анализа квантово-классического соответствия. Основная цель COCTOUT в TOM, 
чтобы показать, как выводятся свойства Ффункции Вигнера из динамики 
гейзенберговских операторов. 

В разделе 7 обсуждается задача на собственные векторы и собственные 
значения пропагатора. Демонстрируется, что для отображения с хаотической 
динамикой пространственная структура болышинства собственных векторов 
похожа на реализацию комплексной случайной последовательности. 

В разделе 8 представлен краткий обзор публикаций по проблеме квантовой 
динамики модельных отображений на торе. 

В приложении А производится обобщение процедуры  квантования 
отображения кота Арнольда на четные М. В приложении В рассматривается 
динамика в представлении Гейзенберга оператора, построенного как комбинация 
сдвигов по координате и импульсу. Показано, что с точками периодических орбит 
(циклов) классического отображения кота Арнольда ассоциируются определенные 
законы сохранения (операторы симметрии) для квантового оператора эволюции за 
период цикла. В приложении ©С обсуждается связь между периодическими 
орбитами классического отображения и спектральными свойствами квантовой 
системы. 

1. Классическое отображение кота Арнольда 
и его механическая интерпретация 

Имея в виду последующее обращение к квантовой задаче и тот факт, что 
квантовые представления B физике ассоциируются раныше всего с механикой, CTO— 

ит ввссти в рассмотрение основную модель именно в механической трактовке [17]. 
Пусть частица массы л1 способна свободно двигаться по окружности, длина 

которой /,„.`Положение частицы задается величиной х — длиной дуги, отсчиты-— 

ваемой вдоль окружности. Пусть, далее, через каждый интервал времени T 
периодически включается на очень короткое время внешнее силовое поле. 
Распределение этого поля по х считается таким, что получаемый частицей импульс



прямо пропорционален ес координате B момент толчка: Ар==ух. Наконец, последнее 

ПРСДПОЛОЖСЪШС‚ KO’I'OPOG с фИЗИЧССКОЙ ТОЧКН зрения может показаться довольно 

искусственным, COCTOMT в TOM, что по импульсу фазовое пространство обладает, 

Как ¥ по координате, свойством пермодичности; соответствующий период 
обозначим L, Иными словами, значения импульса частицы, отличающиеся на 

целое число периодов L, считаются эквивалентными. Если непосредственно перед 

очередным толчком импульс и координата были р и X, TO сразу после толчка 

координата HE изменится, а импульс станет равен р'=р+ух. После этого частица 

движется по инерции, ее импульс сохраняется, а скорость равна р'/т. Через время 

Т приращение координаты составит Ах=р”Г/т, так что перед очередным толчком 

имеем 

р'=р+у (modL,), 

м =х + рт (modL,), 

где значок модуля напоминает, что координата и импульс опредслены с точностью 
до добавок в целое число периодов L, или L, Выбирая параметры Tak, чтобы 

уГт=1 и L /L=y, и нормируя импульс и координату, соответственно, на L, и Г, 

получаем 

p=p+x, х =х+р' (modl), (1.1) 
или 

p=p+x, м=р+2х (modl). (1.2) 

Построенное преобразование переменных р и &, которое задает изменение 
состояние системы за единичный интервал времени, называют отображением 
кота Арнольда (Arnold cat map). Название объясняется тем, что предложивший 
это отображсние В.И.Арнольд [13] для иллюстрации его действия использовал 
картинку в виде кота (рис. 1). Геометрически первый шаг процедуры состоит в 
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Рис. 1. Геометрическая иллюстрация действия классического отображения «кот Арнольца» 
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элементов картинки, удалившихся за рамки единичного квадрата, обратно в него 
(последнее отвечает, конечно, операции взятия модуля). Благодаря периодичности 
по двум переменным X и D, фазовое пространство отображения можно мыслить как 
поверхность тора, XOTA для наглядного представления динамики удобнее 
использовать просто единичный квадрат, как на рис. 1. 

В нашей механической интерпретации движение частицы консервативно, то 

€CTh MBI имеем дело с гамильтоновой. системой. Математически это выражается B 

линейном преобразовании координат ‚ а второй — в переносе 

11 В 
том, что детерминант матрицы М = 1 7 | задающей отображение кота Арнольда, 

равен 1, и оно сохраняет меру (площадь) любой области, например, изображения 
KOTa. - 

Можно рассмотреть более широкий класс линейных отображений на торе, 

определяемых всевозможными матрицами 2x2 ¢ целочисленными элементами и 

единичным определителем: 

г abl|p 

= (mod 1), (1.3) 
х са х 

аа — Бс = 1. 

Благодаря последнему условию, соотношение (1.3) является, по терминологии 
классической — механики,  каноническим — преобразованием. Это  позволяет 
трактовать переменные р и х как импульс и координату некоторой механической 

гамильтоновой системы. В зависимости от собственных чисел матрицы М, Ay, 
отображения вида (1.3) относятся к одному из трех типов [15]: 

— гиперболический, если одно M3 собственных чисел больше, а второе 

меныше 1, 
— параболический, если М = A, = 1, 

— эллиптический, если М и A; комплексно-сопряженные. 

Отображение кота Арнольда принадлежит к гиперболическому типу, 
поскольку его собственные числа М=(3+5\2)/2 и ,=(3-5V2)/2. ' 

Приведем примеры отображений двух других типов. 

Если в приведенном выше рассуждении исключить импульсные толчки, TO 
получится отображение параболического типа, которое описывает свободное 
движение частицы: 

р’=р, х =р+х (той 1). (1.4) 

Каноническое npeo6pa3013aHHe, меняющее местами координату и импульс, 

служит примером ОТОбР&ЖСНИЯ элнлиптического типа: 

р’=х, х = -р (modl). (1.5) 

На рис. 2 показано, как эволюционирует некоторая произвольно заданная 
начальная область при последовательных итерациях отображения гипербо-— 
лического (a), параболического (6) и эллиптического (в) типа. 

При итерациях гиперболического отображения закрашенная область — 
изображение кота — вытягивается вдоль направления первого (неустойчивого) 
собственного вектора на каждом шшаге в Ay раз и сжимается вдоль второго 

(устойчивого) собственного направления соответственно в A; раз. Величины 

A=log М и Ло=108 A, представляют собой ляпуновские показатели, причем старший 

показатель Л положителен. Это известный признак наличия неустойчивости
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Puc. 2. Сравнение классической динамики на торе для отображений гнперболического {a), 
Параболического (6) ми эллиптического (в) типов. В гиперболическом случае имест место 
перемешивание и эргодичность. В параболическом случае образ закрашснной фигуры остается 

по имлульсу в своем определенном начальном интервале. Для эллиптического случая эволюция 
сводится K повороту без изменения формы фигуры. В отличие от рис. 1, начало координат — 
точка x=0, р=0 расположена в центрс квадрата 

фазовых траекторий по отношению K малому возмущению начальных условий и 
важнейший атрибут динамического хаоса. 

После  достаточно — болышого  числа — итераций — изображение — кота 
превращается в чрезвычайно узкую полосу, вытянутую вдоль нсустойчивого 
собственного направления, то есть близкую K длинлому отрезку линии, заданной 
уравнением p=[(512-1)/2]x (mod 1). Из-за того, что угловой коэффициент 
иррационален, эта линия покрывает поверхность тора всюду плотно. Поэтому 
картина выглядит как набор большого числа узких чередующихся черных и белых 
полосок, в которые — превратились,  соответственно, — множество — точек, 
принадлежащих изображению кота, и дополнение этого множества. Выражаясь 
обыденным - языком, «черная» и «белая» жидкости  оказываются  хорошо 
перемешанными. Свойство перемешивания в его точной математической 
формулировке строго доказывается для гиперболических стображений на торе и 
служит главным основанием для заключения о хаотической динамикс этих систем 
[13.14]. В частности, U3 перемешивания следует свойство эргодичности, которое 
состоит в TOM, что вычисление статистических средних по ансамблю эквивалентно 
усреднению по времсни вдоль типичной ипдивидуальной трасктории. Сравнивая 
рис. 2, @—6, можно наглядно видеть, что ни параболическое, ни эллиптическое 
отображения свойством псремешивания не обладают.



2. Первый шаг B процедуре квантования: конечномерное гильбертово 
пространство, отвечающее динамике на Tope 

Рассмотрим вопрос о TOM, что будет означать с квантовой точки зрения 
периодичность фазового пространства одновременно по двум переменным — 
координате и импульсу, то есть TOT факт, что фазовым пространством служит 
поверхность тора [15,17,18]. 

Если при квантовом описании одномерного движения частицы ее волновая 
функция в координатном представлении \(х), а в импульсном — \(р), то эти 
функции связаны прямым и обратным преобразованием Фурье: 

\(р) = 2uh)-12 [y(x)exp[~(i/ R)px]dsx, 
(2.1) 

у(о = лвн fy(p)exp[(i/B)px]dp. 
Пусть теперь функция y(x) имеет период L,, а функция \Ті(р) — период Г. 

W3 периодичности \(х) следует, что ее фурье-образ — функция \у(р) — 

представляет собой «гребенку» из 6—функций, расположенных на оси волновых 

чисел в точках 2mn/Ly, где л — целое, то есть с шагом по импульсу Ap=2mh/L,. 
Поскольку функция \(р) тоже периодична, ее период L, обязан содержать целое 

число шагов: L,/Ap=N. Подставляя сюда выражение для Ap, получаем 

L,.L,=2rhN, N — целое. (2.2) 

Отсюда следует, что в импульсном представлениий волновая функция полностью 

определяется заданием N комплексных козэффициевтов [. k&=0,1,... .N-1}: 

\О) = З Widy,(x—kL,/N) (2.3) 
(для упрощения записи принимаем обозначение 6,(...) для 1—-периодической 

последовательности 5—-функций.) 
Аналогичное рассуждение можно провести и B обратном порядке: U3 перио— 

дичности \у(р) следует, что функция \(х) есть «гребенка» из 5—-функций, 

расположенных на оси х B точках x=2mmh/L,, To есть с шагом Ax=2nh/L,. Так как 

функция w(x) обязана иметь период L, должно быть L /Ax=N, и мы вновь приходим 
к соотношению (2.2). Итак, в координатном представлении волновая функция 

тоже полностью определяется заданием N комплексных коэффициентов |y, m= 

=0,1,....N-1}: 

W(x) = 5 w0, (x-mLy/N). (24) 
Takum образом, мы заключаем, что 
1) гильбертово пространство состояний нашей системы есть конечномерное 

пространство комплексных векторов размерности N. 
2) На параметры задачи, при которых возможно непротиворечивое 

квантовое описание системы с динамикой на TOpE, наложены ограничения, 
выражаемые формулой (2.2). 

Как известно, в основу построения квантовой механики закладывается 
требование, чтобы при >0 имело место соответствие с классической теорией. B 

задаче O динамике на торе, будучи не вправе трактовать В как непрерывную 
переменную, мы можем рассматривать предельный переход на дискретном 
множестве значений, разрешенных формулой (2.2). В этом смысле классическому 
пределу отвечает М—>е».



Говоря о коорлинатном представлении, мы теперь всегда будем иметь B виду 
просто М-мерный вектор {\„}. а говоря 06 импульсном  представлении 
вектор (V). Подставляя (2.4) в (2.1), легко убедиться, что оба набора чисел [y} 

и [} связаны дискретным преобразованием Фурье: 

N ~ ю /-1 › М1 ” ` 

Wi = N-172 Z"m:l) \l’:;zexp(“zn’771k/N) = N-1”2 z"m:() Ш,„(Х—’”". (25) 

М-1 ^ PP ‚ М-1 ^ ло 
v, = N-12 2 o unexp{ 2nimkiNy = N-12 X, о. (2.6) 

Здесь введено обозначение o=exp(Zni/N), которое будет использоваться и далее. 
Ция операторов прямого и обратного преобразования Фурье примем символы Р п 
F+. Эти операторы представляются матринами размера NxN, элементы которых 

Е „ = ОМ и Р„ = оИ, (2.7) 

Если периоды L, и L, принять за единицу, то \у(х) и W(p) имеют вид гребенки 

из 6-функций ¢ одинаковым шагом 1/N. Согласно (2.2), квантовая постоянная й 

подчинена тогда условию 2nh=1/N. 

В заключение раздела заметим, что в  распространенной — системе 
обозначений  Дирака [10,9] вектор-столбец — называется — кет-вектор й 
обозначается la), где а — какой-либо символ, помечающий данное состояние. 
Сопряженный вектор-строка называется бра-вектор и обозначается (bl а их 

скалярное произведение («полная скобка» — bracket) естъ (Ма). В нашем случае это 

векторы, имеющие N компонент: ) = ом) .. лумо , (ol = (0% 0% ... 0"y ], и при 
N-1 | 

этом (Qly)=2; Ф*Ау,- 

3. Описание динамики отображения кота Арнольда 
в представлении Гейзенберга 

Как о известно, в квантовой механике каждой физической величиче 
(«наблюдаемой») сопоставляется эрмитов оператор. В представлении Гейзенберга 
считается, что операторы эволюционируют во времени, а вектор состояния, на 
который они действуют, от времени не зависит. В представлении Шредвытера, 
наоборот, операторы считаются неизменными, а во времени эволюдионирует 
вектор состояния. В нашем случае операторы будут действовать в векторном 
пространстве размерности М и представляться матрицами NxN. В этом разделе 
конструирустся операторное отображение — квантовый аналог отображения кота 
Арнольда в представлении Гейзенберга. 

Начнем с тривиального замечания, относящегося к классической залаче: 
отображение кота Арнольда можно псреформулировать так, чтобы избежать 
использования операции взятия модуля. Для этого вместо р и х введем HOBBIC 
переменные 

К =cxp(2nip) и А =exp(2nix), (3.1) 

так что отображение (1.1) принимает вид 

К’= КА, А’= АК”. (3.2) 

С учетом этого замечания, описание динамики в представлении Гейзенберга 
целесообразно формулировать в терминах операторов, отвсчающих величинам К и 
А. Kak сейчас будет ясно, это операторы конечного сдвига по координате и 
импульсу, известные как операторы Вейля — Гейзенберга [19.20]. 
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Рассмотрим оператор K =exp((i/h)ap), где p=—ifid/dx — оператор импульса, а 
— произвольное вещественное число. Бсли представить этот оператор в виде 
тейлоровского разложения, то очевидно его совпадение с оператором конечного 
сдвига на а: 

Коу(х) = exp((i/B)ap)y = y(x)+ay’ (x)+(a22)y" (x)+(@3/6)y" (x)+... = y(x+a). (3.3) 
B импульсном ПРСДС‚Г&ВПЁПИИ ДСИСТВИС оператора К„ отвечает просто умножению 

на экспоненту: K, y,= cxp((z/h)ap)\p/, 

Оператор сдвига IO импульсу на В в координатном представлении 
определяется как умножение на экспоненту 

Аму(о) = exp((IbX)W(). (3.4) 
В импульсном представлении это оператор Ay\,=exp((i/B)bx)\y,, где x=ihd/dp. 

Результат деиствия операторов K, и A, на функцию \у(х) зависит от их 
порядка: 

КАуу = ехр[(ИВ)(ох-ба)}у(сна), A K.w =ехр[(ИБ)бх)]у(ха). 

Это можно записать B виде перестановочного соотношения 

KaAb = CXp[(l/B)b[I]AbKm 

которое для операторов конечного сдвига заменяет известное правило коммутации 
px—xp=—ili (1 является его следствием). 

