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БИФУРКАЦИОННЫЙ АНАЛИЗ НЕЛИНЕЙНОЙ ДИНАМИКИ 
НЕАВТОНОМНОЙ СИСТЕМЫ МАЯТНИКОВОГО ТИПА 

К.Г. Кивелева, JI.A. Фрайман 

Качественно-численным — методом — с — использованием — компьютерного 
моделирования проведен бифуркационный анализ нелинейной динамики неавтономной 
системы маятникового типа, имеющей широкий спектр приложений. Построены 
бифуркационные диаграммы, выделены области с хаотическим поведением различного 
типа, изучен сплучай возникновения в системе двух устойчивых периодических 
движений колебательного типа. Приводится физическая интерпретация лолученных 

результатов применительно к системе с джозефсоновским контактом. 

Эта статья является продолжением опубликованной в [1] работы по 
качественно-численному исследованию системы 

o=y, 
1) 

y=7- (L+ асозф)у - sin ф + Ц sin o, 

имеющей широкий спектр приложений в качестве математической модели ряда 
механических [2} и радиотехнических систем. В частности, в случае а 20 она 
является — математической — моделью — системы — со — сверхпроводящим 
джозефсоновским контактом во внешнем поле [3]. В [1] был проведен 
бифуркационный анализ системы (1) в плоскости параметров (у,)): построены 
бифуркационные диаграммы, изучены области существования и бифуркации 
колебательных движений и их инвариантных многообразий, порождаемых 
состояниями равновесия автономной системы (u=0), определены — области 
существования — вращательных — периодических — движений с — различными 
характеристиками — вращения. Проведена — интерпретация для — физических 
приложений. 

В настоящей работе система исследуется в Пплоскости (и„)). Поскольку 
основная — характеристика — джозефсоновского контакта - — вольтамперная 
характеристика (ВАХ) - определяется числом вращения периодических движений 
системы (1) [1,3], то изучение бифуркаций периодических движений с различным 
числом вращения в этой плоскости дает возможность, во-первых, установить 
теоретически размеры ступеней BAX (это будут размеры по у при и=соп5! 
областей существования устойчивых периодических движений с различным числом 
вращения) U, во-вторых, описать характер бифуркаций, определяющих переход с 
одной ступени ВАХ на другую. 
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Puc. 1. Бифуркационная днаграмма при =1, 

A=1, а=0. Кривые соответствуют: Л, , My - 

бифуркации седло-узловой неподвижной точки 
(0,1)-типа (Д и 5) и (1,1)-типа (my); ц-касанию 

Рис. 2. Бифуркационная диаграмма при (9=0.68, 

A=0.8, а=0. Кривые соответствуют: Iy, Iy, 13, - 
бифуркации седло-узловой неподвижной точки 

(0,1)-типа (4, , ) н (1,1)-типа (nmy); Dy, Dp, 
верхних сепаратрисных инвариантных кривых ДЭд - первому удвоению периода устойчивых 
неподвижной точки (0,1)-типа В pBOMY у Р у 

периодических движений колебательного типа 

Kpome этих задач, особый интерес представляет  исследование 10 
построенным — бифуркационным — диаграммам — областей — одновременного 
существования двух устойчивых и JBYX седловых колебательных движений. 
Наличие двух устойчивых колебательных движений соответствует для систем со 
сверхпроводящими контактами различным квантам потока, а для механических 
систем - существованию двух стационарных режимов с различными амплитудно- 
частотными характеристиками. Существование двух устойчивых периодических 
движений B системе (1) при небольших значениях параметра и было замечено в [4] 
с помощью метода гармонического баланса. В [5] дано качественно-численное 
обоснование возможности существования двух устойчивых предельных множеств 
колебательного типа. В данной работе качественно-численными методами 
установлены границы областей одновременного существования двух устойчивых 
колебательных движений при немалых значениях параметра амплитуды внешнего 

воздействия и (О<и<5). 
На рис. 1 - 3 представлены основные бифуркационные диаграммы, 

полученные на основе качественно-численного метода [6] по алгоритмам и 
программам исследования отображения Пуанкаре, порождаемого траекториями 
системы на периоде 2л/о (см. ссылки [7-11] в работе [1]). 