Как уже говорилось, волновая функция, обладающая единичным периодом 

по координате и по импульсу, имеет вид гребенки 6—-функций с шагом /М — и в 
координатном, и в импульсном представлении. ОПРСДСЛИМ операторы сдвига на 

один шаг по координате и импульсу, взявВв B качестве константы сдвига Ми 

полагая h=1/(2nN): 

К = exp(2nip), A =exp(2nix). (3.5) 

При этом соотношение коммутации принимает вид 

КА = оАК, o= exp(2mi/N). (3.6) 

Теперь у Hac есть все необходимое, чтобы построить квантовый аналог 
отображения кота Арнольда в терминах операторов K и А. Мы просто заменяем в 
соотношении (3.2) величины К и А на соответствующие операторы и получаем 
операторное Опюбражение 

= КА, A =AK', (3.7) 
ИЛлИ, UTO TO же самое, 

K = КА, А’= АКА. (3.8) 

Таким образом, операторы К’и А’, отвечающие очередному шагу дискретного 
времени, выражены через операторы, определенные на предыдущем шаге. Чтобы 

новые операторы К’и А’по-прежнему можно было трактовать как операторы 
сдвига по координате и импульсу, для них должно быть справедливо то же самое 
коммутационное соотношение (3.6). Как нетрудно проверить, это действительно 
так: 

К’А’ =(КА)(АКА) = a(AK)(AKA) = о(АКА)(КА) = оА’К.. 

Поскольку для нашей системы вектор состояния представляется набором N



коэффициентов v, операторы K и А лолжны задаваться матрицами №х/М. 
EcTecTBEHHO определить их следующим образом: 

(КЧ‘[)Ш = Миа (_А‘Ю… = ОИ (59) 

что соответствует I\'IaTpHIIaI\/i C элементами 

Kuuz = бт+].н n A= СХ’"б„„‚‚ тП = D-N’_l- (310) 

1,m=n (modN), 

0,m#n (modN). 
mn 

Как станет ясно в следующем разделе, схема квантования, исходящая из 
соотношений (3.7), (3.8), пригодна лишь для нечетных значений квантового 
параметра М. Именно этот случай только и обсуждается далее в основном тексте. 
Обобщение для четных N рассмотрено в приложении А. 

В представлении Гейзенберга вектор состояния HE зависит от времени, TO 
есть в нашем случас от номера итерации, а операторы, отвечающие динамическим 
переменным, изменяются от итерации к итерации. Задавая в качестве начальных 
условий для операторного отображения (3.7) матрицы KO=K и А0=4, 
рскуррентным образом находим матрицы K и А® для последующих моментов 
дискретного времени k. Например, для N=5, 

К© A0 К) A КО) АС) 

(01000„10 000“0‹1000“0‹›‹000“000‹4)0\ (ooowo) 
00100 | | да 0 00 || 00200 100000 1000020 | | 0000 | 

I | 
jI[ 

100010 100‹›@00 0000@0{ 000 10 |0000 1 woooo 
| 00001 | | 000030 || 000 Оа [[000002 || 020000 || 005000 | 
\ 10000 J{00000+){10000 J{0000 J{0Oa000 ) |\ 00 о‹эоод) 

и т.д. Каждая матрица в этой последовательности получается просто как 
произведение ABYX ПРСДЬХДУТЦЦХ. 

Из приведенного примера видно, что отличными от нуля каждый раз 
являются только матричные  элементы, расположенные в ORHY — линяю, 
параллельно главной днагонали. На этом основании можно очень просто описать 
динамику операторов следующим образом. Положим 

K ()_’81111‘—5,/1(1['”4—"’ Aum(/‘.):5!71-&(/,HCUJH+“7 (311) НН 

где S, 1, р, 4, W, М — целые числа, зависящие от номера временного гага & и 

определенные по модулю N, и пусть при A=() наложены условия, соответствующие 
начальным операторам (3.10): 

$ = 1, в = 0, р= 1, 4 = (, х = (, p=0. (3.12) 

Нодставим (3.11) в (3.7) и произведем матричное умножение. Получаемые в 
результате новые матрицы имеют Ty же форму (3.11). но с новыми параметрами 
5); 

у =5+q, @ = @+У, r=r+p, р = рнг (той N), 

(3.13) 
Vo= униетд, аН нру (той N). 

Заметим, что в соответствии с правилом коммутации (3.6), при всех & обязано 
выполняться равенство



р5 — га = 1. (3.14) 

Первые четыре уравнения (3.13) можно переписать в матричной форме 

5Рр |11| 3 х . 
= (mod N). (3.15) 

qp 12| |9Р 

Условие (3.14) остается в силе при последовательных итерациях, поскольку 

11 
детерминант матрицы 12 6ДИНИ‘Ц'1Ь1Й. 

Согласно (3.13), две пары целых чисел, 5 и ¢, г и P, определенных по модулю 
N, удовлетворяют уравнениям, совпадающим по виду с классическим отображе-— 
нием кота Арнольда (1.1), разница только в нормировке на 1 в (1.1) ина N в (3.13). 
Однако в силу того, что динамика происходит на конечном множестве целых 
чисел, она оказывается не хаотической, а периодической. Период зависит от N, и 
мы обозначим его T(N). Это период цикла, стартующего из точки p=1/N, x=0, в 
классическом отображении (1.1). 

Новый момент по сравнению с классикой COCTOHT в появлении двух 

дополнительных переменных [ 1 v. Они подчиняются уравнениям, B которых S, 7', P, 
д играют роль периодического внешнего воздействия. Цля нечетных N, которые 
здесь только и рассматриваются, [L и » выражаются через остальные переменные 

и = ((М+1)/2)(р-д-ра-1), v=((N+1)/2)(r-s—rs+1) (modN), (3.16) 

что проверяется непосредственно ¢ помощью (3.12)—(3.14). 
В качестве примера рассмотрим снова случай №=5. Эволюция параметров, 

определяющих операторы K и A, дается таблицей: 

# 11203443021... 
а 01331042240... 
г 01331042240... (далее повторение) 
р 12034430211... 
p04304431010.. 
у 00323102400... 

Отсюда видно, что Т(5)=10. 360 
Поскольку операторы К® и A®) 

полностью определяются числами S, T, 
р, ¢, W, У, OHH имеют тот же период 
изменения Т(М) в зависимости от T(N) 
дискретного времени k. Можно пока- 
зать, что в представлении Шредингера с 
этим же периодом будет эволюциони- й “M' : 
ровать — волновая — функция — (вектор о 
состояния). Поэтому величину T(N) 
естественно — называть — квантовым 

1 Рис. 3. Пернод возврата T(N) для квантового 
периодом:. отображения кота Арнольда. Представлены зна- 

На рис. 3 показана зависимость — чения периода как для нечетных N (отображение 
квантового периода от N для отобра- (3.8)), так и для четных (;Э'гсібраженёв (А.2), 

й определенное в приложении). Для отображения 
р HO . MOC A 1y - 
KOHMA 1ЁОТ& Ар льда Эта зависимость параболического типа ((3.20) и (А.10)) T(N)=N 
носит нерегулярный характер, HO В CPEA~ при М нечетном и 2М при № четном. Для 
нем период увеличивается с ростом М. отображения эллиптического типа (3.22) Т=4 при 

Иногда нам будет полезно иметь любом N 

! Для отображений, квантуемых 110 Ханнэю — Берри, понятие квантового периода было 
введено в нх работе [15]. В общем случае он может быть равен нли вдвое больше, чем период 
возврата в матричном рекуррентном отображении. Вторая возможность, однако, исключена, если № 
нечетное. 
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альтернативное обозначение для TOH же самой последовательности операторов 
K®), AN, но занумерованной в обратном порядке. Для этого будем пользоваться 
нижними индексами, TO есть примем соглашение, что 

К(/\) = K(T(N)_/\'), А(Ю = fi (T(N\)‘/"). (317) 

Если выразить операторы, входящие в правую часть уравнений (3.8), через 
операторы, стоящие B левой части, можно получить форму записи операторного 
отображения, определяющую последовательность К, Аг рекуррентным образом: 

А(/‹+1) = А(/\.)К*(А‚), K(HJ) = КЁ(/\.)А,\'Ю. (318) 

Необходимо сделать важную оговорку, что поскольку операторы К и А He 
коммутируют, выбор операторного отображения в виде (3.8) не является 
сдинственно ВозМможЖНнЫыМ. B равной степени допустимыми следовало бы признать 

другие его версии, получаемые перестановкой К и А в правой части уравнений 

(например, K'=AK, А’=КАА или другие варианты). Хотя коммутационное 

соотношение (3.6) всегда позволяет вернуться к такому же как в (3.8) 
расположению операторов в правых частях уравнений, при этом нпоявляются 
множители вида @ в некоторой степени. На языкс исходных переменных р и х эти 
множители отвечают аддитивным добавкам. Модификацию динамики вследствие 
выбора альтернативной версии операторного отображения можно представить как 
переопредслсние в каждый момент времени начала отсчета для координаты и 
импульса, причем величина квантового периода остается той же самой. 

Добавим замечанис, касающесся квантования линсйного отображения на 
торе более общего вида (1.3). В случае, когда каждая из двух строк матрицы, 
задающей — отображение, содержит  четный  элемент,  имеется — логически 
естественный — выбор  версии - операторного  отображения — — использовать 
симметризованные КОМ()ИНЕ\ЦИИ К и А. ПОСКОЛЬКУ детерминант должен быть 

единичным, указанное условие означает, что матрица имеет C])OpMy 

ab чет нечет нечет чет 
= или й (3.19) 

са „нечст чет чет нечет 

В первом случае операторное отображенис можно задать в виде K'=Ka2Abjar2, 

A'=Ad2KcAd2, а во втором K'=AV2KcAb2, А’=КсВА«Ке?. Цанный класс отображений 

был указан как квантуемый в первоначальной работе Ханнэя и Берри [15]. Хотя 
отображение KOTa Арнольда HE  относится к этому классу, построение 
состоятельной квантовой теории все-таки оказывается возможным, HO ипри этом 
все соотношения должны быть сформулированы несколько по-разному для 
нечетных и четных V. 

Чтобы иметь OCHOBY для сопоставления ситуаций, отвсчающих хаотической 
и регулярной динамике классических аналогов, остановимся на квантовании 
отображсний параболического и эллиптического типа (1.4) и (1.5). 

Операторный аналог отображения (1.4) выберем в виде 

K =K, A =AK, (3.20) 

откуда ¢ учетом определения (3.11) получасм 

srf 10 у 7 ` . 
= (той N). (3.21) 

qP LI gp 

v =y, д/ = У+Нрз (I‘nOd N)



Эти соотношения очень просты, так что с учетом начальных условий (3.12) 
легко находим, что s=1, r=0, p=l, v=0, g=k, и=-& (mod N), где & — номер итерации. 
Квантовый период равен N. 

В случае отображения (1.5) полагаем 

K =4, A’ =K, (3.22) 
где крестик означает операцию эрмитова сопряжения. Считая, что операторы 
представляются в виде (3.11), имеем и=0, v=0 и 

5г О1 | у Ы 
= (mod N). (3.23) 

gp] |-10 || 9р 
Квантовый период постоянен и равен 4. 

Нерегулярная зависимость периода от квантового параметра N характерна, 
следовательно, только для ГИПЗРбОЛИЧбСКОГ о случая и, очевидно, ассодиируется с 

наличием хаоса B классическом пределе. 

4. Переход к представлению Шредингера 

Пусть ) и hy) — некоторые векторы, L — линейный оператор, и 1Ф)=ГЛу). 

Пусть U — другой линейный оператор, посредством которого определим 

преобразованные векторы [)=Ulp), №)=0О\№. Каким соотношением они будут 

связаны? Подействовав на исходное уравнение слева оператором U и предполагая, 
что определен обратный оператор U-!, можно записать результат в виде 

Ulp)=ULU-1Uly), или lo")=ULU-!ly’). Можно сказать, что при переходе в простран— 

ство «штрихованных» векторов оператор L преобразуется в оператор L'=ULU-1. 

В квантовой механике особую роль играют преобразования, задаваемые 
унитарными операторами U. Они не нарушают структуры основных уравнений 
динамики и соответствует каноническим преобразованиям — переменных в 
классической механике [7.8,10]. В нашем случае конечномерного пространства 
состояний каждое такое преобразование представляется унитарной матрицей 

размера Мх\М, то есть матрицей, у которой эрмитово сопряженная матрица 
совпадает с обратной, а детерминант по модулю равен 1. 

В представлении Гейзенберга операторы К® и А( эволюционировали в 

дискретном времени &, тогда как векторы состояния ), на которые можно было 
действовать этими операторами, не зависели от времени. Произведем в каждый 
момент времени & такое унитарное преобразование Uk 

hy = Ukly), (4.1) 

чтобы преобразованные операторы не менялись BO времени, TO есть 

UAOU-+=A и UKOU-+=K О (4.2) 
ИЛИ 

UAW=AUt u UK®=K U, . (4.3) 

В частности, на одном временном шаге, UA'U-1=4 и UK'U-! =K или 

UA'=AU и UK =KU, (4.4) 

где А’ и К есть операторы, выраженные через A и К посредством 

соответствующего операторного отображения. 
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Выражение (4.1), характеризующее эволюцию вектора состояния, можно 
переписать в виде рекуррентного уравнения 

Мы) = ). (45 

Оператор U, определяющий преобразование состояния за один шаг 
дискретного времени, называют оператором эволюции или пропагатором. О 
такой формулировке квантового описания системы говорят как о представлении 
Шредингера. 

Заметим, что при обратной во времени нумерации операторов K и А 

справедливы очевидные из (4.3) соотношения 

А = А u UK = КП (4.6) 

Найлем B явном виде матрицу оператора эволюции для отображения кота 

Арнольда. Согласно (3.10) матричные элементы операторов К и А есть К и=б н 

A, ,=8,,,00, а из операторного отображения (3.7) за один временной таг получаем 

=7 — — й ” 

K = z/{Km,kAk,n - Z/\' бин-[,/‹б/:,па„ — бт+1‚н0с„-‚ (4 7) 

‚ к/ A — . ‘A © 
A т — Z/Am,k[( &а — Ek 61.11,ka'/‘8k+1,110(‘" — Ои„'„б/п‚н—і' (46) 

Hance из UK'=KU следует 

2/; Umk6k+'l,uu" = Е/: 6m+l,kUku~ TO €CTh Um,u—l(x“ = UIIH-],H' (49) 

Из UA'=AU аналогичным образом имеем 

Z/c[]mka k+”6/\',u—l = Zkfim,kakUk/n TO есть []/п,п—іа%"…—] = Um./r (410} 

Эти два соотношения позволяют найти все матричные элементы через ©- 
Из первого выражения последовательно получаем диагональные элементы: 

Upirme=U, ool то есть U, =Ugotd+2+sm=Uy omtr+ D2, Далее, зная по одному 
элементу в КЗЖДОЙ строке, с помощью второго соотношения находим элементы 

всей строки: 
[_]„… = []…‚›Оуп(:›ц1)/2—…!›+п°-' (411) 

Чтобы соператор U был унитарным, следует выбрать Uy так, чтобы 
IDet(U)l=1. Как можно нпоказать, это обеспечено при |Ю!=М-М2. Фазовый 
множитель может быть произвольным, поскольку он HC влияет на НабЛЮДаСЬЦ›ЁС 

величины (его выбор определяет начало отсчета для квазиэнергии, см. раздел 7). 
Удобно, тем не менсе, конкретизировать фазовый множитель так. чтобы след 

матрицы U был действительным положительным числом. Пля вычисления следа 
используем соотношение для гауссовой суммы [15,18]: 

TrU = X, Uggolrzemy2 = Uy Z,, exp|(in/N)(nmi2+m)] = 

= Uyl 2exp(in/d—in/(4N)) =UggN120- 1 Bexp(in/4). (4.12) 

Положим Су=М-1доМехр(—тт/4), тогда 

( = GBeXp(—im/4)qunlins e N-12 == 

= N-12exp{(wmi/NYm(im+1)-2mn+2n2 +1/4]—in/4}, (4.13) 

и при этом [ Det(U)|=1 н Tr(U)=1. Например, для М=5 
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В этом месте становится понятной оговорка, сделанная в предыдущем 
разделе. Обнаруживается, что при четных N найденные выражения непригодны, 
так как по первому индексу матричные элементы U, не обладают периодом N (1o 
есть после первого же шага по времени волновая функция перестала бы 
удовлетворять — постулированному — условию — периодичности Ha торе). B 
приложениии A показано, что  это  MOXHO — исправить — надлежащим 
переопределением операторного отображения. 

Как и для классического отображения кота Арнольда (раздел 1), эволюцию 
квантовой — системы MOKHO  представить B две  стадии — («толчок» и 
«распространение»). 

Стадия толчка в терминах операторов Вейля — Гейзенберга описывается 
отображением К’=КА, А’=А. Пусть V — оператор ЭВоОЛЮЦИИ нНля этой стадии. 
Подставляя матричные элементы (3.10), из соотношений VA'=AV, VK=KV 
получаем V,, o=V, И V, o=V, = Bropoe уравнение означает, что V 
диагональная матрица, а первое позволяет выразить все ее ненулевые элементы 
через Vi Чтобы матрица была унитарной, положим |Vl=1, а фазовый множитель 
выберем так, чтобы след был действительным положительным числом. Тогда 

V,, = ехр(-йи4)ситен1)2+155 . (4.14) 

Для стадии распространения операторное отображение запишем в виде К’=К, 

A’=AK, а оператор эволюции обозначим W. Из WA'= AW следует, что И 1001 = 

=W,,.- 13 WK'=KW имеем W,,,_ =W, ‚ ТО есть вдоль любой линии параллельной 
главной диагонали все элементы матрицы равны. Полагая Wy,=1/N12, получаем 

Wm” = qulm—122+(m-m)[N112, (415) 

Оператор W диагонализуется переходом в импульсное представление, B котором 
его матрица выглядит как эрмитово сопряженная матрица V. Иными словами, 
операторы W и V связаны соотношением И/=!+У+Р, где К и Е+ — операторы 
прямого и обратного преобразования Фурье. _ 

Для orobpaxenmsi кота  Арнольда oucpatrop  эволюции U можно, 
следовательно, записать в виде 

U=WV или U=F+V+FV. (4.16) 

Непосредственным — вычислением  проверяется, что  результат — матричного 
умножения согласуется с выражением (4.13). 

В заключение раздела несколько слов о других отображениях тора. 
Поскольку операторное отображение параболического типа (3.20) совпадает по 
виду с отображением на стадии распространения, его оператор эволюции 
представляется матрицей № (4.15). Чтобы получить оператор эволюции У для 
отображения — эллиптического типа  (3.22), заметим, что — каноническое 
преобразование р'=-х, х=р B квантовой задаче соответствует просто переходу из 
импульсного в координатное представление, то есть обратному преобразованию 
Фурье. 'Гаким образом, 

Y эн = Р, = ОР М, (4.17) 
НЙ 
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5. ‚ЩИНЦМПК‘‹] вектора состояния ~ компьютерные иллюстрации 

и авналитическое рассмотрение 

До сих пор мы занимались в сущности разработкой квантового формализма 
для отображений на торе. Было бы интересно теперь получить впечатление O 
характере квантовой динамики и различиий между системами, классические аналоги 
которых демонстрируют хаос или регулярное поведение. 

Если задаться конкретным начальным вектором состояния ), TO можно 
отследить, как он будет меняться шаг за шагом при многократном действии 
матрицы пропагатора. Рис. 4 иллюстрирует эволюцию волнового пакета, 
имеющего в начальный момент минимальную ширину по координате и имнульсу, 
допускаемую принципом неопределенности. Полученные численно результаты 
представлены в виде пространственно-временных диаграмм, на которых тона 
серого цвета кодируют квадрат модуля волновой функции. По горизонтальной оси 
отложен номер пространствсенной позиции /72, а IO вертикали вниз — дискретное 
время. Чтобы сравнить динамику CHCTEM, демонстрирующих в классике хаос и 
регулярное поведение, приведены диаграммы для отображений гиперболичсского, 
параболического и эллиптического типа. 

Обратим внимание, что эволюция BO времени во всех случаях периодическая, 
причем период возврата совпадает с тем, который был введен в разделе 3 при 
обсуждении динамики операторов Вейля — Гейзенберга. ©С точки зрения 
пространственного распределения волновых функций, никакой хаотизации не 
видно даже в гиперболическом случае. Для отображений всех трех классов более 
характерным кажется как раз наличие в каждый момент вдоль пространственной 
оси — достаточно — регулярного — набора — чередующихся — иптерференционных 
максимумов и минимумов. 

Можно отметить. что для гиперболического отображения  эволюция 
волнового пакета сопровождается его очень быстрым расширением на первых же 

Косордината — - 

<
—
 

В
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м
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а о] в 

Рис. 4. Пространственно-временные диаграммы, иллюстрирующие дннамику волнового пакета B 
квантовых системах, отвечающих отображениям на Tope гиперболического (а). параболического 

(6) и эллипеического (а) типов. Начальное условие задано в виде W, =cxp{~1un/N)-exp(2riPmiN), 
гле N=39, а начальный сдвиг по импульсу Р=3. Начало отсчета пространственной координаты в 

центре диаграмм. Квадрат модуля волновой функции кодируется ‘гонами серого цвета



шагах дискретного времени. После этого распределение амплитуды по длине 
системы становится более или менее однородным, хотя встречаются моменты 
времени, когда отклонение от однородности значительное, и распределение 
концентрируется в нескольких узких интервалах (темные пятна на светлом фоне). 
Для параболического отображения расплывание пакета происходит гораздо 
медленнее. Когда характерная ширина пакета становится сравнимой с длиной 
системы, на краях появляются темные и светлые интерференционные полосы. B 
дальнейшем эта интерференционная картина покрывает всю систему, изменяясь во 
времени сравнительно медленно и регулярным образом. Для эллиптического 
отображения волновой пакет не расплывается и просто совершает колебания с 
периодом в четыре итерации. 

Представляется важным обсудить, как соотносятся характер эволюции 
волновой Ффункции квантовой системы и динамика операторов Вейля — 
Гейзенберга, связанная весьма непосредственно с классическим отображением. 
Имея в виду этот вопрос, применим к начальным задачам следующий единый 
ПОДХОД. 

Предположим, что из операторов К и А с помощью сложения и умножения 
построен такой оператор #, что задаваемое в качестве начального условия 
состояние W) является собственным вектором этого оператора: 

Z |№= М, : (5.1) 

¥ собственное число & невырождено. Подействуем на это уравнение слева 

оператором эволюции за & временных шагов U и представим результат в виде 
БОКО-ХО)=МОЧу). Отсюда следует, что вектор состояния в момент К, 

№0)=Чу), находится из решения задачи на собственные векторы оператора 

Z=UKZU-* для собственного числа ). Решение однозначно (с точностью до 
фазового множителя) в силу того, что собственное число, по предположению, 
невырождено, а унитарное преобразование оператора # не меняст его спектр. 
Заметим теперь, что в представлении Гейзенберга оператор Z в момент времени & 
есть ZW=U-+*ZU*. Очевидно, 7(р — это та же самая последовательность операторов, 

но занумерованная в обратном порядке. Оператор Z;, выражается посредством 

сложения и умножения через операторы А(;) и К) точно таким же образом, как 
оператор Z выражался через А и К (см. пример в приложении B). 

Далее этим методсом будут рассмотрены задачи об эволюнии BO времени, 
когда в качестве начального условия берется 

» пространственно—-локализованное состояние, 
е два дельта-пика, разнесенных по координате на некоторое расстояние 

(аналог знаменитого квантово-механического опыта с интерференцией от двух 
тщелей), ` 

е волновой пакст с шириной MO координате и импульсу минимально 
допускаемой принципом пеопределенности. 

5.1. Задача об эволюции пространственно-локализованного — начального 
состояния. Состояние \у), локализованное на позиции 7=/, есть не что иное как 

собственный вектор оператора А ¢ собственным числом A= 

А\№)=Му). (5.2) 

Следовательно, вектор W)=Uk ly), описывающий состояние B момент времеви X, 

будет собственным вектором оператора Ay с TEM же собственным числом /: 

А(/‘)Щ!(/\)›:?ь, |Ч!(/\)> (53) 
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Bee N собственных чисел A; невырождены, поэтому каждый собственный вектор 
находится однозначно с точностью до фазового множителя. 

Матричные элементы оператора A, представляются в виде (:A(k)),,,?,,: 

=000, где параметры p, ¢, н отвечают k—My шагу итерации B обратном 
времени уравнений (3.13) — кот Арнольда, (3.21) — отображсние параболического 
типа, (3.23) — отображение эллиптического типа. Уравнение (5.3), следовательно, 
принимает вид 

Y эна QPR =AY, (5.4) 
илИ 

&А
 ) ‘Um-f Са » ( 5. 

где с„=орт-Ни, причем предполагается выполненным условие цикличности V), A=Y, 

Задавшись значением \у в некоторой точке /1y, с пПоМмощЬю (5.5) последовательно 
получаем значения B точках ту-д, ту-24,... (той N). Пусть наибольший общий 
делитель для чисел ¢ и М естъ g=ged(g, N), u пусть N,=N/g и ¢,=q/g. Torna после N, 

шагов круг замкнется, так как mot+gNg=m, (mod N). Чтобы рещение v, было 

Nig-1 

нетривиальным, начальное значение /1 должно быть выбрано TaK, чтобы [] (',,,”-1.{‘,31. 
e=() 

Подставляя сюда выражение для с„ и вышолняя B показателе суммирование 
арифметической прогрессии, находим, что должно вышолняться равенство 

a’v.f;’(’”flp"/""“)—PqNg(Ng—l)/
2:1_ 

(56) 

Используя (3.14), можно показать, что это обеспечено при выборе 

о— . / 
“& my=g+s(I-u+pg(N,~1)/2). (5.7) 

M3 (5.5) следует, что только B N, точках 11y, My—(,-.., Mo—(N,~1)q (mod N) значения 

v, ненулевые. Поскольку lc,l=1, Bce они отличаются только фазой, H, как следует 

из условия нормировки, по модулю должны равияться N-12. С помощью (5.4) 
находим 

Ми :Ng—J/Z. (xfi’.(/n(/)—/HL J-pae{m=1)2+9, (S . 87 

где Ф — произвольная фазовая постоянная?. 
Найденные соотношения применимы и в двух крайних частных случаях. 
1. Если ¢ и N — взаимно простые, то g:=1, N,=N; при всех т от 0 до М-1 имеем 

hy,, | =N-172_ При этом лу можно взять любым, например, niy=0. 
2. Вели 4=0, то g=N, М=1, и v,,=5,, . 
Резюмируем вытекающую U3 проведенных рассуждений связь между 

характером эволюции волновой фунвкция и классическим отображением. 
Для квантовой системы в представлении Гейзенберга операторы сдвига по 

координате и импульсу выражаются через две пары определенных по модулю N 
целочисленных переменных, (5,9) и (r). и каждая пара подчиняется динамическим 
уравнениям, совпадающим по виду © исходным классическим отображением. Одна 
U3 переменных ¢  особенно существенна с точки зрения структуры волновой 
Ффункции в координатном - представлении:  волновая — функция — становится 
«разреженной» (амплитуды Ф„ отличны от нуля только на некотором множестве 

2 На самом деле достаточно найти собственный вектор для какого-нибудь одного значения /. 
например, /=0, а остальные векторы можно получить из него действием оператора К(г в степени от 1 

до М-2. Расположив найденные векторы в виде столбцов матрицы. нолучаем матрицу 0/*.Указанный 

способ вычисления (¢ точностью до общего фазового множителя) ‘требует ‘голько знания операторов 

Ay н Ky Процедура же HX получения с помощью рекуррентных соотношений для параметров 

$,...‚у гораздо экономичнее, нежели «лобовое» &-кратное персмножение матриц U размера Мх/\.
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РИС. 5 Дмаграммы‚ НЛ.…ОСТРНРУЮЩНС KBaH'l‘OByIO ДИН&МИКУ COCTOSIHHSA, HCXOJ[HO локализованного B 

начале координат: а — отображение кот Арнольда, N=59, 6 — отображение кот Арнольда, N=63, 
в — отображение параболического типа, N=63 

равноотстоящих позиций), ссли ¢ имеет с квантовым параметром N общий 
делитель. Таким образом, с точки зрения квантовой динамики на TOpe, важна 
арифметическая природа числа N, а именно, структура разложения N на 
простые множители. 

В случае параболического отображения (3.20) эта структура полностью 
раскрывается в процессе динамики, поскольку переменная ¢ пробегает в течение 
квантового периода все целочисленные значения от 0 до N-1. Доля моментов 

времени, когда волновая функция разрежена, дается отношением ¢(N)/N, где ф— 
известная в теории чисел функция Эйлера3. С другой стороны, для эллиптического 
отображения (3.22) упомянутая арифметическая структура числа М вообще 
несушсственна: ¢ оказывается попеременно нулем или числом взаимно простым с 
М, то есть волновая функция осциллирует между двумя возможными ситуациями — 
полной локализации и полной делокализации. Для гиперболического отображения 
кота Арнольда переменная ¢ в течение квантового периода посещает лишь часть 
возможных значений, и при этом HE проявляет видимой  регулярности. 
Соответственно, в пределах квантового цериода ситуации разреживания и полной 
цделокализации волновой функции чередуются хаотически. 'Гаким образом, в этом 
последнем случае арифметическая структура числа М№ существенна, но ее 
проявление замаскировано. ` 

На рис. 5 можно видеть, как в процессе динамики сменяют друг друга 
ситуации полной локализации, прореживания и полной делокализации. 

Если число N простое, то картина выглядит наименее содержательной 
(рис. 5, а): чаще всего волновая функция полностью делокализована (амплитуда 
равномерно распределена по координате) и лишь один или два раза за период 
наступает локализация в одной точке. Далее мы увидим, что в задачах с другими 
начальными условиями связь между арифметическими свойствами числа N и 
характером квантовой эволюции обнаруживается и для простых N. 

3 По определению, ф(М) ссть количество натуральных чисел от 1 до М-1, являющихся 

взанмно простыми с N. 