Кривые /i, [, 1 ограничивают сверху области существования периодических 

колебательных движений (0,1)-типа. 
На кривой /; происходит седло-узловая 
бифуркация колебательных движений, 
порождаемых состояниями равновесия 
системы при p=0, на кривых [, Д - 

седло-узловая бифуркация колебатель- 
ных движений, возникающих с ростом 
амплитуды — неавтономности — из-за 
уплотнения векторного поля. Пересе- 
чения кривых /| и , [, и | выделяют 
области (G; и G, соответственно) 

Рис. 3. Бифуркационная диаграмма при ©=1, A=1, существования двух устойчивых и двух 
a=-1. Кривые соответствуют; [y, , т - седловых — колебательных движений: 

бифуркации седло-узловой неподвижной точки /7 . 5 7 
(0,1)-типа ( и 5) и (1,1)-типа (my); Ly, 5 - \11(3.00<Ц<4-05) (см.рис.1); Gi(1.52<u<2.42) 
касанию верхних сепаратрисных инвариантных И G(3.62<u<4.28) (см:рис.2); Gy(2.52<u<4.6) 

0.0 1.0 2.0 3.0 4.0 н 

кривых неподвижной точки (0,1)-типа; Эд, Эр, 

D,;1 - первому удвоению периода устойчивых 
периодических движёний колебательного (Од и 

Эу) и вращательного (D,,;) типов 

(см. рис. 3). Такое взаиморасположение 
областей существования колебательных 
движений дает возможность переходить 
из режима колебаний в режим биений и 
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Рис. 4. Проекция предельной траектории на плоскость /=0 (вверху) и соответствующее ей 
отображение Пуанкаре (внизу) при значении параметров: а - ©@=1, y=0.2, A=1, 1=2.6, a=-1 

(колебательный аттрактор); 6 - @=1,'у=1, A=1, p=1, а=-1 (вращательный аттрактор) 

возвращаться в колебательный режим с ростом амплитуды внешнего воздействия 
(например, см. сечение при y=0.25 на рис. 2). В областях ¢ двумя устойчивыми 
колебательными движениями в зависимости от начальных условий в системе 
реализуется то или иное устойчивое предельное множество, амплитуды их при 170 
различны. 

МСЖДУ кривыми /1y расположена область существования вращательных 

периодических движений (1,1)-типа. Пересечения кривых [ и my, 5 и т, 

определяют  области, в которых существуют и колебательные (0,1) и 
вращательные (1,1)-типа периодические движения. 

Определены границы областей первого удвоения периода как колебательных 

- кривые Dy (i=1,3), так и вращательных - кривые Эд периодических движений. 
Исследование каскада удвоений периода колебательных и вращательных движений 
нозволило получить приведенные на рис. 4 фазовые портреты, представленные B 
виде проекций периодических движений на плоскость 1=0. OHA иллюстрируют 
наличие в системе (1) сложных колебательных и вращательных аттракторов. В 
областях существования двух устойчивых колебательных движений установлено, 
что  каждое W3 . этих — периодических — движений — может — претерпевать 
последовательность бифуркаций ‘удвоения периода и необязательно одновременно, 
при этом могут образоваться один или два сложных колебательных аттрактора, 
разделяемых сепаратрисными поверхностями обоих седловых колебательных 
движений. Однотипное поведение обоих колебательных движений реализуется B 

силу симметрии по у только на оси : оба устойчивые движения могут быть либо 
простыми, либо пройти одинаковое число удвоений периода, образуя сложные 

структуры колебательного типа. B области Gy при у=0 B интервале 1.72<<1.7434 
(см. рис. 2) в результате их взаимодействия с гомо- и гетероклиническими 
пересечениями сепаратрисных инвариантных многообразий обоих седловых 
периодических движений возникает сложный объединенный колебательный 
аттрактор. Динамика взаиморасположения и вида предельных множеств с 

изменением параметра р приведена на рис. 5 и 6. 
Кривые I, и [Is заключают области существования гомоклинической 

структуры, ПОРОЖД&ВМОЙ пересечениями верхних сепаратрисных инвариантных 

кривых седловых неподвижных точек. В них выделены области со сложной 
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Рис. 5. Одновременное существование двух колебательных аттракторов, Проекция предельной 
‘траектории на плоскость =0 (вверху) и соответствующее ей отображение Пуанкаре (внизу) при 

значении параметров ®=0.68, y=0., A=0.8, и=1.7, а=0 с разных начальных условий: а - xg=-3.14, 

)’0=0; б - .\'0=1.956‚ _\’0=0 
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Рис. 6. Эволюция объединенного колебательного аттрактора. Проекция предельной траектории 
на плоскость =0 (вверху) и соответствующее сй отображение Пуанкаре (внизу) с одинаковых 
начальных условий х9=-0.085, уо=0.091 при значении параметров ©=0.68, y=0., A=0.8, а=0 и 
различных значений параметра ш: а - и=1.72; 6 - 1=1.74; в - u=1.743; г - ц=1.7434 
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динамикой, связанной с существованием притягивающей — гомоклинической 
структуры, — обусловленной — наличием — пересечения  верхних и — боковых 
сепаратрисных инвариантных кривых и устойчивого сложного колебательного 
движения большого периода, возникающего в результате каскада удвоений. 
Поведение траекторий в этих областях характеризуется наличием не только 
колебательной, но и вращательной компоненты, хотя сами области могут быть 
расположены вне областей существования вращательных движений (1,1)-типа. На 
рис.3 такая область выделена штриховкой, ее верхней границей является кривая 
my, а нижней - кривая [. Аналогичная область найдена и B области существования 
двух устойчивых колебательных движений, на рис. 2 она расположена под кривой 
т между кривыми 4, и /; и выделена штриховкой. 