]



5.2. Задача об эволюции волновой функции B виде двух дельта-пиков. B 

болышинстве учебников квантовой механики почетное место занимаст описание 
опыта с интерференцией от двух щелей [9]. Для квантовых отображений на торе 
аналогом этого опыта служит задача об эволюции в дискретном времени волновой 
функции, имевшей в начальный момент вид двух дельта-пиков, разнесенных MO 
координате на некоторое расстояние. На следующих шагах дискретного времени 
суперпозиция волновых @функций, порожденных этими двумя источниками, 
образует некоторую одномерную интерференционную картину, изменяющуюся от 
шага к шагу. Если один дельта-пик находился B начальный момент на позиции /|, а 
второй — на позиции [,, то волновая функция будет определяться линейной 

комбинацией двух составляющих, задаваемых соотношениями вида (5.8). 
Обсудим - случай простых N, который оказывается содержательным и 

несложным для анализа. Ч“огда для любого целого д or 1 до N—1 можно найти 

лежашес в этих же пределах число ¢, являющееся обратным по модулю М. то ссть, 
такое, что 44=1 (той N)4. Согласно малой теореме Ферма, g=(¢)¥-2(mod N). При 
этом, разумеется, ¢ и N взаимно простые, и g=gcd(g.N)=1. Полагая в (3.8) 

ге=-ат, то =0, N,=N, получим 

v, =N-12.0igmi(l- W-pal(gmP+gm}2+o , (59) 

Суперпозицдия составляющих, порождаемых двумя начальными дельта-пиками 
имеет BUJ 

((x;ml1+a?;ln/2) 

Y= == м 
(2N) 172 

(x—T]mu—pq](t?ul)3+(/_/_i/]/2;rp = 

(5.10) 

= (2/N)2 lcos(nmq(l, —1,)/N+const)l. 

Отсюда  BWHO, что комбинация @-М нграет  роль  волнового  числа 
пространственной интерференционной картины. Обратившись к рекуррентным 
уравнениям (3.13), (3.21), (3.23), можно видеть, как эволюционирует эта всличина 
BO времени для различных модельных отображений. 

Для параболического отображения д пробегает за период все числа от 1 до 
№-1. Соответственно, те же значения, HO в другом порядке, пробегает величина 
4. Динамика как бы разворачивает перед наблюдателем присущую числу N 
арифметическую структуру, закодированную в порядке появления различных 
чисел среди обратных K  последовательным целым. Напротив, динамика 
отображения эллиптического типа COBCEM не несет информации об этой структурс: 
каким бы ни было число N, величина ¢ пробегает всегда одни и те же значения 
0,-1,0,1. В гиперболическом случае на временах меныших периода возврата 
последовательность д носит хаотический характер. Соответственно, обратное 

число, ¢, также беспорядочно блуждает по своему множеству значений, тем самым 
маскируя упомянутую арифметическую структуру, ассодиирующуюся с числом V. 

Итак, взаимосвязь между квантовой эволюцией и классической динамикой 

проявляется в том, как изменяется во времени пространственный период 
интерференционной картины. Для отображения кота Арнольда это изменсние на 
конечном интервале времени, B пределах  одного полупериода, выглядит 
нерегулярным, хаотическим. Для отображения параболического типа OHO более 
плавное и регулярное. Для отображения эллиптического типа распредсление в 
виде двух дельта-пиков повторяется на каждом втором Ularc итераций, а на 
промежуточных шагах имеет место интерференционная картина с одним и ‘тем же 
пространственным периодом (рис. 6). 

+ Исключительный случай g=0 соответствует, Kak можно показать, возврату распределения 
волновой функции к конфигурации из двух дельта-ликов. 

22
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Рис. 6. Аналог квантово-механического опыта с двумя щелями: эволюция во времени 
интерференционной картины от двух дельта-образных источников для отображений гипербо— 
лнческого (а), параболического (6) и эллиптического (в) типов; N=59, 1| =2, [, =-2 

5.3. Задача o0 эволюции волнового шакета. Одной M3  важных 
нестационарных задач в квантовой механике всегда считалось рассмотрение 
эволюции волновых пакетов, TO есть квантовых состояний, локализованных и по 
координате, и по импульсу (разумеется, в той мере, в какой это допускается 
принципом неопределенности). Исторически, одна из причин состояла в TOM, что 
исследователи долгое время старались примирить или как-то увязать KBAHTOBO— 
механический способ описания с представлением о локализованных классических 
частинцах. По теореме Эренфеста, при очень общих предположениях движение 
«центра масс» волнового пакета (B смысле средних значений координаты H 

импульса) происходит по классической траектории [7]. В свое время Шредингер 
построил для гармонического осциллятора состояния в виде гауссова волнового 
пакета, эволюционирующего во времени без изменения формы и совернающего 
колебания, как классическая частица; сейчас такие образования называют 
когерентными состояниями [21,22]. Обнаруженный Шредингером тип поведения 
оказался нехарактерным для систем более общего вида: чаще всего эволюция 
волновой функции сопровождается расплыванием в пространстве. В этом 
контексте интересно рассмотреть динамику волновых пакетов под действием 

квантовых отображений на торе и обсудить, как проявляется наличие хаоса в 
отображении кота Арнольда. 

Чтобы ввести в рассмотрение когерентные состояния, сначала определяют 
состояние, центрированное в начале координат как собственный вектор оператора 
a=(x+ip)(2H)12 с нулевым собственным числом [22]. В координатном представ— 
лении уравнение ahy)=0 имест вид xy+ hdyldx=0, откуда yecexp{—x2/(2h)]. Далее 
строятся состояния, смещенные по импульсу и координате на произвольные вели— 
чины р U X как результат действия операторов сдвига: [y, )=exp(i(px—xp)/h)ly). 

Изящное обобщение, пригодное для отображений на торе, принадлежит 
Сарасено [23,6]. Он предложил ввести разностный аналог оператора @а и 
определить центрированное в начале координат состояние уравнением, которое B 
наших обозначениях имеет ВиИд 
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(А-А+ +i(K—K+))ly)=0. (5.11) 

Состояния, смещенные на P позиций по импульсу и О позиций по координате могут 

быть получены с помощью оператора K+CAP. Подействовав этим оператором на 
уравнение (5.11) и учитывая коммутационное соотношение (3.6), можно убедиться, 
что смещенное состояние №ро)=К+ОАРАу) удовлетворяет уравнению 

[о-бА-аобА+ + (0P K— оРК+)|уро)=0. (5.12) 

Обратимся теперь к общей схеме, сформулированной B начале раздела. Если 
в начальный момент вектор состояния удовлетворяет уравнению (5.11)}. то 
состояние в момент времсни & будет получаться U3 уравпения 

[А (Ю“А*’(д)—і-!([‹„)—К“‘”(ЮЛ I\W)):O (5 13) 

Если нас интересует случай смещенного пакста, то подействуем на это уравнсние 
оператором K*Q(k)AP(k). HOCKOJH)K)’ коммутационные соотношения для [{(Ю И !Ё(Ю 

такие же, как для операторов Ки А‚ получаемое уравнение совпадает по структуре 

с (5.12): 

[(X_Q/l(k)_aQA*"(/\-)‘f'l(QZ_PI((L.)—U,PK*’(\/\.))]I\ (’A.)*QAP(/\A)I\IIU"»:O. (514) 

Следовательно, собственный вектор оператора, фигурирующего в (5.12). 

Wpo)=K+CAFly), в момент времени & перейдет в собственный вектор оператора 

(5.14), №ро®)=К+0 1y AP ). 

Можно показать, что решсние |№ро()) с точностью до фазового множителя 

находится из решения для центрированного пакета Пу() сдвигом по координатс H 

импульсу на величины О© и Р®, которые получаются на Ak—OM шаге итераций 

классического отображения, определенного на дискретной решетке NxV. 

Докажем последнее утверждение, являющееся частным случаем теоремы 
Эренфеста. для отображения кота Арнольда. ©С помощью — операторного 

отображения (3.18) получаем K+C AP =[A+(K+)2)[AK+|P. Любые перестановки 
операторов в правой части последнего уравнения приводит только к появлению 
фазового множителя (B силу коммутационного соотношения (3.6)), так что 

К+о А7 1y =(фазовый множитель)-(К+)Р+20Д7-0= 

=(фазовый множитель)-(К+)0Фд Р, 

Отсюда ясно, что справедливо представление 

К+о(А?(у=(фазовый множитель)-(К+)0ОДРО), 

где РО и О0 удовлетворяют рекуррентным уравнециям 

Рео=РО+00, О0п=РО+200 (mod N). (5.15) 

Тем самым доказательство завершено: 

М№ео)=К+0 1y AP 15y ®)=(chaz0Bbi множитель):(К+)0ФДР" (k). 

Обсудим теперь процесс расплывания центрированного пакста, заданного 
уравнением (5.11). В координатном представлении это уравненис выглядит как 
набор соотношений, связывающих значения волновой ©Ффункции в различных 
пространственных узлах п1=0,...№-1: 

Ми = Миа +2‘q;,,,sin(2nmN—‘) :O, (516) 

ь
 
=



где подразумевается условие цикличности Y, v=V,,. Произвольно полагая wo=1, 
можно найти остальные VW, из системы N—1 линейных уравнений, а затем 

отнормировать решение на единицу ((wly)=1). При N—oo построенное таким 
образом состояние в области своей преимущественной локализации приближается 
K гауссиане, поскольку в этом пределе исчезает различие между разностным 
сператором Сарасено и дифференциальным оператором 4. Всли считать, что 
значения индекса т отнесены K интервалу, центрированному B нуле, то область 
локализадии дается неравенством lml< N2, 

Обратимся к уравнению (5.13), определяющему состояние в MOMEHT времени 
К, и перепишем его в явном виде, используя представление матричных элементов 
операторов 

(А(/())т_.н :б…_'‚_("„оизпн.ъ‚ (А+(1\"))т‚п =бт_п+40(_/]…нит (517) 

(К(/‹))т.п :б‚…__&по(гпн'‚ (К+(/с))/17.:1 :бт,н+50(‘_…’ы '. (5 1 8) 

В качестве параметров s,..,» сюда должны быть подставлены — величины, 
отвечающие k—My шагу итераций соответствующего отображения в обратном 
времени (для кота Арнольда см. формулы (3.13), (3.16)). В результате получим 

W’”Har(m-kv)fl' — Yy O+ i‘L’n:—:,“"””"“ —[:\lll,1+qO(P("’+fl)+H :0› (51 9) 

где вновь считается наложенным условие VY, .y=V,,. Задача вычисления волновой 

функции в пространственных узлах сводится тем самым к решению однородной 
системы линейных алгебраических уравнений. Амплитудный множитель находится 

M3 услховия нормировки, а фаза остается неопределенной, что, впрочем, чаще всего 
несущественно. Технически решение системы уравнений облегчается тем, что 
задающая ее матрица сильно разрежена. 

Пусть мы интересуемся начальной стадией эволюции пакета в ситуации, 
когда N велико, а ширина пакета по пространственному индексу m порядка М. 
Тогда волновую ' функцию можно рассматривать как  зависящую — квази— 

непрерывным образом от пространственной переменной 71, и это положение 
сохранится, очевидно, в течение некоторого времени. Будем относить значения 

индексов K интервалу, центрированному B нуле. Учитывая члены порядка 1/(М)!2, 
полагаем 

М пн Q)0 = учнОудт + [(2т )/М пп (5.20) 

и аналогично для остальных членов в формуле (5.19). В результате получаем 
уравнение 

oylom=(—n/N)-[2m(p+ir)l(s—ig) ). (5.21) 
откуда 

\=С exp{(=n/N)-[(p+ir)m2/(s—iq)]]}. (5.22) 

Вспомним, что стандартное выражение для волновой функции в виде 

гауссова пакета имеет вид [22] 

y(x)=[ReA/(nh)}4exp|-Ax?(2])] = const-exp[—Ax2/(2h)]. (5.23) 

Действительная часть параметра A задает ширину пакета по координате Ax~ 

-1/(ВсА)!2, а ширина по импульсу выражается как Ар=1/[Ке(1/А)]}2. Значение А=1 
отвечает «пакету минимальной неопределенности», в наибольшей возможной 
степени локализованному и 110 координате, и по импульсу. 

Сопоставляя выражения (5.22) и (5.23) и полагая hi=1/(2nN), x=m/N, находим



A=(p+ir)l(s—ig). (5.24) 

Выполним один шаг итераций (3.13) в обратном времени и подставим новые 
значения переменных B выражение для А. Результат можно представить в Виде 
комплексного рекуррентного отображения для A, если учесть, что вследствие 
(3.13) и начальных условий (3.12), в процессе динамики остается в силе равенство 
r=q. Итак, имеем: 

A'=(puyrigay) (say—irgy)=lp—r + (а-5)|25-а+(т-р)]=(А - i)/ (2+iA). (5.25) 

БВсли в качестве исходного задать некоторое действительное значение 
параметра А>0 и итерировать формально отображение A'=(A-)/(2+iA). то 
решение сходится к неподвижной точке А=/(1--512)/2. Закон сходимости MOKHO 
выяснить, линеаризовав отображение вблизи этой точки: 

A=i(1-512)/2 + C-Ak, (5.26) 

Здесь & обозначает номер итерации, A=(3-512)/(3+512)=A,-2, A, — старшее 
собственное число матрицы отображения (см. раздел 1), а вещественная константа 
С зависит от начального условия (B частности, для Ау=! получается C=1.382). 

Таким образом, в асимптотике действительная часть параметра А убывает по 
закону A,-%. Следовательно, ширина пакета нарастает экспоненциально: Ay~ 

~1/(ReA) 2~ k=exp(Ak), и этот рост характеризуется не чем HHbIM  как 
положительным ляпуновским показателем классического отображения кота 
Арнольда Л,. (Заметим, что по TAKOMY же закону увсличивается ширина пакета и в 
импульсном представлении. В этом можно убедиться, вычислив действительную 
часть обратной величины |/А,.) Время (число итераций), за которое ширина 

пакета сравняется с пространственным периодом на торе, можно оценить W3 
условия N~Ni2exp(A,Ty,,), что дает Ty,~(1/2)(logN)/A,=—(1/2)log(2nh)/A,. 210 
характерное время зависит от квантового параметра логарифмически, и поэтому 
при больших N оно всегда очень мало по сравнению с квантовым периодом. 

На рис. 7 показан вид гауссова пакета на той стадии эволюции, когда 
коэффициент перед квадратичным членом в показателе экспоненты уже очень 
близок к /(1-5!2)/2. Вычислим локальное волновое число В вблизи некоторой 

точки Xy Полагая х=х+Ах, имеем 

cxp(—ix2(1-512)/4) =const-exp(—(iI/ ) (xs(1— 512)/2)Ax), 

то есть P=x,(512—=1)/(2h). Этому волновому числу COOTBCTCTBYET величина импульса 

p=Ph=xy(512—-1)/2. Таким образом, соотношение между координатой и локальным 
импульсом в точности такое же как B 

Та У A классикс ВДОЛЬ направления 
неустойчивого — собственного — вектора 
отображения кота Арнольла. 

Попытаемся наглядно представить 
квантовую динамику B виде, допускаю- 
щем прямое сравнение с классической 
картинкой эволюции изображения кота 
на фазовой плоскости. 

Пля квантовой системы Ффазовую 
плоскость можно мыслить как упоря- 
доченный набор ячсек размера ApAx—h. и 

Рис. 7. Вид гауссова волнового пакета после  говорить об амплитуде пребывания в той 
нескольких первых шагов эволюции, описы- или  иной  ячейке.  Определить — эту 
BacMOH квантовым оТ Обрд/КЁНИСМ кота @ й . 

Арнольда. когда ширина пакета сще мала no  аМПЛИ'Туду можно как интеграл нерекры- 
сравнению с периодом на торе 

g 
<



Puc. 8. Процесс расплывания гауссова волнового пакета для отображения кота Арнолыа: 
эволюция распределения Хусими при N=131. Тона серого цвета кодируют вероятность 
пребывания системы в данной ячейке фазового пространства на плоскости (р, х). Начало 
координат располагается в центре квадрата. Динамику распределения Хусими можно сравнить с 
рис. 2, а, который отвечает классическому отображению 

тия волновой функции [y) с когерентным состоянием \у,), центрированным B 

данной точке (p,x). Построенная таким образом функция двух переменных /4(р,х)= 

=К(у„!у)Р называется распределением Хусими (Husimi distribution) [6]. Ясно, что в 

классическом пределе, когда В-›0, гауссов пакет минимальной неопределенности 
превращается B ДС]П›Т'&—СРУНКЦИЮ‚ а распределение ХУСИМИ — B классическую 

функцию распределения. : 
Цля систем на Tope обобщение распределения  Хусими  получается 

естественным образом при использовании когерентных состояний в модификации 
Сарасено. На рис. 8 показана эволюция BO времени функции Хусими для 
квантового отображения кота Арнольда. Начальное состояние отвечает гауссову 
волновому пакету максимальной локализации. Различные тона серого цвета 
кодируют уровень функции /4(р.х). Начальная стадия эволюции гауссова пакета 
демонстрирует очевидное сходство с картинками преобразования изображения 
кота в классическом случае (см. рис. 2, а). Когда ширина пакета становится 
болыше пространственного периода, волновая функция \у(х) формируется как 
результат наложения и ивтерференции «хвостов», протянувшихся из разных 
периодов: в произвольной точке х она вычисляется как сумма комплексных 
амплитуд, отвечающих всем точкам пересечения «хвостов» с линией x=const. Как 
результат этой квантовой интерференции, на последних «кадрах» рис. 8 можно 

видеть чередующиеся светлые и темные пятна. 
На рис. 9 для сравнения иллюстрируется эволюция распределения Хусими 

для отображения параболического типа. В этом случае расплывание пакета имсет 
место только по пространственной координате, тогда как U0 импульсу его ширина 
остается неизменной на всем протяжении квантового периода.



X 

Puc. 9. Процесс расплывания гауссова волнового пакета для параболического отображения, 
описывающего свободное движение на торе: эволюция распределения Хусими при N=131. Тона 

серого цвета кодируют вероятность пребывания системы в данной ячейке фазового пространства 
на плоскости (р, х). Начало координат располагается в центре квадрата. Динамику раслределения 
Хусими можно сравнить с рис. 2, 6. который отвечает классическому отображению 

6. Функция Вигнера 

Говоря о классической динамике вообще и O динамическом хаосе в 
частности, мы постоянно опираемся на понятие фазового пространства. Поведение 
индивидуальной системы представлястся движением изображающей точки IO 
фазовой траектории. Динамика ансамбля (множества невзаимодействующих 
систем, различающихся начальными условиями) интерпретируется как эволюция 
облака изображающих точек в фазовом пространстве и описывается функцией 
распрелеления. уравнение для которой известпо в классической механике как 
уравнение Лиувилля. 

В силу принципа нсопределенности, в квантовой тсории нелъьзя использовать 
функцию распределения /(р.х), поскольку мы не вправе конструировать ансамбль 
из систем, обладающих одновременно заданными импульсом и координатой. Одна 
возможность ввести в рассмотрение квантовый аналог функции распределения 
обсуждалась в предыдущем разделе и основана на использовании распредсления 
Хусими. Пругая возможность была B свое время предложена Вигнером и состойт B 
TOM, что вводится функция переменных р н X, выражающаяся через волновую 
функцию W(X) следующим образом [6, 24}; 
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W(p ,x):(nli)—lj Y(x=x )y (x+x")exp[2(i/ B)px'|dx. (6.1) 

Используя операторы сдвига по координате и импульсу и оператор инверсии 
R[y(x)]=y(~x), это определение можно переписать в обозначениях Дирака 

W(p.x)=(nh)-Xylexp(—ixp/K)exp(ixp/I)Rlexp(-ipx/R)exp(ipx/R)ly). — (6.2) 

Как нетрудно проверить, величина W(p,x) всегда действительна. 
Функция Вигнера широко используется в статистической физике, занимая в 

тсории квантовых систем TO место, какое в классической статистике занимала 
функция распределения [24]. Основанием служит TO, что интегрирование функции 
Вигнера по первому аргументу приводит к распределению вероятностей для 
координаты, а по второму — для импульса: 

Wpx)dp= @k, Wede=lyp). ° — (6.3) 

Функцию Вигнера Bce же нельзя рассматривать как функцию распределения, 
поскольку OHA может принимать отрицательные значения. 

Функция Вигнера — очень полезный инструмент исследования соответствия 
между квантовой и классической теорией. В контексте задачи о динамике на торе 
она была введена B работе Ханнэя и Берри [15] и позднее использовалась многими 
авторами [17, 25-27]. B этом разделе мы обсудим взаимосвязь между описанием 
динамики отображений на торе с помощью функции Вигнера и формализмом 
операторов Вейля — Гейзенберга. 

Если на волновую функцию наложены соответствующие тору условия 
периодичности, TO, как показано B разделе 2, она имеет вид «гребенки» из дельта— 

ма 
функций W(x)=Z o\, (x~mL/N), где L, — пространственный период, а % () 

обозначает последовательность дельта-функций ¢ этим периодом. Подставляя это 
выражение в (6.1), получим 

о м-1 м-) 
W (p,x)z(n]i)~1fclx’ Zoe0 Эоа 8, (x=x'—sLJIN)S, (x+x'—rL/N)] expRipx'/h). (6.4) 

Условис равенства нулю аргумента каждой из дельта-функций определяет 
семейство параллельных прямых на плоскости (хух’) (рис. 10). Произведение 
дельта-функций будет ненулевым B 
узлах сетки, образованной этими двумя х —> 
семействами прямых. Как видно из L) ~ у^ /\ - 
рисунка, B проекции на ось X TOUKH >/ > >\/ /\ N 
пересечения располагаются с шагом й >{ N\ „ 
L /2N, то ссть вдвое чаще, чем дельта- ^ и \< ! 

пики, образующие волновую функцию /<\ / NN ра 

\. Поскольку выражение в квадратных T . N ‚ 

скобках имеет по х’ период L, его х’ /‘\ ^` /‚›-\\\/ 

фурье-образ, который как раз и есть _ /\\ ‚ P 
функция Вигнера W, будет выглядеть ‚ )\/\ ы ‹ 
как набор дельта-пиков с шагом по _ ^ 

волновому числу AB=2n/L,, где B=2p/h. AN )< ” \/ 
Подставляя в соответствии с (2.2) / ^^ 

h=L,L J(2nN), находим, что шаг по 0 
импульсу  Ap=hAR/2=L,/(2N), то есть Ly/N 

ы Й ИИ ‚ 
ВДВО(Ё меньше, чем у {З‚ОЛНОВО} С%)_[УНКЦ Рис. 10. K построению функции Вигнера для 
в импульсном представленни. МолагаЯ  стображений на торе: в проекции на ось х узлы 
теперь Ь‚‹:ЬР:Ъ заключаем, ЧТО сетки, образованной — перссечениями — прямых, 

функция Вигнера в единичном квадрате - располагаются с шагом /,/2М 
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на плоскости (X, p) представляется набором дельта-функций, расположенных B 
узлах квадратной решетки с шагом 1/(2N). Задать такую функцию можно таблицей 
13 2Мх2М действительных чисел, определяющих амплитуды дельта-пиков. 

Если мы разрешим индексам k и i принимать делые и полуцелые 3HAUCHMA 

(0, 1/2, 1, 3/2,..N-1/2), то можно записать 

W(p.x)=2; Z,w(k,m)8;(p—kIN)8,(x—mIN). (6.5) 

Набор действительных чисел w(k,) естественно рассматривать как дискретную 
версию функции Вигнера. Через вектор состояния Y, она выражается посредством 
соотношения 

w(k,m)=1/(2N) Ха оао eaeXp{dnike/N), (6.6) 

где суммирование ведется по делым и полуцелым & от O ло N-1/2, причем для 
полуцелых значений индекса (т+е) величина Y считается  равной  нулю. 
Суммирование w(k,m) по & дает распределение вероятностей в косординатном, а 
суммирование по /11 — в импульсном представлении: 

м- ‚ — 
Эо wlkm)=ly, 12 (m — целое) и O (т — полупелое), (6.7) 

N-1 ~ _ 
Z, 0 wlkam)=ly 2 (k — целое) и 0 (k — полупелое). (6.8} 

Выразчм функцию Вигнера черсз операторы 4 и K, то есть получим 
дискретный аналог соотношения (6.2). Проблема в том, что операторы K и А 
определены для М-мерных векторов, тогда как каждый из аргументов функции 
Вигнера принимает 2М возможных значений. Чтобы обойти 3Ty трудность, 
вышпишем отдельно соотношения для каждой H3 четырех возможных комбинаций 
целых и полуцелых индексов, введя четыре разновидности операторов инверсии. 
Итак, полагаем 

w(P,0) = wo(P,0) = (yl (K+)QAPIR | (A+)PKChy)/2N, 

w(P,Q+1/2) =wy(P.Q) = (wl (K+)2APIR | (A+)PKQly)/2N, o 

WP+1/2,0)  =ws(P.Q) = (yl (КНВАЛВЫ (A+)PKOhY/2N, 9) 

w(P+1/2,0+1/2) =w3(P,0) = (wl (K+)CAPIR;| (АН)РКОВУ2М, 

где операторы Ё, имеют следующие матричные элемснты: 

(Ro)um=8, e (R1)pu=B 15 
(6.10) 

(ВЕ)пг:я:Ои”бпъ—пе (\К})„…:Ш”’_ “25»›‚—:1+1 . 

Как можно проверить, соотношения (6.9) эквивалентны определению (6.6). 
Пусть теперь эволюция вектора состояния hy) во времени задается 

унитарным оператором U, отвечающим какому-либо из линейных отображений 
тора. Как будет эволюционировать функция Вигнера? На следующем шаге по 
времени будем иметь, очевидно, 

wi(P.O)=(ulU+(K+)APIR (A )P KOUNY2N,  j=0,...3, (6.11) 

или, с учетом соотношений (4.4)



wi(P.Q)=(yl(K*)CAPU-RJU(A+)PR 2NN, j=0,...3. (6.12) 

Ограничимся для определенности отображением кота Арнольда и подставим 

K'=KA, A’=AKA. Используя коммутационные соотношения (3.0) для перестановки 
опсраторов, в результате получим5 

wi(P.Q)=(yl(A+K+)2(AKA)PU+R|U(A+K+A+)P(KA)Chy)/2N= 

=(yl(K+)0-PA2P-QU+IR JU(A+)2-0KQ-Ply)/2N. (6.13) 

Цалее используя явный вид матрицы U для отображения кота Арнольда 
(4.13), можно проверить, что 

L7+R()U:A+R1A, I]““RlU:K*‘(A*’)ZRzAZK, U+R2U:R0, U:‘R3 U=A+R3A › (614) 

так что из соотношений (6.13) следует: 

wo'(P,Q) = w(2P-Q-1, О-Р), 

wi'(P,Q) = wy(2P-0-2, О-Р+1), 
(6.15) 

M‘)Z,<P9Q) = W’()(ZP_Q, Q—P)a 

Wy (P.Q) = wy(2P-0-1, Q-P), 
В обозначениях, подразумсвающих использование полуцелых индексов, имсем 

w' (k) =w(2k-m—1/2, m-k). (6.16) 

Результат приведенных выкладок можно резюмировать таким образом, что 

значения функции Вигнера, приписанные узлам  решетки 2Мх2М, просто 

персносятся без изменения вдоль классических траекторий, порождаемых на этой 
решетке отображением вида 

k'=k+m~+1/2, m’=k+2m (mod N). (6.17) 

(Заметим, что добавка 1/2, возникшая в уравнении для & B KAKOM—TO смысле 

несущественна, поскольку устраняется сдвигом начала отсчета по k и иг m—m—1/2, 

k—>k+1/2. Такое переопределение координат неудобно, поскольку приводит K 

необходимости работать с полуделыми индексами, но зато восстанавливает полное 
соответствие с формой классического отображения.) Резулътат аналогичный 
(6. ]7) для квантуемых по Ханнэю — Берри сформулировдн в работе [15], а для 
отображения кота Арнольда при четных N -- в 

На рис. 11 и 12 показано, как Эвошоционирует во времени функция Вигнера 
при задании в качестве начального состояния гауссова пакета. В обоих случаях 
эволюция — периодическая: BO3BPAT K исходному — состоянию — наступает, 
соответственно, через 14 и 13 шагов. Однако промежуточные состояния, 
реализующиеся на протяжении периода, различаются: для гиперболического 
отображения заметно отличные от нуля значения функции Вигнера более или 
менее разбредаются по всей площади квадрата, тогда как для параболического они 
остаются в определенной полосе конечной ширины по импульсу. 

5 Фактически процедура перестановки выполняется тривиальным образом, поскольку 

появляющиеся в ходе нее слева M справа от оператора R множители @ в различной степени 

компенсируют друг друга.



Рис. 11. Динамика функции Вигнера для отображения кота Арнольда при N=13. Квантовый 
период возврата Т(М)=14. В качестве начального состояния задан гауссов волновой пакет, 
центрированный B начале координат 

Рис. 12. Динамика функции Вигнера для отображения параболического тила, описывающего 

свободное движение на "торе, при N=13. Квавтовый пернод возврата T(N)=13. В качестве 
начального состояния задан гауссов волновой пакет. центрированный в начеле координат. 
Обратите внимание, что по импульсу занимаемый пакетом интервал остается неизменным B 
процессе динамики 
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7. Cl’[CKTp КВЗЗИЭН8РГИЙ и собственные векторы оператора эвелюции 

Уравнение Шредингера квантовой системы, параметры которой постоянны 
во времени, а динамика происходит в пространственно ограниченной области, 
приводит к дискретному спектру собственных чисел — разрешенных значений 
энергии, 

Для систем, параметры которых периодически изменяются BO времени, и пля 
систем с дискретным временем, вместо энергетического спектра говорят O 
спектре квазиэнергий. Пусть эволюция вектора состояния за период T дается 
унитарным оператором U. Поставим для этого оператора задачу на собственные 
векторы и собственные значения и запишем Ulyg)=Alv). Поскольку оператор 
унитарный, его собственные числа по модулю обязаны быть единичными, и можно 
положить A=exp(iEt/l). Величина Е, есть квазиэнергия. собственного состояния 

Л,. Ясно, что она определена ¢ точностью до постоянной добавки Эл Н/т. Отметим 
уместную здесь аналогию с квазиимпульсом, который вводят BMECTO обычного 
имнульса при анализе сред с пространственно периодической структурой 
(например, в физике твердого тела). Квазиимпульс также определен с точностью 
до постоянной добавки 21th/d, где d — пространственный период. 

s отображений, т — это один шаг дискретного времени. Поскольку 
оператор эволюции для отображения на торе представлясется матрицей размера 
МхМ, спектр должен содержать N собственных чисел )„=ехр(19,), среди которых, 

одвако, могут быть вырожденные. Величины @,, которые и играют роль 
квазиэнергии состояний, называют иногда «собственными углами» (eigenangles). 
Вектор ;) будет также собственным вектором оператора Uk, собственное число 
которого М/. Наличие квантового периода Т(М) означает, что UIW=1. Поэтому 
АС=1, и все собственные числа Ay обязаны быть комплексными корнями степени 

Г(М) из единицы, TO есть принадлежать множеству {1, @, wl.., oTW-1}, где o= 
=ехр[2л//Т(М)|. Вопрос состоит только в TOM, какие K3 этого множества корней 
представлены в спектре и с какой кратностью. 