Для исследования ВАХ джозефсоновского контакта во внешнем поле 
построены приведенные на рис.7, а и 8, а бифуркационные диаграммы для тех же 
значений параметров, что и на рис. 1 и 2, но дополненные границами My, M3, Ny 
областей существования вращательных периодических движений с периодами, 
кратными 2, 3, 4, соответственно. Поскольку периодические решения различной 
кратности определяют ступени ВАХ, эти бифуркационные диаграммы дают 
возможность получить качественный вид ВАХ для различных значений амплитуды 
в интервале 0.01<pu<5.0. Все качественно различные случаи BAX представлены на 
рис.7, 6 и 8, 6. Здесь использовано обозначение переменной компоненты тока 
символом «i», принятое в системе с джозефсоновским контактом, который 
идентичен символу «у» в уравнениях (1), использующийся применительно к 

описанию динамики систем фазовой синхронизации, где у означает начальную 
расстройку. Построенные BAX имеют максимально возможные  размеры 
ступеней, которые могут реализовываться в эксперименте. Анализ рисунков 

показывает, что при достаточно болыших значениях A и @ структура ВАХ является 
наиболее простой, безгистерезисной. С уменьшением этих параметров поведение 
ВАХ усложняется, так как области различных резонансов перекрываются, то есть 
в системе может одновременно существовать несколько режимов с различными 
характеристиками вращения, что приводит к наличию гистерезисов (на рис. 8`при 

Ц==1,2,3). Проведенное исследование стационарных движений и их бифуркаций 

показало, что ВАХ, например, при и=2 практически не может иметь нулевой 

ступени, причем не только за счет того, что близко K OCH Ц опускается граница 

области существования резонанса (1,1), но и B связи с TeM, что при малых Y B этом 
случае система имеет притягивающую гомоклиническую структуру вращательно- 

колебательного типа, порождаемую  пересечениями  верхних и — боковых 
сепаратрисных инвариантных кривых периодических движений колебательного 
типа, вследствие чего предельное множество имеет ненулевую характеристику 
вращения и нестабильный сложный характер. 

Таким образом, проведенный бифуркационный анализ позволил получить 
следующие результаты исследования нелинейной динамики изучаемой системы, не 
установленные в [1]. 

1. Изучен характер и построены бифуркационные границы областей 
одновременного существования двух устойчивых (определяющих в прикладных 
задачах два однотипных стационара с различными характеристиками) и двух 
седловых периодических движений колебательного типа. 

2. Установлено, что при =0 в этих областях MOTYT существовать 
объединенные сложные колебательные аттракторы, возникающие в результате 
последовательности бифуркаций удвоения периода двух устойчивых периодических 
движений и наличия гомо- и гетероклинических структур, образуемых 
инвариантными — многообразиями  двух  седловых  периодических — движений 
колебательного типа. 

3. Обнаружены значения параметра 7Y, при которых B отсутствие 

вращательных резонансов не реализуется нулевая ступень ВАХ из-за наличия 
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Рис. 7. Бифуркационная диаграмма (а) и графики ВАХ (6) при @=1, М=1, а=0; а - кривые 
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Puc. 8. Бифуркационная диаграмма (a) и графики BAX (6) при 0=0.68, №=0.8, a=0: а - кривые 
соответствуют бифуркациям седло-узловых неподвижных точек (Л, b, 1 - (0,1)-типа и myq, то, 

ms, my - (1,1), (1,2), (1,3), (1,4) - типа, соответственно); 6 - графики ВАХ при различных 

значениях параметра / 

притягивающей гомоклинической структуры колебательно-вращательного типа, 
образованной седловым периодическим движением колебательного типа. 

Авторы признательны В.Н.Белых за полезные обсуждения в ходе 
исследований и замечания по работе. 

Работа выполнена при частичной финансовой поддержке Российского 
фонда фундаментальных исследований (epanm N 93- 13- 16253). 
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The bifurcation analysis of nonlinear dynamics in nonautonomous pendulum sys- 
tems with extensive spectrum оЁ applications is carried out. The bifurcation diagrams are 
presented, the regions with chaotic motions of different types are determined, the case of 
appearance of two stable oscillating periodic solutions is studied. The achieved results are 
interpreted applying to Josephson junction systems. 
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