След матрицы U равен, как известно, сумме всех €€ собственных значений, а 
для матрицы * он дается суммой их &-ых степеней: 

Se=Tr(UN)=E0g ). (7.1) 
Последовательность 5,‚ которая получается, когда индекс & пробегает 

всевозможные целые значения, будем называть Итасе-последовательностью. По 
индексу & она имеет период Т(№) и допускает поэтому представление в виде ряда 

Фурье: ‘ 
т ° Т- 

8=, iexp(2inrk/py=Z,.o n,w*. (7.2) 

Сравнивая (7.1) и (7.2), видим, что коэффициент при 7'—OM члене разложения 

т(М)-1 
n=(UT(N))Z o Siexp(—-2inr ki T(N)) (7.3) 

представляет собой кратность собственного значения @ в спектре оператора 
эволюции (разумеется, все л‚ обязаны быть неотрицательными целыми числами). 
'Гаким образом, чтобы получить спектр оператора эволюции достаточно найти 
‘гасо-последовательность и подвергнуть ее дискретному преобразованию Фурье. 

«Лобовой» способ состоит в TOM, чтобы вычислять степени матрицы U, 
подсчитывая $, как сумму диагональных элементов. Один быстрый алгоритм 
может быть основан на процедуре нахождения матрицы оператора Uk, (см. сноску 
2), другой — на соотношениях, связывающих асе-последовательность и 
периодические ОрбИТЬТ классичесского отображения (СЬ{. в этой связи работы 
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Рис. 13. Днаграммы, представляющие (тасе-последовательность н спектры «собственных углов» 

для KBAHTOBOTO отображенпя кота АРНОЛЬЛЗ при нечетных М от 3 до 21 

Китинга [30, 31] и приложение ©С). На рис. 13 приводятся диаграммы, 
представляющие — Шасе-последовательности — квантового — отображения — кота 
Арнольда для нескольких неболыших N, а также спектры квазнэнергий или 
«собственные углы». На рис. 14, а показано, как зависят от числа М спектры 
квазиэнергий для отображения кота Арнольда. 

На рис. 14, 6, в приводятся аналогичные данные для отображений с 
регулярной динамикой — параболического и эллиптического типа. Для 

i 

| 

3 N 64 3 N 

а 6 в 

Рис. 14. Слектр квазиэнергий (или «собственных углов») для квантового отображения кота 
Арнольда (а), для отображения параболического ‘ипа, описывающего свободное движение (5), и 
для отображения эллиптического типа (в). Кратность вырождения собственных чисел обозначена 
количеством черточек, проходящих Yepe3 данную точку. Представлены данные как для нечетных 
М {отображения. определенные в основном "тексте), так и для четных (отображения, 

определенные в приложении)



параболического отображения (3.20) матрица оператора Ээволюции № (4.15) 
диггонализуется при переходе в импульсное представленис и принимает вид 
матрицы \ (см.(4.14)). Поэтому собственные функции задаются собственными 

векторами  оператора импульса, (у,)„е<схр(2лйт$/№), а собственные  числа 

выражаются как Ag=exp{in((s2+s+1/4)IN-1/4)}, где 5=0,...„М-1. Для эллиптического 
отображения (3.22) оператор эволюции совпадает с оператором обратного 
дискретного преобразования Фурье. Задача на  собственные — векторы и 
собетвенные значения допускает B этом случае полный анализ, изложенный в [28]. 
При любом N имеется четыре собственных числа 1, i, —1, —А кратность 
вырождения которых равна, соответственно, [(N+4)/4], [(N+1)/4], [(N+2)/4] и 
[(№-1)/4], где квадратные скобки обозначают пелую часть числа. 

На рис. 14 в распределении уровней квазиэнергии отображений с регулярной 
дивамикой можно различить определенные упорядоченные структуры, тогда как 
для отображения кота Арнольда («хаос») их не видно. 

Следующий интересный вопрос COCTOHT в TOM, не проявится ли различие 
между отображениями с регулярной и хаотической динамикой в структуре 
собственных векторов оператора эволюции. Возьмем какой-нибудь пробный 

вектор |№о) и, действуя на него оператором эволюции Ё, построим последователь— 

м 

ность |у)=К\уо). Благодаря тому, что имеет место период возврата T(N), эта 
последовательность представляется рядом Фурье: 

T(N)-1 — . . 
o= 2o IWiexp(2misk). (7.4) 

B качестве «коэффициентов» B этом выражении фигурируют (ненормированные) 

собственные векторы оператора эволюции [W,). Вектору 

— TN)-1 ‚ ‚ 
o= (1/T(N))Zey Iwoexp(—2misk) (7.5) 

отвечаст собственное значение A, =eXp(21nis), а если для некоторого з число exp(27is) 

в спектре не представлено, TO соответствующий член суммы обращается в нульб. 
Привлекательна идея задать пробный вектор так, чтобы результат действия 

оператора эволюции выражался аналитически. Эта идея была предложена и 
реализована Экхардом [18] для вычисления и анализа собственных векторов 
ливейных отображений на ‘торе, принадлежащих к классу квантуемых ло Ханвэю — 
Берри. Для рассматриваемого нами отображения кота Арнольда метод нуждается в 
некоторой модификации. Как и в работе Экхарха, ограничимся случаем простых М. 

Рассмотрим вектор 

W, =0-¢xp| (2mi/N)(am2+bm-+c) | =0 o +bure, (7.6) 

rie o=*1, а параметры а, b, ¢ — целые, определенные по модулю N, и подействуем 
на него оператором эволюции (4.13). Если a#--1 (той N), то сумма вычисляется с 
использованием формул Гаусса, и результат представляется вновь в виде (7.6). 

Если, однако, a=—1 (mod N), то результирующий вектор Vi, c<8,, ТО есть не 

описывается формулой (7.6). С другой стороны, будучи подвергнутым действию 
оператора эволюции, этот вектор снова принимает вид (7.6). Поэтому его 
целесообразно включить в класс допустимых векторов. Для этого дополним 
множество разрешенных значений параметра а {0, 1,..., М-1} еще одним 

символом 0 («обратный нуль») и положим. 

6 Пля каждого присутствующего в спектре числа A; рассмотренная процедура позволяет 
получить один собственный вектор M3 одного пробного вектора. При наличии вырождения для 
пнахождения  BCEX  имеющихся  собственных  BEKTOPOB  процедуру — приходится  повторять с 
использованием других пробных векторов столько раз, какова кратность вырождения. Затем 
полученные собственные векторы можно ортогонализировать по методу Грама - Шмидта. 
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v, =F(m; a,b,c,0), (7.7) 
где 

с\№-1Зехр| (2ri/N) (am2+bm+c) |=cN-12gan+bnse, q=0,1,....N-1, 
F(m;ab,c,0) = . _ 

o-exp(2nic/N)3,,, a=0. 

Теперь действие оператора эволюции можно рассматривать просто как 

пересчет определяющих вектор состояния параметров (а. b, ¢, с) по следующим 
правилам. 

— ‚ ( 2(1+а) 
Ecm а# О и а#М-1, то ¢'= N ‚ 

a=2(1-2(1+a)), b'=2+2(1+a)b, c'=c+(1-N2)/8-2:2(1+a)b> (mod N). 

Если a=N-1, то 

о’=с, a’=0, b'=b, c’=c+(h2+b)/2 (mod N). 

Если а=б‚ то 

o'=c(-1)-02, а=2, b'=2-b, ’=c+b2~[N/4] (mod N). 

Черта сверху обозначает число обратное K данному целому по модулю N, то есть 
2 xx=1 (mod N), B частности 2=(N+1)/2. Согласно малой теореме Ферма, х = х\-2 

N 
от того, существует или нет такое целое, квадрат которого равен х по модулю N. 

Уравнение для параметра а не зависит от остальных соотношений. Оно 
порождает периодическую динамику, хотя бы по той причине, что множество 
значений а конечно. Уравнения для остальных параметров b, ¢, с содержат а B 
качестве — «внешнего — периодического — воздействия». — Численные — расчеты 
показывают, что в зависимости от N и от начальных значений а и b может 
реализоваться период T(N), Т(М)/2 и 1. Впрочем, в любом случае начальный набор 
параметров воспроизводится через каждые Г(М) шагов. 

Схема итераций для параметров (a, b, ¢, с) легко реализуется на компьютере. 
Это позволяет даже при очень больших простых N получать собственные векторы 
с помощью соотношения (7.5), KOTOPOE переписывается B виде 

(N — простое). Выражснис( )есть символ Лежандра, это 1 или —1 в зависимости 

I\Nyx):(l/T)ZZ:(iF (т ag,by.c0)exp(—2nisk/T), ‚ (7.8) 

rge Г -— соответствующий период. 

На рис. 15 показано, Kak  выглядит  распредсление - амплитуд IO 
пространственной — координате W распределение  Хусими  для — нескольких 
собственных векторов при достаточно болышом М. В случае, когда собствсенный 
вектор получается из цикла периода 1, его структура сравнительно проста, 
поскольку задается выражением вида (7.6). Для собственных  векторов. 
получасмых из циклов периода Т(М) и Т(М)/2 характерно пространственнос 
распределение, похожее на  реализацию — некоррелированной — KOMTUICKCHOH 
случайной последовательности. Для сравнения на рис.16 и 17 показаны примеры 
собственных — векторов  для — отображений ¢ регулярной — динамикой — — 
параболического и эллиптического типа. (Следует заметить, что в последнем 
случае, в силу наличия вырождения высокой кратности, имеется значительный 
произвол B выборе вида собственных векторов.)



Рис. 15. Пространственная CTPYKTYpa HECKONbKHMX — собственных — векторов  (creBa) и 
ссответствующие им распределения Хусими на плоскости р=Р/М, х=0/М для квантового 
отображения кота Арнольда при М=131. Начало координат на диаграммях распределения Хусими 
в центре  квадрата. Собственные — векторы  (а)-(в), характеризующиеся — хаотическим 
распределением, получены из цикла периода Т(М)/2=65 при подстановке формы (7.6) с 
начальными значениями а=1 и 6=0. Вектор (2) имсст рсгулярную структуру и непосредственно 

выражается формулой (7.6) с a=71, 5=6
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Рис. 16. Пространственная структура двух собственных векторов (слева) и соотвотствующие им 
распределения Хусими на плоскости p=P/N, x=Q/N для квантового отображения параболического 
типа (свободное движенис на торе) при №=131. Каждый собственный вектор одновременно 
является собственным вектором оператора К, то ссть характеризуется опредсленным импульсом. 
Показаны векторы с P=3 и 30 (mod N) 

В работе Экхарда оставлен открытым вопрос O взаимосвязи между циклами 
при итерациях переменной а и периодическими ©орбитами  классического 
отображения. Чтобы прояснить этот MOMEHT, заметим, что вектор состояния (7.6) 
можно представить как собственный вектор для оператора, построенного из 
операторов Вейля — Гейзенберга, а именно 

(K+)oArlyny=atly). (7.9) 

где L — некоторое целое число. Используя определение операторов K и А (3.10), 
переписываем это уравнение B явном виде: 

Ч!,„_СОС’О(”’"О.’:СХЬЧ!„,‚ (710) 

причем =V, B силу условия цикличности. Подставляя \, eco@ic +bm+c ВИДИМ, ТО 
следует пПолоЖИтЬ 

а=20Р, b=-2P-LQ (mod №). (7.11) 

Иными словами, состояние с заданными а H D получится, если 

L=0, О=-Ба. P=-2b (mod N). (7.12) 

Чтобы получить состояние с а=0, полагаем Q=0, тогда v,,e<3,,, И b=LP. 

Далее, следуя схеме рассуждений раздела S5, всктор состояния в MOMCHT 
времени / можно найти как собственный вектор оператора (К*…)@А/’…‚ где нижний 

индекс K нумерует последовательность операторов, порождасмую отображением 
(3.18). Как уже было показано, с точностью до фазового множителя, оператор 
(K*1)2(A )P совпадает с (KM)CYAPY, где PO и О0 — подчиняются классическому 

отображению кота Арнольда на дискретной решетке размера Мх (5.15). Каждой 

h=1 A=—i h=-1 М = 7 

й : 6 в г 

Рис. 17. Вид распределения Хусими для четырех векторов, представленных в разложении гауссова 
пакета минимальной ширины, совершаюжщего движение ло замкнутой орбите, стартующей из 
точки P=7, Q=3 в случае отображения эллиптического типа (обратное преобразование Фурье), 
N=131



@ 6 

Ряс. 18. K пояснению взаимосвязи между циклами, порождаемыми уравнением для параметра а B 
мэтоде Экхарда и периодическими орбитами классического отображения на дискретной решетке 

NxN. Каждой ячейке решетки (P, ) приписано значение g=2QP (той N), а обход ячеек 

осуществляется по правилам итераций классического отображения. Для N=11 показаны две 
србиты, отвечающие периоду 1 (а) и 5 (6) в зволюции параметра ¢ 

точке этой решетки соответствует — определенное значение параметра а=20ОР 
(рис. 18). Периодическая орбита отображения (5.15) посещает определенные 
тоски на решетке, обеспечивая соответствующее периодическое изменение 
величины а. 

8. Заключение и краткий обзор 

Изложенный материал, несомненно, позволяет составить определенное 
впечатление о характере квантовой динамики модельных отображений на торе, а 
также ощутить TC различия, КОТОРЬ16 имеют место между системами с peryJIflpHbIM 

и хаотическим поведением. Все же говорить о достижении полной ясности И 
определенности в этих вопросах пока еще трудно. Тем He менсе, анализ 
рассмотренных модельных CUCTEM, несомненно, служит хорошим введением B 
проблематику квантового хаоса и подготавливает OCHOBY для обращения к более 
сложным задачам. 

К сожалению, до настоящего времени в отечественной литературе 
практически отсутствуют публикации по исследованию квантовой динамики 
ливейных отображений на торе и близких K ним по уровню сложности моделей, 
‘гаких как отображение пекаря. Поэтому для удобства читателя кажется уместным 
привести краткий обзор работ, имеющих отношение к затронутым вопросам. 

Классическое  отображение, получившое впоследствии название  «кот 
Арнольда» появляется в книге Арнольда [13], как простейший пример 
представителя так называемых У-систем Аносова. Доказывается наличие у этого 
отображения бесконечного (счетного) множества неустойчивых периодических 
орбит, а также свойств перемешивания и эргодичности. Соответствующие 
формулировки и доказательства приведены также в книге Девани, где, кроме того, 
выполнено построение марковского разбиения и дано описание отображения кота 
Арнольда на языке символической динамики [14]. В серии работ [33—35], динамика 
ливейных — отображений Ha торе  была — ивтерпретирована в — терминах 
алгебраической теории  чисел, что позволило глубоко  осознать — многие 
особенности динамики, M, B частности, структуру множества периодических ОрбИТ. 
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Основополагающая статья, посвященная квантованию линейных отобра- 
жений на торе (B представлении Шредингера) принадлежит Ханнэю и Берри [15]. 
Они исходят из формулировки классического отображения через принции 
наименьшего действия и эксплуатируют связь этого принципа с квантовой 
механикой, чтобы получить сначала оператор эволюции для волновой функции, 
определенной на бесконечной оси. Затем на волновую функцию налагаются 
условия, отвечающие периодичности на торе, и с помощью аналитических 
выражений для гауссовых сумм производится соответствующая переформулировка 
оператора эволюции. Как показали Ханнэй и Берри, для того, чтобы предложенная 
схема квантования оставалась справедливой при всевозможных целых значениях 
квантового параметра N, матрица классического отображения с единичным 
детерминантом должна представляться в виде (3.19). Работа содержит примеры 
квантуемых в 3TOM смысле отображений эллиптического, параболического и 
гиперболического типа. Вводится понятие квантового BO3BpaTa, обсуждастся 
спектр квазиэнергий, а также динамика функции Вигнера на дискретной решетке 
размера 2Nx2N. На русском языке имеется только очень краткое изложение этой 

работы в книге Шустера [12]. 
Следует отметить, что отображение «кот Арнольда» вида р’=р+х, X'=p+2x 

(mod 1) не относится к классу квантуемых 1o Ханнэю — Берри. Его квалтование 
для четных N проведено Фордом с соавторами [17.25,36]. а для нечетных N, по- 
видимому, впервые в настоящей работе. 

Экхард [18.37] предложил эффективную схему вычисления собственных 
векторов для отображений, квантуемых по Хэннэю — Беррч, и показал, что для 
болышинства этих векторов при болыших N пространственное распределение имеет 
вид случайной функции. 

Возможность обобщения ляпуновских показателей на квантовые системы на 
примере отображений на торе рассматривали Тода и Икеда [38], а также Файсал и 
Швенгелбек [39]. Взаимосвязь такой характеристики хаоса как - энтропия 
Колмогорова — Синая со свойствами динамики квантовых отображений на торе 
обсуждалась Климеком и Лесниевски [40]. Эпозити с соавторами [41], а также 
Бузуина и де Биевре [42] обосновали возникновение свойств персмешивания и 
эргодичности в динамике гиперболических оторабжений на торе при переходс к 
классическому пределу М». 

Взимосвязь — между — классическими — периодическими — орбитами и 
спектральными — свойствами — квантовых — систем с дискретным — временем 
(отображений) была установлена Табором [43]. Для квантуемых по Ханнэю — 
Берри отображений на торе исследование периодических орбит и спектральных 
свойств, включая вывод и анализ соответствующей Шасе-формулы, выполнено 
Китингом [30,31]. Аналогичное соотношение получено Озорио дс Алмейдой и да 
Лузом [32] с использованием интеграла 10 траекториям. Как оказалось, для 
гиперболических отображений на торе статистические свойства распределения 
уровней квазиэнергии носят особый, нетипичный для других систем с квантовым 
хаосом, характер, подчеркивающий теоретико-числовую природу 
закономерностей динамики. Включение малого возмущения, преврашающего 
отображение в нелинейное отображение Аносова, приводит к тому, что статистика 
уровней становится такой же, как в типичных квантовых системах [44.45|. 
Соответствие между структурой классических периодических орбит и картинками 
распределения Хусими для собственных состояний обсуждается в работах [36,46]. 

В серии работ Форда с соавторами [17,25,36] в очень резкой форме заявлено, 
что в контексте проблемы квантового хаоса принцип соответствия становится 
несостоятельным. В частности, статья [17] озаглавлена «Кот Арнольда: крах 
принципа соответствия». Авторы указывают на нестыковки, возникающие при 
попытках трактовать квантовое и классическое описание и переход X 
классическому пределу в категориях теории сложности. ЖХотя выдвинутая 
аргументация интсресна и заслуживает серьезного впимания, заявленис © крахе 
принципа соответствия само Mo себе следует оценивать скорее как полемический 

40



прием. По нашему мнению, правильнес: сказать, что проблема квантового хаоса B 
CYDJHOCTH и заключается в TOM, чтобы разобраться, какое содержание должно 
вкладываться в принцип соответствия для систем, классические аналоги которых 
демовстрируют хаос. 

Использование представления Гейзенберга для исследования проблемы 
квантового хаоса, в том числе в системах с дискретным временем, обсуждалось B 
общей постановке Заславским [16]. Операторы Вейля — Гейзенберга в контексте 
различных квантовых задач рассматривались, например, в работах [19,20,23]. B 
применении к описанию квантовой динамики отображений на торе этот аппарат 
отчасти был развит Кнабе [47] и в уже упоминавшейся работе Климека и 
Лесниевски [40]. 

Различные версии квантовых отображений, имеющих своими классическими 
анелогами линейные отображения на торе, а также разнообразные аспекты их 
динамики обсуждаются в работах [48-52]. Помимо отображений на торе, 
проводились достаточно активные исследования других модельных отображений, B 
TOM числе отображения пекаря и его модификаций. Хотя они имеют косвенное 
отвощение к основной теме этой статьи, мы приводим для удобства читателя 
состветствующие ссылки [53-67]. 

В качестве работ, дающих более широкое представление о проблематике 
квантового хаоса, можно рекомендовать книги и обзорные статьи [1-6, 12, 16, 29, 
37, 68, 69]. 

Приложение А 

Квантование отображения «кот Арнольда» 
для четных значений квантового параметра N 

Вернемся к принятому в OCHOBHOM тексте определению операторов К и A 
(3.70) и вычислим детерминант соответствующих матриц. Детерминант матрицы A 

есть произведение диагональных элементов: Ое(А)=0/!+2+--(М-01=0ММ-1)2. Матрица 

К приводится к единичной с помощью (М-1)-ой перестановки столбцов, так что 
Det(K) = (-1)W-1, Таким образом, оба детерминанта равны 1 для нечетных N и —1 
для четных. Из (3.7) следует, что Ре(К”)=Ре(ЮРек(А), Det(A")=Det(A)Det(K’). 
Ноэтому при четных N знаки детерминантов должны были бы изменяться в ходе 
временной зволюции. Опасение, что это обстоятельство повлечет неприятности, 
оправдывается при переходе к представлению Шредингера (см. раздел 3). Чтобы 
чсправить — положение, приходится — переопределить — форму — операторного 
отсбражения Tak, чтобы 3HAK детерминантов B процессе эволюции сохранялся. 

Как отмечалось в разделе 2, конструируя выражение для оператора К’ мы 

сталкиваемся с выбором — положить K'=KA или AK. OGe формы совместимы с 
классическим отображением (3.1), но неэквивалентны в силу некоммутативности 

операторов: они отличаются на множитель @, поскольку КА=0оАК. Выберем 

«промежуточный» вариант К’=о!2АК=о-!ЗКА. Для второго уравнения сохраняем 

симметризованную форму: А’=АКА. Цля четных N при таком выборе вида 

операторного отображения имеем Ое(К”)=Ре(К)=-1 и Det(A")=Det(4)=-1. 
Подставим выражения для матричных элементов 

Ктп:бтН,П n /1,””:(1’”8,”” (А]') 

B сператорное отображение 

К=оМбАК, A'=AKA (А.2) 

я вычислим произведения матриц. B результате имеем 
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Knl,n"“ m+'].n(7'“ 1/25 A HI.II_G‘HH—HSIH.H—I' (А'д) 

Перейдем в представление Шредингера и найдем вид оператора эволюции Ё. 
Поскольку должпо быть UK =KU, из (А.1) и (A.3) следует 

Umfl_lo(‘n—l/Z: UNH—I.H' (A4) 

Аналогично, условие /А = AU при подстановке (A.1) и (A.3) дает 

Пт.п—і0(2”_…_12[]111‹„' (AS) 

Из (A.4) для диагональных элементов получаем U, ui=U,,,00+12, так что U, ,= 

=Upgol2#3/2-.+N=-D21=Uggor2. Далее, с помощью (А.5) находим (/у=Подоид-тн, 

Нетрудно убедиться, что полученное выражение для (,„ имеет период N 1o обоим 
индексам. . 

Выберем фактор Uy так, чтобы [Det(U)l=1, а след был действительным 
положительным числом. Имеем 

Tr(U)=2, Upporr2=U 2, exp(inn2/N) =оехр(1т/4). (A.6) 

Полагая Ug=exp(—in/4)N-12, окончательно получаем 

И„„=ехр(-т/4)М-1да(н2-тенй)=М-1ехр]2п(п/2-тп+п?)/№-1т/4], (A7) 

что совпадает с выражением, найденным B работе [17]. 

Оператор U можно представить также в виде произведения операторов \У и 
W, описывающих стадии толчка и распространения. 

Следуя общей идее, для стадии толчка заменяем в операторном уравнении 

комбинацию КА на о-12КА. так что 

K'=a-12KA, A'=A. ° (А.8) 

Отсюда можно пайти, что оператор эволюции в координатном представлении 
определяется диагональной матрицей: 

V,m=exp(—in/4) 28, =exp(rnin2/N—in/4)3,,,. (А.9) 

где фазовый множитель выбран так, чтобы Tr(V)=1. 
Для стадии распространения операторное отображение выбираем в виде 

К=К, А=о!РАК, (А.10) 

откуда получаем для матричных элементов оператора эволюции выражение 

И оМи М-ехр[п(т-п) 2/ М. (А.11) 

Как нетрудно проверить, U=WV. 

Операторы W и V связаны соотношением W=F*V*F, поэтому оператор U 
можно представить также в виде FV'FV, 

В качестве операторного аналога параболического отображения (1.4) при 
четных N следует взять соотношение (А.10). Матрица оператора эволюции W 
определяется выражением (А.11). Что касается отображения эллиптического тила 
(1.5), то операторное отображение можно сохранить в прежнем виде, поскольку 
его итерации не приводят K изменению знака детсрминантов. Опсратор эволюции 
совпадает, как и для нечетных №, с оператором обратного преобразования Фурье.



Приложение B 

Эволюция оператора K+2AP, периодические орбиты и закон сохранения 

С помощью отображения, задающего динамику операторов К и А в 
представлении Гейзенберга, можно проследить эволюцию во BPEMCHH и других 
опсраторов, получаемых из К и А с использованием операций сложения и 
умножения. В качестве важного примера рассмотрим встречающийся песколько 
paz B этой статье оператор K+CAP, действие которого состоит в выполнении сдвига 
на Р тпнагов по импульсу и затем на О шагов по координате. 

Полагая K'=KA, A'=AKA и. Используя коммутационное состношение KA= 

=0.АК, можно убедиться, что 

(К”)о=(КА)(КА)(КА)...(КА) =a(@+0)240K0, (В.1) 

(A")P=(AKA)(AKA)(AKA)...(AKA) =о-Р"КРА?Р. (B.2) 

Отсюда следует, что 
[(K+)QAP]’:(K’-n-)Q(A’)F:_OC—(Q3+Q)/2+FQ—PZ(K+)Q~PA2P—Q, (:В 2) 

то 2CTh оператор на следующем шаге представлен вновь через исходные операторы 

К' и A, HO с изменившимися показателями степени Оцу=О-Р и Py=2P-Q и 

доголнительным фазовым множителем 0-(@+0)2+Р0-Р. Соотношение между 

старыми и новыми показателями Р и © можно понимать по модулю N, поскольку 
К*^=Т и А“=1 (см. (3.10)). 

Если повторить описанную процедуру & раз, TO получится оператор 

k-1 _ 
(K=CAP)W=exp{(~2milN) iy [(Q2y+01n)2-P о0(2 JK 0 AT e, (B.4) 

где величины Py и Q) удовлетворяют PCKYPPCHTHBIM уравнениям 

Qiy=0»~Puy Рену-2Р‚у-Осы) (mod N) (B.5) 

с начальными условиями Pg=P, О(о)=О. Уравнения (B.5) соответствуют, очевидно, 

итсрациям в обратном времени отображения кота Арнольда P'=P+Q. О=Р+20 
(mod N). 

Если начальные значения P и О выбраны так, что точка (P, Q) принадлежит 
орбите периода & отображения кота Арнольда, то Р=Р и Quy=0. Покажем, что 
стоящее в показателе  9KCIIOHEHTL!  выражение — (классическое — действие, 
вычисленное вдоль периодической орбиты) для отображения кота Арнольда равно 
нулю по модулю М. Как можно видеть из уравнения (В.5), P;,=0;—0 .1y (тойМ), 
позтсму выраженисе для действия вдоль периодической орбиты можно представить 
‘гаким образом: 

- 
Spo=2i=0 ((O2iyt Qi )12—P оО у) = Z, 0((0 20 Qi)2-Q 1 Quisny +0%41) 

н . 
=Zo((N+1)12)(Q2iy+Q )-Ф @ity +@?%ыл) ) (mod N). (B.6) 

{3pech использовано TO обстоятельство. что число О?+О всегда четное, а (М+1)/2 — 
целое в силу нечетности N.) Учитывая цикличность по индексу [, последнее 
выражение перепишем в виде 

k-1 ` ‚ k-1 ‚ N 

Sp.o.:((N+1)/2)2i:()Q(i)(_Q(i—'l)+3Q(:)—Q(i+l))+((N+1)/2)21‘:()Q(f)(\m0d N). (B.7) 

Ho из уравнений (В.5) следует, что (-Э(-)!+30 о-О (н))=0 (mod N). Кроме того,



суммируя это выражение по BCEM элементам цикла, находим, 110 Z, Uz (=0 (mod ¥} 

Итак, из (B.7) видно, что сумма действительно равна нулю ло модулю N. 
Бсли вспомнить, что Ру=Р и Qy=0, то из (B.4) можно заключить, что 

(К+0АР)О=К+О0АР или UK+ CAPUF=K+CAP. Таким образом, если пара целых чисел 
(P, Q) принадлежит орбите периода К отображения кота  Арнольда, 
определенного на дискретной решетке размера NxN, то onepamop K+CAP 
коммутирует с оператором эволюции за К временных шагов. Иными словами, с 
точки зрения динамики за & шагов, K+CAF есть сохраняющаяся величина, или 
оператор симметрии для квантовой системы. (Собственные векторы этого 
оператора будут одновременно собственными векторами Uk, причем найти их очень 

просто, ибо матричные элементы оператора K+2AP имеют вид 0'76,_0.). И 

Приложение С 

Классические периодические орбиты и спектральные свойства квантового 
отображения кота Арнольда 

Установление связи между классическими периодическими орбитами и 
спектральными свойствами квантовых систем — одно из важнейших достижений 
теории квантового хаоса. В общем случае эта связь выражается так называемой 
иасе-формулой Гутцвиллера [4,6,29], а в контексте линейных отображений на 
торе рассматривается в [30-32]. Учитывая направленность  настоящей статьи, 
естественно обсудить взаимосвязь периодических орбит и спектральных свойств B 
свете динамики операторов Вейля — Гейзенберга. Поскольку спектр квазиэнергий 
однозначно определясется Штасе-последовательностью, зададимся вопросом O 
нахождении этой последовательности через эволюдионирующие во времени 
операторы К и А. 

След матрицы оператора эволюции за & шагов (*представляется в виде 

5=т(09=Х o (OIUHQ)=T оКО THKCI0), (1) 

где базисные векторы в координатном представлении Ю) выражены с помощью 

оператора сдвига К© через один из этих векторов, 10). 
Так как унитарное преобразование матрицы не меняет след, в последнее 

выражение вместо * можно подставить комбинацию АРША+Р, где Р — любое 

целое. Далее, поскольку результат не зависит от Р, можно паписать 

8= (LIN) S B oo OUK -0 APURA-PKOI0). 

Наконец, B последнем соотношении вместо вектора Ю) можно подставить 

любой нормированный на сдивицу вектор |№), ибо с очевидностью всегла 

существует унитарное преобразование, переводящее один вектор в другой. Итак, 
справедливо представление 

5 =(ИМ) ол оОО ИК-ОАРЕЛА+РКОу). (C2) 

Далее, в силу (4.3) umeen K+QAPU=UKKk)+Q(AWR))P. Пусть теперь B качестве ) 

выбран собственный вектор оператора Uk, так что (y|Ut=At(yl. Тогда из (С.2) 

следует, что 

A S =(UN) Zay Tpon(wd (KE)CABY A KOy . (C.3) 
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Вследствие унитарности оператора UK, A-+=(A*)%, поэтому суммирование по BCEM 
собственным функциям дает 

N-1 _ N~ 

1S,2=(LIN) S Зр (К®)0(А®)РА*?Ко), (C.4) 
Толученное соотношение для 152 применимо для любого квантового 

сотображения на торе. Теперь конкретизируем модель и рассмотрим отображение 
кота Арнольда (3.8). Как следует из результатов приложения В (em.(B.4), (B.5)), 
матричные элементы фигурирующего в (С.4) оператора (К®)*0(4®)РА’РК® с 
точностью до фазового множителя равны б„,+р_р„_)_„ои!((2…—0). Если одновременно 

Р =Р и Quy=0, то это единичный оператор, след которого равен N, B противном 
же случае след нулевой. Поэтому вклад B сумму дадут только те пары (P, Q), 
которые принадлежат периодическим орбитам классического отображения с 
периодом & (включая Te, период которых является делителем числа k). Поэтому из 
{С.4) вытекает, что 

й k-1 

1S4 = 2 exp[ (2mi/N)E 12 (Qi2+Q)/2—P Qi +P iyl (C.5) 
HO всем вачальным точкам P,Q, 
припадлежащим орбитам иериода & 

Далее, в приложении В показано, что сумма, фигурирующая под 3HAKOM 
экспоненты равна нулю по мбдулю N. Таким образом, для отображения кота 
Арнольда окончательно имеем 

число точек (P,0), й 
152 = принадлежащих орбитам периода & (. (C.6) 

на решетке размера NN р 

Эта  формула позволяет C  точностью до знака найти  члены — Насе- 
последовательности путсм подсчета для данного N всех периодических орбит 
клессического отображения, которые имеются на дискретной решетке размера 
МхМ. 

Габота  выполнена при финансовой поддержке  Российского фонда 
фундаментальных исследований (проект N 97-02—-16414). 

Библиографический список 

1. Quantum Chaos — Quantum Measurement / Eds P.Cvitanovie, I.Percival and 
A Wirzba. Dordrecht, Boston, London: Kluwer Academic Publishers, 1992. 

2. Nakamura K.. Quantum chaos. A new paradigm of nonlinear dynamics. Cam- 
bridge: Cambridge University. Press, 1993. 

3. Елютин I1.B. Проблема квантового хаоса // УФН. 1988. Т. 155, выш. 3. С. 397. 
4. Otr Е. Chaos т dynamical systems. Cambridge: Cambridge University Press, 

1993. 385 p. 
5. Quantum chaos / Eds H. Cerdeira, R. Ramaswamy, M. Gutzwiller and G.Casati. 

Sinzapore:World Scientific, 1991. 
° 6. Reichl L.E. The transition 10 chaos in conservative classical systems: Опашита 

manifestation. Springer Verlag, 1992. 551 p. 
7. Ландау Л.Д. Лифшиц EM. Квантовая механика. Нерелятивистская 

теория. М.: Наука, 1974. 752 с. 
8. Фок В.А. Начала квантовой механики. M.: Наука, 1976. 376 c. 
9. Фейнман. Р., Лейтон Р., Сэндс M. Фейнмановские лекции по физике. 
10. Hupar П.А.М. Принципы квантовой механики. М.: Наука, 1979. 
11. Эйнштейн А. К квантовому условию Зоммерфельда и Эшштейна // 

Собрание научных трудов. M.: Наука, 1966. Т. 3. С. 407. 
12. Шустер Г. Детерминированный хаос. М.: Мир, 1988. 240 с. 

45



13. Арнольд В.И. Цополнительные главы теории обыкновенных диффе- 
ренциальных уравнений. М.: Наука, 1978. С. 112. 

14. Devaney R.L. An introduction to chaotic dynamical systems. N.-Y., Am— 
sterdam, Tokyo: Addison-Wesley Publ.Comp., 1989. P. 190. 

15. Hannay J.H., M.V.Berry. Quantization of linear maps оп а torus — Fresnel dif— 
fraction by а periodic grating // Physica 1D. 1980. P. 267. 

16. Заславский Г.М. Стохастичность динамических систем. М.: Hayka, 1984, 267 с. 

17. Еога J., Mantica G., Ristow G.H. The Amold’s cal: Failure оЁ the cor— 

respondence principle // Physica D50. 1991. P. 493. 
18. Eckhardtd В. Exact cigenfunctions for а quantised тар // J.Phys. A: Math.Gen., 

1986. Vol. 19. P. 1823. 
19. Weyers J. The quantum groups GL,(n) and Weyl-Heiscnberg operators // 

Physics Letters. 1990. Vol. B240. Ne 3—4. P. 396. 
20. Athanasiu G.G., Floratos E.G. The lightcone SU,(2) quantum algebra а$ dy— 

namical symmetry of the Azbel — Hofstadter problem // Physics Letters. 1995. Vol. B352. 
Р. 105. 

21. Шредингер Э. Непрерывный переход от микро- к макромеханике // 
Избранные труды по квантовой механике. М.: Наука, 1976. С. 51. 

22. Клаудер Дж., Сударшан Э. Основы квантовой оптики. М.: Мир, 1970. 428 с. 
23. Saraceno M. Classical structures in the quantized baker transformation // Ап- 

nals of Physics. 1990. Vol. 199, P. 37. 
24. Балеску P. Равновесная и неравновесная статистическая механика. M. 

Мир, 1978. Т. 1. 
25. Ford J., Mantica С. Does quantum mecharics обеу the correspondence prin-—- 

ciple? Is it complete? // Am.J.Phys. 1992. Vol. 60, № 12. P. 1086. 
26. Kasperkovitz Р., Peev M. Wigner — Weyl Formalisms Гог toroidal geometrics // 

Annals of Physics. 1994. Vol. 230. P. 21. 
27. Agam Q., Brenner М. Semiclassical Wigner [unctions for quantum maps оп а 

torus // JPhys. A: Math, Gen. 1995. Vol. 28. P. 1345. 
28. Mehta M.L. Eigenvalues and cigenvectors ОЁ the finite Fourier transform // 

J.Math.Phys. 1987. Vol. 28, № 4. P, 781. 
29. Gutzwiller М.С. Chaos with few degrees оЁ freedom // Progress оЁ Theor.Phys. 

Suppl. 1994. № 116. P. 1. 

30. Keating J.P. Asymptotic properties of the periodic orhits of the cat maps. Моп- 
linearity, 1991. Vol. 4. P. 277. 

31. Keating J.P. The cat map: quantum mechanics and classical motion. Nen— 
linearity, 1991 Vol. 4. P. 309. 

32. Ozorio ае Almeida А.М., да Luz M.G.E. Path integrals and edge corrections for 
torus maps. Physica, 1996. Vol. D%4. P. 1. 

33. Percival 1, Vivaldi Е. Arithmetical propertics оЁ strongly chaotic motions // 
Physica. 1987, Vol. D25. P. 105. 

34. LPercival ‚ F.Vivaldi. A lincar code for the sawtooth and cat maps // Physica. 
1987. Vol. D25. Р. 373. 

35. Bartuccelli M., Vivaldi Е. Ideal orbits of toral automorphisms // Physica. 1989. 
Vol. D39. P. 194. 

36. Mantica G., Ford J. On the completeness оЁ the classical limit of quantum me— 
chanics // Quantum Chaos—Quantum Measurement / Eds P. Cvitancovic, 1. Percival, А. 
Wirzba. Kluwer Academic Publishers, 1992. P. 241. 

37. Eckhardt В. Quantum mechanics of classically non—integrable systems // Phys— 
ics Reports. 1988. Vol. 163. № 4. Р. 205. 

38. Toda M., Tkeda K. Quantal Lyapunov exponent // Phys.Lett. 1987. Мо!. A124. 
Р. 165. 

39. Faisal Е.Н.М., Schwengelbeck U. Unified theory оЁ Lyapunov exponents апа 
positive example оЁ deterministic quantum chaos // Phys.Lett. 1994, Vol. A207. Р. 31. 

40. Klimek $., Lesniewski А. Quantized chaotic dynamics and non—commutative 
К$ entropy // Annals of Physics. 1996. Vol. 248. P. 173. 

46



41. Esposti M.D., Graffi 5., Isola ©. Classical limit оЁ the quantized hyperbolic (ога! 
automorphisms // Commun.Math.Phys. 1995. Vol. 167. P. 471, 

42. Bouzouina А., de Bievre S. Equipartition оё the elgcnfunctlons of quantized er— 
godic maps оп the torus // Commun.Math.Phys. 1996. Vol. 178. P. 8 

43. Tabor М. A semiclassical quantization of а nca—pxesewma maps / Physica. 
1983. Vol. 6. Р. 195. 

44. De Matos M Basilio, Ozorio de Alneida А.М. Quantization оё Anosov maps // 
Annals of Physics. 1995. Vol. 237. P. 46. 

45. Lakshminarayan А., Balazs N.L. On the quantum cat ала sawtooth maps — Ве-- 
tura to generic behavior // Chaos, Solitons & Fractals. 1995. Vol. 5, № 7. P. 1169. 

46. Leboeuf P.,Veoros А. Chaos—revealing multiplicative representation of quanium 
eigenstates // J.Phys.A: Math.Gen. 1990. Vol. 23. P. 1765. 

47. Knabe S. On the quantisation оГ Атпо!@ cat // J.Phys. A: Math.Gen. 1990. Vol. 
23. Р. 2013. 

48. Isola 5. © —function and distribution оё periodic orbits of toral automorphisms // 

Europhysics Letters. 1990. Vol. 11, Ne 6. P. 517. 
49. Weigert St. The configurational quantum са! тар // Z.Phys. 1990. Vol. В80. P. 3 
50. Benatti F., Narnhofer H., Sewell G.L. A non—commutative version оЁ the Ar— 

nold cat тар // Lett. Math.Phys. 1991. Vol. 21. P. 157. 
51. Kolevsky A.R. Condition оё correspondence between quantum and classical dy—- 

паго1св for а chaotic system // Phys.Rev.Lett. 1996. Vol. 76, № 3. P. 340. 
52. Kolovsky A.R. Quantum coherence, evolution of the Wigner function, апа {ran— 

sition from quantum to classical dynamics for а chaotic system // CHAOS. 1996. Vol. 6, 
№ 4. Р. 534, 

53. Balazs N.L., Voros А. The quantized baker’s transformation // Europhysics 
Letters. 1987. Vol. 4, Ne 10. P. 1089, 

54. Balazs N.L., Voros A The quantized baker’s transformation // Annals оГ Phys— 
ics, 1989. Vol. 190. P. 1. 

55. O’ Connor P.W., Tomsovic 5. The unusual nature of the quantum baker’s trans~ 
formation // Annals оё Physics. 1991. Vol. 207. P. 218. 

56. Ozorio de Almeida A.M., Saracenc M. Periodic orbit theory for the quantized 
baker’'s тар // Annals of Physics. 1991. Vol. 210. P. 1. 

57. Lakshminarayan А., Balaz N.L. The classical and guantum mechanics оГ lazy 
baker maps // Annals of Physics. 1993. Vol. 226. P. 350. 

58. Saraceno M., Voros А. Towards а scmiclassical theory оТ the quantum baker’s 
тар // Physica. 1994. Vol. D79. P. 206. 

59. Dittes F.M., Doron E, Smilansky U. Long—time behavior оЁ the semiclassical 
baker’s map // Phys.Rev. 1994. Vol. E49, № 2. P. R963. 

60. Hannay J.N., Keating J.P., QOzorio de Almeida А.М. Optical realization оЁ the 
haker's transformation // Nonlinearity. 1994. Vol. 7. P. 1327. 

61. Lakshminarayan А., Balaz N.L. On the noncommutativity оЁ quantization and 
diserete—time evolution // Nuclear Physics. 1994, Vol. AS72. Р. 37. 

62. Lakshminaravan А., Balaz N.L. Relaxation and localization in inferacting 
quantum maps // J.Stat. Phys. 1994. Vol. 77, № 1-2. P. 311. 

63. Lakshminarayan А. On the quantum bakers тар ап И5 unusual traces // An— 
nals оЁ Physics. 1995. Vol. 239. P. 272. 

64. Saraceno M., Vallejos R.O. The quantized D—fransformation // CHAOS. 1996. 
Vol. 6, № 2. Р. 193, 

65. Boasmant P.A., Smilansky U. Quantization оё monotonic (wist maps // J.Phys. 
А: Math.Gen. 1994, Vol. 27. P. 1373. 

66. Lakshminarayan A., Balaz N.L. On the quantization оё linear maps // Annals оГ 
Physics. 1991. Vol. 212. P. 220. 

67. Lakshminarayan А. Semiclassical theory оГ the sawtooth тар // Phys.Lett. 
1964, Vol. А192. Р. 345. _ 

58. Nakamura K. Introduction 10 quantum chaos // Chaos, Solitons & Fractals. 
1955. Vol. 5, № 7. Р. 1035, 

47



69. Bogomolny E.B., Georgeot B., Giannoni M.J., Schmit С. Quantum chaos оп 
constant negative curvature surfaces // Chaos, Solitons & Fractals. 1995. Vol. 5, № 7. P. 

1311. 

Институт радиотехники и Поступила в редакцию 10.04.98 
электроники PAH, 

Саратовский филиал 

ARNOLD’S CAT MAP: QUANTUM CHAOS AND OPERATOR DYNAMICS 
IN HEISENBERG REPRESENTATION 

S.P. Kuznetsov 

The quantum model system is considered for which the classic analog is the known 
Arnold’s саг map. Due to periodicity conditions for the phase space, quantum states are 

represented by vectors оГ finite dimension М, апа operators by NxN matrices. The integer 

parameter N characterizes a relative value of quantum effects; classic limit corresponds to 

М№->е. Operator тар is suggested which governs discrete time evolution т Heisenberg 

representation Гог operators of finite shifts for position and momentum. Explicit form о 
evolution operator 18 stated in Schrodinger representation. Solution for non—stationary 
problem is presented and discussed for initial conditions taken as localized state, two del- 
ta—spikes, Gaussian wave packet. Quantum dynamics 10 terms оГ Husimi distribution апа 
Wigner function, quasi—cnergy spectrum and eigenvector structure are discussed оп а ba— 
sis of dynamics of Heisenberg operators. 
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